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Syntactic Islands and Learning Biases: Combining
Experimental Syntax and Computational Modeling
to Investigate the Language Acquisition Problem

Lisa Pearl and Jon Sprouse
University of California, Irvine

The induction problems facing language learners have played a central role in debates about the
types of learning biases that exist in the human brain. Many linguists have argued that some of the
learning biases necessary to solve these language induction problems must be both innate and lan-
guage-specific (i.e., the Universal Grammar (UG) hypothesis). Though there have been several recent
high-profile investigations of the necessary learning bias types for different linguistic phenomena, the
UG hypothesis is still the dominant assumption for a large segment of linguists due to the lack of stud-
ies addressing central phenomena in generative linguistics. To address this, we focus on how to learn
constraints on long-distance dependencies, also known as syntactic island constraints. We use formal
acceptability judgment data to identify the target state of learning for syntactic island constraints and
conduct a corpus analysis of child-directed data to affirm that there does appear to be an induction
problem when learning these constraints. We then create a computational learning model that imple-
ments a learning strategy capable of successfully learning the pattern of acceptability judgments
observed in formal experiments, based on realistic input. Importantly, this model does not explicitly
encode syntactic constraints. We discuss learning biases required by this model in detail as they high-
light the potential problems posed by syntactic island effects for any theory of syntactic acquisition.
We find that, although the proposed learning strategy requires fewer complex and domain-specific
components than previous theories of syntactic island learning, it still raises difficult questions about
how the specific biases required by syntactic islands arise in the learner. We discuss the consequences
of these results for theories of acquisition and theories of syntax.

1. INTRODUCTION

Human learning cannot happen without one or more learning biases. As such, debates in the
human learning literature tend to focus on (i) the nature of the evidence available to the learner,
and (ii) the nature of those learning biases. Language learning has played a particularly central
role in these debates, as the phenomena of language tend to be relatively complex, suggesting
that either the evidence available to children must be relatively rich, or that the learning biases
available to children must themselves be relatively complex (e.g., Chomsky 1965, 1980). The
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24 PEARL AND SPROUSE

problem posed by language learning is that neither of these conclusions is particularly appeal-
ing. The first conclusion appears to be empirically false: the input available to children appears
to be impoverished relative to the complexity of syntactic phenomena and thus compatible with
multiple hypotheses about the adult target state. The second conclusion appears to be theoret-
ically unappealing: the complex learning biases necessary to overcome this induction problem
appear to be an order (or orders) of magnitude more complex than learning biases in any other
domain of cognition. Our goal in this article is to investigate this tension between the empirical
evidence available to children and the complexity of the learning biases necessary to learn from
that evidence.

To make this study as relevant as possible to the learning debates, we focus on a syntactic
phenomenon that is simultaneously central to modern syntactic theories and to proposals for
complex learning biases: syntactic island effects. Our methodology is straightforward. First, we
will present experimental evidence from formal acceptability judgments that provides a quantita-
tive description of the target state for acquisition, which is adult knowledge of syntactic islands.
Then, we will present a quantitative assessment of the evidence available to children based on
both automated and manual structural annotation of 148,784 utterances of realistic child-directed
speech from the CHILDES corpus (MacWhinney 2000). We will subsequently present a com-
putational model of a statistical learning strategy that can accurately learn the behavior of adult
speakers with respect to syntactic island effects using the simplest set of learning biases that
we could uncover. We will then discuss each of the biases required by the learning strategy to
determine both the type of biases required (e.g., innate versus derived, domain-specific versus
domain-general) and the nature of those biases. The results suggest a complicated picture: on
the one hand, it is possible in principle to learn syntactic island effects with few, if any, innate,
domain-specific biases, and crucially without any biases that specifically instantiate syntactic
theories (e.g., the Subjacency Condition); on the other hand, the biases that still appear to be nec-
essary (e.g., tracking trigrams of phrase structure nodes that are part of the syntactic dependency)
raise difficult questions about why these particular biases (as opposed to other logically possi-
ble biases) are the ones that are part of the successful language learning strategy. Nonetheless,
computational models developed using realistic child-directed input allow us to make progress
on two fronts. First, they provide a formal mechanism for exploring biases that do not specifically
instantiate syntactic theories. Second, they highlight the difficult questions that remain for future
research even when a successful learning strategy is found, such as how the remaining biases
arise in the learner.

1.1. Categorizing Learning Biases

Debates about language learning are often framed as a comparison of the Universal Grammar
(UG) hypothesis versus non-UG hypotheses. The UG hypothesis takes as its starting point the
assumption that the data available to young children during the language learning process are
compatible with multiple hypotheses about linguistic knowledge, resulting in an induction prob-
lem known variously as the “Poverty of the Stimulus” (e.g., Chomsky 1980; Lightfoot 1989;
Crain 1991), the “Logical Problem of Language Acquisition” (e.g., Baker 1981; Hornstein &
Lightfoot 1981), and “Plato’s Problem” (e.g., Chomsky 1988; Dresher 2003). The UG hypoth-
esis argues that at least some of the learning biases necessary to solve this induction problem
take the form of innately specified, language-specific constraints (Chomsky 1965), which often
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SYNTACTIC ISLANDS AND LEARNING BIASES 25

correspond to specific linguistic phenomena (e.g., anaphoric one: Baker 1978; Lidz, Waxman
& Freedman 2003; interpretation of disjunctives: Crain & Pietroski 2002; structure dependence:
Chomsky 1965). Non-UG hypotheses, in contrast, attempt to solve the induction problem with-
out postulating any innate, domain-specific constraints. Even a cursory review of the language
learning literature reveals that the hypothesis space of non-UG learning biases is potentially very
large (some examples are below):

(i) a sensitivity to the distributional data in the available input
(Sakas & Fodor 2001; Pullum & Scholz 2002; Scholz & Pullum 2002; Yang 2002; Regier
& Gahl 2004; Yang 2004; Legate & Yang 2007; Pearl & Weinberg 2007; Foraker et al.
2009; McMurray & Hollich 2009; Pearl & Lidz 2009; Mitchener & Becker 2011; Pearl
2011, Pearl & Mis 2011; Perfors, Tenenbaum & Regier 2011)

(ii) a preference for simpler/smaller/narrower hypotheses
(Regier & Gahl 2004; Foraker et al. 2009; Pearl & Lidz 2009; Mitchener & Becker 2011;
Pearl & Mis 2011; Perfors, Tenenbaum & Regier 2011)

(iii) a preference for highly informative data
(Fodor 1998b; Pearl & Weinberg 2007; Pearl 2008)

(iv) a preference for learning in cases of local uncertainty
(Pearl & Lidz 2009)

(v) a preference for data with multiple correlated cues
(Soderstrom et al. 2009)

The size and diversity of this hypothesis space of learning biases suggests that a finer-grained
framework may be more informative than the traditional binary framework (UG versus non-UG).
For the present study, we suggest that learning biases may be categorized along (at least) three
dimensions:

(i) Are they domain-specific or domain-general?
(ii) Are they innate or derived from prior experience?

(iii) Are they a constraint on the hypothesis space or a constraint on the learning mechanism?

Under this system, the UG hypothesis simply holds that there is at least one innate, domain-
specific learning bias (either on the hypothesis space or on the learning mechanism).1 Similarly,
a non-UG approach would be one that contains no innate, domain-specific biases: only innate,
domain-general biases; derived, domain-general biases; and derived, domain-specific biases are
allowed. For example, all of the learning biases listed in (i–v) above are likely either innate
and domain-general (i–iv) or derived and domain-general (v) and therefore would not qualify as
UG biases. However, a sensitivity to linguistic representations that are innately specified (and
their distributions in the input) would be an innate and domain-specific bias and therefore qualify

1Since the distinction between hypothesis space and learning mechanism does not impact a bias’s status as UG or not,
we will not discuss it further here. However, it is worth noting this distinction because many UG proposals tend to involve
explicit constraints on the hypothesis space (e.g., certain hypotheses are not available to the child a priori), while many
non-UG proposals tend to involve implicit constraints on the learning mechanism (e.g., use statistical learning). This is
not a logical necessity, as one could easily imagine a UG bias about the learning mechanism (e.g., use a language-specific
learning strategy) as well as a non-UG bias about the hypothesis space (e.g., certain hypotheses are a priori less probable
in a particular hypothesis space, as is the case in Bayesian inference over a subset-superset hypothesis space).

D
ow

nl
oa

de
d 

by
 [

T
he

 U
C

 I
rv

in
e 

L
ib

ra
ri

es
] 

at
 1

6:
16

 1
7 

Ja
nu

ar
y 

20
13

 



26 PEARL AND SPROUSE

as a UG bias (e.g., Sakas & Fodor 2001; Yang 2002; Yang 2004; Legate & Yang 2007; Pearl &
Lidz 2009; Mitchener & Becker 2011; Pearl 2011; Pearl & Mis 2011, 2012).

1.2. Previous Investigations of Learning Biases in Syntax

There have been several recent high-profile investigations of the types of learning biases required
to learn various aspects of the syntax of human languages. For example, Perfors, Tenenbaum
& Regier (2011) have shown that an ideal learner using Bayesian inference will choose hierar-
chical representations over other kinds of possible representations, given child-directed speech
data. This then shows that children do not necessarily need to know beforehand that language
uses hierarchical representations; instead, this knowledge can be derived from a domain-general
sensitivity to the distributional properties of the data. Importantly, children must still know that
hierarchical representations are one possible hypothesis—but they do not need to have competing
representations ruled out a priori.2

As another example, a number of researchers have recently conducted computational investi-
gations of the acquisition of English anaphoric one (e.g., “Look, a red bottle! Oh look, another
one.”). Regier & Gahl (2004) demonstrated that a learner using online Bayesian inference can
learn the correct syntactic representation and semantic interpretation of one from child-directed
speech, provided that the child expands the range of informative data beyond the traditional data
set of unambiguous data. Their model highlights the utility of a bias to use statistical distribution
information in the data and a bias to prefer simpler/smaller/narrower hypotheses when encoun-
tering ambiguous data. Pearl & Lidz (2009) discovered this was an effective strategy only as long
as the child knew to ignore certain kinds of ambiguous data; therefore, they proposed a learn-
ing preference for learning in cases of local uncertainty, which would rule out the troublesome
ambiguous data. Pearl & Mis (2011, 2012) discovered that expanding the range of informative
data even further negated the need for the local uncertainty bias; instead, a modeled learner could
reproduce the observed behavior of children as long as it recognized the distributional similar-
ities between one and other referential pronouns like it. Notably, however, this learner did not
achieve the adult knowledge state, even though it reproduced child behavior. Pearl & Mis (2011)
suggest that an additional strategy is still needed to reach the adult knowledge state. One possi-
bility is the learning strategy investigated by Foraker at el. (2009), in which an ideal Bayesian
learner with detailed linguistic knowledge about the link between semantic interpretation and
certain syntactic structures (syntactic complements and syntactic modifiers) was able to use the
difference in distribution for one with these structures to converge on the correct knowledge for
one. In the Foraker et al. (2009) model, the learning mechanism is domain-general; however, it
is still unclear whether the detailed linguistic knowledge that is assumed can be derived through
domain-general means or would instead be innate and domain-specific.

These previous studies have made at least two contributions to the language learning debates.
First, they have demonstrated a concrete set of methodologies for investigating the types of
learning biases that are required by language learning. Specifically, by combining child-directed

2Notably, however, this does not address the induction problem traditionally associated with structure dependence,
which concerns hypothesizing structure-dependent rules that utilize these hierarchical representations (Berwick et al.
2011). Just because structured representations are available does not necessarily mean children know to use them when
forming rules.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
C

 I
rv

in
e 

L
ib

ra
ri

es
] 

at
 1

6:
16

 1
7 

Ja
nu

ar
y 

20
13

 



SYNTACTIC ISLANDS AND LEARNING BIASES 27

speech corpora with explicitly defined computational learning models, it is possible to systemati-
cally test the necessity of different types of learning biases. Second, they have demonstrated that
at least some basic syntactic phenomena (e.g., hierarchical representations and anaphoric one)
could in principle be learned without innate, domain-specific biases. Notably, however, there are
some lingering questions, such as whether the fundamental assumptions of these models could
also be learned without innate, domain-specific biases and whether the end-states of the models
are identical to the end-states hypothesized for adult speakers. We take these results as the starting
point for our investigation of learning biases for syntactic island effects.

1.3. The Acquisition of Syntactic Island Effects

Although these findings have substantially advanced our understanding of the acquisition of some
aspects of syntax, there are at least three ways that the computational approach to the investiga-
tion of language learning (and the nature of learning biases) can be further advanced. First, the
phenomena that have been investigated so far are generally not considered central to the syntactic
theories of UG proponents. This likely means that the theoretical consequences of the previous
studies have been limited due to the (relatively) peripheral nature of the phenomena in current
syntactic research. In order to truly test the UG hypothesis, and in order for the resulting acqui-
sition models to have a real impact on existing syntactic theories (Chomsky 1965), we need to
choose a set of syntactic phenomena that are central to (UG-based) syntactic theories. Second,
while the methodology for testing learning biases is relatively clear, the data required to actually
perform those tests are still relatively scarce. Realistic syntactic learning models require child-
directed speech corpora annotated with specific syntactic structural information, such as phrase
structure trees. Unfortunately, many of the freely available corpora do not yet have this kind
of syntactic annotation (though there are other types of syntactic annotation available for some
corpora, such as dependency tree annotations in CHILDES [Sagae et al. 2010]). Finally, discus-
sions of all of the assumptions underlying successful computational models can help highlight
both the progress that they represent (i.e., moving away from explicitly encoding syntactic the-
ories) and the challenges that they reveal (i.e., lingering questions about how those assumptions
are met). Our goal in this article is to address these three issues by (i) constructing a corpus of
child-directed speech with the syntactic annotations that we need to test syntactic learning mod-
els, (ii) investigating the learning biases required to learn a set of phenomena that is undeniably
central to (UG-based) syntactic theories—namely, syntactic island constraints, and (iii) explicitly
discussing all of the components of the simplest successful model, as well as the consequences
of that model for both acquisition and syntactic theories.

With these goals in place, our investigation and the rest of this article are both organized as fol-
lows. Section 2 introduces syntactic island effects and presents the formal acceptability judgment
experiments (from Sprouse, Wagers & Phillips 2012a) that were used to quantitatively define
the target state of learning. Section 3 introduces the syntactic annotation process and the results
of the structural search of the child-directed speech corpora that were used as realistic child-
directed input for the learning model. This step is particularly important, as it identifies the data
from which syntactic islands must be learned and also serves to formalize the apparent induction
problem that has been claimed by linguists, but not universally assumed by all researchers (e.g.,
Sampson 1989, 1999; Pullum & Scholz 2002; MacWhinney 2004; and Tomasello 2004, among
others). Section 4 describes the simplest statistical learner that successfully learns the pattern of
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28 PEARL AND SPROUSE

island effects. Section 5 reports the results of that learning strategy when it is trained on realistic
input and discusses its behavior in detail. Section 6 presents a detailed discussion of the biases
built into this learner, focusing on (i) the empirical motivation (if any) of the bias, (ii) the classifi-
cation of the bias according to the schema in section 1.1, and (iii) the questions raised by the bias
for the learning debates. Section 7 continues the discussion by highlighting potential empirical
problems for this learner raised by current empirical claims in syntactic theory (or conversely,
predictions that the learner makes concerning related phenomena in syntactic theory). Section 8
concludes.

2. A BRIEF INTRODUCTION TO SYNTACTIC ISLAND EFFECTS

One of the most interesting aspects of the syntax of human languages is the fact that dependencies
can exist between two non-adjacent items in a sentence. For example, in English, Noun Phrases
(NPs) typically appear adjacent (or nearly adjacent) to the verbs that select them as semantic
arguments (e.g., “Jack likes Lily.”). However, in English wh-questions, wh-words do not appear
near the verb that selects them as semantic arguments. Instead, wh-words appear at the front of
the sentence (1a), resulting in a long-distance dependency between the wh-word and the verb
that selects it (we will mark the canonical position of the wh-word, which is often called the
gap position, with an underscore). One of the defining characteristics of these long-distance wh-
dependencies is that they appear to be unconstrained by length (Chomsky 1965; Ross 1967): the
distance between the wh-word and the verb that selects it can be increased by any number of
words and/or clauses (1b–d). Though there is clearly an upper bound on the number of words
and/or clauses that an English speaker can keep track of during sentence processing, this restric-
tion appears to be based on the limited nature of human working memory capacity rather than
an explicit grammatical restriction on the length of wh-dependencies in English. Because of this,
syntacticians often describe wh-dependencies as unbounded or long-distance dependencies.

(1) a. What does Jack think __?
b. What does Jack think that Lily said __?
c. What does Jack think that Lily said that Sarah heard __?
d. What does Jack think that Lily said that Sarah heard that David stole __?

Though it is true that wh-dependencies are unconstrained by length, they are not entirely
unconstrained. Linguists have observed that if the gap position of a wh-dependency appears
within certain syntactic structures, the resulting sentence will be unacceptable (Chomsky 1965;
Ross 1967; Chomsky 1973; Huang 1982; and many others):

(2) a. ∗What did you make [the claim that Jack bought __]?
b. ∗What do you think [the joke about __] offended Jack?
c. ∗What do you wonder [whether Jack bought __]?
d. ∗What do you worry [if Jack buys __]?
e. ∗What did you meet [the scientist who invented __]?
f. ∗What did [that Jack wrote __] offend the editor?
g. ∗What did Jack buy [a book and __]?
h. ∗Which did Jack borrow [__ book]?
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SYNTACTIC ISLANDS AND LEARNING BIASES 29

Drawing on the metaphor that the relevant syntactic structures are islands that prevent the wh-
word from moving to the front of the sentence, Ross (1967) called the unacceptability that arises
in these constructions island effects and the syntactic constraints that he proposed to capture them
island constraints. Though island effects are typically exemplified by wh-dependencies, it should
be noted that island effects arise with several different types of long-distance dependencies in
human languages, such as relative-clause formation (3), topicalization (4), and adjective-though
constructions (5):

(3) a. I like the car that you think [that Jack bought __].
b. ∗I like the car that you wonder [whether Jack bought __].

(4) a. I don’t know who bought most of these cars, but that car, I think [that Jack bought
__].

b. ∗I know who bought most of these cars, but that car, I wonder [whether Jack bought
__]?

(5) a. Smart though I think [that Jack is __], I don’t trust him to do simple math.
b. ∗Smart though I wonder [whether Jack is __], I trust him to do simple math.

In the 45 years since island effects were first investigated (Chomsky 1965; Ross 1967),
there have been literally hundreds of articles in dozens of languages devoted to the investiga-
tion of island effects, resulting in various proposals regarding the nature of island constraints
(e.g., Erteschik-Shir 1973; Nishigauchi 1990; Deane 1991; Kluender & Kutas 1993; Szabolcsi
& Zwarts 1993; Tsai 1994; Reinhart 1997; Hagstrom 1998; Chomsky 2001; Goldberg 2007;
Truswell 2007; Abrusán 2011; and many others), the cross-linguistic variability of island effects
(e.g., Engdahl 1980; Huang 1982; Rizzi 1982; Lasnik & Saito 1984; Torrego 1984; Hagstrom
1998), and even the real-time processing of dependencies that contain island effects (e.g., Stowe
1986; Kluender & Kutas 1993; McKinnon & Osterhout 1996; Traxler & Pickering 1996; Phillips
2006, and many others). Though most of this literature is beyond the scope of the present arti-
cle, it does serve to underscore the central role that syntactic island effects have played in the
development of (generative) syntactic theory. Furthermore, the predominant analysis of syntac-
tic island effects in generative syntactic theory is well known to rely on innate, domain-specific
learning biases. For example, in the Government and Binding framework of the 1980s, syntac-
ticians proposed a syntactic constraint called the Subjacency Condition, which basically holds
that the dependency between a displaced element (e.g., a wh-word) and the gap position cannot
cross two or more bounding nodes (Chomsky 1973; Huang 1982; Lasnik & Saito 1984, and many
others). The definition of bounding nodes can vary from language to language in order to account
for the various patterns of island effects that have been observed cross-linguistically. For exam-
ple, the bounding nodes in English are argued to be NP (Noun Phrase) and IP (Inflection Phrase)
(Chomsky 1973), while the bounding nodes in Italian and Spanish are argued to be NP and CP
(Complementizer Phrase) (Rizzi 1982; Torrego 1984). Crucially, this framework assumes that the
Subjacency Condition itself is part of UG, as are the possible options for bounding nodes (NP, IP,
or CP). The language learner then simply needs to determine which bounding nodes are relevant
for her specific language in order to learn syntactic island constraints. Although recent evolu-
tions of syntactic theory have terminologically abandoned Subjacency and bounding nodes, it
has been argued that modern incarnations of syntactic constraints (such as phase impenetrability)
are essentially formal variants of the original Subjacency analysis (Boeckx & Grohmann 2007).
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30 PEARL AND SPROUSE

Between the centrality of syntactic island effects as a topic of research in (generative) syn-
tactic theory and the reliance on a UG-based mechanism for their acquisition, it seems clear
that syntactic island effects are an ideal case study in the role of innate, domain-specific learn-
ing biases in language acquisition. However, investigating the learning of syntactic island effects
requires a formally explicit definition of the target state beyond the diacritics that are typically
used to delineate unacceptable sentences in syntactic articles. To that end, we decided to explicitly
construct the target state from data from Sprouse, Wagers & Phillips (2012a), who collected for-
mal acceptability judgments for four island types using the magnitude estimation task: Complex
NP islands (2a), (simple) Subject islands (2b), Whether islands (2c), and (conditional) Adjunct
islands (2d). These four islands were selected by Sprouse, Wagers & Phillips (2012a) for several
reasons. First, they have been argued to be captured by syntactic constraints (e.g., Subjacency or
the Condition on Extraction Domains), as opposed to the island types that have historically been
captured with semantic constraints (e.g., factive islands, negative islands). Second, dependencies
spanning these islands are still somewhat intelligible and so can provide a more nuanced assess-
ment of unacceptability, rather than being complete “word salad.” This is because these islands
are the more acceptable incarnations of their particular types: Complex NP islands are more
acceptable than Relative Clause islands, simple Subject islands are more acceptable than sen-
tential Subject islands, Whether islands are more acceptable than Wh-islands with full wh-words
in embedded spec-CP, and conditional Adjunct islands are more acceptable than causal Adjunct
islands. Thus, a successful learner must accomplish a harder task than if these islands were the
less acceptable varieties: the learner must realize that dependencies spanning these more accept-
able islands are still ungrammatical when compared to grammatical dependencies, even though
these island-spanning dependencies are still relatively intelligible.

The Sprouse, Wagers & Phillips (2012a) results are particularly useful for two reasons. First,
the magnitude estimation task employs a continuous scale (the positive number line) for accept-
ability judgments, which results in gradient responses that are comparable to the probabilistic
outputs of statistical learning models. Second, Sprouse, Wagers & Phillips used a (2×2) facto-
rial definition of each island effect (shown in 6–9), which controls for the two salient syntactic
properties of island-violating sentences: (i) they contain a long-distance dependency, and (ii)
they contain an island structure. By translating each of these properties into separate factors,
each with two levels (dependency GAP POSITION: matrix, embedded; STRUCTURE present
in question: non-island, island), Sprouse, Wagers & Phillips were able to define island effects as
a superadditive interaction of the two factors—in other words, an island effect is the additional
unacceptability that arises when the two factors are combined, above and beyond the independent
contribution of each factor. Specifically, a syntactic island occurs when there is more unaccept-
ability than what the EMBEDDED dependency and the presence of an ISLAND structure in the
question contribute by themselves.

(6) Complex NP islands

a. Who __ claimed that Lily forgot the necklace? MATRIX | NON-ISLAND
b. What did the teacher claim that Lily forgot __? EMBEDDED | NON-ISLAND
c. Who __ made the claim that Lily forgot MATRIX | ISLAND

the necklace?
d. ∗What did the teacher make the claim that EMBEDDED | ISLAND

Lily forgot __?
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SYNTACTIC ISLANDS AND LEARNING BIASES 31

(7) Subject islands
a. Who __ thinks the necklace is expensive? MATRIX | NON-ISLAND
b. What does Jack think __ is expensive? EMBEDDED | NON-ISLAND
c. Who __ thinks the necklace for Lily MATRIX | ISLAND

is expensive?
d. ∗Who does Jack think the necklace EMBEDDED | ISLAND

for __ is expensive?

(8) Whether islands
a. Who __ thinks that Jack stole the necklace? MATRIX | NON-ISLAND
b. What does the teacher think that Jack stole __ ? EMBEDDED | NON-ISLAND
c. Who __ wonders whether Jack stole MATRIX | ISLAND

the necklace?
d. ∗What does the teacher wonder whether EMBEDDED | ISLAND

Jack stole __ ?

(9) Adjunct islands
a. Who __ thinks that Lily forgot the necklace? MATRIX | NON-ISLAND
b. What does the teacher think that Lily forgot __ ? EMBEDDED | NON-ISLAND
c. Who __ worries if Lily forgot MATRIX | ISLAND

the necklace?
d. ∗What does the teacher worry if Lily EMBEDDED | ISLAND

forgot __ ?

Because the factorial definition treats island effects as a superadditive interaction of two fac-
tors, the presence of a syntactic island is also visually salient: if the acceptability of the four
question types (as indicated by their z-scores) is plotted in an interaction plot, the presence of
a syntactic island appears as two non-parallel lines (the left panel of Figure 1) and results in a
significant statistical interaction; the absence of a syntactic island appears as two parallel lines
(the right panel of Figure 1) and results in no significant statistical interaction.
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FIGURE 1 Example graphs showing the presence (left panel) and absence
(right panel) of a syntactic island using the factorial definition from
Sprouse, Wagers & Phillips (2012a).
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FIGURE 2 Experimentally derived acceptability judgments for the four
island types from Sprouse, Wagers & Phillips (2012a) (N = 173).

Figure 2 plots the experimentally obtained judgments for the island types investigated in
Sprouse, Wagers & Phillips (2012a), which shows that adult speakers appear to have implicit
knowledge of these four syntactic islands. We can thus use the superadditive interactions for the
four island types in Figure 2 as an explicit target state for our statistical learner.3

3. IDENTIFYING THE INDUCTION PROBLEM USING SYNTACTICALLY ANNOTATED
CORPORA

To identify an induction problem, we must determine the data available to children, since this
is the input they would use to reach the target state knowledge. To assess a child’s input for
constraints on wh-dependencies (and, specifically, the data in the input directly relevant for gen-
erating the judgments in Sprouse, Wagers & Phillips 2012a), we examined child-directed speech

3We follow the field of syntax in assuming that well-controlled acceptability judgments can be used to infer
grammaticality (see Chomsky 1965; Schütze 1996; Schütze & Sprouse in press; Sprouse & Almeida in press).We also
follow the conclusion in Sprouse, Wagers & Phillips (2012a, 2012b) that the acceptability judgment pattern observed
for syntactic islands is due to grammatical constraints and likely cannot be explained as an epiphenomenon of sentence
processing.
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SYNTACTIC ISLANDS AND LEARNING BIASES 33

samples to determine the frequency of the structures used as experimental stimuli in Sprouse,
Wagers & Phillips (2012a). While the CHILDES database has many corpora that are annotated
with syntactic dependency information (Sagae et al. 2010), it is difficult to automatically extract
the kind of wh-dependency information we needed to identify. For this reason, we selected five
well-known corpora of child-directed speech from the CHILDES database (MacWhinney 2000)
to annotate with phrase structure tree information: the Adam, Eve, and Sarah corpora from the
Brown data set (Brown 1973), the Valian dataset (Valian 1991), and the Suppes dataset (Suppes
1974). We first automatically parsed the child-directed speech utterances using a freely available
syntactic parser (the Charniak parser4), yielding the basic phrase structure trees. However, due to
the conversational nature of the data, there were many errors. We subsequently had the parser’s
output hand-checked by two separate annotators from a group of UC Irvine undergraduates who
had syntax training, with the idea that errors that slipped past the first annotator would be caught
by the second.5 We additionally hand-checked the output of our automatic extraction scripts when
identifying the frequency of wh-dependencies used as experimental stimuli in Sprouse, Wagers
& Phillips (2012a) in order to provide a third level of error detection.

The data from these five corpora comprise child-directed speech to 25 children between the
ages of one- and five-years-old, with 813,036 word tokens total. Of all the utterances, 31,247 con-
tained wh-words and verbs, and so were likely to contain syntactic dependencies. Table 1 shows
the number of utterances found containing the structures and dependencies examined in Sprouse,
Wagers & Phillips (2012a).

TABLE 1
The Corpus Analysis of the Child-Directed Speech Samples

Syntactic Island Conditions∗

Island Type
MATRIX |

NON-ISLAND
EMBEDDED |
NON-ISLAND

MATRIX |
ISLAND

EMBEDDED |
ISLAND

Complex NP 7 295 0 0
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Note. These are the child-directed speech samples from CHILDES, given the experimental stimuli
used in Sprouse, Wagers & Phillips et al. (2012a) for the four island types examined. The syntactic
island condition (which is Ungrammatical) is bolded.

∗Note that the number of MATRIX | NON-ISLAND data are identical for all four island types
since that control structure was identical for each island type (a wh-dependency linked to the sub-
ject position in the main clause, with the main clause verb (e.g., thinks) taking a tensed subordinate
clause (e.g., Lily forgot the necklace). Similarly, the number of EMBEDDED | NON-ISLAND data
are identical for Complex NP, Whether, and Adjunct islands since that control structure was identical
for those island types (a wh-dependency linked to the object position in the embedded clause, with the
main clause verb taking a tensed subordinate clause).

4Available at ftp://ftp.cs.brown.edu/pub/nlparser/ (31 October, 2012.)
5This work was conducted as part of NSF grant BCS-0843896, and the parsed corpora are available at http://www.

socsci.uci.edu/~lpearl/CoLaLab/TestingUG/index.html (31 October, 2012).
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34 PEARL AND SPROUSE

From Table 1, we can see that these utterance types are fairly rare in general, with the most fre-
quent type (EMBEDDED | NON-ISLAND) appearing in only 0.9% of all wh-utterances (295 of
31,247). Secondly, we see that being grammatical doesn’t necessarily mean an utterance type
will occur in the input. Specifically, while both the MATRIX | NON-ISLAND and MATRIX |
ISLAND utterance types are grammatical, they rarely occur in the input (7 for MATRIX | NON-
ISLAND, either 0 or 15 for MATRIX | ISLAND). This is problematic from a learning standpoint
if a learner is keying grammaticality directly to input frequency. Unless the child is very sensitive
to small frequency differences (even 15 out of 31,247 is less than 0.05% of the relevant input),
the difference between the frequency of grammatical MATRIX | ISLAND or MATRIX | NON-
ISLAND utterances and that of ungrammatical EMBEDDED | ISLAND utterances is very small
for Adjunct island effects. It’s even worse for Complex NP, Subject, and Whether island effects,
since the difference between grammatical MATRIX | ISLAND utterances and ungrammatical
EMBEDDED | ISLAND structures is nonexistent. Thus, it appears that child-directed speech
input presents an induction problem to a learner attempting to acquire an adult grammar for
dependencies crossing syntactic islands.

The existence of an induction problem then requires some sort of learning bias in order for
children to end up with the correct adult grammar. We note that this induction problem arises
when we assume that children are limiting their attention to direct evidence of the language
knowledge of interest (something Pearl & Mis (2012) call the direct evidence assumption)—in
this case, utterances containing wh-dependencies and certain linguistic structures. One useful bias
may involve children expanding their view of which data are relevant (Foraker et al. 2009; Pearl
& Mis 2011; Perfors, Tenenbaum & Regier 2011) and thus including indirect positive evidence
(Pearl & Mis 2012) for syntactic islands in their input.6 We explore this option in the learning
strategy we describe in the next section.

4. A STATISTICAL LEARNING ALGORITHM FOR SYNTACTIC ISLANDS

Though there appears to be an induction problem for syntactic islands, children clearly must
utilize some learning procedure in order for them to become adults who have the acceptability
judgments observed in Sprouse, Wagers & Phillips (2012a). The essence of the acquisition pro-
cess involves applying learning procedures to the available input in order to produce knowledge
about language (Niyogi & Berwick 1996; Yang 2002, among many others). Pearl & Lidz (2009)
suggest that the process can be further specified by considering the following components:

(i) children’s representations of the hypothesis space
(ii) the set of input children learn from (the data intake (Fodor 1998b)), and how that input

set is identified and represented
(iii) the updating procedure, and how it uses the intake

6Interestingly, the idea of indirect positive evidence is similar in spirit to what linguistic parameters are meant to do in
generative linguistic theory—if multiple linguistic phenomena are controlled by the same parameter, data for any of these
phenomena can be treated as an equivalence class, where learning about some linguistic phenomena yields information
about others (Chomsky 1981; Viau & Lidz 2011; Pearl & Lidz in press).
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SYNTACTIC ISLANDS AND LEARNING BIASES 35

In this section, we will use these three components to organize the presentation of our learning
algorithm, albeit in a slightly different order: the representation of the input, the representation of
the hypothesis space given the input, and the updating procedure given the input. We describe the
performance of this learning strategy based on realistic input in section 5. We postpone discussion
of the nature of the components of the learning strategy until section 6.

4.1. The Representation of the Input

Syntactic island effects are constraints on long-distance dependencies; therefore it is clear that the
algorithm must operate over sentences that have been parsed into a phrase structure representa-
tion and must also have the ability to track the structural information of the dependency itself (see
Fodor 1998a, 1998b; Sakas & Fodor 2001; and Fodor 2009 for discussions of the utility of parsing
during acquisition). Specifically, we propose that the algorithm extracts all of the phrasal nodes
that dominate (or “contain”) the gap location but not the wh-element, resulting in what we call
the container node sequence. For example, given the sentence (and associated phrase structure
representation) in (10a), the container nodes would be the unclosed left brackets that dominate the
gap but not the wh-element as in (10b), resulting in the container node sequence in (10c). Another
example is shown in (11a–c). Here, the gap position associated with the wh-element who is dom-
inated by several nodes (11b), which can be represented by the container node sequence in (11c).

(10) a. [CP Who did [IP she [VP like __]]]?
b. IP VP
c. IP-VP

(11) a. [CP Who did [IP she [VP think [CP [IP [NP the gift] [VP was [PP from __]]]]]]]?
b. IP VP CP IP VP PP
c. IP-VP-CP-IP-VP-PP

Although container nodes appear to be a relatively complex piece of information to extract
from the input, they are not unmotivated, as they play an integral role in all syntactic for-
mulations of island constraints (Ross 1967; Chomsky 1973, among others). Furthermore, the
sentence-processing literature has repeatedly established that the search for the gap location is
an active process (Crain & Fodor 1985; Stowe 1986; Frazier & Flores d’Arcais 1989) that tracks
the container nodes of the gap location (see Phillips 2006 for a review of real-time studies that
have demonstrated the parser’s sensitivity to island boundaries). In this way, the assumption that
the learner could in principle have access to this information from the phrase structure is a well-
established fact of the behavior of the human sentence parser (though there is a difference between
having access to information and actually using that information, which we will discuss in detail
in section 6).

In order to track container node sequences, the learning algorithm must also specify the set
of possible container nodes. For the current algorithm, we assume phrase structure nodes that
are relatively universal across syntactic theories (e.g., NP, VP, IP, CP). However, the definition
of island effects in section 2 and the corpus study in section 3 make it clear that CP nodes
must be subcategorized in order to successfully learn syntactic islands. For example, without
subcategorizing the CP node, the container node sequence for the grammatical EMBEDDED |
NON-ISLAND sentence in the Whether island design would be identical to the ungrammatical
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36 PEARL AND SPROUSE

EMBEDDED | ISLAND condition: IP-VP-CP-IP-VP. In order to separate these two conditions,
the algorithm must track the lexical item that introduces the CP (that versus whether): IP-VP-
CPthat-IP-VP versus IP-VP-CPwhether-IP-VP. This is an empirical necessity; however, we discuss
potential empirical motivation for this assumption, as well as the questions it raises, in section 6.

4.2. The Representation of the Hypothesis Space

Given an input representation based on container node sequences, the hypothesis space consists of
container node sequences, only some of which are grammatical. This can be formalized through a
learning algorithm that assigns some probability to each possible container node sequence, either
explicitly or implicitly. However, we already know from the corpus search in section 3 that a
learning algorithm that assigns a probability to the full container node sequence based solely on
the frequency of that sequence will be unsuccessful, because there are container node sequences
that are rated acceptable by adults that nonetheless have a frequency of 0 (or near 0) in child-
directed speech. This suggests that the learning algorithm must decompose the container node
sequences in some way, prior to assigning probabilities based on the child-directed input.

To solve this problem, the proposed algorithm tracks the frequency of trigrams of container
nodes (i.e., a continually updated sequence of three container nodes) in the input utterances.7 For
example, the container node sequences from (10c) would be represented as a sequence of trigrams
as in (12c), and the container node sequences from (11c) would be represented as a sequence of
trigrams as in (13c):

(12) a. [CP Who did [IP she [VP like __]]]?
b. IP VP
c. start-IP-VP-end =

start-IP-VP
IP-VP-end

(13) a. [CP Who did [IP she [VP think [CP [IP [NP the gift] [VP was [PP from __]]]]]]]?
b. IP VP CPnull IP VP PP
c. start-IP-VP-CPnull-IP-VP-PP-end =

start-IP-VP
IP-VP-CPnull

VP-CPnull-IP
CPnull-IP-VP

IP-VP-PP
VP-PP-end

The ability to track trigrams of container nodes is also an empirical necessity: neither tracking
only unigrams nor only bigrams will succeed, as there are grammatical dependencies that contain
each of the unigrams and bigrams that exist in the container node sequences in the ungrammatical

7Note that this means the learner is learning from data containing dependencies besides the one of interest, treating the
other dependencies as indirect positive evidence (Pearl & Mis 2012). For example, a learner deciding about the sequence
IP-VP-CPthat-IP-VP would learn from IP-VP dependencies that the trigram start-IP-VP appears. This is a learning bias
that expands the relevant intake set of the learner—all dependencies are informative, not just the ones being judged as
grammatical or ungrammatical.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
C

 I
rv

in
e 

L
ib

ra
ri

es
] 

at
 1

6:
16

 1
7 

Ja
nu

ar
y 

20
13

 



SYNTACTIC ISLANDS AND LEARNING BIASES 37

island violations (see section 6.5). Conversely, 4-grams (and above) will require special treatment
for wh-dependencies where the gap is in the subject of the matrix clause, as the container node
sequence consists of only 3 units (start-IP-end) (again, see section 6.5).

4.3. The Updating Procedure

The learner generates the probability of a given container node trigram based on the observed
data. Then, to gauge the grammaticality of any given container node chain (such as one that
crosses an island), the learner calculates the probability of observing that sequence of container
node trigrams, which is simply the product of the trigram probabilities.8 For example, in (12), the
sequence IP-VP would have a probability equal to the product of the trigram start-IP-VP and the
trigram IP-VP-end. The learning algorithm and calculation of grammaticality preferences9 are
schematized in Figure 3, and two examples of grammaticality preferences are shown in (14) and
(15). A more formal description of the learning algorithm and generation of grammaticality
preferences is provided in Appendix A.

(14) “Where does the reporter think Jack stole from?”
[CP Where does [IP [NP the reporter] [VP think [CP [IP [NP Jack] [VP stole [PP

from __]]]]]]]?”
IP VP CPnull IP VP PP

Sequence: start-IP-VP-CPnull-IP-VP-PP-end
Trigrams: start-IP-VP

IP-VP-CPnull

VP-CPnull-IP
CPnull-IP-VP

IP-VP-PP
VP-PP-end

Probability(IP-VP-CPnull-IP-VP-PP) =
p(start-IP-VP)∗p(IP-VP-CPnull)∗p(VP-CPnull-IP)∗p(CPnull-IP-VP)∗p(IP-VP-
PP)∗p(VP-PP-end)

8We note that the learner we implement in section 4.4 uses smoothed trigram probabilities (using Lidstone’s Law
[Manning & Schütze 1999] with smoothing constant α = 0.5), so unobserved trigrams have a frequency slightly above 0.
Thus, the equation for a trigram t’s probability is

total observations of t + α

total observations of all N trigrams + Nα

Specifically, the learner imagines that unobserved trigrams have been observed α times, rather than 0 times, and all other
trigrams have been observed α + their actual observed occurrences. We note also that the overall trend of results we
observe later on does not critically depend on the value of α, which effectively serves to distinguish trigrams that rarely
occur from trigrams that never occur. The smaller α is, the more these are distinguished.

9Here and throughout we will use the term grammaticality preference to refer to the result of the learning algorithm
(a probability), and acceptability judgments to refer to the actual observed behavior of adults in an experimental setting
(e.g., Sprouse, Wagers & Phillips 2012a). As discussed at the end of section 4, an acceptability judgment is the result
of several factors, of which the grammaticality preferences generated by our learner are just one. Other factors affecting
acceptability judgments include semantic plausibility, lexical properties, and parsing difficulty.
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SYNTACTIC ISLANDS AND LEARNING BIASES 39

(15) ∗“Who does Jack think the necklace for is expensive?”
[CP Who does [IP [NP Jack] [VP think [CP [IP [NP the necklace [PP for __]]
[VP is expensive]]]]]]?

IP VP CPnull IP NP PP
Sequence: start-IP-VP-CPnull-IP-NP-PP-end
Trigrams: start-IP-VP

IP-VP-CPnull

VP-CPnull-IP
CPnull-IP-NP

IP-NP-PP-
NP-PP-end

Probability(IP-VP-CPnull-IP-NP-PP) =
p(start-IP-VP)∗p(IP-VP-CPnull)∗p(VP-CPnull-IP)∗p(CPnull-IP-NP)∗p(IP-NP-
PP)∗p(NP-PP-end)

Given this learning algorithm, a child can generate a grammaticality preference for a given depen-
dency at any point during learning, based on the input previously observed, by calculating its
probability from the frequency of the trigrams that comprise it (see Figure 3). Similarly, a relative
grammaticality preference can be calculated by comparing the probabilities of two dependencies’
container node sequences. This will allow us, for example, to compare the inferred grammaticality
of dependencies spanning island structures versus dependencies spanning non-island structures.

5. THE PERFORMANCE OF THE ALGORITHM

In this section, we evaluate the performance of the proposed algorithm for both child-directed
speech and adult-directed input (both speech and text, which is likely more similar to an adult’s
linguistic input). We include both types of input in order to assess the performance of the model
under slightly different input environments and to quantify the differences between child- and
adult-directed corpora (especially given the scarcity of the former and the relative abundance of
the latter). After presenting the results of the algorithm for both input types, we then discuss the
detailed behavior of the algorithm to uncover exactly how it is that the set of biases described in
section 4 combine to learn the superadditive pattern of island effects.

5.1. Empirically Grounding the Learner

The two datasets used as input were comprised of six corpora across three corpus types: child-
directed speech from the Adam and Eve corpora from Brown (1973), the Valian corpus (Valian
1991), and the Suppes corpus (Suppes 1974) of CHILDES (MacWhinney 2000); adult-directed
speech from the Switchboard section of the Treebank-3 corpus (Marcus et al. 1999) and adult-
directed text from the Brown section of the Treebank-3 corpus (Marcus et al. 1999). Table 2
presents the basic composition of the three corpus types. Figure 4 provides a compact repre-
sentation of the distribution of the types of wh-dependencies in each corpus, while Appendix B
provides a detailed description of the composition of each corpus that can be used by readers to
construct additional algorithms (or to replicate the performance of the current algorithm).
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40 PEARL AND SPROUSE

TABLE 2
Basic Composition of the Child-Directed and Adult-Directed Input Corpora

Child-Directed: Speech Adult-Directed:Speech Adult-Directed:Text

Total Utterances 101838 74576 24243
Total wh-Dependencies 20923 8508 4230

These results suggest that two sequences account for a substantial portion of the input of all
three corpora: IP-VP, which corresponds to a gap in the matrix object position, and IP, which cor-
responds to a gap in the matrix subject position. These two dependency types account for between
90 and 95% of the wh-dependencies in the input, depending on the corpus type. This analysis also
suggests that child-directed speech is similar to adult-directed speech in terms of the proportion
of wh-dependencies, with IP-VP accounting for a substantially larger proportion of the input than
IP (child-directed speech: 76.7% versus 12.8%; adult-directed speech: 73.0% versus 17.2%).
This suggests that, at the current level of abstraction, child-directed speech and adult-directed
speech are fairly equivalent, which is not necessarily the case for less abstract representations
such as complete phrase structure trees, grammatical category sequences, or vocabulary items.
In contrast, adult-directed written text tends to be biased slightly more toward main clause subject
dependencies (IP), though main clause object dependencies (IP-VP) are still far more prevalent
(IP-VP: 63.3% versus IP: 33.0%). Also, it should be noted that overt complementizers (such
as that, indicated as CPthat in the table in Appendix B) are rare in general. This will be rele-
vant when we examine the learned grammaticality preferences for dependencies involving the
complementizer that.

In addition to specifying the composition of the input, computational models also require a
specification of the amount of input that the algorithm receives in the form of a learning period.
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FIGURE 4 The 15 most frequent wh-dependency types in the three
corpora types. The left panel displays the 10 most frequent wh-dependency
types for each of the three corpora types, with IP-VP and IP dominating
all three corpora types (IP-VP: rank 1, IP: rank 2). The right panel displays
the 6th–15th most frequent wh-dependency types on a smaller y-axis scale
(0–.01) in order to highlight the small amount of variation between corpora
types for these dependency types.
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SYNTACTIC ISLANDS AND LEARNING BIASES 41

We based the current learning period on empirical data from Hart & Risley (1995), who found
that children are exposed to approximately 1 million utterances between birth and 3 years of age.
Assuming that syntactic islands are acquired within a three-year period (perhaps between the
ages of 2 and 5 years old; see Goodluck, Foley & Sedivy 1992; De Villiers & Roeper 1995; De
Villiers et al. 2008; and Roeper & de Villiers 2011), we can use the composition of the annotated
corpora to estimate the number of wh-dependencies that would occur in those one million utter-
ances. Given child-directed speech samples from Adam and Eve (Brown 1973), Valian (Valian
1991), and Suppes (Suppes 1974), we estimate the proportion of wh-dependencies (20,923) to
total utterances (101,823) as approximately 0.2. We thus set the learning period to 200,000 wh-
dependency data points. This means that the current algorithm will encounter 200,000 data points
containing wh-dependencies, drawn randomly from a distribution characterized by the corpora in
the table in Appendix B.

5.2. Success Metrics and Learner Implementation

We can test the current algorithm by comparing the learned grammaticality preferences to empiri-
cal data on adult acceptability judgments from Sprouse, Wagers & Phillips (2012a). The container
node sequences that arise for the sentence types in (6–9) above are given in (16–19). It should
be noted that the current algorithm will compare syntactic island violations to only three types of
grammatical container node sequences, despite the number of superficial sentence types involved:
IP, IP-VP-CPthat-IP-VP, and IP-VP-CPnull-IP.10

(16) Complex NP islands
a. IP MATRIX | NON-ISLAND
b. IP-VP-CPthat-IP-VP EMBEDDED | NON-ISLAND
c. IP MATRIX | ISLAND
d. ∗IP-VP-NP-CPthat-IP-VP EMBEDDED | ISLAND

(17) Subject islands
a. IP MATRIX | NON-ISLAND
b. IP-VP-CPnull-IP EMBEDDED | NON-ISLAND
c. IP MATRIX | ISLAND
d. ∗IP-VP-CPnull-IP-NP-PP EMBEDDED | ISLAND

(18) Whether islands
a. IP MATRIX | NON-ISLAND
b. IP-VP-CPthat-IP-VP EMBEDDED | NON-ISLAND
c. IP MATRIX | ISLAND
d. ∗IP-VP-CPwhether-IP-VP EMBEDDED | ISLAND

10This shows that actual process of generating acceptability judgments is likely more nuanced than the basic imple-
mentation in the current algorithm. One clear difference is that the current algorithm does not factor in the portion of the
utterance beyond the gap position, whereas the actual process in humans likely does. For example, Who saw it? is not
judged as equivalent to Who thought that Jack said that Lily saw it?, even though both are IP dependencies. Similarly,
the current algorithm does not factor lexical or semantic properties into the judgments, whereas the actual process in
humans likely does. This is why experimental studies have to balance the lexical, structural, and semantic properties of
the experimental materials, as Sprouse, Wagers & Phillips (2012a) did.
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42 PEARL AND SPROUSE

(19) Adjunct islands
a. IP MATRIX | NON-ISLAND
b. IP-VP-CPthat-IP-VP EMBEDDED | NON-ISLAND
c. IP MATRIX | ISLAND
d. ∗IP-VP-CPif-IP-VP EMBEDDED | ISLAND

Recall that this factorial definition of island effects makes the presence of island effects visually
salient. If the acceptability of the four utterance types is plotted in an interaction plot, the presence
of an island effect shows up as two non-parallel lines (e.g., the left panel of Figure 1), while the
absence of an island effect shows up as two parallel lines (e.g., the right panel of Figure 1).
Sprouse, Wagers & Phillips (2012a) found an island effect pattern for all four island types;
therefore, a successful algorithm will also reveal an island effect pattern for all four island types.

To evaluate the success of the current algorithm, we can plot the predicted grammaticality pref-
erences in a similar interaction plot: if the lines are non-parallel, then the learner has acquired the
knowledge required to implement island constraints; if the lines are parallel, then the learner did
not acquire the knowledge required to implement island constraints. The current algorithm will
follow the grammaticality preference calculation process outlined in Figure 3 and Appendix A.
In particular, it will receive data incrementally, identify the container node sequence and trigrams
contained in that sequence, and update the corresponding trigram frequencies. It will then use
these trigram frequencies to infer a probability for a given wh-dependency, which can be equated
to the judged acceptability of that dependency—more probable dependencies are more accept-
able, while less probable dependencies are less acceptable. Though the inferred acceptability can
be generated at any point during learning (based on the trigram frequencies at that point), we will
show results only from the end of the learning period.

5.3. Modeling Results

Because the result of a grammaticality preference calculation is often a very small number (due to
multiplying many probabilities together), we will instead report the log probability. This allows
for easier comparison with acceptability judgments. All log probabilities are negative (this is
because raw probabilities are between 0 and 1, and the logarithm of numbers less than 1 is neg-
ative). The more positive numbers (i.e., closer to zero) represent “more acceptable” structures,
while more negative numbers (i.e., farther from zero) represent “less acceptable” structures.11

Figures 5 and 6 represent the results of the proposed algorithm given child-directed and
adult-directed input, respectively. Table 3 lists the log probabilities depicted in Figures 5 and 6.

Figures 5 and 6 indicate that learners using either child-directed or adult-directed input and
the proposed algorithm would arrive at the correct pattern of grammaticality preferences (a
superadditive interaction) for all four islands. Furthermore, the log probabilities suggest that the
ungrammatical island violations are substantially less acceptable than the grammatical control
conditions in the factorial design. This can be seen by subtracting the log probabilities of the two
conditions that one wishes to compare: because subtraction in logarithmic space is equivalent

11This measurement is similar to surprisal, which is traditionally defined as the negative log probability of occurrence
(Tribus 1961) and has been used recently within the sentence processing literature (Hale 2001; Jaeger & Snider 2008;
Levy 2008, 2011). Under this view, less acceptable dependencies are more surprising.
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SYNTACTIC ISLANDS AND LEARNING BIASES 43

TABLE 3
Inferred Grammaticality of Different Wh-Dependencies from Sprouse, Wagers & Phillips (2012a),

Represented with Log Probability

Child-Directed
Speech

Adult-Directed
Speech & Text

Grammatical Dependencies
Matrix Subject IP −1.21 −0.93
Embedded Subject IP-VP-CPnull-IP −7.89 −7.67
Embedded Object IP-VP-CPthat-IP-VP −13.84 −11.00

Island-Spanning Dependencies
Complex NP IP-VP-NP-CPthat-IP-VP −19.81 −18.93
Subject IP-VP-CPnull-IP-NP-PP −20.17 −20.36
Whether IP-VP-CPwhether-IP-VP −18.54 −18.46
Adjunct IP-VP-CPif-IP-VP −18.54 −18.46

to division in the raw space, the difference between two log probabilities indicates the number
of times larger or smaller one probability is than the other. For example, the log probability of

FIGURE 5 Log probabilities derived from a learner using child-directed
speech.
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44 PEARL AND SPROUSE

FIGURE 6 Log probabilities derived from a learner using adult-directed
speech and text.

Subject island violations (–20.17) is 12.28 less than the log probability of an embedded subject
dependency (–7.89). This indicates that the proposed algorithm rates Subject island violations as
12.28 times less acceptable than embedded subject dependencies. This measure is also known as
the log-odds of the comparison. All of the island violations are at least 4 times less acceptable
than the grammatical control conditions, and often more than 10 times less acceptable.

Although these results demonstrate that our modeled learner can acquire the general super-
additive interaction pattern observed in the actual acceptability judgment experiments, it should
be noted that there are noticeable differences between the observed acceptability judgments and
the inferred grammaticality preferences learned by this model. The reason for this is that actual
acceptability judgments are based on dozens of factors that are not included in this model. For
example, lexical items, semantic probability, and processing difficulty have all been demonstrated
to impact acceptability judgments (Schütze 1996; Cowart 1997; Keller 2000; Sprouse 2009).
The inferred grammaticality of this particular model would constitute only one (relatively large)
factor among many that affect acceptability. In other words, the grammaticality preferences of this
model are themselves limited to the dependency alone—they ignore all of the other properties of
the sentence.
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SYNTACTIC ISLANDS AND LEARNING BIASES 45

5.4. Understanding the Behavior of the Algorithm

The results of the previous section suggest that the proposed algorithm can successfully learn
the superadditive pattern of syntactic island effects from realistic child-directed or adult-directed
input. The question then is how tracking container node trigrams leads to such success. The
answer requires a closer examination of the container node trigram probabilities involved in
each island-spanning dependency, as shown in Table 4. Crucially, for each of the island-spanning
dependencies, there is at least one extremely low probability container node trigram in the con-
tainer node sequence of the dependency. These trigrams are assigned low probabilities because
these trigram sequences are never observed in the input—it is only the smoothing parameter
that prevents these probabilities from being 0. Note that some trigrams are low probability due
to being rarely encountered in the input (e.g., CPthat-IP-VP in child-directed speech)—but, cru-
cially, this is still more than never. Even though CPthat rarely appears, it does appear, and so it is
assigned a probability that is substantially non-zero.

In addition to highlighting the role of low probability trigrams in determining the acceptability
of syntactic island violations, Table 4 also highlights the tension between the length of the depen-
dency and its acceptability. Given that the proposed algorithm calculates the probability of the
dependency as the product of the probability of the trigrams that compose the sequence, longer
dependencies will tend to be less probable than shorter dependencies because longer dependen-
cies by definition involve the multiplication of more probabilities, and those probabilities are
always less than 1. Despite this general tendency to prefer shorter dependencies to longer depen-
dencies, the specific frequencies of the individual trigrams comprising those dependencies still
have a large effect. As a concrete example, Table 5 lists two grammatical dependencies that
are relatively long: both are triply embedded object dependencies, one with no CP container
nodes (IP-VP-IP-VP-IP-VP: e.g., What does Lily want to pretend to steal?), and one with CP
container nodes (IP-VP-CPnull-IP-VP-CPnull-IP-VP : e.g., What does Lily think Jack heard she
stole?). In both cases, these grammatical dependencies are categorized by the algorithm as more
probable than the island violations (as shown by their log probabilities) despite being substan-
tially longer than the island violations. This is because the container node trigrams that comprise
the grammatical dependencies occur with some frequency in the input.

One concern with this approach is that it might be seen to equate difficulty with ungrammat-
icality (Phillips 2012).12 In particular, one might worry that very long dependencies would start
to resemble ungrammatical dependencies with respect to acceptability under the proposed algo-
rithm, even though native speakers report a qualitative perceptual difference between them. This
may in fact be a general problem for acceptability judgments as a measure of grammaticality. For
example, the formal acceptability judgment experiments of Alexopoulou and Keller (2007) con-
cretely demonstrate that very long dependencies (i.e., dependencies that cross two or more clause
boundaries) are often rated identically to island violations in acceptability judgment experiments,
suggesting that acceptability alone is not enough to capture the qualitative difference between
sentences whose ungrammaticality leads to low acceptability and sentences whose length leads
to low acceptability. Phillips is correct that this general problem is maintained in the current
algorithm, because the current algorithm is designed to capture acceptability effects. However,

12We are especially grateful to Colin Phillips for his thoughts and suggestions concerning this.
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46 PEARL AND SPROUSE

TABLE 4
Container Node Trigram Probabilities

Dependency Trigram
Child-Directed
Probabilities

Adult-Directed
Probabilities

Complex NP Island start-IP-VP .42 .41
IP-VP-NP-CPthat-IP-VP IP-VP-NP .0015 .0011

VP-NP-CPthat .0000012 .0000013
NP-CPthat-IP .0000012 .0000013
CPthat-IP-VP .000044 .00004
IP-VP-end .4 .38

log(probability) −19.81 −18.46

Subject Island start-IP-VP .42 .41
IP-VP-CPnull-IP-NP-PP IP-VP-CPnull .0073 .0045

VP-CPnull-IP .0073 .0045
CPnull-IP-NP .0000012 .0000013
IP-NP-PP .0000012 .0000013
NP-PP-end .00021 .0003

log(probability) −20.17 −20.36

Whether Island start-IP-VP .42 .41
IP-VP-CPwhether-IP-VP IP-VP-CPwhether .0000012 .0000013

VP-CPwhether-IP .0000012 .0000013
CPwhether-IP-VP .0000012 .0000013
IP-VP-end .4 .38

log(probability) −18.54 −18.46

Adjunct Island start-IP-VP .42 .41
IP-VP-CPif-IP-VP IP-VP-CPif .0000012 .0000013

VP-CPif-IP .0000012 .0000013
CPif-IP-VP .0000012 .0000013
IP-VP-end .4 .38

log(probability) −18.54 −18.46

Triple Object, no CPs start-IP-VP .42 .41
IP-VP-IP-VP-IP-VP IP-VP-IP × 2 .031 .017

VP-IP-VP × 2 .031 .017
IP-VP-end .4 .38

log(probability) −6.81 −7.89

Triple Object, with CPs start-IP-VP .42 .41
IP-VP-CPnull-IP-VP-CPnull-IP-VP IP-VP-CPnull × 2 .0073 .0045

VP-CPnull-IP × 2 .0073 .0045
CPnull-IP-VP × 2 .0067 .002
IP-VP-end .4 .38

log(probability) −13.67 −15.59

Note. These are the container node trigram probabilities for each of the island-crossing dependencies, as well
as two grammatical dependencies, after the learning period has finished. Very low probability container node
trigrams, which are never observed in the input, are in bold. Log probability for the complete dependency is also
shown.
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SYNTACTIC ISLANDS AND LEARNING BIASES 47

it should be noted that the current algorithm can in principle distinguish sentences that are low
probability because of length (i.e., very many trigrams) and sentences that are low probability
because one or more trigrams never occur. This is because the algorithm itself collects precisely
that information (the number of trigrams and the relative probability of each trigram). In other
words, the qualitative distinction between the two types of sentences can be recovered by looking
at how the low probability was calculated. It is an open question how it is that a learner using
this algorithm would access this calculation; however, as one anonymous reviewer observes, one
simple formal way to capture this is with the geometric mean, which is calculated by multiplying
a sequence of numbers together and taking the nth-root of the product where n is equal to the
number of items that were originally multiplied (a formula is given in 20). The geometric mean
of an ungrammatical dependency will be substantially lower than the geometric mean of a longer
dependency, due to the presence of the trigrams that never occur.

(20) Geometric mean of probabilities p1 . . . pn = n

√ ∏
i=1 to n

pi

Phillips (2012b) suggests two additional ways around this issue. One is to make the smoothing
factor α much smaller (e.g., .00005 instead of 0.5). This effectively further penalizes trigrams
that have never been observed—their probability, though non-zero, is significantly smaller and
thus lowers the probability of the dependency they are part of. Another way is to back off from
the notion of a combined probability for the entire dependency. Instead, a learner could simply
note the presence of a very low probability trigram in any given dependency—this might arise
naturally if that part of the dependency is difficult to process, because that container node trigram
hasn’t been encountered before.

5.5. The Success of the Algorithm

These results suggest that syntactic island effects can be learned from realistic child-directed input
using an algorithm that does not directly encode syntactic island constraints. The proposed algo-
rithm does require relatively sophisticated biases, such as (i) the parsing of sentences into phrase
structure trees, (ii) the extraction of sequences of container nodes for the dependencies, (iii) the
tracking of the frequency of trigrams of container nodes, and (iv) the calculation of the probability
of the complete container node sequence for the dependency, based on its trigrams. The results
also suggest that two desirable properties of acceptability judgments fall out of this algorithm:
(i) a general preference for shorter dependencies, and (ii) a qualitative distinction between long
dependencies and ungrammatical dependencies (at least in principle). The construction of this
algorithm represents substantial progress in understanding the space of possible learning theories
for complex syntactic phenomena like syntactic island effects, but it also raises difficult questions
about how the component biases of such an algorithm actually arise in the learner. We turn to
these questions in the next section.

6. A DISCUSSION OF THE BIASES OF THE ALGORITHM

The previous section presented the successes of the proposed algorithm. In this section, we
discuss each bias that comprises the algorithm individually, with a particular focus on (i) the
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48 PEARL AND SPROUSE

empirical motivation for each bias, (ii) the potential classification of each bias according to the
framework laid out in section 1, and (iii) the unanswered questions (for future research) raised by
the empirical necessity of each bias.

6.1. Syntactic Category and Phrase Structure Information

One of the most basic components of the proposed learning algorithm is that it operates over input
that has been parsed into phrase structure trees. It therefore assumes that both syntactic category
information and phrase structure information have already been acquired (or are in the process of
being acquired). We do not have too much to say about this assumption because basic syntactic
phenomena like syntactic categories and phrase structure parsing are required by nearly every
syntactic phenomenon. It may be the case that the acquisition of syntactic categories or phrase
structure requires at least one innate, domain-specific bias, in which case every syntactic phe-
nomenon, including syntactic islands, would (strictly speaking) require such a bias. Nonetheless,
this would not be a fact that is specific to syntactic islands, but rather a general fact of every
syntactic phenomenon. We are specifically interested in the consequences of syntactic islands
for learning theories, not the consequences of every syntactic phenomenon. That being said, for
recent work investigating the acquisition of syntactic categories from child-directed input, see
Mintz (2003, 2006), and for recent work investigating the acquisition of hierarchical structure
given syntactic categories as input, see Klein & Manning (2002).

6.2. Tracking Frequencies and Calculating Probabilities

Another basic component of the proposed algorithm is that the learner has the ability to track
the frequency of units in the input, and then calculate the probabilities of those units. This is
a relatively uncontroversial assumption, as many learning theories, both in language and other
cognitive domains, assume that the learner can track frequencies and calculate probabilities. The
ability to track frequencies and calculate probabilities is likely an innate, domain-general ability.
Still, the interesting question about the ability to track frequencies and calculate probabilities is
not so much the existence of the ability itself, but rather the units that are tracked—a question
that we turn to in the next four subsections.

6.3. Restricting the Input to Wh-Dependencies

The proposed algorithm assumes that only wh-dependencies are used as input by the learner,
at least for the acquisition of syntactic island effects with wh-dependencies. This assump-
tion is not as neutral as it first appears. First, many syntactic theories recognize similarities
between wh-dependencies and other types of dependencies, such as relative-clause-dependencies
(rc-dependencies), by postulating syntactic mechanisms that are common to both (e.g., A’-
movement). This might then suggest that, for the purposes of acquisition, the two types of
dependencies should be treated as equal. However, recent formal acceptability judgment experi-
ments suggest that, at least in English, wh-dependencies and rc-dependencies display different
sets of island effects, although both do demonstrate some island effects (Sprouse et al. in
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SYNTACTIC ISLANDS AND LEARNING BIASES 49

press). This suggests that these two dependencies must be tracked separately for the purposes of
acquisition, and so both should be input (separately) into the syntactic islands learning algorithm.

Second, other dependencies, such as the binding dependencies that hold between nouns and
pronouns, do not display syntactic island effects at all. The fact that binding dependencies lack
island effects is ambiguous: it could either mean that binding dependencies are never subjected to
the syntactic islands learning algorithm, or it could mean that the input for binding dependencies
contains the trigrams that are never observed in the input for wh-dependencies, and so island
effects are not observed for binding dependencies. Although teasing apart these two possibilities
is beyond the scope of this article, we can at least say that some of the low probability trigrams
that lead to island effects, such as VP-CPwhether-IP, are certainly possible in binding dependencies,
as in John wonders whether you like him. This suggests that even if the syntactic islands learning
algorithm were applied to binding dependencies, the algorithm would likely not lead to syntactic
island effects for binding dependencies. In a similar vein, both of the logical possibilities suggest
that binding dependencies must be tracked separately from wh-dependencies.

The fact that it is empirically necessary to separate wh-dependencies from other dependency
types does not explain how it is that the acquisition system knows to separate the input. While
it is logically possible to achieve this type of separation without necessarily invoking innate,
domain-specific biases, we simply do not have enough information about the learnability of these
other dependency types to evaluate the possibilities. What we can say is that the learning strategy
proposed here highlights the fact that any theory of the acquisition of syntactic islands must be
able to track wh-dependencies separately from rc-dependencies and binding dependencies.

6.4. Tracking Sequences of Container Nodes

Much like the assumption that the input must be restricted to wh-dependencies, the bias in the pro-
posed algorithm to track sequences of container nodes appears relatively neutral at first glance;
after all, syntactic island effects are constraints on dependencies, and therefore the algorithm
should track information about the dependencies. However, this assumption is far from neutral,
as it is in essence informing the system that long-distance dependencies may have constraints on
them, and so information about them should be tracked. Of course this is an empirical necessity:
there are such things as syntactic island effects, and they do appear to vary both across lan-
guages (Rizzi 1982) and across constructions (Sprouse et al. in press). Therefore, the acquisition
system must learn (something about) them. But nothing about this algorithm explains why the
system attempts to learn constraints on long-distance dependencies. For attempts to explain the
existence of syntactic islands based on considerations of computational (parsing) efficiency, see
Fodor (1978, 1983), Berwick & Weinberg (1984), and Hawkins (1999).

Beyond encoding the very existence of constraints on long-distance dependencies, the bias to
track sequences of container nodes also raises the question of how it is that the algorithm knows
to track container nodes rather than some other piece of information about a dependency. In other
words, why couldn’t the constraints be stated over the number of nouns in the dependency, or
the number of prepositions, or even stated over certain semantic categories such as temporal
modifiers? It is true, as mentioned in section 4, that the fact that the parsing of long-distance
dependencies is an active process means that the sequence of container nodes is information that
is likely available to the language system, but availability is distinct from attention. The current
algorithm is biased to attend to container nodes instead of to all of the other logically possible
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50 PEARL AND SPROUSE

types of information about dependencies that are potentially available. This bias is likely domain-
specific, as long-distance dependencies (and their constraints) have not been clearly demonstrated
in any other domain of cognition. It is, however, an open question whether this bias is also innate,
or whether it can be derived from other biases. Nonetheless, it seems to be the case that any theory
of syntactic islands that postulates a structurally defined constraint will likely track container
nodes, and therefore it will be confronted with this difficult question.

6.5. Tracking Trigrams Instead of Other N-Grams

The proposed algorithm decomposes the sequence into trigrams (a moving window of three
container nodes). Once again, this is an empirical necessity. The corpus analysis in section 3
suggests that the learning algorithm must decompose the container node sequences into smaller
units, otherwise three of the (grammatical) MATRIX | ISLAND conditions would be erroneously
characterized as ungrammatical. A unigram model will successfully learn Whether and Adjunct
islands, as there are container nodes in these dependencies that never appear in grammatical
dependencies (CPwhether and CPif), but will fail to learn Complex NP and Subject islands, as all
of the container nodes in these islands are shared with grammatical dependencies. This is prob-
lematic under the assumption that all four island types should be learned by the same algorithm,
although it is logically possible that different island types arise due to different algorithms (per-
haps according to some of the theoretical distinctions that have been postulated in the syntax
literature). In effect, there is tension between the size of the n-grams that the algorithm tracks and
the number of learning algorithms that are necessary: decreasing one requires an increase in the
other to capture the empirical facts of syntactic islands.

A similar problem arises for a bigram model: at least for Subject islands, there is no bigram
that occurs in a Subject island violation but not in any grammatical dependencies. The most likely
candidate for such a bigram is IP-NP, as this is precisely the configuration that suggests extraction
from the subject position (and thus distinguishes Subject islands from grammatical extraction
from objects, which would be VP-NP). However, sentences such as What, again, about Jack
impresses you? or What did you say about the movie scared you? suggest that a gap can arise
inside of NPs, as long as the extraction is of the head noun (what), not of the noun complement
of the preposition. One way to circumvent this problem is to assign a different structural analysis
to these sentences such that the container node sequence no longer contains IP-NP. In this case,
there is a tension between the simplicity of the structural analysis of certain sentences and the
size of the n-grams that the algorithm tracks. Another option is to postulate a distinct learning
algorithm for Subject islands, as previously discussed for unigrams.

Although trigrams are the smallest n-gram that captures all four island effects without postulat-
ing a second learning algorithm, one could ask if increasing the size of the n-grams would result
in better empirical coverage. The problem with an approach that assumes an n greater than 3 is
that there is no straightforward way to accommodate extraction from the matrix subject position,
which only results in a single container node (IP). It is possible to accommodate these sequences
in a trigram model by assuming symbols for start and end, resulting in start-IP-end. Start and end
symbols may not be part of phrase structure grammars, but they are at least psychologically prin-
cipled in that the algorithm needs to track the beginning and end of dependencies at some level.
However, there is no obviously principled way to incorporate an additional symbol in a 4-gram
model to capture matrix subject dependencies. Alternatively, as an anonymous reviewer observes,
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SYNTACTIC ISLANDS AND LEARNING BIASES 51

one might argue that a learner could simply not divide these dependencies into 4-grams; rather,
the learner would divide dependencies into 4-grams if they can be divided and would leave them
alone otherwise. This runs into a similar problem, however: namely, something special must be
done for dependencies that cannot be divided into 4-grams (such as matrix subject dependencies)
so that they can be both learned from and learned about. This suggests that a trigram model is
simpler because the 4-gram model will require an exception for these dependencies. This problem
holds for every n-gram above 3.

Like the previous biases, the bias to track trigrams appears to be an empirical necessity (unless
the learner uses additional or more complex algorithms). Also like the previous biases, it is an
open question how this bias arises. Learning models based on sequences of three units have been
proposed and are consistent with children’s observable behavior for other linguistic knowledge
(e.g., the comparison of three sequential transitional probabilities for word segmentation: Saffran,
Aslin & Newport 1996; Aslin, Saffran & Newport 1998; Graf Estes et al. 2007; Pelucchi, Hay
& Saffran 2009a, 2009b; frequent frames consisting of three sequential units for grammatical
categorization: Mintz 2006; Wang & Mintz 2008); additionally, these learning models are con-
sistent with human behavior for nonlinguistic phenomena (Saffran, Aslin & Newport 1996) and
also with learning behavior in nonhuman primates (Saffran et al. 2008). Given this, such a bias
is likely domain-general; however, the fact that trigrams are an available option does not explain
how it is that the learning algorithm knows to leverage trigrams (as opposed to other n-grams) for
syntactic islands. The existence of certain syntactic islands in English appears to be predicated
upon this choice (Complex NP and Subject islands do not arise under other choices), so this bias
is inextricably linked to the question that arises throughout this discussion: why is it that syntactic
island effects exist in language at all? The explicit algorithm proposed here makes it clear that
this is a problem that any theory of the learning of syntactic island constraints must address at
some point.

6.6. Subcategorization of CP

In addition to a bias to track trigrams of container nodes, the proposed algorithm has a bias to
track subcategories of CP based on the lexical item that introduces the CP (that, whether, if , and
the null complementizer). Much like the other biases, this is empirically necessary: an algorithm
that treats all CPs identically will fail to learn Whether islands and Adjunct islands, because the
only difference between Whether and Adjunct violations and their non-island control conditions
is in the type of CP (that versus whether, and that versus if ). Again, like the other biases, this
raises the question of how the algorithm knows what the proper set of container nodes to track
is. It is logically possible to subcategorize any number of maximal projections, or none at all, or
even to count intermediate projections (e.g., N’) as a container node.

The fact that CPs can be subcategorized is relatively straightforward. Different CPs intro-
duce different types of clauses, with substantial semantic differences: that introduces declarative
clauses (which are semantically propositions), whether introduces questions (which are semanti-
cally sets of propositions), and if introduces condition clauses. It may also be possible to quantify
the degree of semantic difference captured by the subcategorization of different types of maxi-
mal projections, such that one could argue that the differences between CPs are greater than the
differences between NPs or the differences between VPs. However, the fact that this type of infor-
mation is available to the language system does not explain how it is that the learner knows to
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52 PEARL AND SPROUSE

pursue this particular strategy (or knows where to draw the line between types of container nodes).
It may be possible to capture part of this behavior with innate, domain-general preferences for
certain types of hypotheses (either more specific hypotheses, such as subcategorize all container
nodes, or more general hypotheses, such as subcategorize no container nodes) coupled with a
domain-specific proposal about the types of information that could be used to correct mistaken
hypotheses. But this simply pushes back the question to one about how the system knows which
evidence to look for to correct mistaken hypotheses (i.e., is it innate or derived?). In short, much
like the previous biases, the empirical necessity of subcategorizing CPs raises difficult questions
for any theory of the acquisition of syntactic islands.

6.7. The Problems Raised by the Acquisition of Syntactic Island Effects

In this section we have attempted to illustrate (i) the empirical necessity of each of the biases of
the proposed learning algorithm and (ii) the difficult questions raised by the empirical necessity of
these biases. Some of the basic components of the algorithm will be part of the learning theory for
any syntactic phenomenon (e.g., assigning phrase structure and tracking frequencies), but others
appear to be specific to syntactic island effects, such as restricting the input to wh-dependencies,
tracking sequences of container nodes, segmenting container node sequences into trigrams, and
subcategorizing CP container nodes by the lexical item that introduces them. These biases are
interesting because on the one hand, they are significantly less specific than previous approaches
to the acquisition of island effects (which tended to directly encode syntactic constraints in the
learning algorithm); on the other hand, they are still specific enough to raise difficult questions
about how they could arise in the learner. The explicit modeling procedure here (based on realistic
input) suggests that any theory that seeks to learn syntactic islands as a type of grammatical
constraint will be forced grapple with the empirical necessity of these specific biases. The other
option, of course, is to deny that syntactic island effects are the result of grammatical knowledge,
as has been proposed by several researchers in the past (e.g., Givón 1979; Deane 1991; Pritchett
1991; Kluender & Kutas 1993; Kluender 1998, 2004; Hofmeister & Sag 2010). The problem with
the non-grammatical solution to this problem is that the currently available empirical evidence,
from sentence processing studies to cross-linguistic syntactic studies, suggests that a grammatical
approach to syntactic islands is much more likely (see Sprouse, Wagers & Phillips 2012b for a
brief review).

7. CONSEQUENCES FOR SYNTACTIC THEORY

Historically, there have been relatively close ties between syntactic theories and acquisition theo-
ries. These ties are bidirectional: one of the goals of syntactic theory is to systematically explain
the properties of language acquisition through the form of syntactic theories (beginning with at
least Chomsky 1965), and the goal of acquisition theories is to explain the learning trajectory
from birth to the adult target state, as defined by syntactic theories. This means that any proposal
regarding the acquisition of syntactic phenomena will likely interact with both the form and
empirical coverage of syntactic theories. In this section, we investigate the interaction between
the proposed algorithm and existing syntactic theories, to highlight both potential problems for
the proposed algorithm and potential areas for future research.
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SYNTACTIC ISLANDS AND LEARNING BIASES 53

7.1. Parasitic Gaps and Across-the-Board Constructions

Though this statistical learning model demonstrates that syntactic islands can in principle be
learned from child-directed input, this particular model cannot capture certain known exceptions
to syntactic island constraints, such as parasitic gap constructions (Ross 1967; Engdahl 1983).
Parasitic gaps are constructions where a displaced element is associated with two gap positions,
one which is licit and one which is inside a syntactic island (21). While a single gap inside an
island structure results in unacceptability (21a), an additional gap outside the island seems to
eliminate the unacceptability (21b; see Phillips 2006 for experimentally collected judgments).
The two gaps in these constructions are often described as the true gap, which occurs outside of
the island, and the parasitic gap, which occurs inside of the island. The name is a metaphorical
reference to the fact that the parasitic gap could not exist without the true gap, much like a parasite
cannot exist without a host.

(21) a. ∗Which book did you laugh [before reading __]?
Ungrammatical gap dependency: IP-VP-CPbefore-IP-VP

b. Which book did you judge __true [before reading __parasitic]?
Parasitic gap dependency: IP-VP-CPbefore-IP-VP

The proposed algorithm fails to capture the acceptability of parasitic gaps because the proba-
bility of the dependency involving the parasitic gap would be identical to the probability of the
dependency in the structurally identical syntactic island violation (as shown by the container
node sequences in (21)). So, both (21b) and (21a) would be judged as ungrammatical, as they
both contain the same low probability dependency. This, of course, is not the adult target state
for acquisition and therefore suggests that the current strategy is not the precise strategy used by
human language learners.

Across-the-Board (ATB) constructions (Williams 1978) also involve a displaced element that
is associated with two gap positions; however, in ATB constructions, both of the gap positions
would ordinarily be illicit, as they appear in the two conjuncts of a coordinate structure. In this
way, each gap on its own would violate the Coordinate Structure Constraint (Ross 1967) but
together appear to be a grammatical option, as in (22b–c).

(22) a. What did you read __ and then review __?
ATB gap dependencies (both): IP-VP-VP

b. ∗What did you read __ and then review the book?
Ungrammatical gap dependency: IP-VP-VP

c. ∗What did you read the book and then review __?
Ungrammatical gap dependency: IP-VP-VP

As with parasitic gaps, the current learning strategy would not fare well on ATB extractions:
the ungrammatical gaps in (22b–c) and the grammatical gaps in (22a) are all characterized by the
same container node sequence and thus would be assigned the same status (either all grammatical
or all ungrammatical), contrary to the human adult target state.

Crucially, both parasitic gaps and ATB extractions involve combination of the information
coming from each gap (which the current strategy would represent as combining the container
node sequences characterizing each gap). Success in both cases involves recognizing that a gap
that would be ungrammatical on its own becomes grammatical when it is combined with another
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54 PEARL AND SPROUSE

gap of a specific kind. The question then becomes how children know combination can occur and
what the precise combination operation is.13

A preliminary investigation of nine child-directed speech corpora containing approximately
675,000 words shows that ATB extractions do occur in the input (albeit rarely—we found only
78 examples), while parasitic gaps do not occur at all (0 examples). The fact that ATB con-
structions do exist in child-directed input suggests that the properties of ATB construction can in
principle be learned from the input (with some combination of learning biases); however, the lack
of parasitic gap examples suggests that these may either be acquired later (assuming that parasitic
gaps do appear in adult-directed input) or may be learned in conjunction with ATB constructions.
This latter possibility receives some support from the fact that parasitic gap and ATB construc-
tions share a number of complex syntactic properties, some of which are given in (23–25; see
Munn 2001 for a review and references).

(23) The dependencies must be A’-dependencies, not A-dependencies:

a. ∗The book was borrowed __ after Jack read __.
b. ∗The book was borrowed __ and Jack read __.

(24) The true/first conjunct gap must not c-command the parasitic/second conjunct gap

a. ∗Who __ read the paper after John talked to __?
b. ∗Who __ read the paper but John didn’t talk to __?

(25) The parasitic/second conjunct gap cannot be inside an additional island

a. ∗Which report did you file __ after wondering whether you read __?
b. ∗Which report did you file __ and wonder whether you read __?

To account for these properties, some syntactic analyses (e.g., Chomsky 1986) have postulated a
null operator that (i) appears at the left periphery of the adjunct phrase in parasitic gap construc-
tions (26a) and at the left periphery of the second conjunct phrase in ATB constructions (26b),
and (ii) binds the parasitic/second conjunct gap instead of the displaced wh-phrase:

(26) a. Which reporti did you read __i [OPj before filing __j]?
b. Which reporti did you read __i [OPj and then file __j]?

The dependency (or chain) formed by the null operator must then be combined with the depen-
dency between the wh-phrase and the true/first conjunct gap in order for the parasitic/second
conjunct gap to receive the correct interpretation. The properties in (23–25) can then be accounted
for by the existence of the null operator and by postulating constraints on the dependency
combination operation.

Beyond providing a mechanism by which parasitic gap constructions could potentially be
learned from exposure to ATB constructions, the null operator analysis provides a potential
avenue for solving the problem posed by these constructions for the current learning strategy.

13We note that if a combination operation is always part of the learner’s treatment of utterances containing gaps, this
should not affect our current results on dependencies associated with a single gap. This is because single gap dependencies
would presumably be a special case for the combination operation where no combination of dependency information
would need to occur.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
C

 I
rv

in
e 

L
ib

ra
ri

es
] 

at
 1

6:
16

 1
7 

Ja
nu

ar
y 

20
13

 



SYNTACTIC ISLANDS AND LEARNING BIASES 55

In particular, the null operator analysis postulates two distinct dependencies in these construc-
tions: one that holds between the wh-phrase and the true/first conjunct gap and one that holds
between the null operator and the parasitic/second conjunct gap. These two dependencies inside
a single sentence will each have distinct container node trigram sequences. In the case of parasitic
gap constructions, the syntactic island barrier (the adjunct node) will not be part of either of these
sequences, thus eliminating the low probability container node sequence that leads the strategy
to incorrectly predict parasitic gap constructions to be ungrammatical. The only way to intro-
duce a syntactic island container node into these two dependencies is to insert a syntactic island
in the main clause or in the adjunct clause, which, as predicted, will lead to ungrammaticality
(25). Of course, the situation is more complicated for ATB constructions: whereas the null oper-
ator dependency in an ATB construction will not contain any low probability container nodes,
the dependency between the wh-phrase and the first conjunct gap would be illicit by itself (a
Coordinate Structure Constraint (CSC) violation), so it presumably contains at least one low
probability container node trigram (although we have not yet tested the CSC using the current
algorithm). This means that the current learning strategy must still be expanded to include a
mechanism whereby the first conjunct gap is licit only if there is a gap in the second conjunct.
That this type of complex grammatical knowledge exists in the adult state has recently been
experimentally confirmed by Wagers & Phillips (2009), who demonstrated both that ATB con-
structions are rated as acceptable by native speakers, and that the human sentence parser actively
searches for a second conjunct gap after encountering a first conjunct gap.

Beyond the problem raised by the first conjunct gap in ATB constructions, the null operator
analysis also raises questions about the acquisition of the dependency combination operation:
To what extent can the existence of the dependency combination operation be constructed from
non-UG biases? To what extent can the constraints on the dependency combination operation that
are required to fully capture properties (23–25) above be learned from non-UG biases? These are
difficult questions that can only be addressed after we have expanded our child-directed speech
corpora to have a better estimate of the relative frequencies of ATB and parasitic gap constructions
in child-directed speech. They will require a systematic evaluation of the performance of our
models with both classic examples of ATB and parasitic gaps and the ungrammatical sentences
in (23–25) that have been used to identify the properties of ATB and parasitic gap constructions.

7.2. Italian Wh-Islands: High Probability Trigrams That Are Ungrammatical

Just as the current learning strategy would be forced to treat parasitic gaps as ungrammatical
because any dependency that contains a very low frequency trigram is ungrammatical, the algo-
rithm would similarly treat all dependencies that contain only higher frequency trigrams as
grammatical. This is not problematic in English, as all such dependencies are in fact grammati-
cal. However, Rizzi (1982) reports an interesting paradigm in Italian in which it looks as though
simply doubling a grammatical sequence of trigrams leads to ungrammaticality (Phillips 2012).
Rizzi (1982) reports that Italian does not have wh-island effects the way that English does, as an
extraction of an NP from a wh-island structure is grammatical ((27) = Rizzi’s (6a)):

(27) Tuo fratello, a cui mi domando che storie abbiano raccontato, era molto preoccupato.
your brother, to whom1 I wonder which stories2 they have told __2 __1, was very
worried.
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56 PEARL AND SPROUSE

. . . to whom1 [IP I [VP wonder [CP which stories2 [IP they [VP have told __2 __1]]]]]
Dependency for to whom: IP-VP-CPwh-IP-VP

Rizzi analyzes this fact as evidence that the (Subjacency-based) bounding nodes in Italian are NP
and CP, which correctly captures the fact that extraction from a CP is possible even when the
specifier of CP is filled with a wh-phrase. This analysis makes an interesting prediction: if CP is
a bounding node, extraction should not be able to cross two CPs with filled specifier positions.
Rizzi reports that this prediction appears is borne out ((28)=Rizzi’s (15b)):

(28) ∗Questo argomento, di cui mi sto domandando a chi potrei chiedere quando dovrò
parlare, mi sembra sempre più complicato.
∗this topic, of which1 I am wondering to whom2 I may ask __2 when3 I’ll have to
speak __1 __3, to me seems ever more complicated
. . . of which1 [IP I [VP am wondering [CP to whom2 [IP I [VP may ask __2 [CP when3

[IP I [VP ‘ll have [IP to [VP speak __1 __3]]]]]]]
Dependency for of which: IP-VP-CPwh-IP-VP-CPwh-IP-VP-IP-VP

The problem for the current algorithm is that the container node sequence of the ungrammatical
sentence in (28) (CPwh-IP-VP-CPwh-IP-VP) consists of the very same trigrams that are in the
grammatical sentence in (27) (CPwh-IP-VP, IP-VP-CPwh, and VP-CPwh-IP). Therefore, the cur-
rent algorithm will treat it as grammatical. Whether sentences such as (28) are unacceptable or
not is an empirical question. Nonetheless, the example serves to illustrate one of the primary lim-
itations of the current algorithm: the grammaticality of each sentence is predicated solely upon
the frequency of the individual “parts,” where the parts are trigrams of container nodes. If any one
trigram is low frequency, as in parasitic gaps, the model will treat the sentence as ungrammatical;
if all of the trigrams are higher frequency, as in example (28), the model will treat the sentence as
grammatical.

7.3. Cross-Linguistic Variation

The current learning strategy primarily learns the pattern of island effects for a given language
from the input that it is presented. There are no additional constraints on the possible patterns of
island effects imposed by the learning mechanism itself. What this means in practice is that this
model predicts no constraints on the variation of island effects cross-linguistically: any potential
pattern of results (for the four island types investigated) can be derived given the correct input.
The problem posed by constrained variation in island effects for the current strategy is straight-
forward: if there is indeed constrained variation in island effects cross-linguistically, then the
current strategy would force us to conclude that the apparent constraint is simply a coincidence.
The inputs of the languages in question just happened to not include the information that would
be necessary to lead to the unobserved patterns of island effects.

It has been claimed in the syntactic literature that the cross-linguistic pattern of island effects
is constrained. A classic example of this is again provided by Italian. Rizzi (1982) observes that
whereas English exhibits WH, Complex NP, and Subject islands, Italian only appears to exhibit
Complex NP islands:
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(29) WH ISLAND

Tuo fratello, a cui mi domando che storie abbiano raccontato, era molto
preoccupato. your brother, to whom1 I wonder which stories2 have.3PL told
__2 __1, was very worried.

(30) COMPLEX NP ISLAND
∗Questo incarico, che non sapevo la novità che avrebbero affidato a te, . . . this task,
that not knew.1SG the news that have.3PL assigned __ to you

(31) SUBJECT ISLAND

Questo autore, di cui so che il primo libro è stato pubblicato recentemente, . . . This
author, by whom know.1SG that the first book __ has been published recently, . . .

In other words, it appears as though WH islands and Subject islands tend to covary (if a lan-
guage has one, it will have the other; if it lacks one, it will lack the other). This pattern
was also corroborated by Torrego (1984) for Spanish, suggesting that it may be a prevalent
pattern for Romance languages. Whether this pattern holds for all languages that have dis-
placement phenomena and island effects is an open empirical question, but it is clear that
if it did, it would be a problem for the proposed strategy (unless, again, we are willing
to subscribe it to coincidence). The formal experimental results of Sprouse et al. (in press)
suggest that English relative clause dependencies exhibit Subject island effects but not WH
island effects, which casts some doubt on the claim that WH and Subject islands always
covary. However, only future studies in several additional languages can settle this empirical
question.

7.4. The Complementizer That

Another potential issue for the current algorithm concerns complementizer that—specifically,
because of the rarity of complementizer that in the input data, a learner using this model will
generally disprefer dependencies using complementizer that (Phillips 2012). In some cases, this
may be desirable. For example, so-called that-trace effects are unacceptability that occurs when
a gap immediately follows the complementizer that (32a), but does not arise when that is omitted
(32b) (see Cowart 1997 for experimentally collected acceptability judgments). The current learn-
ing strategy can capture the distinction between these, shown in (32), using either child-directed
or adult-directed input (the log-odds of (32b) versus (32a) is 7.12 for child-directed input and
5.40 for adult-directed input).

(32)

a. ∗Who do [IP you [VP think [CP that [IP __ [VP read the book]]]]]?
b. ∗Who do [IP you [VP think [CP [IP __ [VP read the book]]]]]?

However, the current learning strategy will also generate a preference for object gaps without
that (33b) compared to object gaps with that (33a) (the log-odds of (33b) versus (33a) is 6.61 for
child-directed input and 2.81 for adult-directed input).
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(33)

a. What do [IP you [VP think [CP that [IP Jack [VP read __ ]]]]]?
b. What do [IP you [VP think [CP [IP Jack [VP read __]]]]]?

Interestingly, Cowart (1997) reports that there is a small preference in adult acceptability judg-
ments for (33b) over (33a), but it is significantly smaller than the preference for (32b) over (32a).
In other words, there is an object that-trace effect, but it is much smaller than the subject that-
trace effect. The current strategy generates relatively equal dispreference for (32a) and (33a)
when using the child-directed corpora (7.12 versus 6.61), which contain relatively few instances
of that. However, the model generates an asymmetrical dispreference that is more in line with
Cowart’s (1997) data when using the adult-directed corpora (5.40 versus 2.81), which contain
more instances of that. This could be taken to be a developmental prediction of the current algo-
rithm: children may disprefer object gaps in embedded that-CP clauses more than adults, and this
dispreference will weaken as they are exposed to additional tokens of that in utterances containing
dependencies.

7.5. The Proposed Algorithm and Syntactic Theory

In many ways, the algorithm proposed here looks very similar to existing theories of syntactic
islands: island effects arise due to constraints on sequences of abstract units derivable from phrase
structure trees. This similarity is to be expected given that the syntactic analysis of long-studied
phenomena such as syntactic islands has substantial empirical support (e.g., Ross 1967; Chomsky
1973; Huang 1982; Rizzi 1982; Lasnik & Saito 1984; Torrego 1984; Chomsky 1986, among many
others). However, it should be noted that the proposed algorithm is not a direct instantiation of any
existing syntactic analysis that we are aware of. For example, while Head-Driven Phrase Structure
Grammar (HPSG) does make use of container node sequences directly in the form of extrac-
tion paths, HPSG analyses generally do not postulate syntactic constraints on extraction paths
to explain island effects (e.g., Pollard & Sag 1994). In contrast, while Government and Binding
(GB) Theory does postulate syntactic constraints to explain island effects, GB analyses generally
define those constraints over sequences of bounding nodes or barriers, not sequences of con-
tainer nodes (e.g., Chomsky 1973, 1986). Whether the current approach of defining constraints
over (trigrams of) container node sequences is more appropriate than these other approaches is
an empirical question. Nonetheless, the close ties between syntactic theories and acquisition the-
ories allow for a productive investigation of both the potential predictions and potential problems
inherent in the proposed algorithm.

8. CONCLUSION

Given the rate of progress in cognitive science, the most lasting contribution of the current study
is likely the construction of structurally annotated child-directed speech corpora that can be
used by researchers interested in the acquisition of complex syntactic phenomena (freely avail-
able at http://www.socsci.uci.edu/~lpearl/CoLaLab/TestingUG/index.html as well as the derived
corpora section of CHILDES: http://childes.psy.cmu.edu/derived/). We have also seen that at the
level of abstraction necessary for syntactic islands, the composition of adult-directed input is
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SYNTACTIC ISLANDS AND LEARNING BIASES 59

not substantially different from the composition of child-directed speech. This is an important
methodological point for researchers interested in syntactic acquisition, as it is often the case
that large samples of syntactically annotated adult-directed input are more easily accessible and
readily available than syntactically annotated child-directed speech. This suggests that it may be
the case that other complex syntactic phenomena can also be studied using adult-directed input;
however, given that this is an empirical question, we recommend using structurally annotated
child-directed speech whenever possible.

At a theoretical level, we have also seen that syntactic islands can be learned from realistic
child-directed speech without directly encoding syntactic constraints into the learning strat-
egy. The learning strategy proposed here has some desirable properties, such as resembling
the target state postulated by syntactic theories, capturing the well-known dispreference for
longer dependencies, and maintaining a qualitative distinction (in principle) between dispreferred
longer dependencies and truly ungrammatical dependencies. The proposed strategy also makes
some interesting empirical predictions when compared to syntactic theories, some of which are
beginning to find empirical support in recent formal acceptability judgment experiments.

It is also interesting to note that we were able to successfully model the acquisition of a com-
plex syntactic phenomenon without sophisticated probabilistic inference mechanisms, such as
Bayesian inference (e.g., Regier & Gahl 2004; Feldman, Griffiths & Morgan 2009; Foraker et al.
2009; Frank, Goodman & Tenenbaum 2009; Goldwater, Griffiths & Johnson 2009; Pearl & Lidz
2009; Pearl, Goldwater & Steyvers 2011; Perfors, Tenenbaum & Regier 2011).14 Instead, a fairly
simple probabilistic learning component (tracking frequencies of particular linguistic representa-
tions) was sufficient to learn the pattern from child-directed input. Given the relative complexity
of syntactic islands with respect to other phenomena in syntactic theory, this suggests that there
may be other (complex) syntactic phenomena that can be modeled with similarly simple prob-
abilistic mechanisms. This may eliminate some of the concerns that have been raised about the
psychological plausibility of Bayesian inference as a realistic learning mechanism for humans
(e.g., see McClelland et al. 2010 for a recent review).

The process of explicitly modeling the proposed learning strategy, and testing it on both child-
directed and adult-directed input, also highlighted several interesting properties of the “problem
of syntactic island acquisition.” We have seen that the biases in the proposed algorithm appear
to be empirically necessary, suggesting that biases such as these (or at least biases that solve the
same problems as these) will be present in any theory of the acquisition of syntactic island effects.
It seems that any theory of islands will have to answer the following questions:

(i) Why does the system attempt to learn constraints on dependencies at all?
(ii) Why does the system treat wh-dependencies as separate from other dependencies like rc-

dependencies and binding dependencies?
(iii) Why does the system track the container nodes of the dependency as opposed to other

types of information about the dependencies?
(iv) Why does the system segment container node sequences into trigrams as opposed to other

possible subsets?

14Of course, our model assumes that the phrase structure has already been inferred, and learning phrase structure may
require sophisticated probabilistic inference methods. However, once the phrase structure is available, no sophisticated
inference is required to learn syntactic island constraints, which is the learning process explicitly modeled here.
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(v) Why does the system define container nodes as maximal projections as opposed to
intermediate or smaller projects?

(vi) Why does the system subcategorize CP container nodes?

Although all of these questions can be encoded with explicit biases (as in the proposed algo-
rithm), and many of them can be characterized using the framework in section 1 such that they
are not obviously innate and domain-specific (i.e., UG-based) biases, it is not the case that we
can confidently rule out the role of innate, domain-specific assumptions in giving rise to these
biases. Future research is necessary to determine whether each of these problems raised by the
acquisition of syntactic islands can be resolved without any innate, domain-specific biases. Still,
this is much more tractable now that we have access to (i) structurally annotated child-directed
input and (ii) explicit computational models that reveal the importance of these questions for a
complete theory of syntactic island acquisition.
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APPENDIX A
FORMAL DESCRIPTIONS OF PROCEDURES.

The descriptions of the procedures used for learning and generating grammaticality preferences
are given below in pseudocode format. The description for the grammatical preference gener-
ation highlights how the complete set of trigrams is generated (based off the container nodes
encountered during learning) and how the trigram smoothing is implemented.
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(A1) Pseudocode description of the learning algorithm
for each input utterance u
for each wh-dependency w in u
characterize w as a sequence of container nodes cns
divide cns into a sequence of container node trigrams cnts
for each container node trigram cn1-cn2-cn3 in cnts
cn1-cn2-cn3_count = cn1-cn2-cn3_count + 1

(A2) Pseudocode description of the generation of grammaticality preferences
# get full set of possible trigrams
cn_set = set of container nodes encountered during learning period

# trigrams beginning with start
for each cn1 in cn_set
for each cn2 in cn_set
if start-cn1-cn2 exists as a trigram

start-cn1-cn2_count = start-cn1-cn2_count + alpha
else

start-cn1-cn2_count = alpha
total_trigram_count = total_trigram_count + start-cn1-cn2_count

# trigrams with container nodes in all slots
for each cn1 in cn_set
for each cn2 in cn_set
for each cn3 in cn_set
if cn1-cn2-cn3 exists as a trigram

cn1-cn2-cn3-count = cn1-cn2-cn3_count + alpha
else

cn1-cn2-cn3_count = alpha
total_trigram_count = total_trigram_count + cn1-cn2-cn3_count

# trigrams ending with end
for each cn2 in cn_set
for each cn3 in cn_set
if cn2-cn3-end exists as a trigram

cn2-cn3-end_count = cn2-cn3-end_count + alpha
else

cn2-cn3-end_count = alpha
total_trigram_count = total_trigram_count + cn2-cn3-end_count

# calculate trigram probabilities for all trigrams
# assume each trigram has the form cnx-cny-cnz
for each trigram cnx-cny-cnz in complete set of trigrams

cnx-cny-cnz_probability = (cnx-cny-cnz_count)/(total_trigram_count)

# generate grammaticality preferences for wh-dependency w
wh_probability = 1
characterize w as a sequence of container nodes cns
divide cns into a sequence of container node trigrams cnts
for each container node trigram cnx-cny-cnz in cnts
wh_probability = wh_probability ∗ cnx-cny-cnz_probability
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APPENDIX B
DISTRIBUTION OF WH-DEPENDENCIES IN THE INPUT

TABLE B1
Description of Child-Directed and Adult-Directed Input Corpora

Container Node Sequence and Example Utterance
Child-Directed:

Speech
Adult-Directed:

Speech
Adult-Directed:

Text

IP 12.8% 17.2% 33.0%
Who saw it? 2680 1464 1396

IP-VP 76.7% 73.0% 63.3%
What did she see? 16039 6215 2677

IP-VP-AdjP-IP-VP 0.0% < 0.1% 0.1%
What are you willing to see? 0 1 5

IP-VP-AdjP-IP-VP-PP 0.0% < 0.1% 0.0%
What are you willing to go to? 0 1 0

IP-VP-AdjP-PP 0.0% < 0.1% < 0.1%
What are they good for? 0 1 1

IP-VP-CPfor-IP-VP-PP < 0.1% 0.0% 0.0%
What did she put on for you to dance to? 1 0 0

IP-VP-CPnull-IP 0.1% 0.6% 0.3%
Who did he think stole it? 24 52 12

IP-VP-CPnull-IP-VP 1.1% 0.4% 0.2%
What did he think she stole? 236 30 8

IP-VP-CPnull-IP-VP-IP-VP 0.1% < 0.1% 0.0%
What did he think she wanted to steal? 28 3 0

IP-VP-CPnull-IP-VP-IP-VP-IP-VP < 0.1% 0.0% 0.0%
What did he think she wanted to pretend to steal? 2 0 0

IP-VP-CPnull-IP-VP-IP-VP-IP-VP-PP 0.0% < 0.1% 0.0%
Who did he think she wanted to pretend to steal from? 0 1 0

IP-VP-CPnull-IP-VP-IP-VP-PP < 0.1% 0.0% 0.0%
Who did he think she wanted to steal from? 1 0 0

IP-VP-CPnull-IP-VP-NP < 0.1% < 0.1% < 0.1%
What did he think she said about it? 1 5 1

IP-VP-CPnull-IP-VP-PP 0.1% < 0.1% < 0.1%
What did he think she wanted it for? 28 5 1

IP-VP-CPnull-IP-VP-PP-PP < 0.1% 0.0% 0.0%
What did he think she wanted out of? 1 0 0

IP-VP-CPthat-IP-VP < 0.1% < 0.1% < 0.1%
What did he think that she stole? 2 5 2
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TABLE B1
(Continued)

Container Node Sequence and Example Utterance
Child-Directed:

Speech
Adult-Directed:

Speech
Adult-Directed:

Text

IP-VP-CPthat-IP-VP-IP-VP 0.0% < 0.1% 0.0%
What did he think that she wanted to steal? 0 1 0

IP-VP-CPthat-IP-VP-PP 0.0% < 0.1% 0.0%
Who did he think that she wanted to steal from? 0 1 0

IP-VP-IP < 0.1% < 0.1% 0.0%
Who did he want to steal the necklace? 9 2 0

IP-VP-IP-VP 5.6% 3.4% 1.3%
What did he want her to steal? 1167 287 57

IP-VP-IP-VP-IP-VP < 0.1% < 0.1% < 0.1%
What did he want her to pretend to steal? 11 6 1

IP-VP-IP-VP-IP-VP-PP 0.2% < 0.1% 0.0%
Who did he want her to pretend to steal from? 43 6 0

IP-VP-IP-VP-NP < 0.1% 0.0% 0.0%
What did he want to say about it? 6 0 0

IP-VP-IP-VP-NP-IP-VP 0.0% 0.0% < 0.1%
What did he have to give her the opportunity to steal? 0 0 1

IP-VP-IP-VP-NP-PP < 0.1% < 0.1% 0.0%
What did she want to steal more of? 1 1 0

IP-VP-IP-VP-PP 0.4% 0.4% < 0.1%
What did she want to steal from? 74 33 4

IP-VP-IP-VP-PP-PP 0.0% 0.0% < 0.1%
What did she want to get out from under? 0 0 1

IP-VP-NP 0.2% 0.1% 0.1%
What did she say about the necklace? 52 10 5

IP-VP-NP-IP-VP 0.0% < 0.1% < 0.1%
What did he give her the opportunity to steal? 0 1 2

IP-VP-NP-PP < 0.1% < 0.1% 0.0%
What was she a member of? 7 6 0

IP-VP-PP 2.5% 4.3% 1.3%
Who did she steal from? 524 369 57

IP-VP-PP-CPnull-IP 0.0% < 0.1% 0.0%
What did she feel like was a very good place? 0 1 0

IP-VP-PP-CPnull-IP-VP < 0.1% 0.0% 0.0%
What did she feel like he saw? 1 0 0
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TABLE B1
(Continued)

Container Node Sequence and Example Utterance
Child-Directed:

Speech
Adult-Directed:

Speech
Adult-Directed:

Text

IP-VP-PP-IP-VP 0.0% < 0.1% 0.0%
What did she think about buying? 0 3 0

IP-VP-PP-NP 0.0% < 0.1% 0.0%
Where was she at in the building? 0 2 0

IP-VP-PP-NP-PP < 0.1% 0.0% 0.0%
What do you put it on top of? 2 0 0

IP-VP-PP-NP-PP-IP-VP 0.0% < 0.1% 0.0%
What is she in the habit of doing? 0 1 0

IP-VP-PP-PP 0.1% 0.0% 0.0%
What does he eat out of? 22 0 0

IP-VP-PP-IP-VP < 0.1% 0.0% 0.0%
What did he think about stealing? 1 0 0

Note. Percentages are shown for container node sequences, based on the total wh-dependencies in each corpus, with
the quantity observed in the corpus on the line below. An example of each container node sequence is given below the
sequence.
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