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Abstract

How do humans generalise to make better decisions? Previ-
ous work has investigated this question using reward-guided
decision-making tasks with low-dimensional and artificial
stimuli. In this paper, we extend this work by presenting par-
ticipants with a naturalistic decision-making task, in which op-
tions were images of real-world objects and the underlying re-
ward function was based on one of their latent dimensions.
Even though participants received no explicit instruction about
object features, they quickly learned to do the task and gen-
eralised to unseen objects. To understand how they accom-
plished this, we tested a range of computational models and
found that human behaviour is overall best explained by a lin-
ear model but that participants’ strategies changed during the
experiment. Lastly, we showed that combining pixel-based
representations extracted from convolutional neural networks
with the original latent dimensions further improved our mod-
els. Taken together, our study offers new insights into human
decision making under naturalistic settings.

Keywords: naturalistic decision-making;
heuristics; reinforcement learning

generalisation;

Introduction

Imagine that you have tried and enjoyed a specific brand of
chocolate, but the next time you go to the store you cannot
find the same brand anymore. Generalising what you like
about that specific chocolate to pick another option that you
would enjoy is trivial. Early theories have characterized the
process of learning as forming stimulus-reward associations
(Rescorla, 1972). However, if you were only forming such
associations, you would not be able to find a good alternative
in the example above.

How do people accomplish this seemingly complex chal-
lenge? The study of human generalisation has been a central
theme in many areas of cognitive science (Shepard, 1987),
such as associative learning (Shanks & Darby, 1998), func-
tion learning (Schulz et al., 2017), and decision-making (Sto-
jic et al., 2015; Schulz et al., 2020; Saanum et al., 2021;
Garvert et al., 2021). Together, these studies illustrate that
humans rely on feature-based representations to make gen-
eralisations in situations like the chocolate example above.
Previous research suggests that these generalisation capabili-
ties are explained by various computational models, including
rule- and similarity-based theories (Shanks & Darby, 1998;
Lucas et al., 2015).

While these studies have been important for understanding
how humans generalise, they also have important shortcom-

ings. First, the stimuli used in these studies typically have 97

only a few underlying dimensions. This does not reflect the
high-dimensional features of the objects we deal with in real
life, which makes it unclear whether the proposed theories of
learning can scale up to real-world environments. In addition,
features of stimuli are often explicitly provided and clearly
separable from each other. In real life, this is not the case and
an object can be arbitrarily broken down into different sets of
features. For example, you can represent a bar of chocolate
by how sweet it is, its price, its environmental impact, any
combination thereof, or with completely different features.
To address these shortcomings, we conducted a two-
alternative forced-choice study, in which stimuli were unique
images of real-world objects from the THINGS database
(Hebart et al., 2019). The underlying reward function was de-
termined by one of the latent features of these objects, which
were extracted using a combination of computational mod-
eling and human behavioural data by Hebart and colleagues
(2020). With this design, we address the following questions:

1. Do people make successful generalisations about rewards
in high-dimensional feature spaces?

2. Do insights from previously conducted studies with low-

dimensional, artificial stimuli transfer to more naturalistic
domains?

3. What kind of representations do people use to solve natu-

ralistic decision-making tasks?

We find that people discover the underlying relationship
within a few dozen trials. To gain insights into their decision-
making processes, we carried out several model-based analy-
ses. We first compared participant behaviour to various mod-
els of decision-making, including a linear model, a Gaus-
sian Processes regression model, and two heuristic decision-
making strategies. This analysis revealed that while the linear
model explained participant behaviour best overall, people
seemed to change their strategies as they progressed through
the task. We then probed which feature-based representa-
tions our participants utilised. We found that while perfor-
mance was best explained by the originally extracted latent
features, it could be further improved by using additional
pixel-based representations extracted from a pre-trained con-
volutional neural network. Taken together, our results provide
an initial step towards understanding human decision-making
in naturalistic domains.

In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).
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Figure 1: Design & Behavioural Analyses. A) An example of a trial outcome. The bike pedal, which is highly rewarding because it is mostly
metallic/artificial, is chosen over the grapes. B) Participant performance over trials. Regret is computed as the difference between the most
rewarding option and the option picked by the participant. The shaded black line represents the mean and its standard error, and the yellow
lines show individual participants’ learning curves. C) Probability of choosing the option on the left for different reward differences between
the two options with standard error bars. D) Standardised coefficients with standard error bars from a mixed-effects logistic regression model
predicting participant choice as a function of trial number and reward differences between the two options.

Methods

Participants

We recruited 25 participants (7 female, Mg, = 24.55,
SDgge = 3.86) through Prolific. All participants had a Pro-
lific Score of 89 or above. Participants were given 7€ per
hour as a base rate, and a bonus of up to 10€ was offered de-
pending on their performance. Participants took 15 minutes
to complete the task on average.

Design

Participants were asked to complete a two-alternative forced-
choice task with 150 consecutive trials. At the beginning of
the experiment, they were instructed that each image was as-
sociated with a reward in a non-random way, and they were
asked to choose the images that gave the most rewards.

In each trial, participants were presented with a fixation
cross (for 500 ms), followed by a pair of images. They had
unlimited time to choose one of the two images by using the
left and right arrow buttons on the keyboard. They were then
shown the reward associated for both the chosen and the un-
chosen option, in green and white respectively (for 2000 ms).
The order of trials was randomised across participants.

Stimuli & Reward Function

300 images were sampled from the THINGS database, which
is a systematically curated image dataset of real-world ob-
jects (Hebart et al., 2019). Hebart and colleagues also trained
an image embedding model on similarity judgements of hu-
mans on the THINGS database in order to extract latent di-
mensions with continuous loadings that capture participants’
mental representations of these objects (Hebart et al., 2020).
They extracted 49 latent dimensions, which were validated
to be semantically meaningful by further behavioural testing.
These latent dimensions include, for example, how metallic,
food-related, or colourful an object is (see the original paper
for the entire list of latent dimensions).
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We normalised the loadings of the first latent dimension,
which describes how metallic/artificial an object is, to com-
pute the reward function as follows:

wy, —min(w)

= 1
" max(w) —min(w) x 100

where r, is the reward for stimulus n and w = [wy,...,wy] is
the vector of first dimension loadings for the sampled stim-
uli. Crucially, the existence of these latent dimensions was
unknown to the participants. An example trial from our ex-
periment is displayed in Figure 1A.

Behavioural Analyses

We computed several descriptive statistics to analyse human
behaviour on our task. Participants learned to select the
higher rewarding options over a few dozen trials. Figure 1B
shows that the cumulative mean regret, the average of the dif-
ference between the best option and the chosen option, de-
creased over trials. We also show participant choices as a
function of the reward difference between the left and right
options in Figure 1C. The function takes a sigmoid shape, in-
dicating participants can use the reward differences between
the options to guide their decisions, i.e. choosing the left op-
tion more frequently as its comparative advantage increased.

To formally test whether participants could learn the task,
we used a mixed-effects logistic regression model. We pre-
dicted participant choice in each trial as a function of the re-
ward difference between the two options and the trial num-
ber. Both predictors were included as fixed and random ef-
fects. A greater reward difference between the left and the
right options led participants to choose the right option more
frequently (B = 1.69, 95% CI [1.37,2.01], p < .001). While
the trial number had no significant effect on participant choice
(p=-0.02,95% CI[—.07, .11], p = .71), there was an inter-
action effect between trial number and the reward difference
(B = .49,95% C1[.39, .59], p < .001), indicating that partici-
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Figure 2: Model-Based Analyses. A) Model fits for mixed-effects models predicting participant choice with loadings in different latent
dimensions. Red dashed line shows chance level performance. B) Model comparison of computational models for all trials. Frequencies
plotted with standard error bars. C) Model comparison of computational models for the beginning (1-50), the middle (51-100), and the ending
(101-150) trials. D) Performance of computational models, where models follow a greedy policy.

pants got better over time at using reward differences between
the options (see Figure 1D).

Model-Based Analyses

Our previous analyses confirmed that participants can solve
our task and that they improve over time. We complement
these behavioural results with additional model-based analy-
ses to gain insights into how they accomplished this.

Which feature predicts behaviour the best?

We started by testing which of the latent dimensions predicted
participant choice behaviour the best. To do so, we ran 49
mixed-effects logistic regression models, one for each latent
dimension. Each model had differences of a given dimen-
sion’s loadings between the left and the right options both as
fixed and random effects. As can be seen in Figure 2A, the
model that used the first latent dimension, which is the one
the reward function was based on, was the best performing
model (negative log-likelihood = 1940.24). The same figure
also shows that there were other latent dimensions, such as
tool or construction relatedness, that predicted participant be-
haviour above chance level. The above-chance performance
of these models can be explained by the fact that these dimen-
sions were correlated with how metallic/artificial an object is.

Computational Models

To provide a computational account for how participants
learned to do our task, we assessed the degree to which their
choice behaviour was described by different decision-making
models. All models presented in this section use the latent di-
mensions identified by Hebart et al. (2020) as features and are
updated after each trial using data from both the chosen and
the unchosen option. All hyperparameters of all the computa-
tional models were fit in order to maximise task performance.

The first model under consideration is a linear model,
which assumes that rewards are a weighted linear combina-
tion of all features:

r=Xp+e e~ N(0,6?)
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where the rows of X are trials and the columns are different
features, P are the weights, r is the reward, and € is the noise
term. Previously, this class of models has provided good fits
in decision-making tasks, both when the reward function was
a linear function of single (Niv et al., 2015) and multiple fea-
tures (Speekenbrink & Shanks, 2010; Stojic et al., 2015). In
our case, it was implemented as a Bayesian linear regression
model (Bishop, 2006). The prior over the weights was de-
fined as a spherical Gaussian distribution scaled by A. The
reward prediction for a new stimulus x was obtained using
the mean of the posterior predictive distribution:

(6_2 (672X"X +AI) ! XTr> ! X

Gaussian Process (GP) regression models (Schulz et al.,
2018) offer a competing explanation for how people could
solve our task. In previous work, these models have been
successfully used to understand human generalisation across
a range of reward-guided decision-making studies (Schulz et
al., 2020). A GP defines a multivariate normal probability
distribution over functions:

£~ N(m(x),k(x,x))

where m(x) is the mean function, which we set to 0, and
k(x,x') is the kernel (also called the covariance function),
which defines prior assumptions about how similar two fea-
ture vectors x and x’ are. Here, we employ a Radial Basis
Function (RBF) kernel, which represents the similarity be-
tween two feature vectors as an exponentially decaying func-
tion of their squared Euclidean distance:

Ix—x'|]?

202
where the parameter ¢ controls the rate of decay of similarity.
We picked the RBF kernel as it has previously been shown to
explain human behaviour in decision-making tasks with lin-

ear reward functions (Stoji¢ et al., 2020), despite it not captur-
ing the underlying linear task structure. Using GP regression,

k(x,X) = exp (



reward predictions for a new stimulus x can be made by:
#(x) =k" (K+0°T) ' r

where K is the covariance matrix between the previously ob-
served stimuli and the new stimulus and K is the covariance
matrix between all previously observed stimuli.

The two previously outlined models take all features into
account to varying degrees when making predictions. It has
been argued that this style of decision-making is too computa-
tionally expensive and people rely on simpler heuristic strate-
gies instead (Gigerenzer & Gaissmaier, 2011). We therefore
also considered two common heuristics in our model compar-
ison: a single cue model and an equal weighting model. The
single cue model only uses the single best feature to make de-
cisions. This type of heuristic has been shown to be success-
ful at explaining human behaviour both in real-world and lab
settings (Gigerenzer & Goldstein, 1999; Gigerenzer & Gaiss-
maier, 2011). We assume that the identity of the best feature
is unknown, and maintain one single cue model for each fea-
ture dimension. Each of these models is implemented as a
simple Bayesian linear regression model. To obtain reward
estimates, we make predictions based only on the best per-
forming model up until that point, i.e., the one with the high-
est likelihood (Binz et al., 2022). The equal weighting model,
on the other hand, does not distinguish between different fea-
tures and learns a single weight for all of them (Gigerenzer
& Gaissmaier, 2011; Dawes & Corrigan, 1974). We imple-
mented this form of decision-making as a Bayesian linear re-
gression model with a single feature that is obtained by sum-
ming up the original features (Binz et al., 2022).

Model Comparison

For our model comparison, we computed the reward esti-
mates for each computational model as described above. We
then ran a separate mixed-effects logistic regression for each
model, where we used the difference between the reward
estimates of two options as fixed and random regressors to
predict participant choices. We did a leave-one-out cross-
validation for each of these models to obtain cross-validated
log-likelihoods (Garvert et al., 2021). To compare models,
we used these log-likelihoods in a model-frequency analy-
sis (Stephan et al., 2009; Rigoux et al., 2014), which is a
Bayesian procedure that estimates the prevalence of a model
within the participant population. We report model frequen-
cies (MF), which measure how common a model is in that
population, and their exceedance probability (XP), which is
the posterior probability that the frequency of a given model
is larger than all the other models in that population. We addi-
tionally report pseudo-R? scores (McFadden, 1974) obtained

from the cross-validated log-likelihoods:
LM

o L)

L(Random)

L(M) is the log-likelihood of a given model and £(Random)
is the log-likelihood of a random model. While R> = 1 shows
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M is infinitely more accurate than chance, R? = 0 indicates it
is a model performing at chance-level.

We found that the linear model is the most frequent model
within our population (MF = .87, XP > .99, R> = .2792)
as illustrated in Figure 2B. While much less frequent, the
GP explained participant behaviour to a similar degree (MF
= .11, R? = .2786). While similar R? values of the two mod-
els indicate that they predict the overall choice behaviour
to similar extent, differing MF values indicate that the lin-
ear model is considerably better at explaining individual par-
ticipants’ behaviour. The single cue and equal weighting
models performed poorly in predicting participant behaviour
(R* = .03, .005 respectively).

We also hypothesised that people might rely on different
strategies in different stages of the task. To test this, we ran
separate model frequency analyses for different parts of the
study (Figure 2C). While the linear model outperforms the
other models in the first 50 trials (MF = .97, XP> .99, R?> =
.18), the single cue model was the most frequent model (MF
= .58, XP = .97, R? = .32) for the second 50 trials. Inter-
estingly, in the last 50 trials, the GP was the most frequent
model (MF = .52, XP = .91, R? = .36). These results indicate
that participants switch strategies as they progress through the
task. They start the task with a linear-additive strategy, then
switch to make decisions only based on the best cue, and, in
the end, use an examplar-based strategy. For a forward simu-
lation of the computational models, see Figure 2D.

Interim Discussion

How do these results relate to the outcomes of previ-
ous decision-making studies with low-dimensional, artificial
stimuli? An almost universal conclusion from these studies
is that people seem to employ linear-additive strategies un-
less they are explicitly encouraged to use simpler decision-
making heuristics instead (Binz et al., 2022). This finding
aligns with our main result that people are overall best de-
scribed by the linear model.

Rieskamp & Otto (2006) furthermore found that partici-
pants in their study had initial preferences for linear-additive
strategies, but then switched to single cue heuristics during
later stages. This hypothesis was confirmed in several other
studies (Gluck et al., 2002; Mata et al., 2007). We observed
an analogous pattern in our study, with participants having an
initial preference for linear-additive strategies, followed by a
switch to single cue heuristics.

Finally, Juslin et al. (2003) argued “people have an inclina-
tion to abstract explicit representations whenever possible ...,
with exemplar memory acting as a backup in tasks in which
explicit representations of cue—criterion relations cannot be
abstracted or in which behaviour has become automatic”. It
can be that behaviour has become automatic by the end of
our study, which would explain the late emergence of GP (an
exemplar-based model) as the winning hypothesis. Taking
everything into consideration, our analysis suggests that key
results from decision-making studies with low-dimensional,
artificial stimuli also transfer to more naturalistic settings.
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Figure 3: Representational Analyses. A) Predictive accuracy of computational models trained with different latent representations. B)
Predictive accuracy of computational models trained with pixel-based representations and the original latent dimensions. C) Performance
of computational models trained with pixel-based representations, where models follow a greedy policy. D) Standardised coefficients with
standard error bars from the mixed-effects logistic regression model predicting participant choice with reward estimates obtained by the linear
model trained with pixel-based representations and those obtained by the same model trained on the latent dimensions.

Representational Analyses

In the above section, we used the latent dimensions extracted
by Hebart et al. (2020) to train our computational models.
However, these are not the only representations that can be
used to solve our task. Humans may use more granular or
more compressed representations. In addition to testing the
dimensionality of the representations, we tested if our models
can be improved by incorporating pixel-based representations
extracted from convolutional neural networks.

Learning with Different Latent Dimensions

We re-trained the model of Hebart et al. (2020) to extract a
different number of latent dimensions. The model is trained
to predict human responses on an odd-one-out task with three
objects. It learns weights shared across all the objects. The
model is penalised for the number of non-zero weights that it
learns, and the extent of this penalty is controlled by a hyper-
parameter in the model’s loss function. By changing this hy-
perparameter, we extracted a low (14) and a high (82) number
of latent dimensions from the objects. The test accuracy for
the newly trained models on the odd-one-out task was com-
parable to that of the original model, indicating that the latent
dimensions described the objects well. We then replicated
the previously discussed model comparison procedure with
the newly-extracted latent dimensions to test which represen-
tations predict human choice behaviour the best.

For the models that were trained with low number of la-
tent dimensions, the GP regression model performed the best
(MF = .58, XP = .90, R* = .27), followed closely by the
linear model (R? = .27). The single cue and equal weight-
ing models again performed worse comparably (R> = .12 and
R? = .02 respectively). Out of the models that were trained
with the high number of latent dimensions, the linear model
performed the best (MF = .49, XP = .50, R> = .28), with the
GP regression model again performing similarly (R*> = .28).
Both the single cue and equal weighting models predicted
around chance level (R < .001). Overall, the best perform-
ing model was the linear model trained with the original latent
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dimensions, indicating that the original dimensions extracted
by Hebart and colleagues captured the representations used
by participants to complete the task best (Figure 3A). An-
other interesting finding here is that the single cue model got
better at predicting participant behaviour as the feature space
got more compressed, hinting at the possibility that a suffi-
ciently small feature space combined with this model may be
able to compete with our currently winning models.

Learning with Pixel-Based Representations

There has been a recent surge of interest in using end-to-end
representations to model human behaviour (see Battleday et
al. (2021) for a review). Following this direction, we con-
sider if participants use such representations to solve our task.
Convolutional neural networks have proven to be promis-
ing models of the human visual system (Yamins & DiCarlo,
2016), and using representations of pretrained convolutional
neural networks to model higher level cognitive tasks, like
categorisation judgement (Battleday et al., 2020), has been
successful. Therefore we decided to use such a neural net-
work to obtain pixel-based representations. We passed the
images through a pre-trained ResNet18 (He et al., 2016) and
extracted the activity pattern of the penultimate layer’s neu-
rons. We trained our models with the resulting 512 features.

Models trained with the pixel-based representations can
perform the task above chance level as shown in Figure 3C.
The linear model predicted human choice behaviour the best
compared to the other pixel-based models (MF = .97, XP
> .99, R? = .17), which is however worse than the linear
model trained with the original latent dimensions. All other
models trained with pixel-based representations performed
around chance level (R* < .01) (Figure 3B).

Even though the pixel-based computational models did not
outperform the models trained with the original latent di-
mensions, it is possible that the reward estimates obtained
by training on the pixel-based representations capture some
features of the objects that were used by the participants but
that were not captured by the original latent dimensions. To



test this hypothesis, we used a mixed-effects logistic regres-
sion model, where we used reward estimates of the linear
model trained with the original latent dimensions and re-
ward estimates of the linear model trained with pixel-based
representations as predictors. The estimates obtained from
both the original dimensions (§ = 1.55, 95% CI[1.37, 1.73],
p < .001) and the pixel-based representations (B = .27,
95% CI[.21, .33], p < .001) were significant predictors (Fig-
ure 3D). The model using both of the representations was sig-
nificantly better in predicting human choice behaviour com-
pared to the mixed-effects model that only used the linear
model’s estimates coming from the original latent dimensions
(x(3) =17.9, p < .001, R* = .28). These results provide sup-
port for our hypothesis that humans may use representations
that are not captured by the symbolic feature space of latent
dimensions but can be extracted using end-to-end methods.

General Discussion

How do people learn to make good decisions in settings with
high-dimensional options? We have studied this question in
a two-alternative forced-choice task with naturalistic stimuli.
Participants in our study were not explicitly instructed about
the existence of the high-dimensional features of objects but
nevertheless got better at the task quickly over time simply
by reward guidance. The fact that none of the stimuli appear
more than once also shows that participants did not simply
learn stimulus-reward associations but that they learned fea-
tures about the stimuli, allowing them to generalise.

We furthermore tested various models used in the decision-
making literature to provide a computational explanation
of human generalisation in high-dimensional feature spaces.
When trained on the latent dimensions extracted from similar-
ity ratings that human participants performed on the stimuli,
a linear model provided the best fit to the human data. In-
terestingly, however, comparing models at different points in
the experiment revealed that participants changed their strat-
egy as they progressed through the task. Participants initially
learned a linear function until they were certain about which
aspect was relevant for obtaining rewards and switched to a
strategy that only cares about the single reward-relevant di-
mension once they were certain. In the later stages of the ex-
periment, they switched to a GP regression model, suggesting
that their behaviour has become automated.

While our models could predict participant behaviour, the
features they received do not necessarily reflect the represen-
tations used by the participant. To investigate the possibil-
ity that humans use different representations while doing our
task, we first compared models trained on the original latent
dimensions with more compressed and more granular latent
dimensions. We showed that the original latent dimensions
that capture the structure of the task provided the best fit to the
human choice data. It is worth pointing out that using more
compressed dimensions led the single cue model to perform
better compared to the other conditions. This is interesting
because the individual cues this model uses to make deci-
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sions do not directly correspond to the reward function of our
task. Itis possible that humans represent the objects with even
fewer dimensions than we have tested here and that a single
cue model trained with more compressed representations can
explain human choice behaviour even better.

While the cognitive sciences have mostly used symbolic
representations to model human behaviour, more recent work
has shown that using distributed representations obtained by
deep neural networks trained on naturalistic stimuli can pro-
vide a better account of human behaviour in similarity judge-
ment (Peterson et al., 2018) and categorisation tasks (Battle-
day et al., 2020). To test if such representations can be useful
in explaining human behaviour in our task, we trained our
models on pixel-based representations obtained from a pre-
trained convolutional neural network. The linear model again
provided the best fit for the human data with this form of
representation. Interestingly, reward estimates obtained from
this linear model were better at predicting participants’ choice
when combined with the reward estimates coming from the
linear model trained on the original latent dimensions, com-
pared to using the reward estimates coming from the latter
alone. In the future, trying different fine-tuned neural net-
works architectures for the task at hand can extend our work
and provide better predictions of human behaviour. In addi-
tion to obtaining representations from neural networks, build-
ing neural networks that can also perform these decision-
making tasks can help us understand the underlying neuronal
processes when combined with neuroimaging.

Lastly, participants receive reward information of both the
chosen and unchosen options in our task. We have made this
choice to simplify our experimental design. However, this de-
cision also removed the need for exploratory choices. Future
work could lift this restriction and reveal reward information
for only the chosen option. In turn, this will allow us to adapt
our paradigm to study the relationship between exploration
and generalisation (Wu et al., 2018) in a more naturalistic
setting. Additionally, our task was naturalistic only in the
sense that it used rich and naturalistic feature spaces. Other
aspects of naturalistic decision-making such as being faced
with sparse rewards, having to define rewards internally, and
dealing with high degrees of freedom need to be studied to
understand how humans make decisions in the wild.

In summary, our work provides three important insights
into human decision-making. First, we established that peo-
ple learn to pick more rewarding options by generalising their
knowledge about object features in a naturalistic setting. Sec-
ond, we showed that humans employ different strategies at
different stages and that their behaviour can be explained by
similar models utilised in decision-making tasks with low-
dimensional, artificial stimuli. Lastly, distributed representa-
tions obtained from neural networks capture aspects of how
humans represented the objects in our task that were not cap-
tured by the original latent dimensions. These results offer
some of the first insights into how people make decisions with
naturalistic options.
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