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Abstract. The goal of object categorization is to locate and identify in-
stances of an object category within an image. Recognizing an object in
an image is difficult when images present occlusion, poor quality, noise or
background clutter, and this task becomes even more challenging when
many objects are present in the same scene. Several models for object
categorization use appearance and context information from objects to
improve recognition accuracy. Appearance information, based on visual
cues, can successfully identify object classes up to a certain extent. Con-
text information, based on the interaction among objects in the scene or
on global scene statistics, can help successfully disambiguate appearance
inputs in recognition tasks. In this work we review different approaches
of using contextual information in the field of object categorization and
discuss scalability, optimizations and possible future approaches.

1 Introduction

Traditional approaches to object categorization use appearance features as the
main source of information for recognizing object classes in real world images.
Appearance features, such as color, edge responses, texture and shape cues, can
capture variability in objects classes up to certain extent. In face of clutter, noise
and variation in pose and illumination, object appearance can be disambiguated
by the coherent composition of objects that real world scenes often exhibit. An
example of this situation is presented in Figure 1.

Information about typical configurations of objects in a scene has been stud-
ied in psychology and computer vision for years, in order to understand its
effects in visual search, localization and recognition performance [2–4, 19, 23].
Biederman et al. [4] proposed five different classes of relations between an object
and its surroundings, interposition, support, probability, position and familiar

size. These classes characterize the organization of objects in real-world scenes.
Classes corresponding to interposition and support can be coded by reference to
physical space. Probability, position and size are defined as semantic relations

because they require access to the referential meaning of the object. Semantic
relations include information about detailed interactions among objects in the
scene and they are often used as contextual features.
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(a) (b)

Fig. 1. (a) A car in the street. (b) A pedestrian in the street. The pedestrian is the
same patch as the car except for a 90 degrees rotation. The different orientations of
both patches within the context defined by the street scene makes the car be perceived
as a pedestrian. Example taken from [34].

Several different models [6, 7, 11, 13, 25, 34] in the computer vision community
have exploited these semantic relations in order to improve recognition. Semantic
relations, also known as context features, can reduce processing time and dis-
ambiguate low quality inputs in object recognition tasks. As an example of this
idea, consider the flow chart in Figure 2. An input image containing an aeroplane,
trees, sky and grass (top left) is first processed through a segmentation-based
object recognition engine. The recognizer outputs an ordered shortlist of possible
object labels; only the best match is shown for each segment. Without appealing
to context, several mistakes are evident. Semantic context (probability) in the
form of object co-occurrence allows one to correct the label of the aeroplane, but
leaves the labels of the sky, grass and plant incorrect. Spatial context (position)
asserts that sky is more likely to appear above grass than vice versa, correcting
the labels of the segments. Finally, scale context (size) corrects the segment la-
beled as “plant” assigning the label of tree, since plants are relatively smaller
than trees and the rest of the objects in the scene.

In this report, we review a variety of different approaches of context based
object categorization models. In Section 2 we assess different types of contex-
tual features used in object categorization: semantic, spatial and scale context.
In Section 3 we review the use of context information from a global and local
image level. Section 4 presents four different types of local and global contextual
interactions: pixel, region, object and object-scene interactions. In Section 5 we
consider common machine learning models that integrate context information
into object recognition frameworks. Machine learning models such as classifiers
and graphical models are discussed in detail. Finally we conclude with the dis-
cussion of scalability, optimizations and possible future approaches.
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Fig. 2. Illustration of an idealized object categorization system incorporating Bieder-
man’s classes: probability, position and (familiar) size. First, the input image is seg-
mented, and each segment is labeled by the recognizer. Next, the different contextual
classes are enforced to refine the labeling of the objects leading to the correct recogni-
tion of each object in the scene.

2 Types of Context

In the area of computer vision many approaches for object categorization have
exploited Biederman’s semantic relations [4] to achieve robust object categoriza-
tion in real world scenes. These contextual features can be grouped into three
categories: semantic context (probability), spatial context (position) and scale
context (size). Contextual knowledge can be any information that is not di-
rectly produced by the appearance of an object. It can be obtained from the
nearby image data, image tags or annotations and the presence and location of
other objects. Next, we describe in detail each type of context and their most
representative object categorization methods.

2.1 Semantic Context

Our experience with the visual world dictates our predictions about what other
objects to expect in a scene. In real world images a scene is constituted by objects
in a determined configuration. Semantic context corresponds to the likelihood of
an object to be found in some scenes but not others. Hence, we can define seman-
tic context of an object in terms of its co-occurrence with other objects and in
terms of its occurrence in scenes. Early studies in psychology and cognition show
that semantic context aids visual recognition in human perception. Palmer [23]
examined the influence of prior presentation of visual scenes on the identifica-
tion of briefly presented drawings of real-world objects. He found that observers
accuracy at an object-categorization task was facilitated if the target (e.g. a loaf
of bread) was presented after an appropriate scene (e.g. a kitchen counter) and
impaired if the scene-object pairing was inappropriate (e.g. a kitchen counter
and bass drum).
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Early computer vision systems adopted these findings and defined semantic
context as pre-defined rules [8, 12, 33] in order to facilitate recognition of objects
in real world images. Hanson and Riseman [12] proposed the popular VISIONS
schema system where semantic context is defined by hand coded rules. The
system’s initial expectation of the world is represented by different hypotheses
(rule-based strategies) that predict the existence of other objects in the scene.
Hypotheses are generated by a collection of experts specialized for recognizing
different types of objects.

Recently, some computer vision approaches [11, 25, 34, 37, 38] have used sta-
tistical methods that can generalize and exploit semantic context in real world
scenes for object categorization. The work by Wolf and Bileschi [38] used se-
mantic context obtained from “semantic layers” available in training images,
as shown in Figure 3 (a). Semantic layers indicate the presence of a particular
object in the image. Each image present several semantic layers, one per each
category present in the scene. In a semantic layer, each pixel is labeled with a
value v = 1 if the pixel belongs to the object in the layer and v = 0 other-
wise. Then, semantic context is presented in the form of a list of labels per pixel
indicating the occurrence of a pixel in a particular object.

Context is commonly obtained from strongly labeled training data, but it
can also be obtained from an external knowledge base as in [25]. Rabinovich
et al. [25] derived semantic context querying the Google Sets3 web application.
Google Sets generates a list of possibly related items from a few examples. This
information is represented by a binary co-occurrence matrix φ(i, j) that relates
objects i and j in a scene. Each entry is set φ(i, j) = 1 if objects i and j appear
as related, or 0 otherwise. Figure 3 (b) shows the co-occurrence matrix used in
[25].

(a) (b)

Fig. 3. (a) Example of training images and semantic layers used in [38]. Semantic layers
encode ground truth information of the objects in the scene and also present useful
information to elaborate semantic context features. (b) Google Sets web application
and context matrix obtained from the predicted items list used in [25].

3 labs.google.com/sets
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Sources of semantic context in early works were obtained from common ex-
pert knowledge [8, 12, 33] which constrained the recognition system to a narrow
domain and allowed just a limited number of methods to deal with uncertainty
of real world scenes. On the other hand, annotated image databases [38] and
external knowledge bases [25] can deal with more general cases of real world im-
ages. A similar evolution happened when learning semantic relations from those
sources: pre-defined rules [8] were replaced by methods that learned the implicit
semantic relations as pixel features [38] and co-occurrence matrices [25].

2.2 Spatial Context

Biederman’s position class, also known as spatial context, can be defined by the
likelihood of finding an object in some position and not others with respect to
other objects in the scene. Bar et al. [2] examined the consequences of pairwise
spatial relations on human performance in recognition tasks, between objects
that typically co-occur in the same scene. Their results suggested that (i) the
presence of objects that have an unique interpretation improve the recognition of
ambiguous objects in the scene, and (ii) proper spatial relations among objects
decreases error rates in the recognition of individual objects. These observations
refer to the use of (i) semantic context and (ii) spatial context to identify am-
biguous objects in a scene. Spatial context encodes implicitly the co-occurrence
of other objects in the scene and offers more specific information about the
configuration in which those objects are usually found. Therefore, most of the
systems that use spatial information also use semantic context in some way.

The early work of Fischler [8] in scene understanding proposed a bottom-
up scheme to recognize various objects and the scene. Recognition was done
by segmenting the image into regions, labeling each segment as an object and
refining object labels using spatial context as relative locations. Refining objects
can be described by breaking down the object into a number of more “primitive
parts” and by specifying an allowable range of spatial relations which these
“primitive parts” must satisfy for the object to be present. Spatial context was
stored in the form of rules and graph-like structures making the resulting system
constrained to a specific domain.

In the last decade many approaches have considered using spatial context to
improve recognition accuracy. Spatial context is incorporated from inter-pixel
statistics [7, 13, 15, 20, 24, 27, 30, 34, 37, 38] and from pairwise relations between
regions in images [6, 11, 16, 19, 31].

Recently, the work by Shotton et al. [30] acquired spatial context from inter-
pixel statistics for object categorization. The framework learns a discriminative
model of object classes that incorporates texture, layout and spatial information
for object categorization of real world images. An unary classifier λi captures
spatial interactions between class labels of neighboring pixel, and it is incorpo-
rated into a conditional random field [17]. Spatial context is represented by a
look-up table with an entry for each class ci and pixel index i:

λi(ci, i; θλ) = log θλ(ci, î) (1)
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The index î is the normalized version of the pixel index i, where the normal-
ization allows for images of different sizes: the image is mapped onto a canonical
square and î indicates the pixel position within this square. The model param-
eters are represented by θλ. An example of the learned classifiers are shown in
Figure 4 (a).

Spatial context from pairwise relations has been addressed by the work of
Kumar and Hebert [16] as well. Their method presents a two-layer hierarchical
formulation to exploit different levels of spatial context in images for robust
classification. Layer 1 models region to region interactions and layer 2 objects to
objects interactions, as shown in Figure 4 (b). Objects to regions interactions are
modeled between layer 1 and layer 2. Pairwise spatial features between regions
are binary indicator attributes for three pre-defined interactions: above, beside

or enclosed. The pairwise features between the object to object and object to
region are simply the difference in the coordinates of the centroids of a region
and a patch. Then, spatial context is defined in two different levels: as a binary
feature for each interaction in layer 1 and as the difference in the coordinates of
the centroids in layer 2.

(a) (b)

Fig. 4. (a) Spatial context classifiers learned in [30] for five different classes: grass,
tree, sky, road and face. (b) Two-layer hierarchical formulation for spatial context used
in [16].

Same as semantic context in early works, spatial context sources were ob-
tained from common expert knowledge [8, 12, 33] which constrained the recog-
nition system to a specific domain failing to deal with uncertainty of real world
scenes. On the contrary, recent works in computer vision such as [16, 30] use
strongly annotated training data as main source of spatial context with the
hope of generalize cases. Even though Fischler [8] used pre-defined rules to de-
fine spatial interactions, Kumar and Hebert [16] also pre-define interactions that
correspond to general object configurations in real world scenes. On the other
hand, Shotton et al. [30] learned these interactions implicitly from training data
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using statistical methods that can capture many more object configurations than
the pre-defined rules.

2.3 Scale Context

Common approaches to object recognition require exhaustive exploration of a
large search space corresponding to different object models, locations and scales.
Prior information about the sizes in which objects are found in the scene can
facilitate object detection. It reduces the need for multiscale search and focuses
computational resources into the more likely scales.

Biederman’s familiar size class is a contextual relation based on the scales
of an object with respect to others. This contextual cue establishes that objects
have a limited set of size relations with other objects in the scene. Scale context
requires not only the identification of at least one other object in the setting,
but also the processing of the specific spatial and depth relations between the
target and this other object.

The CONDOR system by Strat and Fischler [33] was one of the first computer
vision systems that added scale context as a feature to recognize objects. Scale
information of an object was obtained from the camera’s meta-data such as
camera position and orientation, geometric horizon, digital terrain elevation data
and map. This information was integrated into the system to generate hypothesis
about the scene in which object’s configurations are consistent with a global
context.

Lately, a handful of methods for object recognition have used this type of
context [19, 20, 24, 34–36]. Torralba et al. [34] introduced a simple framework for
modeling the relationship between context and object properties. Scale context
is used to provide a strong cue for scale selection in the detection of high level
structures as objects. Contextual features are learned from a set of training
images where object properties are based on the correlation between the statistics
of low-level features across the entire scene. Figure 5 (a) shows an example of a
training image and its corresponding annotation.

In [34] , an object in the image is defined as O = {o, x, σ} where o is the
category label, x is the location and σ is the scale of the object in the scene. Scale
context (σ) depends on both the relative image size of the object at one fixed
distance and the actual distance D between the observer and the object. Using
these properties and the contextual feature of the entire scene vC for a category
C, automatic scale selection is performed by the PDF P (σ|o,vC). Examples of
automatic scale selection are shown in Figure 5 (b).

Scale context shows to be the hardest relation to access, since it requires
a more detailed information about the objects in the scene. While analyzing
generic 2D images, camera’s meta-data used in [33] is generally not available.
Instead, one needs to derive context directly from the input image itself as done
in [34].

The majority of the models reviewed here use one or two explicit types of
context. Spatial and scale context are the most exploited types of context by
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Fig. 5. (a) An example of training image and ground truth annotation used in [34].
(b) Scale context permits automatic scale detection for face recognition. The square’s
size corresponds to the expected height of heads given the scale prior. The line at the
right hand indicates the real height of the heads in the image.

recognition frameworks. Generally, semantic context is implicitly present in spa-
tial context, as information of object co-ocurrences come from identifying ob-
jects for the spatial relations in the scene. The same happens to scale context,
as scale is measured with respect to others objects. Therefore, using spatial and
scale context involve using all forms of contextual information in the scene.

Although semantic context can be inferred from other types of context, it
is the only context type that brings out the most valuable information for im-
proving recognition. Considering the variability of the object configurations in
the scene, scale and spatial relations vary in grater extent than the co-ocurrence
of objects. Co-occurrences are much easier to access than spatial or scale rela-
tionships and much faster to process and compute. On the other hand, using all
types of context can give a better representation of the configuration of objects
in the scene, producing better performance in recognition tasks.

With respect to the sources of contextual information, very little has been
done for using external sources in cases where training data is weakly labeled. In
most of the cases, contextual relations are computed from training data, which
can sometimes fail to express general cases. To model sources of variability in
real world images, approaches to object categorization require large labeled data
sets of fully annotated training images. Typical annotations in these fully labeled
data sets provide masks or bounding boxes that specify the locations and scales
of objects in each training image. Though extremely valuable, this information is
prone to error and expensive to obtain. Using publicly available knowledge-bases
can contribute to add contextual information for recognition tasks.

3 Contextual Levels

Object recognition models have considered the use of context information from
a “global” or “local” image level. Global context considers image statistics from
the image as a whole (e.g. a kitchen will predict the presence of a stove). Local

context, on the other hand, considers context information from neighboring areas
of the object (e.g. a nightstand will predict the presence of an alarm clock). These
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two different trends have found their motivation from psychology studies in
object recognition. Next we review these two types of contextual levels together
with examples of models that have adopted these directions.

3.1 Global Context

Studies in psychology [21, 26] suggest that perceptual processes are hierarchi-
cally organized so they proceed from global structuring towards more and more
detailed analysis. Thus the perceptual system treats every scene as if it were in a
process of being focused or zoomed in on. These studies imply that information
about scene identity may be available before performing a more detailed analysis
of the individual objects.

Under this premise, global context exploits scene configuration (image as a
whole) as an extra source of global information across categories. The structure
of a scene image can be estimated by the mean of global image features, providing
a statistical summary of the spatial layout properties. Many object categoriza-
tion frameworks have incorporated this prior information for their localization
tasks [20, 27, 34, 36, 37].

Murphy et al. [20] exploited context features using a scene “gist” [34], which
influences priors of object existence and global location within a scene. The
“gist” of an image is a holistic, low-dimensional representation of the whole
image. Figure 6 (b) shows an example of the “gist” of a corridor. The work
of Torralba et al. [34] shows that this is sufficient to provide a useful prior for
what types of objects may appear in the image, and at which location/scale. The
background (or scene)provides an a likelihood of finding an object in the image
(for example, one is unlikely to find a boat in a room). It can also indicate the
most likely positions and scales at which an object might appear (e.g. pedestrians
on walkways in an urban area).

In [20] the “gist” is defined as the feature vector vG that summarizes the
whole image. In order to obtain vG, a set of spatially averaged filter-banks are
applied to the whole image. Then, Principle Component Analysis (PCA) is used
to reduce the high dimensionality of the resulting output vector. By combining
vG with the outputs of boosted object detectors, final detectors are ran in loca-
tions/scales that the objects are expected to be found, therefore improving speed
and accuracy. Using context by processing the scene as a whole and without first
detecting other objects can help to reduce false detections.

3.2 Local Context

Local context information is derived from the area that surrounds the object
to detect (other objects, pixels or patches). The role of local context has been
studied in psychology for the task of object [23] and face detection [32]. Sinha
and Torralba [32] found that inclusion of local contextual regions such as the
facial bounding contour substantially improves face detection performance, indi-
cating that the internal features for facial representations encode this contextual
information.
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Fig. 6. (a) Red window indicates local context and the green window indicates the
region of interest for the appearance features. Local context feature by Kruppa and
Schiele [15] (b) A training image (on the left) and the “gist” (on the right) for the
“corridor” category by Murphy et al. [20].

Local context features can capture different local relations such as pixel,
region and object interactions. Many object categorization models have used
local context from pixels [6, 7, 13, 15, 30], patches [16, 19, 31] and objects [11, 12,
25, 33, 35, 38] that surrounds the target object, greatly improving the task of
object categorization. These interactions are reviewed in detail in Section 4.

Kruppa and Schiele [15] investigated the role of local context for face detec-
tion algorithms. In their work, an appearance-based object detector is trained
with instances that contain a persons entire head, neck and part of the upper
body (as shown in Figure 6 (a)). The features of this detector capture local ar-
rangements of quantized wavelet coefficients. The wavelet decomposition showed
that local context captured most parts of the upper bodys contours, as well as
the collar of the shirt and the boundary between forehead and hair. At the core
of the detector there is a Naive Bayes classifier:

n∏

k=1

∏

x,y∈region

pk(patternk(x, y), i(x), j(y)|object)

pk(patternk(x, y), i(x), j(y)|nonobject)
> θ (2)

where θ is an acceptance threshold and pk are two likelihood functions that
depend on coarse quantizations i(x) and j(y) of the feature position within
the detection window (2). This spatial dependency allows to capture the global
geometric layout: within the detection windows certain features might be likely
to occur at one position but unlikely to occur at another.

Using local context yields correct detections that are beyond the scope of the
classical object-centered approach, and holds not only for low resolution cases
but also for difficult poses, occlusion and difficult lighting conditions.

One of the principal advantages of global over local context is that global
context is computationally efficient as there is no need to parse the image or
group components in order to represent the spatial configuration of the scene.
However when the number of objects to recognize and scenes increases, global
context cannot discriminate well between scenes since many objects may share
the same scene, and scenes may look similar to each other. In this case, compu-
tation becomes expensive as we have to run all object detectors on the image.
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Local context improves recognition over the capabilities of object-centered
recognition frameworks since it captures different range of interactions between
objects. Its advantage over global context is based on the fact that for global con-
text scene must be taken as one complete unit and spatially localized processing
can not take place.

The fact that local context representation is still object-centered, as it re-
quires object recognition as a first step, is one of the key differences with global
context. The image patches that do not satisfy the similarity criteria to objects
are discarded and modeled as noise. Global context propose to use the back-
ground statistics as an indicator of object presence and properties. However,
one drawback of the current “gist” implementation is that it cannot carry out
partial background matching for scenes in which large parts are occluded by
foreground objects.

4 Contextual Interactions

We have seen that object categorization models exploit context information from
different types of contextual interactions and consider different image levels.
When we consider local context, contextual interactions can be grouped in three
different types: pixel, region and object interactions. However, when we consider
global context, we have contextual interactions between objects and scenes. Next,
we review in detail these different interactions and discuss the different object
categorization models that have made key contributions using these contextual
interactions.

4.1 Local Interactions

The work by Rutishauser et al. [28] proposed that recognition performance for
objects in highly cluttered scenes can be improved dramatically with use of
bottom-up attentional frameworks. Local context involves bottom-up processing
of contextual features across images, improving performance and recognition
accuracy. Next we review local interactions from different local context levels
that are incorporated into bottom-up fashion for categorization models.

Pixel Interactions Pixel level interactions are based on the notion that neigh-
boring pixels tend to have similar labels, except at the discontinuities. Several
object categorization frameworks model interactions at pixel level in order to im-
plicitly capture scene contextual information [6, 13, 15, 27, 30, 34, 38]. Pixel level
interactions can also derive information about object boundaries, leading to an
automatic segmentation of the image into objects [6, 13, 30] and a further im-
provement in object localization accuracy.

The problem of obtaining contextual features by using pixel level interactions
is addressed by the work of He et al. [13]. The model combines local classifiers
with probabilistic models of label relationships. Regional label features and global

label features describe pixel level interactions, as shown in Figure 7 (a). Regional
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Fig. 7. (a) Contextual features and example of regional label features in [13]. (b)
Framework for contextual features by He et al. [13].

features represent local geometric relationships between objects, such as edges,
corners or T-junctions. Actual objects involved in the interaction are specified
by the features, thus avoiding impossible combinations such as ground-above-sky
border. Regional features are defined on 8 × 8 regions with an overlapping of 4
pixels in each direction and extracted from training data.

Global features correspond to domains that go from large regions in the scene
to the whole image. Pixel level interactions are encoded in the form of a label
pattern, which is configured as a Restricted Boltzmaann Machine (RBM) as
shown in Figure 7 (b). These features are defined over the entire image, but in
principle smaller fields anchored at specific locations can be used. Regional and
global label features are described by probabilistic models and their distributions
are combined into a conditional random field [17].

Region Interactions Region level interactions have been extensively inves-
tigated in the area of context-based object categorization tasks [6, 7, 15, 16, 19,
20, 27, 31, 37] since regions follow plausible geometrical configurations. These in-
teractions can be divided into two different types: interaction between image
patches/segments and interaction between object parts.

Interactions between object parts can derive contextual features for recog-
nizing the entire object. Fink and Perona [7] proposed a method termed Mu-

tual Boosting to incorporate contextual information for object detection from
object’s parts. Multiple objects and part detectors are trained simultaneously
using AdaBoost [9, 10]. Context information is incorporated from neighboring
parts or objects using training windows that capture wide regions around the
detected object. These windows, called contextual neighborhoods, capture rela-
tive position information from objects or parts around and within the detected
object. The framework simultaneously trains M object detectors that generate
M intensity maps Hm=1,..,M indicating the likelihood of object m appearing at
different positions in a target image. At each boosting iteration t the M detec-
tors emerging at the previous stage t− 1 are used to filter positive and negative
training images, thus producing intermediate m detection maps Hm

t−1. Next, the
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Mutual Boosting stage takes place and all the existing Hm
t−1 maps are used as

additional channels out of which new contrast features are selected. Mutual de-
pendencies must be computed in a iterative fashion, first updating one object
then the other. Figure 8 (a) shows contextual neighborhoods Cm[i] for positive
and negative training images.

Models that exploit interactions between patches commonly involve some
type of image partitioning. The image is usually divided into patches [16, 15, 19,
20, 27, 31, 37] or into segments by a semantic scene segmentation algorithm [6].

Fig. 8. (a) A1 & A2: position of positive and negative examples of eyes in natural
images and B: Eye intensity (eyeness) detection map of an image in [7]. (b) Results
of [6] using segment interactions. (c) Lipson’s [19] patch level interactions that derive
spatial templates.

The work by Lipson et al. [19] exploits of patch level interactions for captur-
ing scene’s global configuration. The approach employes qualitative spatial and
photometric relationships within and across regions in low resolution images,
as shown in Figure 8 (c). The algorithm first computes all pairwise qualitative
relationships between each low resolution image region. For each region, the al-
gorithm also computes a rough estimate of its color from a coarsely quantized
color space as a measure of perceptual color. Images are grouped into direc-
tional equivalence classes, such as “above” and “below”, with respect to explicit
interactions between region. Figure 8 (c) shows examples of images and common
region configurations.

The framework introduced by Carbonetto et al. [6] uses Normalized Cuts [29]
algorithm to partition images into regions for learning both word-to-region asso-
ciations and segment relations. The contextual model learns the co-occurrence
of blobs (set of features that describe a segment) and formulates a spatially
consistent probabilistic mapping between continuous image feature vectors and
word tokens. Segment level interactions describe the “next to” relation between
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blob annotations. Interactions are embedded as clique potentials of a Markov
Random Field (MRF) [18]. Figure 8 (b) shows examples of test images regions
and labels.

Object Interactions The most intuitive type of contextual interactions cor-
respond to the object level, since object interactions are more natural to the
human perception. They have been extensively studied in the areas of psychol-
ogy and cognitive sciences [1–4, 23]. Several frameworks have addressed these
interactions including early works in computer vision [8, 11, 12, 15, 16, 25, 35].

The recent work of Torralba et al. [35] exploits contextual correlations be-
tween object classes by using Boosted Random Fields (BRFs). BRFs build on
both boosting [9, 10] and conditional random fields (CRFs) [17], providing a
natural extension of the cascade of classifiers by integrating evidence from other
objects. The algorithm is computationally efficient given that quickly rejects
possible negative image regions.

Fig. 9. (a) Training data with semantic layer labels (same as in [38]). (b) Example of
binary kernel. (c) Negative examples for the boosting phase of the model.

Information from object level interactions is embedded into binary kernels
W ′

x′,y′,c′ that define, for each node x, y of object class c, all the nodes from which
it has contextual interactions. These kernels are chosen by sampling patches of
various sizes from the training set image labeling. This allows generating compli-
cated patterns of connectivity that reflect the statistics of object co-occurrences
in the training set. The algorithm learns to first detect easy (and large) objects,
reducing the error of all classes. Then, the easy-to-detect objects pass informa-
tion to the harder ones.

Combining more than one interaction level into a context-based object cate-
gorization model has been addressed by few models [6, 15, 16] in order to achieve
better recognition performance. One advantage of these models over the ones
that use one interaction level is that these models utilize a more complete in-
formation about the context in the scene. Each level captures a different range
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of relationships: objects interactions capture in a better way interactions from
objects that can be fairly apart in the scene from each other. Pixel interactions,
in the other hand, can capture more detailed interactions between objects that
are closely to each other (e.g. boundaries between objects). A clear disadvan-
tage of combining different interaction levels is that the expensive and complex
computations needed to obtain and merge the different information.

Pixel level interactions are more computationally intensive to obtain, since
we need to consider several combination of small windows from the image. On
the other extreme, using object level interactions presents efficient extraction as
the number of regions to consider is equal to the number of objects present in the
scene (usually small). When considering region level interactions, models that
pre-process the image using segmentation algorithms are more efficient capturing
contextual interactions that the ones that use grid-like segmentations, as the
number of regions considered tend to be smaller.

4.2 Global Interactions

Recent behavioral and modeling research suggests that early scene interpretation
may be influenced by global image properties that are computed by processes
that do not require selective visual attention [22]. Global context, represented
as a scene prior, has been considered by categorization models as a single entity
that can be recognized by means of a scene-centered representation bypassing
the identification of the constituent objects. Top-down processing is necessary
when exploiting and incorporating global context into with recognition tasks.
Next we review different frameworks in recognition that use global context by
capturing object-scene interactions.

Object-Scene Interactions A number of recognition frameworks [27, 34–37]
have exploited object-scene interactions to efficiently use context in their models.
The work by Russell et al. [27] exploits scene context by formulating the object
detection problem as one of aligning elements of the entire scene to a large
database of labeled images. The background, instead of being treated as a set of
outliers, is used to guide the detection process. The system transfers labels from
the training images that best match the query image. Commonalities amongst
the labeled objects are assumed in the retrieved images and images are clustered
to form candidate scenes.

Object-scene interactions are modeled using training image clusters, which
give hints as to what objects are depicted in the query image and their likely
location. The relationship between object categories o, their spatial location x

within an image, and their appearance g is modeled by computing the following
joint distribution:

p(o, x, g|θ, φ, η) =
N∏

i=1

Mi∏

j=1

1∑

hi,j=0

p(oi,j |hi,j , θ)p(xi,j |hi,j , φ)p(gi,j |oi,j , hi,j , η) (3)
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where N is the number of images, each having Mi object proposals over
L object categories. The likelihood of which object categories appear in the
image is modeled by p(oi,j |hi,j = m, θm), which corresponds to the object-scene
interactions.

Many advantages and disadvantages can be considered when analyzing local
interaction and global interactions. Global interactions are efficiently when rec-
ognizing novel objects since applying an object detector densely across the entire
image for all object categories is not needed. Global context constrains which
object categories to look for and where. The down side of this great advantage
is that training is computationally expensive due to the inference that has to
be done for finding parameters in the graphical model. On the other hand, local
interactions are easily accessible from training data, without expensive compu-
tations. The problem arises when combining local context features with local
appearance features.

5 Integrating Context

The problem of integrating contextual information into an object categorization
framework is a challenging task since it needs to combine objects appearance in-
formation with contextual constraints imposed on those objects given the scene.
In order to address this problem, machine learning techniques are borrowed as
they provide efficient and powerful probabilistic algorithms. The choice of these
models is based on the flexibility and efficiency of combining context features at
a given stage in the recognition task. Here, we grouped different approaches for
integrating context in two distinctive groups: classifiers and graphical models.

5.1 Classifiers

Several methods [7, 15, 20, 38] have chosen classifiers over other statistical models
to integrate their context with their appearance features. The main motivation
for using classifiers is to combine the outputs of local appearance detectors (use
as appearance features) with contextual features obtained from either local or
global statistics. Some discriminative classifiers have been used for this purpose,
such boosting [7, 38] and Logistic Regression [20] in the attempt to maximize the
quality of the output on the training set. Generative classifiers have been also
used to combine these features, such as Naive Bayes classifier [15]. Discrimina-
tive learning often yields higher accuracy than modeling the conditional density
functions. However, handling missing data is often easier with conditional density
models.

Wolf and Bileschi [38] utilize boosted classifiers [9] in a rejection cascade for
incorporating local appearance and contextual features. The construction of the
context feature is done in two stages. In the first stage, the image is processed
to calculate the low level and semantic information. In the second stage, the
context feature is calculated at each point by collecting samples of the previously
computed features at pre-defined relative positions. Then, a semantic context
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detector is learned via boosting, trained to discriminate between positive and
negative examples of the classes. Same approached is used to learned appearance
features. In order to detect objects in a test image, the context based detector is
applied first. All pixels classified as object-context with confidence greater than
the confidence threshold THC are then passed to the appearance detector for a
secondary classification. In the same way as with context, pixels are classified
by a appearance detector as objects with confidence greater than the confidence
threshold THA. A pixel is judged to be an object detection only if the pixel
passes both detectors.

Fig. 10. Classification scheme using boosted classifiers in [38].

Advantages of boosting include rapid classification, simplicity and easily pro-
gramming. Prior knowledge about the base learner is not required, so boosting
can be flexibly combined with any method for finding base classifiers. Instead
of trying to design a learning algorithm that is accurate over the entire space,
boosting focus on finding base learning algorithms that only need to be better
than random. One of the drawbacks of the model is that performance on a par-
ticular problem is dependent on the data and the base learner. Consistent with
theory, boosting can fail to perform well given insufficient data, overly complex
base classifiers or base classifiers that are too weak.

5.2 Graphical Models

Graphical models provide a simple way to visualize the structure of a proba-
bilistic model. The graphical model (graph) captures the way in which the joint
distribution over all random variables can be decomposed into a product of
factors each depending on a subset of the variables. Hence they provide a power-
ful yet flexible framework for representing and manipulating global probability
distributions defined by relatively local constraints. Many object categorization
frameworks have used graphical models to model context since they can encode
the structure of local dependencies in an image from which we would like to
make globally consistent predictions.

A handful of frameworks have exploited directed graphical models [27, 31,
34] to incorporate contextual features with their appearance-based detectors.
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Directed graphical models are global probability distributions defined on directed
graphs using local transition probabilities. They are useful for expressing causal
relationships between random variables since they assume that the observed
image has been produced by a causal latent process. Directed graphical models
compute the joint distribution over the node variables as follows:

P (x) =
∏

i

P (xi|pai) (4)

where pai is the parent of node xi. These graphical models assume that
objects are conditionally independent given the scene.

On the other hand, a majority of object categorization models uses undi-

rected graphical models [6, 13, 16, 25, 30, 35, 37] since they are better suited to
express soft constraints between random variables. Undirected graphical mod-
els are global probability distributions defined on undirected graphs using local
clique potentials. They are better suited to handle interactions over image par-
titions since usually there exists no natural causal relationships among image
components. The joint probability distribution is expressed as:

P (x) =
1

Z

∏

C

ψC(xC), where Z =
∑

x

∏

C

ψC(xC) (5)

and ψC(xC) are the potential function over the maximal cliques C of the
graph. Special cases of undirected graphical models used for modeling context
include Markov Random Fields (MRFs) [6] and Conditional Random Fields
(CRFs) [13, 16, 25, 30, 35, 37]. MRFs are typically formulated in a probabilistic
generative framework modeling the joint probability of the image and its corre-
sponding labels. Due to the complexity of inference and parameter estimation
in MRFs, only local relationships between neighboring nodes are incorporated
into the model. Also, MRFs do not allow the use of global observations to model
interactions between labels. CRFs provide a principled approach to incorporate
these data-dependent interactions. Instead of modeling the full joint distribution
over the labels with an MRF, CRFs model directly the conditional distribution
which requires fewer labeled images and the resources are directly relevant to
the task of inferring labels.

Therefore, CRFs models have become popular owing to their ability to di-
rectly predict the segmentation/labeling given the observed image and the ease
with which arbitrary functions of the observed features can be incorporated into
the training process. Scene regions and object regions are related through ge-
ometric constraints. CRF models can be applied either at the pixel-level [13,
16, 30] or at the coarser level [25, 37]. Next we review in detail how CRFs are
commonly used for integrating context.

Conditional Random Fields Conditional Random Fields are used to learn
the conditional distribution over the class labeling given an image. The structure
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permits incorporating different types of cues in a single unified model, maxi-
mizing object label agreement according to contextual relevance. Since object
presence is assumed conditionally independent given the scene, the conditional
probability of the class labels x given an image y has the form:

P (x|y,θ) =
1

Z(y,θ)
exp(

∑

j

Fj(xj , y; θj)) (6)

Fj(xj , y; θj) =

n∑

i=1

θjfj(xi−1, xi, y, i) (7)

where Fj are the potential functions and Z(y,θ) is the normalization factor,
also known as the partition function. Potentials can be unary or pairwise func-
tions and they represent transition or state functions on the graph. The main
challenge in probability calculation is to compute the partition function Z(y,θ).
This function can be calculated efficiently when matrix operations are used. For
this, the conditional probability can be written as:

P (x|y,θ) =
1

Z(y,θ)

n+1∏

i=1

Mi(xi−1, xi|y) (8)

Mi(x
′, x|y) = exp(

∑

j

θjfj(x
′, x, y, i)) (9)

The normalization factor Z(y, θ) for labels x, may be computed from the set
of Mi matrices using closed semi-rings. For contex-based categorization, each
matrix Mi embeds contextual interactions to be imposed in the recognition task.

Context based object categorization models [11, 13, 16, 25, 30, 35, 37] use CRFs
to integrate contextual and appearance information from pixel level [30], object
level [25] and multiple image levels [13, 16, 35, 37]. The conditional probability
over the true labels can be computed given the entire image [13, 16, 30] or given
a set of image patches or segments [25, 35, 37].

Maximum likelihood chooses parameter values such that the logarithm of
the likelihood, known as the log-likelihood, is maximized. Parameter estima-
tion is commonly computed by recognition frameworks [11, 13, 16, 25, 30, 35, 37]
using methods such as gradient descend, alpha expansion graph cut [5] and con-
trastive divergence (CD) [14]. Different techniques are used to find the maximum
marginal estimates of the labels on the image, such as loopy belief propagation
(BP), maximum posterior marginal (MPM) and Gibbs sampling since exact
maximum a posteriori (MAP) is infeasible.

In the case where the entire image y is considered for the conditional proba-
bility, CRF potentials are learned from low level features, including output labels
from pixel classifiers, texture features, edge information and low level context
interactions. Potential functions encode a particular constraint between the im-
age and the labels within a pixel/region of the image. Given that each pixel or
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a small image region is considered to be a node in the graph, parameter estima-
tion and inference become computationally expensive. However, this technique
achieves both recognition and segmentation on the images.

Fig. 11. Conditional Random Field used in [37]. Squares indicate feature functions
and circles indicate variable nodes xi. Arrows represent single node potentials due to
feature functions, and undirected edges represent pairwise potentials. Global context
is represented by h.

When the conditional probability considers a set of image patches or seg-
ments yi ∈ y, classifier outputs (labels) are combined with pairwise contextual
interactions between the regions. Potential functions represent transition func-
tions between object labels, capturing important long distance dependencies
between whole regions and across classes. Since each patch/segment is a node in
the graph, parameter computation is cheaper and the framework can scale more
favorably when the number of categories to recognize increases.

One of the advantages of using CRFs in general is that the conditional prob-
ability model can depend on arbitrary non-independent characteristics of the
observation, unlike a generative image model which is forced to account for de-
pendencies in the image, and therefore requires strict independence assumptions
to make inference tractable. The down side of using CRFs is that inferring labels
from the exact posterior distribution for complex graphs is intractable.

6 Conclusions and Open Issues

The importance of context in object recognition and categorization has been
discussed for many years. Scientists from different disciplines such as cognitive
sciences and psychology have considered context information as a path to ef-
ficient understanding of the natural visual world. In computer vision, several
object categorization models have addressed this point, confirming that con-
textual information can help to successfully disambiguate appearance inputs in
recognition tasks.
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In this critical study, we have addressed the problem of incorporating differ-
ent types of contextual information for robust object categorization in computer
vision. We reviewed a variety of different approaches of context based object
categorization models, the most common levels of extraction of context and the
different levels of contextual interactions. We have also examined common ma-
chine learning models that integrate context information into object recognition
frameworks.

We believe that contextual information can benefit categorization tasks in
two ways: (i) as a prior to recognize certain objects in images and (ii) as an
advocate for label agreement to disambiguate objects appearance. However if the
target object is the only labeled object in the database there are no sources of
contextual information we can exploit. This fact points out the need for external
sources of context (as in [25]) that can provide this information when training
data is weakly or not labeled.

Considering the image level interactions, pixel level models have comparable
performance to state-of-the-art patch and object level models, however complex-
ity of these models can grow quickly as the number of classes increase. Scalability
can be a problem for pixel level models, so considering a coarser level can opti-
mize expensive computations.

Models that combine different interaction levels of context can potentially
benefit from the extra information, nevertheless parameter estimation for the
different levels and cue combination can result in complex and expensive com-
putations. Same happens when both levels of contextual extraction are combined
into a single model.

The majority of the context-based models include at most two different types
of context, semantic and spatial, since the complexity to determine scale context
is still high for 2D images. Future work will include incorporating semantic,
spatial and scale context into a recognition framework to assess the contribution
of these features. Also, other machine learning models will be considered for a
better integration of context features.
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