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Abstract

Objective—Recent research has characterized the anatomical and functional basis of speech 

perception in the human auditory cortex. These advances have made it possible to decode speech 

information from activity in brain regions like the superior temporal gyrus, but no published work 

has demonstrated this ability in real-time, which is necessary for neuroprosthetic brain–computer 

interfaces.

Approach—Here, we introduce a real-time neural speech recognition (rtNSR) software package, 

which was used to classify spoken input from high-resolution electrocorticography signals in 

real-time. We tested the system with two human subjects implanted with electrode arrays over 

the lateral brain surface. Subjects listened to multiple repetitions of ten sentences, and rtNSR 

classified what was heard in real-time from neural activity patterns using direct sentence-level and 

HMM-based phoneme-level classification schemes.

Main results—We observed single-trial sentence classification accuracies of 90% or higher for 

each subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use 

cortical recordings to perform accurate real-time speech decoding in a limited vocabulary setting.

Significance—Further development and testing of the package with different speech paradigms 

could influence the design of future speech neuroprosthetic applications.
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1. Introduction

Recent work has characterized the specific functional roles of the human superior temporal 

gyrus (STG) and neighboring brain areas in speech perception and language understanding 

[1-6]. While subjects are listening to spoken speech, neural activity in this region can 

be used to decode and reconstruct speech information, including spectrotemporal acoustic 

properties [7-9] and phoneme sequences [10]. Previous work has implemented real-time 

systems capable of mapping sensorimotor activations using spectral decomposition of neural 

signals [11], using transcribed stimuli to generate neural encoding models (as opposed to 

decoding models) of segmental speech (e.g. phonemes) [12], decoding isolated phonemes 

from brain activity [13], and detecting speech production onsets and offsets from cortical 

responses [14]. However, to the best of our knowledge no published work has demonstrated 

real-time classification of phoneme sequences or entire sentences from neural signals, which 

would have practical applications in speech neuroprostheses.

In this work, we developed and tested a real-time neural speech recognition (rtNSR) 

software package. As defined in our previous work, we use the term neural speech 

recognition to refer to performing speech decoding using neural responses as features 

[10]. The rtNSR package contains real-time code capable of presenting visual and acoustic 

stimuli, processing acquired neural signals, training probabilistic models, performing 

classification and decoding, and storing data and metadata. Our primary goal in this work 

was to perform an initial assessment of the capabilities of rtNSR using a relatively simple 

sentence prediction task. In this task, subjects listened to multiple presentations of ten pre-

recorded spoken sentences. During these stimulus presentations, cortical activity is obtained 

in real-time via electrocorticography (ECoG) arrays and used in one of two classification 

schemes to predict the identity of the stimulus that the subject just heard. The results of 

this study indicate that rtNSR is capable of accurately decoding single-trial speech events in 

real-time, demonstrating its viability as a platform for an assistive speech application.

2. Methods

2.1. Subjects

The two subjects (A and B) who participated in this study were human epilepsy patients 

undergoing treatment at the UCSF Medical Center. To aid clinicians in localizing seizure 

foci, two 128-channel ECoG arrays with 4 mm center-to-center electrode spacing (PMT 

corp.) were surgically implanted on the cortical surface of each subject. Both subjects 

had unilateral coverage over the right hemisphere that included the STG. MRI brain 

reconstructions with electrode locations were generated for each subject using the open 

source img_pipe package (see figure S1) [15].

Both patients gave their informed consent to be a subject for this research prior to surgery. 

The research protocol was approved by the UCSF Committee on Human Research.

2.2. Speech stimuli

In each experimental task, the subject listened to multiple repetitions of ten phonetically 

transcribed speech stimuli from the Texas Instruments/Massachusetts Institute of 
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Technology (TIMIT) dataset [16]. In each stimulus, a single speaker produces a single 

sentence. We trimmed silence from each end of each stimulus sound file prior to running the 

tasks. The TIMIT label, sentence transcription, and duration of each stimulus are provided in 

table 1.

We converted each speech sound label specified in the phonetic transcriptions to one of the 

37 phonemic labels used in this work. This set of phonemic labels, which is provided in 

table 2, is comprised of 36 phonemes from the ARPABET and /sp/, a silence phoneme used 

to label non-speech data points.

2.3. Real-time processing setup

An overview of the real-time stimulus prediction system is depicted in figure 1. The capital 

letter labels in this figure correspond to the data flow steps during each stimulus presentation 

(each trial) in each task block. At the start of each trial, a Linux workstation (64-bit Ubuntu 

14.04, Intel Core i7-4790K processor, 32 GB of RAM) implementing rtNSR plays one of 

the stimuli to the subject (A and B). Simultaneously, the implanted ECoG arrays record 

cortical local field potentials at 256 cortical sites, which are processed in the data acquisition 

(DAQ) rig (C). Within the DAQ rig, the ECoG signals are amplified and quantized at 

3051.76 Hz using a pre-amplifier (PZ2, Tucker-Davis Technologies) and preprocessed using 

a digital signal processor (RZ2, Tucker-Davis Technologies). Before the ECoG signals are 

preprocessed, they are stored on the rig along with the time-aligned audio waveform. During 

preprocessing, the signals are notch filtered at 60, 120, and 180 Hz to reduce line noise. 

Next, each channel is band-passed at 70–150 Hz, squared, and smoothed using a low-pass 

filter at 10 Hz to extract power in the high gamma band. High gamma power was used 

because previous research has shown that activity in this band strongly correlates with multi-

unit activity [17] and is associated with important speech features [6, 7, 10]. These high 

gamma signals are then decimated to 98.44 Hz and streamed to the Linux workstation using 

a real-time interface card (PO8e, Tucker-Davis Technologies) where they are processed in 

rtNSR and saved to disk for offline analyses (D and E). Further discussion of preprocessing 

considerations and feature extraction are available in section 4.

Within rtNSR, the signals acquired from the real-time card are normalized by z-scoring 

the data for each channel using a 30 s sliding window. These z-score values are clipped 

to lie within the range of [−2, 2] to mitigate signal artifacts caused by epileptic activity, 

channel noise, or other factors. If a trained model is available, then, immediately after the 

stimulus presentation, signals from relevant channels are used as features in this model to 

predict which stimulus was just presented to the subject (detailed descriptions of the channel 

selection and modeling procedures are given in section 2.6). The stimulus prediction and 

updated running classification accuracy measures are displayed on a monitor (F).

2.4. rtNSR design

Our rtNSR system is implemented in the Python programming language [18] and is 

designed for flexible and efficient real-time neural signal modeling and speech decoding. 

Based on the software pipelining implementation technique [19], rtNSR uses multiple data 

processing elements that run in parallel as individual processes. Typically, each of these 
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processes obtains inputs from one or more separate processes (via software pipes or shared 

memory buffers), performs a specific task with or manipulation on the inputs, and sends 

outputs to one or more other processes. Each process is defined as a subclass of a parent 

real-time process class implementing general methods for real-time processing (including 

data sharing and process setup methods). rtNSR contains many of these single-purpose 

process classes, such as a process that reads streaming data from the real-time interface 

card and a process that performs sliding window normalization. This highly modularized 

software architecture allows for individual steps in the real-time processing workflow to 

be interchanged and rear-ranged with relative ease while leveraging the computational 

efficiency associated with pipelining and parallelization. For example, during real-time 

simulations performed offline for debugging and system evaluation, we simply replaced the 

real-time card reader process in the data processing workflow with a process that loads and 

streams out pre-recorded neural data. A block diagram depicting the rtNSR components and 

data flow used during the real-time experiments is provided in figure 2.

2.5. Experimental task blocks

For subject A, we collected a total of 300 stimulus presentations (30 for each stimulus) 

across a total of four task blocks. For subject B, we collected a total of 250 stimulus 

presentations (25 for each stimulus) across a total of three task blocks. At the start of each 

block, a 1 s beep is played to signal the start of the task. This sound triggers an audio 

onset detector in the preprocessor to inject a start token into an arbitrarily chosen recording 

channel. The sentences are then presented with a constant onset-to-onset time interval. As 

a result, rtNSR can easily keep track of which neural data points are associated with each 

stimulus presentation (see section 4 for further discussion on stimulus timing). Within each 

block, we randomized the stimulus presentations while ensuring that each stimulus was 

presented an equal number of times.

In each task block, the onset-to-onset interval was approximately 2.57 s, the stimuli were 

presented aurally via loudspeakers, and the subject was not able to see the real-time stimulus 

classifications. However, in the final block for subject A, the onset-to-onset interval was 

approximately 5.14 s, the stimuli were presented using headphones, and the subject was 

instructed to view the real-time sentence classifications and respond with either a ‘thumbs 

up’ or a ‘thumbs down’ to indicate if the prediction matched what was heard through the 

headphones (see supplementary video 1 (stacks.iop.org/JNE/15/036005/mmedia)). The extra 

time in the onset-to-onset interval for this block was not used during modeling and was only 

included to allow the subject to respond before the onset of a new sentence.

2.6. Stimulus classification schemes

Stimulus classification models were trained for each subject using data collected during 

experimentation. Each time a model was trained, the collected data were first analyzed 

to identify which channels should be considered relevant to speech perception processing 

[10]. A simple bad channel detector was used to exclude any channels for which 75% 

or more of the acquired data points had a z-score of 0.25 or less. Afterwards, two 

data subsets were created: one subset comprised of neural data sampled during sentence 

perception of each stimulus presentation (30 time points per stimulus presentation) and 
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another similarly constructed subset containing data points sampled during the silence after 

each sentence. Two-tailed Welch’s t-tests were then performed for each channel between the 

two data subsets. Channels that exhibited a p-value less than 0.001 were considered relevant 

(significantly modulated by the presence of auditory speech stimuli) and the remaining 

channels were excluded during modeling. Applying these procedures to the data acquired 

before the final testing block resulted in 79 and 122 relevant electrode channels for subjects 

A and B, respectively (see figure S1).

We used two types of real-time stimulus classification schemes in our tasks: a ‘Direct’ 

classification scheme during testing with subject A and an ‘HMM-based’ classification 

scheme during testing with subject B. As described in section 2.4, we were able to slightly 

modify the experimentation setup to simulate stored neural data as if it were being obtained 

in real-time without altering the classification scheme functionality. This enabled us to 

compute results for each subject using the classification scheme that was not used during 

real-time testing for that subject. After data collection and these offline simulations, results 

using both schemes were available for each subject. We used the scikit-learn Python package 

to implement the models employed in both schemes [20].

2.6.1. Direct classification scheme—In the direct classification scheme, each 

stimulus (sentence) was treated as one of ten classes. The feature vectors used during 

classification were each constructed by concatenating the z-scored high gamma power 

values for each relevant channel at each time point during a stimulus presentation. Because 

the stimuli varied in duration, some of the neural data obtained during the silence periods 

after a stimulus presentation were included in the feature vector associated with that 

stimulus presentation. The feature vector for each stimulus presentation contained the neural 

data at each of the T = 253 time points associated with that presentation (which spans 

the 2.57 s time window allotted for each presentation, as described in section 2.5). For 

example, a stimulus presentation that began at time index t would be associated with a 

feature vector containing the neural data points for each relevant channel at time indices 

{t, t + 1, …, t + T − 1} (with a length of T  times the number of relevant channels) and with a 

target label equal to the identity of that stimulus.

During model training, we use principal component analysis (PCA) to reduce the 

dimensionality of the feature vectors to the minimum number of features required to explain 

at least 99% of the variance. The resulting feature vectors have lengths that are typically 

around 100 elements (less than 1% of the lengths of the original vectors). These new feature 

vectors are used to train a linear discriminant analysis (LDA) model implementing the 

least-squares solution with automatic shrinkage using the Ledoit–Wolf lemma [21]. Once 

trained, we used these combination PCA-LDA models to classify previously-unseen neural 

responses into one of the ten stimulus labels in real-time. Model training, which typically 

took 2–5 s, was first performed in real-time using all available data for a subject when at 

least two repetitions of each stimulus were presented and subsequently performed prior to 

starting a new task block and in real-time whenever ten stimulus presentations had occurred 

since the most recent training.
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2.6.2. HMM-based classification scheme—In the HMM-based classification 

scheme, each stimulus is represented as a hidden Markov model (HMM), where each hidden 

state qt is the phoneme that occurs at time index t for that stimulus and each observed state 

yt is the neural feature vector associated with time index t. This classification scheme was 

inspired by the phoneme decoding results described in [10].

For a normal HMM, the joint probability would be

p (q, y) = p (q0) ∏
t = 0

T − 2
p (qt + 1 ∣ qt) ∏

t = 0

T − 1
p (yt ∣ qt), (1)

where q = {q0, …, qT − 1}, y = {y0, …, yT − 1}, and T = 253 (as defined in section 2.6.1). However, 

because each presentation of a stimulus uses the exact same audio waveform, the values of 

q are already known for each stimulus from the phonetic transcriptions of the stimuli. This 

simplifies the HMM for each stimulus because the values of the hidden states are known. In 

this scenario, Bayes’ theorem can be used to express the conditional probability associated 

with each simplified HMM as

p (y ∣ q) = p (q, y)
p (q) = ∏

t = 0

T − 1
p (yt ∣ qt) . (2)

For each stimulus presentation, our HMM-based classification scheme uses (2) to estimate 

p (y ∣ q) for each of the ten competing simplified HMMs (one per stimulus) and predicts the 

stimulus that yielded the largest p (y ∣ q) value. This can be formally expressed as

s = argmax
s ∈ S

∏
t = 0

T − 1
p (yt ∣ qt, s) = argmax

s ∈ S
∑
t = 0

T − 1
log p (yt ∣ qt, s), (3)

where s  is the predicted stimulus, S is the set of possible stimuli, and qt, s, is the phoneme at 

time index t for stimulus s. We use log probabilities as expressed in the latter part of (3) for 

computational efficiency and numerical stability.

Each feature vector yt contains the z-scored high gamma power values for each relevant 

channel at the following time indices: t + {0, 2, …, 38, 40}. This parameterization of the 

feature vectors resembles the high gamma windows described in previous research [10]. 

We used PCA-LDA modeling (as described in section 2.6.1) to obtain the p (yt ∣ qt) values 

at each time point. Model training, which typically took 10–20 s, was performed using all 

available data for a subject prior to starting each new task block (classifications were not 

performed in the first block).

2.7. Evaluation methods

We primarily used classification accuracy (the percent of classification attempts that resulted 

in correct classifications) to evaluate rtNSR. We computed classification accuracies for each 
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task block and in a sliding window fashion across the blocks to measure how the accuracy 

changed over time.

Because duration was highly variable across sentences and could have been used by the 

classification schemes for improved sentence discrimination, we also assessed how varying 

T , the number of time points used during modeling of each stimulus presentation (described 

in section 2.6), affected classification accuracy. We performed offline testing with 21 

different values for T  that were (roughly) equally-spaced within the range of [1, 253]. For 

both classification schemes, ten-fold stratified cross-validation was used on all the available 

data for each subject.

To assess the speed of our real-time classification schemes, we measured the amount of 

time each classification scheme took to perform classifications during offline simulations. 

For the direct classification scheme, we measured the amount of time required to make each 

sentence prediction from a concatenated neural feature vector, which was performed every 

T = 253 time points. For the HMM-based classification scheme, we measured the amount of 

time required to compute the phoneme likelihood values p (yt ∣ qt) at each time point and the 

amount of time required to perform a sentence classification using the associated phoneme 

likelihoods every T = 253 time points.

3. Results

For subject A, we achieved stimulus prediction accuracies of 90% with the direct 

classification scheme in real-time and 98% with the HMM-based classification scheme 

during offline simulation after training on 250 stimulus presentations (approximately 11 

minutes of training data). For subject B, we achieved accuracies of 90% with the direct 

classification scheme during offline simulation and 91% with the HMM-based classification 

scheme in real-time after training on 150 stimulus presentations (approximately 6.5 minutes 

of training data). Confusion matrices for these results are provided in figure S2. All 

observed classification accuracies are depicted in figure 3. The real-time classification 

performance during the final task block for subject A with the direct classification scheme is 

demonstrated in supplementary video 1.

Figure 4 depicts the effect that varying the number of time points used during classification 

had on accuracy. When only the first 89 time points (approximately 0.9 s) for each trial 

were used, which is less than the number of time points associated with the shortest 

sentence, the classification accuracies plateaued at 90% or higher. These results indicate 

that the classification schemes are relying on more than just sentence length when 

performing classifications and that highly accurate classification can be performed using 

neural responses collected during perception of the first two to three words of the sentences.

During offline simulation of the HMM-based classification scheme with subject A, 

computing the phoneme likelihoods at each time point took on average 2.64 ms (σ = 0.61, 

N = 12650) and each sentence classification (using the pre-computed phoneme likelihoods) 

took on average 0.07 ms (σ = 0.01, N = 50). During offline simulation of the direct 
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classification scheme with subject B, each sentence classification took on average 10.23 

ms (σ = 3.99 ms, N = 100).

4. Discussion

In this work, we have introduced a real-time neural speech recognition (rtNSR) software 

package and demonstrated its ability to perform real-time, single-trial stimulus classification 

using cortical responses evoked during speech perception. We achieved high classification 

accuracies after short training intervals using both direct (sentence-level) and HMM-based 

(phoneme-level) classification schemes. The HMM-based classification scheme exhibited 

the highest observed accuracy in a single block (98% accuracy with subject A).

We showed that neural activity collected during perception of naturally spoken sentences 

could be used directly for classification without including acoustic, phonetic, or any 

other stimulus information (other than sentence identity) during modeling (with the direct 

classification scheme). We also showed that similar performance could be achieved with a 

more sophisticated classification approach that involved modeling the neural representations 

of phonemes (with the HMM-based classification scheme). Additionally, we demonstrated 

that the performance of our system did not rely on sentence length, a trivial stimulus 

feature, since peak classification accuracies were obtained using only a subset of time points 

associated with each trial that was smaller than the duration of the shortest sentence in the 

task. Finally, we showed that rtNSR was able to perform real-time classifications quickly; 

on average, the direct classification scheme only required 10 ms every 2.57 s (the stimulus 

time window duration) to perform a classification and the HMM-based classification scheme 

only required less than 3 ms every 10.16 ms (the sampling interval) to compute phoneme 

likelihoods at each time point and a negligible amount of time to make a sentence prediction 

from the phoneme likelihoods.

Our results serve as a proof-of-concept that rtNSR is capable of performing speech 

classification from neural signals in real-time. We built the rtNSR system to have a modular 

architecture in which individual components can be improved or replaced with task-specific 

and optimized implementations for future applications. For example, the high gamma power 

estimation algorithm implemented on the DAQ rig can be replaced with digital filters in 

rtNSR that directly approximate the high gamma analytic amplitude, a representation of 

high gamma activity that has been used in previous speech-related research [3, 7, 10]. 

Also, the sentence classification process can be replaced by a process implementing a 

more sophisticated classification model, such as a recurrent neural network classifier. In 

addition, the software’s robust task design and execution capabilities make it amenable 

to a variety of task paradigms, including isolated word or continuous speech production 

or perception tasks, visual stimulus presentation tasks, and covert speech tasks. Through 

augmentation of the system’s data acquisition and feature extraction functionality, it can also 

be deployed in applications involving alternative types of neural signal acquisition, such as 

via electroencephalography or microelectrode arrays.

For an initial evaluation of our system, we used a relatively simple sentence classification 

task with only ten unique stimuli. Although the observed classification accuracies were 

Moses et al. Page 8

J Neural Eng. Author manuscript; available in PMC 2023 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



very high in this example task, demonstrating our ability to learn the relationship between 

auditory speech stimulus features and neural activity recorded with ECoG in real-time, 

further testing is needed to determine how well the classification schemes scale as the 

number of stimuli increases. We expect the HMM-based classification scheme to scale more 

favorably than the direct classification scheme because it can take advantage of shared 

phonemic content across the stimuli and can predict stimuli that were not presented during 

training. However, it is also possible that an increase in the variety of coarticulation contexts 

and other sources of variability in the stimuli will negatively affect accuracy if they are not 

explicitly considered during modeling.

We established that one trivial stimulus feature (duration) did not drive classification 

performance, but there are other potential features that may have impacted accuracy. In 

this task, nine speakers produced the ten stimuli, resulting in a large degree of variability 

in the speaker-dependent acoustic properties of the stimuli that may have been leveraged 

by the classification schemes. When analyzing the sentence confusions observed during 

classification (see figure S2), we did not find evidence that speaker identity was driving 

our classifiers in this task. However, it is possible that in experiments involving a larger 

set of sentences from relatively few speakers the direct classification scheme would be 

more susceptible to relying on speaker identity than the HMM-based classification scheme, 

since the latter uses phoneme models that do not incorporate stimulus identity information 

while being trained to discriminate between phonemes. Future work using a wider variety of 

stimuli with multiple speech samples produced by each speaker could address the effects of 

this type of information on classification performance.

In future work, we plan to expand the HMM-based classification scheme into a real-time 

continuous speech decoder that uses language modeling and Viterbi decoding (similar to a 

real-time version of the system described in [10]). The performance achieved in this work 

using phoneme modeling with naturally spoken sentences (as opposed to isolated words or 

syllables) is a promising proof-of-concept for potential continuous decoding applications. 

Unlike our task, a real-time continuous decoding application should not rely on explicit 

stimulus timing, although precise transcriptions of the stimuli would still be required for 

model training. The methods described in this work could also be applied to real-time 

experimental paradigms in overt and covert speech production tasks guided by existing 

offline speech decoding research efforts [22-28].

After further development of rtNSR, our goal is to deploy the system as part of a speech 

prosthesis that restores communicative capabilities to individuals diagnosed with locked-in 

syndrome or other impairments. Locked-in patients typically have little to no voluntary 

muscle control but retain cognition and awareness [29-33]. Although methods exist to 

provide basic communicative capabilities to locked-in patients [33-36] and are associated 

with increases in patient-reported quality of life [31, 32], these approaches often involve 

tedious and difficult to learn procedures such as selecting characters one at a time at rates 

less than ten characters per minute (typing rates are typically more than 175 characters per 

minute in healthy individuals). Development of a device capable of directly interpreting 

intended speech from neural activity could result in significant improvements to the speed 

and naturalness of assistive speech technology and, as a result, the quality of life for 
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impaired patients. Existing brain-computer interface (BCI) research has shown that ECoG 

signals can be successfully used in real-time motor control applications [37, 38], and the 

classification accuracies observed in this task using ECoG are similar to or higher than 

those exhibited in these approaches (although direct performance comparisons may not 

be possible due to fundamental differences in task designs and constraints). Our system’s 

modular real-time framework allows for incorporation of feedback and subject adaptation, 

important components in closed-loop BCIs that will most likely be beneficial in future 

speech prostheses. Given the performance exhibited by rtNSR in this work and its capacity 

for expansion, we are confident in its ability to serve as a platform for the design and 

implementation of the proposed speech prosthetic device.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schematic depiction of the real-time stimulus prediction system with the letters A–F 

denoting the flow of information through the system. A Linux workstation implementing 

rtNSR plays the stimuli to the subject during ECoG data collection (A and B). The raw 

ECoG signals are amplified, preprocessed, and synchronized with the audio data in the data 

acquisition (DAQ) rig (C). The preprocessed ECoG signals are streamed to the workstation 

through a real-time interface card (D). The rtNSR software acquires the signals from 

the card, processes them, and uses them to perform sentence classification (E). Sentence 

predictions are displayed on a computer monitor (F). The MRI brain reconstruction for 

subject A is shown here with electrode locations depicted as blue dots. Electrode coverage 

was similar for subject B (see figure S1).
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Figure 2. 
A schematic depiction of the rtNSR implementation used during experimentation. The solid 

rectangles represent real-time process classes and the arrows represent data that is passed 

between processes. The real-time interface card reader process reads neural data streamed 

from the real-time interface card. These data are passed to the behavioral onset detector 
process, which detects a one-time injected onset token that signifies the start of the task 

(see section 2.5). The neural data are then passed to the data normalizer process, which 

performs sliding window normalization and magnitude clipping. The normalized neural 

data are passed to the sentence classifier process where the data are used to perform 

sentence classification. This process outputs sentence probabilities to the progress and 
results GUI process, which extracts the most likely sentence from each of these sentence 

probability vectors and displays each predicted sentence on a monitor. When using the 

direct classification scheme, the online classification model trainer process also obtains 

the normalized neural data, performs model training and relevant electrode selection in 

real-time, and passes trained models (with relevant electrode numbers) to the sentence 

classification process (see section 2.6.1). Throughout the task, the subject stimulus GUI 
process controls auditory presentation of the sentence stimuli to the subject.
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Figure 3. 
Stimulus classification accuracies for each subject, task block, and classification scheme. 

The colored curves depict, for each stimulus presentation, the percentage of the ten most 

recent classification attempts (including the current attempt) that were correct. The blue 

and red curves represent testing with the direct and HMM-based classification schemes, 

respectively. Results obtained from real-time testing contain ‘RT’ in the label and those 

obtained from offline simulations contain ‘Simulated’ in the label. A colored x marker 

indicates a trial that was incorrectly classified with the associated classification scheme. 

The task blocks are labeled (with ‘B’ followed by the block number) and separated by 

vertical lines. The total duration of recorded data at the end of each block is given above 

these vertical lines (rounded to the nearest second). Chance accuracy (10%) is depicted as 

a horizontal dashed line. These plots exhibit that rtNSR is able to achieve high real-time 

classification accuracies after short training intervals.
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Figure 4. 
The effects of varying the duration of each stimulus presentation used during classification. 

For each subject and classification scheme, the corresponding colored dots or squares and 

dashed line depict the classification accuracies associated with the considered stimulus 

durations. The transcriptions for each sentence are shown above the plot. The left boundary 

of each word is aligned to the time at which that word begins within the sentence audio 

files. The light green rectangles and vertical lines indicate the full time span and offset time, 

respectively, for each sentence. Chance accuracy (10%) is depicted as a horizontal dashed 

line. These accuracy curves indicate that both classification schemes are able to leverage 

information in the neural signals during perception of the initial 0.75 s of each sentence to 

accurately discriminate between sentences.
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Table 1.

Information about each stimulus.

TIMIT label Sentence transcription Duration (s)

fcaj0_si1479 Have you got enough blankets? 1.108

fcaj0_si1804 It had gone like clockwork. 1.540

fdfb0_si1948 He moistened his lips uneasily. 1.527

fdxw0_si2141 It was nobody’s fault. 1.161

fisb0_si2209 ‘A bullet’, she answered. 1.508

mbbr0_si2315 Junior, what on earth’s the matter with you? 1.679

mdlc2_si2244 Nobody likes snakes. 1.301

mdls0_si998 Yet they thrived on it. 1.000

mjdh0_si1984 And what eyes they were. 1.048

mjmm0_si625 A tiny handful never did make the concert. 2.106
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Table 2.

The phonemic labels used in this work and their respective categorizations.

Category Phoneme

Silence sp

Stop b d g p t k

Affricate jh

Fricative f v s z sh th dh hh

Nasal m n ng

Approximant w y l r

Monophthong iy aa ae eh ah uw ao ih uh er

Diphthong ey ay ow oy
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