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ABSTRACT
The powerful analgesic effects of opioid drugs have capti-
vated the interest of physicians and scientists for millennia,
and the ability of opioid drugs to produce serious undesired
effects has been recognized for a similar period of time
(Kieffer and Evans, 2009). Many of these develop progres-
sively with prolonged or repeated drug use and then persist,
motivating particular interest in understanding how opioid
drugs initiate adaptive or maladaptive modifications in neural
function or regulation. Exciting advances have been made
over the past several years in elucidating drug-induced changes
at molecular, cellular, and physiologic scales of analysis. The
present review will highlight some recent cellular studies that
we believe bridge across scales and will focus on optical

imaging approaches that put opioid drug action “under the
microscope.”

SIGNIFICANCE STATEMENT
Opioid receptors are major pharmacological targets, but their signal-
ing at the cellular level results from a complex interplay between
pharmacology, regulation, subcellular localization, and membrane
trafficking. This minireview discusses recent advances in under-
standing the cellular biology of opioid receptors, emphasizing par-
ticular topics discussed at the 50th anniversary of the International
Narcotics Research Conference. Our goal is to highlight distinct sig-
naling and regulatory properties emerging from the cellular biology
of opioid receptors and discuss potential relevance to therapeutics.

Cellular Basis of Opioid Receptor Regulation
Early interest in a cellular basis for opioid adaptations was

motivated by the ability of prolonged morphine exposure to
produce complex regulatory effects on signaling in neuroblas-
toma cells (Sharma et al., 1975) and to reduce receptor reserve
in tissue explants (Chavkin and Goldstein, 1982). This was
followed by the identification of agonist-induced downregula-
tion of opioid receptors associated with endocytic delivery to
lysosomes (Law et al., 1984). A more rapid and nondestructive
process of receptor internalization was later detected, first
pharmacologically and then using cellular imaging (Von
Zastrow et al., 1993; von Zastrow et al., 1994). This led to the
delineation of clathrin- and dynamin-dependent endocytosis
of opioid receptors promoted by agonist-induced receptor
phosphorylation followed by engagement of a class of cyto-
plasmic adaptor and scaffolding proteins called b-arrestins.

Regulated endocytosis by this conserved mechanism has now
been demonstrated for all three opioid receptor types:m (MOP-R),
d (DOP-R), and k (KOP-R) (Keith et al., 1996; Zhang et al., 1996,
1998; Whistler and von Zastrow, 1998; Li et al., 1999).
Once internalized, receptors can recycle nondestructively to

the plasma membrane or traffic to lysosomes for proteolytic
downregulation. The decision of which route receptors take is
made by receptor-specific molecular sorting operations that
occur in endosomes (Tsao and von Zastrow, 2000; Whistler
et al., 2002). InternalizedMOP-R and KOP-R typically recycle
efficiently and downregulate slowly, whereas DOP-R, al-
though also capable of nondestructive recycling, traffics
preferentially to lysosomes and downregulates more rap-
idly (Keith et al., 1996; Li et al., 1999; Tsao and von Zastrow,
2000; Tanowitz and von Zastrow, 2003). Such molecular
sorting is highly selective and directed by discrete structural
determinants in the receptor. For example, a short sequence
present in the cytoplasmic tail of MOP-R is necessary for
efficient recycling of this opioid receptor, and when fused
to the cytoplasmic tail of DOP-R, it is sufficient to redirect
receptors from lysosomal to recycling pathways. Further,
an MOP-R splice variant that naturally lacks this sequence,
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generated by alternative processing of the receptor transcript,
recycles less efficiently and downregulates more rapidly during
prolonged agonist exposure (Tanowitz and von Zastrow, 2003;
Tanowitz et al., 2008). Additional sorting occurs later during
transit to lysosomes through translocation of receptors from the
endosome limiting membrane to small membrane vesicles that
are formedwithin the endosome lumen. This process is promoted
by ubiquitination of receptors on lysine residues in the first
cytoplasmic loop (Hislop et al., 2011).
Such observations delineated a basic framework for the

cellular regulation of opioid receptors (Fig. 1) that largely
comportswith a conserved paradigmof receptor desensitization
established through studies of a variety of GPCRs (DeWire
et al., 2007). Although much of the original work elaborating
this regulatory framework relied on recombinant receptor
expression and the use of simplified model systems, key
elements of it are now validated in physiologic context. In
particular, agonist-induced endocytosis of MOP-R and DOP-R
has been directly demonstrated in native neurons (Sternini
et al., 1996; Scherrer et al., 2006), and endocytic delivery of
DOP-R to lysosomes has been convincingly associated with
long-term downregulation of functional antinociception in vivo
(Pradhan et al., 2009). Further, the same phosphorylation sites
defined initially by phosphoproteomic mapping of heterolo-
gously expressed MOP-R (Lau et al., 2011) have been shown
to be essential for functional desensitization of postsynaptic
signaling and agonist-induced internalization of MOP-R in
acute brain slices, as well as for antinociceptive tolerance
assessed behaviorally in vivo after repeated administration
of morphine (Arttamangkul et al., 2018; Kliewer et al., 2019).
A main takeaway from the cellular regulatory framework

summarized above is that receptor trafficking and signaling

operations are intricately interconnected. A critical group of
enzymes that regulate opioid receptors (and many other
GPCRs) are the so-called GPCR kinases, or GRKs (Komolov
and Benovic, 2018). Phosphorylation by isoforms of protein
kinase C has also been shown to produce significant effects on
MOP-R trafficking and signaling and contributes to differentiat-
ing regulatory effects of morphine relative to opioid peptide
agonists on this receptor (Bailey et al., 2009;Bowmanet al., 2015;
Civciristov et al., 2019; Kunselman et al., 2019). GRK-mediated
phosphorylation is a generalmechanism for inhibiting the ability
of GPCRs to engage G proteins and for promoting binding to
b-arrestins (Shenoy and Lefkowitz, 2011; Williams et al., 2013;
Kang et al., 2014). Accordingly, phosphorylation promotes two
processes that appear to act redundantly to assure that opioid
signaling from the plasma membrane is terminated: functional
uncoupling of receptors from G proteins followed by physical
removal of receptors from the cell surface (Fig. 1).

Toward an Expanded Understanding of the
Signaling-Trafficking Relationship

According to the conserved regulatory framework summa-
rized above, endocytosis of opioid receptors is inextricably
associated with receptor inactivation, effectively operating
as a redundant mechanism to assure that surface-delimited
signaling is terminated after receptor phosphorylation and
engagement of b-arrestin in the plasma membrane. How-
ever, it is increasingly clear that opioid receptors can produce
additional signaling effects that are promoted, rather than
inhibited, by receptor engagement withb-arrestin. The potential
of b-arrestins to act as regulated scaffold proteins promoting

Fig. 1. Agonist-induced signaling and trafficking of opioid receptors. Inactive opioid receptors (gray) become activated (green) after binding to an agonist
(A, steps 1 to 2). This enables signaling via G proteins (green ripples, step 2) and triggers phosphorylation of the receptor tail (P) by GRKs, followed by
receptor engagement of b-arrestins (step 3) and endocytosis via clathrin-coated pits (step 4). These events inactivate G protein signaling (red receptor)
and assure signal termination from the plasma membrane by endocytic removal of receptors. After receptors arrive in early endosomes, they have the
capacity to signal again by engaging G proteins in the endosomemembrane (green ripples, step 5). Receptors also engage molecular sorting mechanisms
in the endosome limiting membrane (not shown), which determine whether internalized receptors are delivered to lysosomes for proteolytic
downregulation or are nondestructively recycled to restore surface receptor responsiveness. Many nonpeptide agonist drugs (drug B) are sufficiently
membrane-permeant to activate a discrete pool of opioid receptors at the Golgi apparatus and activate receptors from this location (green ripples). Some
agonists (drug C) induce receptor reorganization in the plasma membrane to change surface signaling (blue ripples).
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the activation of kinase cascades by various GPCRs has been
well described (DeWire et al., 2007), and studies of KOP-R
provide strong support for the physiologic relevance of such
signaling to opioid receptors (Bruchas and Chavkin, 2010).
Recent studies of MOP-R and DOP-R suggest, in addition,
that opioid receptors use b-arrestin–promoted endocytosis
to enableGprotein signaling from internalmembrane compart-
ments. Moreover, studies of MOP-R suggest a discrete regu-
latory scheme that enables opioid receptors to maintain
sensitive signaling via G proteins at the plasma membrane.
Key observations supporting each of these emerging views
are summarized below.
Evidence for endosomal activation of opioid receptor signal-

ing via G proteins emerged from the development of confor-
mational biosensors, which detect and localize activated
MOP-R and DOP-R in living cells. Single-domain antibodies
(nanobodies), generated initially as tools to stabilize active-
conformation receptors for structural studies (Huang et al.,
2015; Manglik et al., 2017), were later adapted to detect
conformational activation of receptors in living cells when
expressed as fluorescent fusion proteins in the cytoplasm
(Stoeber et al., 2018). Imaging live cells using total internal
reflection fluorescence microscopy, a method useful for exam-
ining events close to the cell surface, demonstrated agonist-
induced recruitment of biosensor to the plasma membrane, as
expected. Imaging by confocal microscopy, enabling intracel-
lular compartments to be resolved in optical sections, also
revealed biosensor recruitment to endosomemembranes after
receptor internalization. Experiments contrasting the effects
of membrane-permeant and membrane-impermeant antago-
nists provided functional evidence supporting the ability of
DOP-R activation in internal membrane compartments to
contribute to a relatively sustained component of opioid
receptor–mediated inhibition of cellular adenylyl cyclase activ-
ity. These observationsadd support to the overall hypothesis that
phosphorylation and b-arrestin–promoted endocytosis of opioid
receptors is not associated exclusively with signal termination.
Rather, the conserved phosphorylation-endocytosis machin-
ery appears to enable a second “wave” of G protein–mediated
signaling that is initiated from the endosome limiting mem-
brane (Fig. 1).
Evidence suggesting a distinct effect of opioid receptor

endocytosis onG protein signaling from the plasmamembrane
emerged through studies using a combination of fluorescence
imaging methods to investigate the relationship between
MOP-R trafficking and signaling in neurons and specifically
focusing on this relationship in axons. MOP-R mediates both
postsynaptic and presynaptic neuromodulatory effects through
G proteins (Williams et al., 2013). At the postsynaptic plasma
membrane,MOP-R stimulates ahyperpolarizing current through
G protein–dependent activation of G protein–coupled inwardly
rectifying potassium (GIRK) channels (Williams et al., 1982).
This response normally desensitizes over several minutes in
the continuous presence of agonist and then recovers after
agonist washout (Dang and Williams, 2004). Desensitization
of the postsynaptic GIRK response occurs even when inter-
nalization of MOP-R is prevented (Arttamangkul et al., 2006),
supporting the hypothesis that endocytosis acts redundantly
in surface-delimited signal termination, and receptor recy-
cling after endocytosis parallels recovery of MOP-R signaling
from the desensitized state (Arttamangkul et al., 2008;
Yu et al., 2010; Quillinan et al., 2011). Further, mutation of

phosphorylation sites in the MOP-R cytoplasmic tail that
are required for agonist-induced internalization of receptors
in the somatodendritic compartment blocks functional de-
sensitization of postsynaptic GIRK signaling measured in
brain slice preparations (Alvarez et al., 2002; Just et al., 2013;
Yousuf et al., 2015; Arttamangkul et al., 2018). MOP-R is also
known to inhibit postsynaptic calcium transients, but in-
terestingly, this response does not rapidly desensitize. This
difference appears to occur as a consequence of classic receptor
reserve because reducing the overall number of functional
receptors by preexposing tissue slices to the irreversible opioid
antagonist b-chlornaltrexamine unmasks rapid desensitiza-
tion of this postsynaptic response as well (Fox and Hentges,
2017). Accordingly, MOP-R signaling, which occurs in the
somatodendritic plasma membrane of neurons, conforms to
the classic cellular regulatory paradigm, with receptor phos-
phorylation followed by internalization producing a net loss of
functional signaling responsiveness.
However, there is now evidence for a different relationship

between MOP-R signaling and trafficking in axons. MOP-R
inhibits transmitter release at presynaptic terminals by
local G protein–dependent inhibition of voltage-gated cal-
cium channels and components of the vesicular release
machinery (Wilding et al., 1995; Bourinet et al., 1996; Zurawski
et al., 2019). This response is more highly sensitive to opioid
peptides than postsynaptic GIRK signalingmediated byMOP-R,
and it remains highly sensitive even under conditions of
prolonged agonist exposure that strongly desensitize the post-
synaptic GIRK response (Fyfe et al., 2010; Pennock et al., 2012;
Lowe and Bailey, 2015). Further, in contrast to what is observed
for postsynaptic calcium transients, reducing the overall number
of functional opioid receptors by irreversible antagonist preexpo-
sure fails to unmask desensitization of presynaptic inhibition
mediated by MOP-R (Pennock et al., 2012). Accordingly, MOP-R
regulation in the presynaptic compartment appears to
differ fundamentally from that occurring in the postsynap-
tic compartment based on its higher overall ligand sensi-
tivity and resistance to desensitization, even when overall
receptor reserve is reduced.
Despite this distinction, live-cell imaging of tagged MOP-R

in neurons revealed agonist-induced phosphorylation and
phosphorylation-dependent endocytosis in axons, with these
events mediated by similar machinery as that mediating
rapid desensitization of postsynaptic MOP-R signaling (Jullié
et al., 2020). A clue to how these conserved cellular regulatory
events are compatible with a lack of functional desensitiza-
tion at the presynapse became apparent from experiments
using various imaging methods to examine in detail the
localization and dynamics of MOP-R in axons. To visualize
sites of endocytic uptake of MOP-R in axons of living neurons,
a pH-sensitive GFP variant (SEP) was fused to the extracel-
lular domain of MOP-R. Taking advantage of rapid quenching
of surface-accessible SEP fluorescence by perfusion of an
acidic buffer, newly formed endocytic vesicles containing
SEP-labeled MOP-R were visualized in live image series
as abruptly appearing acid-resistant fluorescent punctae
(Merrifield et al., 2005). In contrast to clathrin-mediated
endocytosis at the somatodendritic plasmamembrane that occurs
throughout the membrane surface at densely distributed sites
(Rosendale et al., 2017), endocytosis of MOP-R in axons was
found to be restricted to sparsely distributed sites, which are
localized almost exclusively within terminals.
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One might expect such local endocytosis to cause even
stronger desensitization at the presynapse than at the
postsynaptic plasma membrane. However, when individual
MOP-R proteins were imaged using single-molecule local-
ization microscopy, receptors were found to be uniformly
distributed and not detectably accumulated at presynaptic
terminals. Moreover, analysis of single-receptor trajectories
revealed that MOP-R is freely mobile and rapidly diffuses on
the axon surface. Confocal fluorescence microscopy and wide
field imaging of axons under oblique illumination (a method
that is useful for examining organelle dynamics in axons),
revealed that MOP-R–containing endosomes accumulate in
terminals but also move bidirectionally on the axon shaft.
These endosomes support local surface recycling of MOP-R
becausemembrane fusion events that insert receptors into the
axon plasma membrane, imaged as local bursts of increased
fluorescence intensity (due to dequenching of SEPupon receptor
exposure at the axon surface), appear adjacent to individual
endosomes both in terminals and in the axon shaft domain.
Together these observations suggest that local recycling enables
axons to maintain a diffusive surface pool of MOP-R even after
prolonged agonist exposure and that receptors present on the
axon shaft but outside of terminals have the potential to
support local signaling at terminals through lateral diffusion
and collisional coupling (Fig. 2).
Indeed, the measured diffusion rate of MOP-R on the axon

surface is sufficient to enable agonist-receptor complexes formed
outside of synapses to diffuse into an adjacent active zone before
the agonist dissociates. This suggests that resistance to rapid
desensitization, a distinguishing characteristic of MOP-R
signaling at the presynapse, arises from a different type of
receptor reserve. In the classic model, resistance to desensi-
tization is achieved by an overall excess of receptors. In axons,
the extrasynaptic receptor fraction is protected because the
conserved phosphorylation-endocytosis machinery is restricted
to terminals. Presynaptic inhibition by opioids thus appears
to resist desensitization by leveraging a discrete principle of
“lateral” receptor reserve, based on ligand-receptor complexes
signaling after diffusing into the synapse and being protected
from inactivation when outside of it. Lateral receptor reserve,
unlike classic receptor reserve, enables the presynapse to

remain opioid-responsive and resist desensitization with
low receptor number. It also carries other new physiologic
implications, which remain to be investigated. These include:
1) enhancing reliability of presynaptic neuromodulation by
increasing the rate at which individual terminals can sample
independent agonist-receptor binding events, 2) achieving
high absolute sensitivity to opioid ligands by using the axon as
an extended “antenna” to increase the extracellular volume
that an individual presynaptic terminal can effectively sample,
and3) enabling the same active zone to be regulated bymultiple
GPCR types without steric inhibition, despite the typically
small size of terminals and limited number of relevant effectors
immobilized at individual active zones (Jullié et al., 2020).

Insight into the Molecular and Cellular Specificity
of Opioid Drug Effects

In addition to its impact on physiologic desensitization,
the principle of receptor reserve (in its classic meaning) is
important for understanding opioid drug action, in particular
agonist efficacy and partial agonism. Opioid receptors have
been prototypical receptors for experimentally illustrating the
impact of receptor reserve on the efficacy of drugs (Borgland
et al., 2003; McPherson et al., 2010). Reduction of receptor
reserve using irreversible antagonists, such as b-funaltrexamine
or chlornaltrexamine, has been used extensively to identify
partial agonists that show full maximal responses in highly
amplified or very efficiently coupled signaling pathways.
Morphine, for example, shows lower intrinsic efficacy at
MOP-R than enkephalins or fentanyl yet can produce maximal
responses in systemswith high receptor reserve (Borgland et al.,
2003). According to classic receptor theory, partial agonism is
explained by the degree to which the agonist stabilizes a single
activated GPCR state. However, recent biophysical evidence
indicates that GPCRs dynamically fluctuate betweenmultiple
conformational states (Weis and Kobilka, 2018), and confor-
mational heterogeneity has been explicitly demonstrated for
MOP-R (Sounier et al., 2015). The significance of multiple
receptor states to physiologic signaling by opioid peptides or
the effects of drugs remains unclear and defines an exciting
area of current investigation.

Fig. 2. Cellular basis for sensitive presynaptic neuro-
modulation by opioid receptors. Opioid receptors in-
hibit synaptic vesicle (blue circles) exocytosis by locally
regulating effectors that are restricted in terminals and
positioned in, or adjacent to, individual presynaptic
active zones. Opioid receptors are not immobilized at
terminals, however, and instead are laterally mobile
throughout the axon surface and collisionally couple to
effectors at the presynapse. After ligand-induced acti-
vation (A), presynaptic opioid receptors undergo phos-
phorylation (P) and endocytosis directly at terminals.
receptors are then are locally recycled and reinserted to
the axon surface both within and outside of synapses to
replenish the diffusible surface pool. Lateral diffusion of
receptors is sufficiently fast for terminals to “sample”
agonist-receptor complexes formed outside of synapses.
The net effect of these events is to maintain a mobile
surface receptor pool that is capable of mediating sensitive
signaling at the presynapse by leveraging lateral diffusion
and the allosteric nature of opioid receptor signaling by
heterotrimeric G proteins.
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Interest in partial agonism has experienced a recent re-
naissance, partially motivated by such emerging biophysical
evidence and preceded by various functional and cellular
observations, which together suggest that agonists have the
potential to differ in more than one “dimension” of intrinsic
efficacy at a given GPCR (Galandrin et al., 2007; Urban et al.,
2007; Kenakin, 2017). A current elaboration of this concept
is the proposed pharmacological paradigm of biased agonism,
determined by agonists differentially promoting receptor
coupling to G protein relative to b-arrestin–mediated path-
ways. This paradigm gained particular traction through
studies of b-arrestin knockout mice, in which morphine
administration resulted in enhanced antinociception but di-
minished respiratory depression and constipation (Bohn et al.,
1999; Raehal et al., 2005). Based on this, G protein–biased
agonists—namely, agonists that selectively promote opioid
receptors to engage G proteins over b-arrestins—were pro-
posed to provide a new avenue for safer opioid analgesics. This
hypothesis motivated the development of compounds such as
TRV130 (oliceridine) (DeWire et al., 2013), PZM21 (Manglik
et al., 2016), and SR-17018 (Schmid et al., 2017) as putative G
protein–biased opioid receptor agonists with improved thera-
peutic profiles. The physiologic validity of the bias hypothesis,
in its present elaboration, is still being evaluated (Hill et al.,
2018). In particular, the presence of reduced respiratory
depression in b-arrestin knockout mice was recently chal-
lenged (Kliewer et al., 2020). Further, the degree to which
physiologically relevant differences between opioid drugs
truly result fromG protein bias, or reflect low agonist efficacy
overall (typically lower than morphine), remains a matter of
active investigation (Conibear and Kelly, 2019). Moreover,
there is accumulating evidence for additional factors impact-
ing bias profile, particularly kinetic effects on trafficking and
signaling (Thompson et al., 2016; Weinberg et al., 2017). In
the future, we anticipate that structural, biophysical, and
computational approaches will provide increasingly precise
understanding of the underpinnings of agonist efficacy, bias,
and allosteric modulation, leading to drugs with improved
therapeutic window (Filizola, 2019; Hu et al., 2019, 2020;
Zarzycka et al., 2019).
Another facet of bias has recently emerged thanks, in part,

to the new applications of genetically encoded biosensors
and advanced imaging approaches that allow unprecedented
spatiotemporal resolution of receptor localization and signal-
ing events. As mentioned above, these sensors have facilitated
the detection of receptor signals in distinct parts of the cell,
from diffusion across the plasma membrane (Gondin et al.,
2019; Metz et al., 2019; Tobin et al., 2019) to different
subcellular compartments, including endosomes and Golgi
membranes (Fig. 1) (Stoeber et al., 2018). The molecular
environment surrounding receptors is already well known

to contribute to cell and tissue type–specific differences in
signaling and drug effects. Location bias adds another
dimension of selectivity based on differences in the molec-
ular environment around receptors at a subcellular level
(Lobingier et al., 2017), suggesting interesting new directions
for improving drug efficacy and selectivity. This concept is
relevant not only to trafficking of receptors between mem-
brane compartments but also to the lateral redistribution
of opioid receptors between plasma membrane domains. For
example, morphine and an opioid peptide full agonist were
shown to produce different spatiotemporal signaling profiles
by changing the selectivity with which MOP-R engages
distinct protein networks, mediated by a phosphorylation-
dependent change in the surface distribution of receptors
(Fig. 1) (Civciristov et al., 2019).

New Approaches to Investigate Opioid Receptor
Biology In Vivo

Ultimately, for these new directions to be exploited, it is key
to better understand the physiologic context in which opioid
receptors operate. Cells expressing opioid receptors (and
GPCRs in general) are the nodes at which physiology, cell
biology, and biophysical concepts need to converge. Tradi-
tional approaches such as electrophysiology, immunohisto-
chemistry, and behavioral pharmacology, together with more
recently developed genetic strategies to ablate or modify
expression of opioid receptors in different parts of the nervous
system, have paved theway for incisive studies of native tissue
preparations and are beginning to illustrate the complexity of
opioid drug action in vivo (Corder et al., 2018). Transgenic
expression of mutant MOP-R in knockout animals is also
revealing additional complexity of opioid receptor regulation
by phosphorylation in vivo (Arttamangkul et al., 2019a). In
particular, knockin mice expressing mutant or tagged recep-
tors are unveiling physiologic regulation of opioid receptors in
their native environment and delineating functional conse-
quences in vivo (Scherrer et al., 2006; Wang et al., 2018;
Ehrlich et al., 2019; Kliewer et al., 2019). Further, engineered
opioid receptors that are activated by light allow precise
spatiotemporal control of opioid signaling in defined neural
circuits and relevance to behavior (Siuda et al., 2015).
Moreover, new chemical tools are being developed to enable
the detection of endogenous receptors in vivo without genetic
modification. For example, an elegant chemical method was
described recently that exploits the selectivity of drug-
receptor interactions as a pharmacological “guide” to co-
valently label endogenous receptors without impairing
receptor activity (Fig. 3). Using this method, opioid receptors
were imaged live in native brain slices using two-photon
fluorescence microscopy, without the need for genetically

Fig. 3. A nonperturbing labeling strategy for opioid
receptors using ligand-guided chemistry. Naltrexamine-
acylimidazole-Alexa594 binds to the orthosteric binding
site of opioid receptors, with the pharmacophore “guiding”
covalent coupling to residues located outside of the ligand
binding pocket. The coupling reaction releases the phar-
macophore (upon washout), leaving the native receptor
fluorescently labeled and functional to undergo subse-
quent activation by an orthosteric agonist after labeling.
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encoded tags or indirect (e.g., antibody) labeling methods
(Arttamangkul et al., 2019b).

Conclusion and Outlook
Many of the imaging methods highlighted above have

focused on studies ofMOP-R. Given the distinct and important
effects of DOP-R andKOP-R, we anticipate that future studies
using these methods will provide additional insights into the
cellular basis of opioid receptor function and drug action. We
also anticipate that advances in the study of other GPCRs will
find application to the study of opioid receptors. For example,
single-molecule imaging has been used to detect “hot spots”
on the plasma membrane at which GPCRs interact with
cognate G proteins (Sungkaworn et al., 2017). Such imaging
approaches can be used to examine GPCR interactions with
other proteins as well, including receptor-receptor interac-
tions (Calebiro and Grimes, 2020). We note that interesting
progress has already been made on this front for opioid
receptors, with single-molecule imaging of receptors bound
to a high-affinity fluorescent ligand revealing short-lived
MOP-R homodimers in the plasma membrane (Gentzsch
et al., 2019).
We also discussed above how structural studies enabled the

development of conformational biosensors to detect opioid
receptor activation in living cells. In particular, cryoelectron
microscopy has emerged as a powerful approach for resolving
structural details of GPCRs in complex with other proteins. A
pioneering example was the determination of a structure of
agonist-activated MOP-R in complex with Gi (Koehl et al.,
2018). Recently, cryoelectron microscopy was used success-
fully for structural determination of agonist-activated GPCRs
in association with b-arrestin, a physiologically important
complex that has eluded conventional X-ray crystallography
(Zhou et al., 2016; Yin et al., 2019; Huang et al., 2020; Staus
et al., 2020). It has also enabled structural determination of a
GPCR bound to both b-arrestin andG protein simultaneously,
a complex which has been proposed to form on the endosome
membrane and transduce a sustained form of signaling by
certain GPCRs after they undergo ligand-induced internali-
zation (Vilardaga et al., 2012; Nguyen et al., 2019). Such
structural and biophysical advances will undoubtedly fuel
new progress at the cellular level. For example, cryoelectron
microscopy revealed a subtle difference between the confor-
mation of activated MOP-R when in complex with Gi relative
to when in complex with a nanobody (Huang et al., 2015;
Koehl et al., 2018). Inspired by this, a recent cell-based study
compared recruitment by opioid receptors of engineered pro-
tein probes derived from corresponding G protein or nanobody
folds. Considerable selectivity of protein probe recruitment
to MOP-R and KOP-R was observed in living cells, depending
on receptor activation by partial, biased, or full agonists
(Stoeber et al., 2020).
In sum, the past few years have seen major advances in

illuminating opioid pharmacology under the microscope. The
field is now poised to resolve with unprecedented clarity
fundamental receptor signaling and regulatory processes
across molecular, cellular, and physiologic scales. Such
approaches have already yielded new insight into the actions
of existing drugs, are motivating new therapeutic hypotheses
that are presently under investigation, and may enable future
development of improved opioid therapies. In addition, because

opioid receptors are widely considered prototypes for the
large GPCR family, we anticipate that such efforts will
continue to drive GPCR-directed therapeutic innovation
more broadly.
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