UCSF UC San Francisco Previously Published Works

Title

For hepatically cleared drugs, liver to blood KPUU at steady-state is always equal to FH , which exposes the deficiency of the present extended clearance concept equation

Permalink

https://escholarship.org/uc/item/1tf4647b

Authors Benet, Leslie Z Sodhi, Jasleen K

Publication Date

2024-04-01

DOI

10.1016/j.dmpk.2023.100919

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

FOR HEPATICALLY CLEARED DRUGS, LIVER TO BLOOD Kpuu AT STEADY-STATE IS ALWAYS EQUAL TO F_H , WHICH EXPOSES THE DEFICIENCY OF THE PRESENT EXTENDED CLEARANCE CONCEPT EQUATION

Leslie Z. Benet and Jasleen K. Sodhi

It has not been previously recognized that for an hepatically cleared drug at steadystate, Kp_{uu} , the ratio of the hepatic unbound concentration ($C_{u,Liver}$) to the systemic unbound concentration ($C_{u,Blood}$) is equal to F_H , the fraction of an oral dose that escapes first pass hepatic elimination. This is true since at steady- state the product of the systemic blood concentration (C_{Blood}) multiplied by the hepatic blood clearance ($CL_{H,Blood}$) is equal to $C_{u,Liver}$ multiplied by the intrinsic hepatic clearance of unbound drug, $CL_{int,Liver}$, i.e., $C_{H,Blood} \cdot CL_{H,Blood} = C_{u,Liver} \cdot CL_{\int i.i}$ This equality is valid independent of the mechanism of hepatic elimination. Substituting a clearanceintrinsic clearance equation into this equality allows $C_{u,Liver}/C_{u,Blood}$ to be determined. For example, when the equation previously believed to be the well-stirred model

(WSM),
$$CL_{H, Blood, WSM} = Q_{Liver} \cdot f_{u, Blood} \frac{CL_{\int i}}{Q_{Liver} + f_{u, Blood} \cdot CL_{\int i} i} i$$
, where Q_{Liver} is hepatic blood

flow and $f_{u,Blood}$ is fraction of drug unbound in the blood, is substituted into the equality, $Kp_{uu,WSM} = \frac{Q_{Liver}}{Q_{Liver} + f_{u,Blood} \cdot CL_{\int i} \dot{c}}$. There are a number of important aspects of

this finding. First, Kp_{uu} for drugs where hepatic basolateral transporters are not

clinically relevant is a function of hepatic blood flow except for very low CL_{int} compounds. Thus, for many drugs, an in vitro Kpuu measurement may not be the correct value in vivo. Second, Kp_{uu} for such drugs is always less than or equal to 1.0. And third, since $F_H = 1 - \frac{CL_{H,Blood}}{Q_{Liver}}$, Kp_{uu} for such drugs is equal to F_H . Now consider the case where hepatic basolateral transporters are included in the hepatic clearance equation and hepatic clearance is described by the universally regarded Extended Clearance Concept (ECC) equation, when Q_{Liver} is much greater than CL_{int} and much

$$CL_{H,Blood,ECC} = f_{u,Blood} \cdot PS_{influx} \cdot \frac{CL_{\int i}}{CL_{\int i + PS_{efflux}}} i; \text{ then, } Kp_{uu,ECC} = \frac{PS_{influx}}{CL_{\int i + PS_{efflux}}} i. \text{ It can easily be}$$

greater than transporter influx (PS_{influx}) and efflux (PS_{efflux}) clearances. That is,

shown for this ECC relationship that when Q_{Liver} is included in the clearance definition $F_H = K p_{uu,ECC}$. As we have recently published, using Kirchhoff's Laws (KL) to derive the clearance equation when basolateral transporters are included in the hepatic clearance equation and Q_{Liver} is significantly greater than CL_{int} and greater than the basolateral transporter clearances, then

$$CL_{H, Blood, KL} = f_{u, Blood} \cdot (PS_{i}i influx - PS_{efflux}) \cdot \frac{CL_{\int i}}{CL_{\int i + (PS_{i}i influx - PS_{efflux})i}} i i and$$

 $Kp_{uu, KL} = \frac{\left(PS_{influx} - PS_{efflux}\right)}{CL_{\int i + \left(PS_{influx} - PS_{efflux}\right)}i}.$ Once again it is easy to show when Q_{Liver} is included in the

clearance definition that for this clearance equation $F_H = K p_{uu,KL}$. Overall basolateral transporter clearances can quantitatively be either less or more than hepatic

elimination clearance. However, this cannot be true for the present ECC equation $Kp_{uu,ECC}$, when PS_{influx} is greater than i, which would result in predicted $F_H > 1$. This supports the position that the ECC equation is not the proper approach when including hepatic basolateral transporters in hepatic clearance equations. There is even a greater benefit to the analysis presented here for the KL approach. If an accurate determination of Kp_{uu} can be made by experimental measurements, no easy task, then it would be possible, when transporters appear in the clearance equation, to predict hepatic blood clearance of a drug independent of requiring an intravenous dose clinical study.