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Abstract—Accurate prediction of received signal strength
is pivotal to reliable wireless communications. Unfortunately,
wireless signals are often subject to random attenuation due to
the environment around the receivers. One of the degradation
factors that contributes to such loss is shadowing loss. It is well
known that the shadowing losses of two nearby radio links are
correlated. In this paper, we study the features of three existing
models for correlated shadowing loss, namely autocorrelation
model, cross-correlation model and joint path loss model, and
establish the relationship between them.

I. INTRODUCTION

Shadowing loss is the attenuation of signal strength due to
the environment. It results from some phenomena: reflection,
refraction and diffraction. Depending on territories and geo-
graphical characteristics, it can vary widely from one area to
another. Furthermore, shadow fading in one place can change
a lot year by year since new houses may be built, or old
factories may be demolished. Hence, it is almost impossible
to derive a specific value of shadowing loss for every kind of
environment.

Instead, researchers attempt to investigate the correlation
of shadowing loss. The underlying assumption is that when
the structure of environment changes, all signals transmitting
across it might be affected in a similar fashion. For instance,
if the shadowing loss of a signal received at base station A is
known, given the correlation among all transmitting paths in
the wireless network, that of the signal received at base station
B can be predicted as well. A number of works on correlated
shadowing loss have been published, however, there is no one
well-agreed model for correlation prediction [1].

In this paper, we choose to study three well-known corre-
lation models:
• Autocorrelation model (ACM) [2]
• Cross-correlation model (CCM) [1]
• Joint Path Loss model (JPL) [3]

Each of them was proposed at different times in order to deal
with different scenarios that range from simple to compli-
cated. The detail of each model as well as their connections
will be studied and presented in the following sections of this
paper.

The organization of this paper is as follows. In Section II,
a brief overview of related works is presented. Section III
describes the models in detail and highlights their behavior
under different conditions. Comparison of the models and

the respective results are presented in Section IV. Finally,
Section V concludes the paper.

II. LITERATURE REVIEW

Research in shadowing loss in wireless communications
has been studied for decades. For indoor communications,
Hashemi et al. [4] take many measurements and find that path
loss in indoor scenario cannot be represented by a simple
equation (e.g. [2], [5]) since it is fairly sensitive to size,
shape and movement of objects in the building. As it is too
complicated to study the loss in an arbitrary environment,
researchers so far try to focus on some typical conditions from
which they hope to learn the basic and common properties of
such loss, and generalize them for other types of environments
or multi-hop networks.

For mobile radio system, Gudmundson [2] suggests a
correlation model to characterize the shadow fading of signals
received by a mobile receiver from a base station. Wang et al.
[5] later extend this model to scenarios where both ends of
the link are mobile, and show that the correlation coefficient
is simply a product of two correlation values obtained from
single end mobility case. Saunders and Aragón-Zavala [1]
also propose a cross-correlation model for cases where two
links have one common end. Agrawal and Patwari [3] later
propose a joint path loss model for arbitrary pair of links
which do not share a common end point. Kasiri et al. adopt
the same approach in [6] .

At first glance, the three models [1]–[3] seem to be unre-
lated. However, as they were proposed to evaluate the same
quantity (i.e. shadowing loss correlation), they should produce
similar results under the same scenario. This motivates us to
investigate further. If we are able to establish the relationships,
we can then conclude many properties of shadowing loss
correlation, and are one step closer to formulate a more
uniform model to describe the shadowing loss.

III. MATHEMATICAL MODELS

We begin by presenting a general model for signal strength
in wireless communications. Suppose there is a wireless link
(i, j) between transmitter i and receiver j, the received signal
power Pij can be described by:

Pij = PT − PL − Zij (1)
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Fig. 1. Two links scenario studied for ACM.

where PT is the transmitted power in dBm, PL is the distance-
dependent path loss, and Zij is the total fading loss along the
link (i, j) in dB. Zij can be further broken down into two
components:

Zij = Xij + Yij (2)

where Xij is the shadowing loss along link (i, j) in dB and
Yij is the non-shadowing loss along link (i, j) in dB.
Xij is usually considered as the sum of losses due to

obstacles (in dB) along the propagation path:

Xij =
∑

(loss due to obstacle) (3)

Hence Xij can be modeled as a Gaussian random variable [1].
Since Yij can be considered independent across link pairs in
typical wireless systems [3], we only concentrate on Xij in
this paper.

A. Autocorrelation Model

When a mobile radio moves from x1 to x2, its link to a
base station can be considered as two separate links, as shown
in Fig. 1. Autocorrelation model [2] is proposed for such a
scenario to model the correlation of the shadowing losses
associated with these two links, and is given below:

ρa(d) = e−d/rc (4)

where
d: distance between the two positions
rc: decorrelation distance; the distance where correla-

tion drops to e−1.
From (4), it is clear that the correlation depends on d and

independent of the distance between the mobile and static
nodes. In addition, it is usually assumed that the distance the
mobile node moved is small compared to the length of either
link, i.e. min{L1, L2} � d, where L1 and L2 are the lengths
of the two links. In other words, the two links are subject to
similar terrain condition. An example for ACM is plotted in
Fig. 2.

B. Cross-Correlation Model

In the case where two disparate links share one common
end (node 3 in Fig. 3), the shadowing loss correlation can be
predicted by [1]:

ρc =


√

D1

D2
for 0 ≤ φ < φT(

φT
φ

)γ√
D1

D2
for φT ≤ φ ≤ π

(5)
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Fig. 2. Autocorrelation coefficient when L1 = L2 = 3000m and rc =
800m.
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Fig. 4. Effect of rc on CCM when D1 = 1000m, D2 = 1600m and
γ = 0.8.

where
D1: the smaller of the two path lengths
D2: the larger of the two path lengths
γ: exponential constant
φ: angle between the two links
φT : threshold angle which is defined as:

φT = 2 sin−1
rc
2D1

(6)

The distance constant rc in CCM is the same as the one in
ACM. γ will depend on the terrain, obstacle arrangements,
height of antenna with respect to surroundings.

Changing rc only affects φT as shown in (6). When rc
increases (decreases), φT increases (decreases), and so does
the correlation coefficient ρc. The effect is shown in Fig. 4.

From (5), we note that for a particular node configuration
(i.e. D1, D2 are specified) and when φT ≤ φ < π, as γ
increases, the correlation ρc will drop faster and vice versa
(shown in Fig. 5). Note that φT /φ is typically smaller than
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Fig. 5. Effect of γ on CCM when D1 = 1000m, D2 = 1600m and
rc = 400m.

1. Moreover, when γ > 1, the value of ρc will decline very
fast. Hence, γ should be practically in the range of (0,1).

C. Joint Path Loss Model

1) Single Link: The spatial loss field p(x) [3] is used to
quantify the shadowing loss on a link. The loss is higher if
the link passes through area of large p(x). Furthermore, p(x)
is assumed to be an isotropic wide-sense stationary Gaussian
random field, while its spatial correlation is zero mean and
exponentially-decaying.

The shadowing loss on a single link between node pair
(j, k) is a weighted integral of spatial loss field:

Lj,k =
1

‖xk − xj‖1/2

∫ xk

xj
p(x)dx (7)

The variance of shadowing for link a = (j, k) is:

Var [Lj,k] = σ2
x

[
1 +

δ

‖xk − xj‖
e−‖xk−xj‖/δ − δ

‖xk − xj‖

]
(8)

When ‖xk − xj‖ � δ,

Var [Lj,k] ≈ σ2
x (9)

where δ is the space constant and σx is the standard deviation
of shadow fading.

2) Shadowing Correlation: Consider two links a = (i, j)
and b = (k, l) in the field p(x) with shadowing La and Lb
respectively. The covariance of La and Lb is:

Cov (La, Lb) =
σ2
x

δd
1/2
i,j d

1/2
k,l

∫
Ci,j

∫
Ck,l

e−
‖β−α‖
δ dαT dβ (10)

where di,j = ‖xi − xj‖ and Cm,n is the line between points
xm and xn.

The shadowing correlation coefficient between the two
links is therefore:

ρ =
Cov (La, Lb)√
Var [La]Var [Lb]

(11)

Using a network configuration similar to Fig. 3, the effect
of each parameter is investigated. As shown in Fig. 6, ρ
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Fig. 6. Effect of σx on JPL when D1 = 2000m, D2 = 3000m and
δ = 200.
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Fig. 7. Effect of δ on JPL when D1 = 2000m, D2 = 3000m and σx = 0.3.

remains the same when σx changes. It confirms that the stan-
dard deviation σx does not affect the correlation coefficient at
all. As observed in Fig. 7, when δ increases, the correlation
coefficient ρ increases (when all other parameters are kept
constant).

IV. COMPARISON RESULTS

A. Strategy

We again consider the two links configuration illustrated in
Fig. 3. D1 and D2 are kept constant while the angle φ varies
from 0 ◦ to 180 ◦. The shadowing correlation will be estimated
according to each studied model, and the set of parameters
(rc, γ, δ) will be adjusted until they produce approximately
the same results. The parameter adjustment bases on how
each parameter influences the correlation values as discussed
in the previous section. Note that node 2 and node 3 in Fig. 3
are equivalent to x1 and x2 in Fig. 1.

B. Results and Discussions

1) CCM vs JPL: Using a specific pair of D1 and D2,
we follow the strategy described in Section IV-A and obtain
some suitable parameter set (rc, γ, δ). One example is shown
in Fig. 8. The procedure is then continued for other pairs of
D1 and D2, and the respective results are listed in Table I.
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Fig. 8. CCM vs JPL when D1 = 1000m and D2 = 2000m.

TABLE I
SIMULATION RESULTS FOR CCM VS JPL

D1(m) D2(m) rc(m) γ δ(m)

2000 2000 70 0.65 150
300 0.7 350
600 0.7 650

1000 1500 100 0.7 150
300 0.7 320
600 0.6 620

1000 2000 455 0.5 600
300 0.6 400
200 0.65 275
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Fig. 9. CCM vs JPL with different sets of values for D1 and D2.

With the aids of mathematical regression and wide range
of parameter values, the relationship between parameters is
established in the following form:

rc
γ

= aδ2 + bδ + c (12)

where a, b and c are coefficients related to the ratio n =
D1/D2 as follows:

a = −0.3141n4 + 0.7501n3 − 0.5913n2 + 0.16n− 0.005

b = −32.372n3 + 52.756n2 − 20.266n+ 1.4744 (13)
c = 7262.8n4 − 11700n3 + 4521.6n2 − 2778n+ 61.06

Further verification with new set of values of D1 and D2
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Fig. 10. ACM vs JPL when D1 = D2 = 1000m.
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Fig. 11. ACM vs JPL when D1 = 1000m and D2 = 1100m.

are shown in Fig. 9. The values for the parameter sets are
selected according to (12) and (13).

2) ACM vs JPL: As explained before, when ACM is
applied on a configuration such as Fig. 3, D3 should be small
compared to D1 and D2. This means that the angle φ should
also be small. Therefore we are only interested in the range
of 0 ◦ < φ < 20 ◦ in the following studies.
• For the case D1 = D2:

Since D1 = D2, n = D1/D2 = 1. In this case the two
models will match when

rc = 4δ (14)

Results are plotted in Fig. 10. As we can see, the two models
match very well.
• For the case D1 6= D2:
When D1 and D2 differ by little, there is a large dis-

crepancy between the two models, especially when the angle
is very small. In the extreme case where φ = 0, in order
to match the two models, ACM requires a very large rc
(> 1500m) while JPL needs δ = 200m as shown in Fig. 11.
Further study is required to understand this scenario.

One more thing to take note is that ACM does not take into
account the moving direction of mobile node. For instance,
when the two links in ACM are collinear (see Fig. 12),
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Fig. 13. Relationship of γ and rc according to (15).

intuitively, the correlation is high because they experience
similar environmental obstruction on the overlapping part. On
the other hand, when the overlapping is minimal (cf. Fig. 1),
the correlation should be low. However, ACM treats these
situations equally and this limits its application in general.

3) CCM vs ACM: As both CCM and ACM use the same
parameter rc, (12), (13) and (14) provide a pathway to link
up the two models.
• For the case D1 = D2:
Substituting (14) into (12), we can obtain:

rc
γ

= a
r2c
16

+ b
rc
4

+ c (15)

Since D1 = D2 and from (13), we obtain a = −10−4,
b = 1.5924 and c = −132.505. (15) is plotted in Fig. 13.
Contrary to our expectation, γ hardly lies in the range of
(0, 1). As a result, (15) cannot provide valid values of rc and
γ. Therefore, there is no suitable set of parameters (rc, γ, δ)
that can combine the three models under the same network
configuration. In other words, the condition in which JPL,
CCM and ACM produce the same correlation values does
not exist.
• For the case D1 6= D2:

This scenario is even more complicated. ACM and CCM
cannot generate agreeable results due to conflicting expected
conditions. Mathematically, the constant part of CCM (where
φ < φT ) cannot be equated to any part of ACM easily, as
demonstrated in Fig. 14.

V. CONCLUDING REMARKS

In this paper, we examine thoroughly three shadowing loss
correlation models, namely autocorrelation, cross-correlation,
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Fig. 14. Sample result of CCM vs ACM when D1 = 2000m, D2 = 2100m,
γ = 0.8 and rc = 600m.

and joint path loss models. Their features, as well as their
application areas, are discussed. Moreover, we deduce an
equation that relates JPL to CCM, and also present a number
of suggestions for further investigations. We are currently
developing an algorithm to automatically evaluate the param-
eters to equate CCM with JPL, in order to facilitate further
research. For future work, we will continue our effort in
establishing the relationship between ACM and the other
two models for different scenarios, and apply the findings
to localization for wireless sensor networks (e.g. [7]).
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