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Background: Infants experiencing bronchiolitis are at increased risk 
for asthma, but few studies have identified modifiable risk factors. 
We assessed whether early life air pollution influenced child asthma 
and wheeze at age 4–6 years among children with a history of bron-
chiolitis in the first postnatal year.
Methods: Children with caregiver-reported physician-diagnosed 
bronchiolitis were drawn from ECHO-PATHWAYS, a pooled longi-
tudinal cohort from six US cities. We estimated their air pollution 
exposure from age 1 to 3 years from validated spatiotemporal models 
of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone 
(O3). Caregivers reported children’s current wheeze and asthma at 
age 4–6 years. We used modified Poisson regression to estimate 
relative risks (RR) and 95% confidence intervals (CI), adjusting for 
child, maternal, and home environmental factors. We assessed effect 
modification by child sex and maternal history of asthma with inter-
action models.

Results: A total of 224 children had caregiver-reported bronchiolitis. 
Median (interquartile range) 2-year pollutant concentrations were 9.3 
(7.8–9.9) µg/m3 PM2.5, 8.5 (6.4–9.9) ppb NO2, and 26.6 (25.6–27.7) 
ppb O3. RRs (CI) for current wheeze per 2-ppb higher O3 were 1.3 
(1.0–1.7) and 1.4 (1.1–1.8) for asthma. NO2 was inversely associ-
ated with wheeze and asthma whereas associations with PM2.5 were 
null. We observed interactions between NO2 and PM2.5 and maternal 
history of asthma, with lower risks observed among children with a 
maternal history of asthma.
Conclusion: Our results are consistent with the hypothesis that 
exposure to modest postnatal O3 concentrations increases the risk of 
asthma and wheeze among the vulnerable subpopulation of infants 
experiencing bronchiolitis.
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Bronchiolitis is a common lower respiratory tract disease in 
infancy and is most often associated with the respiratory 

syncytial virus (RSV).1 Evaluation and care for children with 
more severe symptoms typically involves outpatient assessment, 
emergency department care, or hospitalization.2,3 Bronchiolitis 
is the leading cause of hospitalization in the first year of life in 
the US1,4,5 and, in the first 2 years of life, is a well-established 
and strong risk factor for the later development of asthma dur-
ing childhood.3,5–8 Nearly 50% of infants with severe bronchiol-
itis (resulting in emergency department visits or hospitalization) 
later receive an asthma diagnosis,7 although it remains unclear 
why only some children who experience clinically significant 
bronchiolitis in infancy develop asthma.

We hypothesized that air pollution may play an important 
but understudied role in the increased risk observed for infants 
with bronchiolitis. In general population studies, air pollutants 
including particulate matter (PM2.5), nitrogen dioxide (NO2), 
and ozone (O3) have been associated with childhood asthma 
and wheeze.9–11 Bronchiolitis infection in infancy with subse-
quent postnatal exposure to air pollution may influence lung 
development through shared mechanisms of pulmonary injury 
including disruption of the epithelial barrier,12–16 induction of 
pulmonary inflammatory response,12,17,18 airway remodel-
ing,19,20 and reduced alveolarization.19,21,22

Although there are numerous studies of air pollution 
and pediatric asthma, the previous literature on the unique 
vulnerability of infants who have experienced bronchiol-
itis is limited. Two analyses from the Children’s Health and 
Environmental Research cohort in the Republic of Korea 
assessed the independent and combined effect of air pollutants 
(NO2, CO, and O3) or proxies for traffic exposure and bron-
chiolitis in infancy on the development of asthma in school-
aged children.23,24 Associations between pollutants and some 
asthma outcomes were seen for those children with a history 
of bronchiolitis and higher magnitudes were observed among 
individuals with both higher exposure to air pollutants23 or 
traffic measures24 and a history of bronchiolitis. A multicenter 
US study found similar results regarding recurrent wheeze at 
age 3 years among children hospitalized for bronchiolitis and 
living less than 100 meters from a major roadway.25 These 
studies suggest the potential unique susceptibility of children 
who have experienced bronchiolitis to postnatal air pollution.

We sought to advance understanding of the role of air 
pollution as a modifiable risk factor for asthma and wheeze 
development in children who were diagnosed with bronchi-
olitis in the first year of life. We conducted this study in a US 
population and include the most common pollutants associ-
ated with asthma in children, PM2.5, NO2, and O3.

26

METHODS

Study Population
Eligible participants were selected from the Environmental 

Influences on Child Health Outcomes (ECHO) PATHWAYS 

Consortium, which consists of three prospective pregnancy 
cohorts: The Conditions Affecting Neurocognitive Development 
in Early Childhood (CANDLE) study, the Global Alliance to 
Prevent Prematurity and Stillbirth (GAPPS) study, and The 
Infant Development and the Environment Study (TIDES). 
All research activities for this analysis were approved by the 
University of Washington and site Institutional Review Boards.

ECHO-PATHWAYS cohorts have been described 
previously.27–30 In brief, CANDLE recruited women aged 
16–40 years and in the second trimester with singleton, 
low-medical-risk pregnancies between 2006 and 2011 
within Shelby County (Memphis), Tennessee.29 GAPPS 
recruited women aged 18 years or older who shared demo-
graphic and health information and biospecimens with the 
GAPPS biorepository.30 Participants were enrolled from 
2011 to 2016 at two hospitals in Seattle, Washington and 
one hospital in Yakima, Washington with follow-up ending 
just after birth. TIDES recruited low-medical-risk pregnant 
women aged 18 years or older in the first trimester from 
obstetrical clinics located in Minneapolis, Minnesota; 
Rochester, New York; San Francisco, California; and 
Seattle, Washington between 2010 and 2012.28 Mother–
child dyads were invited to enroll into ECHO-PATHWAYS 
for follow-up at the time of an age 8–9-year visit in 
CANDLE, age 4–6-year or 8–9-year visit in GAPPS, and 
an age 6-year visit in TIDES.

This analysis included subjects with a valid geocoded 
address at age 4 who answered affirmatively to the following 
question: During the first 12 months of (child’s name) life, did 
a doctor or health care provider diagnose him or her with bron-
chiolitis, wheezing, or “RSV” (respiratory syncytial virus)? 
asked retrospectively at CANDLE age 8–9, TIDES age 6, or 
GAPPS 4–6 year visits. Of the 246 participants with reported 
bronchiolitis, 9 (3.7%) were excluded for missing addresses 
and 13 (5.2%) for missing an airway outcome survey, leaving 
an analytic sample of 224.

Air Pollution Estimates
We estimated PM2.5 (µg/m3), NO2 (ppb), and O3 (ppb) 

exposures using predictions of outdoor pollutant concentra-
tions at the geocoded residential address collected at the 
age 4 visit using a fine-resolution spatiotemporal model. 
In brief, a combination of external research campaigns and 
regulatory monitors were utilized to predict concentrations 
in separate spatiotemporal models via the decomposition 
of the space-time field. Hundreds of geographic covariates 
measured at regulatory monitors and residential locations 
were included in the models using dimension reduction via 
partial least squares. Spatial smoothing via universal kriging 
and time trends estimated from observed time series were 
also utilized in the construction of the models.31–33 We esti-
mated each child’s long-term exposure to PM2.5, NO2, and O3 
using the address reported at the age 4 visit. Modeled pol-
lutant concentrations at a 2-week resolution were averaged 
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from the date of the first birthday to the third birthday to 
calculate a long-term (2-year) air pollutant exposure for each 
participant.

Asthma and Wheeze Outcomes
We characterized childhood asthma outcomes at the 

CANDLE 4–6-year-old, TIDES 4-year-old, and GAPPS 
4–6-year-old visit using caregiver report on the International 
Study of Asthma and Allergies in Childhood (ISAAC) ques-
tionnaire.34–37 The primary outcomes include current wheeze 
defined as an affirmative to both “Has your child ever had 
wheezing or whistling in the chest?” and “Has your child ever 
had wheezing or whistling in the chest in the last 12 months?” 
and current asthma defined as an affirmative to at least two 
of the following “Has your child ever had asthma, current 
wheeze as defined above”, and/or “In the past 12 months has 
your child used any type of medicines, liquids, puffers, or other 
medication for wheezing or asthma?.” In a sensitivity analy-
sis, a stricter definition of current asthma was employed that 
required an affirmative to “Has your child ever had asthma?” 
in addition to an affirmative response to either current wheeze 
and/or medication use for wheeze or asthma. We approached 
this as a sensitivity analysis because 9 (4.0%) subjects were 
missing data.

Covariates
We selected confounders and precision variables a pri-

ori owing to being known risk factors for the development 
of asthma and harmonized them across the three cohorts. 
Child factors include the age at outcome assessment (years), 
sex assigned at birth (male/female), child race (Black or 
African American/White/other race), season of birth (cold as 
October through March/warm as April through September), 
preterm birth (<37 weeks/≥37 weeks), birthweight (grams), 
duration of breastfeeding (never/<6 months/≥6 months), and 
date of birth (natural splines with 1 degree of freedom for 
each year). We included child race to attempt to account for 
differences in rates of asthma among Black children in the 
US and to address social, economic, and structural factors 
linked to racial disparities in asthma including exposure to 
stress and environmental toxicants.38,39 We did not perform 
further disaggregation of child race, as it was limited by 
sample size. Maternal factors include education at the age 
4–6 year visit (<high school [HS]/HS or equivalent/college 
or technical school/some graduate work or degree), house-
hold income at 4–6 year visit (USD, adjusted for region and 
inflation), history of asthma at age 4–6 year visit (yes/no), 
and smoking during pregnancy (yes/no). Home environment 
factors include household size at 4–6 year visit (number of 
adults and children), Neighborhood Deprivation Index (age 
4 year address),40,41 pregnancy cotinine concentration (ng/
mL), postnatal exposure to secondhand smoke at age 4–6 
year visit (yes/no), and pets in the home during the first 12 

months of life (yes/no). A recruitment site was also included 
to account for unmeasured confounding.

Statistical analysis
Descriptive statistics were used to explore the study 

population characteristics. Pearson correlations between pol-
lutants were calculated within metropolitan areas owing to the 
inclusion of site as a covariate. A staged modeling approach 
was used with modified multivariate Poisson regression 
with robust standard errors to calculate relative risks (RR) 
and 95% confidence intervals (CI) of air pollution exposure 
and airway outcomes.42 Groups were compared using inter-
quartile range (IQR)-based effect sizes of 2-, 5-, and 2-units 
higher air pollution exposure for PM2.5, NO2, and O3, respec-
tively. We used substantive knowledge from existing litera-
ture to develop three stages of models to explore the influence 
of increasing covariate adjustment. A minimally adjusted 
model incorporated basic demographics: age at outcome 
assessment, sex, season, year of birth, and site. A main model 
included additional variables that were major confounders or 
precision variables: race, preterm birth, birthweight, maternal 
education, income, maternal history of asthma status, smok-
ing during pregnancy, Neighborhood Deprivation Index, coti-
nine, and reported secondhand smoke exposure in addition 
to the variables in the minimal model. An extended model 
additionally included potential confounders or precision vari-
ables: duration of breastfeeding, household size, and pets in 
the home during the first year of life. We assessed effect mod-
ification by child sex and maternal history of asthma using 
multiplicative interaction terms in the main model.

Sensitivity analyses included assessing the impact of 
multipollutant exposures using two methods. The first approach 
mutually adjusted for PM2.5, NO2, and O3 on the relationship 
between air pollution and asthma and wheeze outcomes. The 
second post-hoc set of multipollutant models utilized general-
ized additive models (GAMs) as mixture models with two- or 
three-way interactions to assess the joint effects of pollutants 
using inspection of interactions. Single pollutant GAMs were 
also used to assess nonlinearity. Leave one cohort or site-out 
analyses were utilized to assess robustness to exclusion of 
cohorts and sites. Another sensitivity analysis used the out-
comes of strict current asthma and combined current wheeze 
and current asthma; as part of this sensitivity analysis, we 
also reanalyzed current wheeze and current asthma among 
the subset of participants who were not missing a response to 
the strict asthma variable, allowing a more appropriate com-
parison among these findings using the same set of participants. 
We conducted an additional sensitivity analysis in which we 
adjusted models for air pollution exposure before bronchiolitis 
(pregnancy to age 1 year, estimated at the address reported at 
enrollment). All sensitivity analyses used the same covariates as 
in the main model and were conducted in R 4.1.1 (R Foundation 
for Statistical Computing, Vienna, Austria).
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RESULTS
Of the 2684 PATHWAYS Mother–child dyads, care-

givers of 224 children, of which 137 were from CANDLE, 
47 were from GAPPS, and 40 were from TIDES, reported 
bronchiolitis in their child’s first year of life. Most children 
were male (62%) and had mothers without a history of asthma 
(72%). The mean age at asthma assessment was 4.7 (SD 0.9) 
years; 36% reported current asthma and 37% reported current 
wheeze (Table 1).

Median (IQR) 2-year pollutant (age 1–3 years) concen-
trations were 9.3 (7.8–9.9) µg/m3 PM2.5, 8.5 (6.4–9.9) ppb 
NO2, and 26.6 (25.6–27.7) ppb O3 (Table 2). Concentrations 
ranged from 3.7–11.6 µg/m3 for PM2.5, 2.0–16.1 ppb for NO2, 
and 18.6–33.9 ppb for O3. O3 was negatively correlated with 
both NO2 and PM2.5 whereas NO2 and PM2.5 were positively 
correlated within most sites (Table 3).

TABLE 1.  Study population characteristics (N = 224)

Characteristica   

History of infant bronchiolitis, n(%) 224 100

CANDLE 137 61

  Memphis, TN 137 61

GAPPS 47 21

  Seattle, WA 18 8

  Yakima, WA 29 13

TIDES 40 18

  Minneapolis, MN 16 7

  Rochester, NY 7 3

  San Francisco, CA 10 5

  Seattle, WA 7 3

Child characteristics

Child sex assigned at birth, n(%)   

  Male 139 62

  Female 85 38

Child race, n(%)   

  Asian 2 1

  Black or African American 99 44

  Multiple race 14 55

  Other 3 1

  White 104 46

Year of birth, n(%)   

  2007 11 5

  2008 23 10

  2009 38 17

  2010 38 17

  2011 45 20

  2012 37 17

  2013 20 9

  2014 12 5

Season of birth, n(%)   

  Cold 97 43

  Warm 127 57

Preterm birth (<37 weeks), n(%)   

  Yes 32 14

(Continued)

  No 190 85

Birthweight (g), mean (SD) 3238.7 654.4

Age at age 4–6 visit (years), mean (SD) 4.7 0.9

Breastfeeding duration, n(%)   

  None 57 25

  <6 months 127 57

  >6 months 38 17

Maternal characteristics   

Education, n(%)   

  <High school diploma 12 5

  High school diploma or equivalent 65 29

  College or technical school 95 42

  Some graduate work or degree 52 23

Income adjusted for region and inflation, mean (SD) 59068 50911

Maternal history of asthma, n(%)   

  Yes 62 28

  No 161 72

Smoking during pregnancy, n(%)   

  Yes 15 7

  No 206 92

Home environmental factors   

Household size, mean (SD) 4.5 1.4

Neighborhood Deprivation Index, mean (SD) 0.2 0.8

Cotinine (ng/mL), mean (SD) 54.3 261.3

Reported secondhand smoke exposure, n(%)   

  Yes 55 25

  No 168 75

Pets in home in early life, n(%)   

  Yes 144 64

  No 78 35

Child airway outcomes   

  Current wheeze, n(%)b   

    Yes 82 37

    No 141 63

  Current asthma, n(%)c   

    Yes 80 36

    No 144 64

  Strict current asthma, n(%)d   

    Yes 67 30

    No 148 66

Combined current wheeze and asthma, n(%)e   

    Yes 88 39

    No 136 61

aNumber missing for individual variables include: child race (2), preterm birth (2), 
birthweight (1), breastfeeding duration (2), income (6), maternal history of asthma (1), pre-
natal smoking (3), household size (2), cotinine (3), reported postnatal secondhand smoke 
exposure (1), pets in the home (2), current wheeze (1), and strict current asthma (9).

bCurrent wheeze: defined as yes to both of the following items: “Has your child 
ever had wheezing or whistling in the chest?” yes/no and if yes: “Has your child ever 
had wheezing or whistling in the chest in the last 12months?” (yes/no).

cCurrent asthma: defined as yes to at least two of the following items: Ever asthma: 
“Has your child ever had asthma?” (yes/no), Current wheeze (defined above), and/
or Medication use: “In the past 12 months has your child used any type of medicines, 
liquids, puffers or other medication for wheezing or asthma?” (yes/no).

dStrict current asthma: defined as Ever asthma (defined above) and either Current 
wheeze (defined above) or Medication use (defined above).

eCombined current wheeze and asthma: defined as yes to either current wheeze 
(defined above) or current asthma (defined above).

CANDLE, Conditions Affecting Neurocognitive Development in Early Childhood; 
GAPPS, the Global Alliance to Prevent Prematurity and Stillbirth; TIDES, the Infant 
Development and the Environment Study.

TABLE.  (Continued)
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In the main model (Figure  1), adjusted RRs for cur-
rent wheeze and current asthma were 1.3 (95% CI = 1.0, 1.7) 
and 1.4 (95% CI = 1.1, 1.8), respectively, per 2-ppb higher 

postnatal O3. A 5-ppb increase in NO2 was inversely associ-
ated with both current wheeze (RR = 0.58; 95% CI = 0.39, 
0.87) and current asthma (RR = 0.58; 95% CI = 0.41, 0.88) 
and the effect estimates for a 2-µg/m3 increase in PM2.5 were 
imprecise (RR = 0.64; 95% CI = 0.32, 1.3 for current wheeze; 
RR = 0.66; 95% CI = 0.30, 1.4 for current asthma). Additional 
covariate adjustment did not substantially change the results.

NO2 and PM2.5 both showed interaction by the maternal 
history of asthma on child asthma outcomes (Figure 2). We 
observed an inverse association only among children with a 
maternal history of asthma; effect estimates were attenuated 
and CIs included the null for children without a maternal his-
tory of asthma. We observed no effect modification by the 
maternal history of asthma status for O3 nor for any pollutant 
by child sex (Figure 3).

The results from the multipollutant models, mutually 
adjusted for PM2.5, NO2, and O3, were similar to the main find-
ings for O3 but were different for PM2.5 and NO2. The RR for 
O3 for current wheeze was 1.1 (95% CI = 0.77, 1.6) and 1.3 
(95% CI = 0.87, 1.8) for current asthma. Estimated coefficients 
for both NO2 and PM2.5 were attenuated after adjustment for 
other pollutants; estimates for NO2 were 0.93 (95% CI = 0.82, 
1.1) for the current wheeze and 0.95 (95% CI = 0.84, 1.1) for 
current asthma and estimates for PM2.5 were 0.95 (95% CI = 
0.62, 1.5) for current wheeze and 1.0 (95% CI = 0.62, 1.6) for 
current asthma (Figure  4). No pollutants showed indication 
of nonlinear response in single pollutant GAMs (eFigure 1, 
http://links.lww.com/EDE/C24) or interactions between pairs 
of pollutants (eFigure 2, http://links.lww.com/EDE/C24). In 
contrast, the GAM assessing the 3-way interaction between 
the pollutants was suggestive of differences in associations 
between NO2 and O3 and current asthma, depending on the 
concentration of PM2.5 (eFigure 3, http://links.lww.com/EDE/
C24). When PM2.5 was held at 4.7 µg/m3 higher levels of NO2 
and O3 were associated with increased risk, whereas when 
PM2.5 was held at 10.6 µg/m3 higher levels of NO2 and O3 
were associated with lower risk.

Results from sensitivity analyses where one site or 
cohort was excluded from the main model indicate that the 
effect estimates were stable whereas the precision was reduced 
as evidenced by widened confidence intervals when CANDLE 
was omitted (eFigure 4, http://links.lww.com/EDE/C24).

Estimates of risk for strict current asthma as an out-
come (n = 215) were imprecise whereas estimates of com-
bined current wheeze and current asthma were similar to the 
main findings for O3 but were slightly attenuated for NO2 and 
PM2.5 (Table 4). Results of current wheeze and current asthma 
within the subset population were near identical to the find-
ings in the primary analysis although the strict current asthma 
subset results were more attenuated relative to overall current 
wheeze and current asthma for both NO2 and PM2.5 (Table 4). 
The additional adjustment for pregnancy and infancy concen-
trations of air pollution did not substantially change estimates 
from the main analysis (Table 4).

TABLE 2.  Median (interquartile range) of air pollution 
exposures by cohort and site

Study Site N NO2 (ppb) O3 (ppb) PM2.5 (µg/m3) 

Overall 224 8.5 (6.4–9.9) 26.6 (25.6–27.7) 9.3 (7.8–9.9)

CANDLEa     

Memphis, TN 137 9.3 (7.6–10.6) 27.0 (26.1–27.9) 9.7 (9.3–10.2)

GAPPSb     

Seattle, WA 18 7.4 (6.0–8.6) 20.5 (20.1–21.7) 5.1 (4.8–5.6)

Yakima, WA 29 4.2 (3.2–5.6) 26.7 (25.7–27.6) 6.5 (4.9–7.5)

TIDESc     

Minneapolis, MN 16 9.1 (7.9–9.6) 25.7 (25.2–27.3) 8.2 (8.0–8.6)

Rochester, NY 7 7.0 (6.1–7.3) 26.2 (26.0–26.5) 7.5 (7.3–7.8)

San Francisco, CA 10 8.3 (7.2–10.8) 25.8 (22.3–26.3) 9.7 (8.9–10.1)

Seattle, WA 7 9.3 (8.8–10.0) 19.7 (19.5–24.0) 6.2 (5.9–7.0)

aYears of exposure for the CANDLE cohort: 2008–2014.
bYears of exposure for the GAPPS cohort: 2012–2017.
cYears of exposure for the TIDES cohort: 2012–2014.
CANDLE, Conditions Affecting Neurocognitive Development in Early Childhood; 

GAPPS, the Global Alliance to Prevent Prematurity and Stillbirth; TIDES, the Infant 
Development and the Environment Study.

TABLE 3.  Pearson correlation of air pollution exposures 
within sites

Study Site N Pollutant NO2 PM2.5 O3 

CANDLE      

Memphis, TN 137 NO2 1   

  PM2.5 0.39 1  

  O3 −0.65 −0.36 1

GAPPS      

Seattle, WA 18 NO2 1   

  PM2.5 0.00 1  

  O3 −0.41 0.18 1

Yakima, WA 29 NO2 1   

  PM2.5 0.77 1  

  O3 −0.49 −0.35 1

TIDES      

Minneapolis, MN 16 NO2 1   

  PM2.5 0.76 1  

  O3 −0.56 −0.50 1

Rochester, NY 7 NO2 1   

  PM2.5 −0.85 1  

  O3 −0.95 0.95 1

San Francisco, CA 10 NO2 1   

  PM2.5 0.56 1  

  O3 −0.34 0.34 1

Seattle, WA 7 NO2 1   

  PM2.5 0.92 1  

  O3 0.02 −0.17 1

CANDLE, Conditions Affecting Neurocognitive Development in Early Childhood; 
GAPPS, the Global Alliance to Prevent Prematurity and Stillbirth; TIDES, the Infant 
Development and the Environment Study.

http://links.lww.com/EDE/C24
http://links.lww.com/EDE/C24
http://links.lww.com/EDE/C24
http://links.lww.com/EDE/C24
http://links.lww.com/EDE/C24
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DISCUSSION
Bronchiolitis is common in infancy and a recognized 

risk factor for childhood asthma and wheeze, yet not all infants 
with bronchiolitis later develop asthma. Findings from this 
prospective cohort study among children with bronchiolitis in 
infancy suggest that postbronchiolitis air pollution exposure 
may influence the subsequent risk of wheeze and asthma in 
early childhood. As expected, we found a high prevalence of 
asthma and wheeze among our study population. We observed 
a higher risk for both asthma and wheeze at age 4–6 years for 
those with higher ambient O3 in early childhood, consistent 
with our hypothesis. However, ambient PM2.5 and NO2 were 
not observed to increase the risk for either outcome in our 
study.

There are several potential pathways by which air pol-
lutants may influence wheeze and asthma development after a 
bronchiolitis infection. Disruption of the lung epithelium after 
infection12,13 alters deposition and translocation of inhaled 
particles that is thought to be associated with the risk of per-
sistent wheeze.12,14 Air pollutants have also been associated 
with altering barrier functions in the human lung epithelium, 
potentially furthering this risk.15,16 Another pathway reflects 
the observed wheezy phenotype via the dysregulation of 
inflammation and pulmonary immune response associated 

with lower respiratory virus infection in early life.12,17 This 
phenotype is then thought to progress to recurrent wheeze and 
asthma in childhood via airway remodeling and decreased 
alveolarization.19 In animal models, air pollutants have also 
been associated with alveolar morphogensis,21,22 airway 
remodeling,20 changes in the inflammatory response,18 and 
pulmonary development disruption43 after chronic exposure, 
indicating that postbronchiolitis exposure may further con-
tribute to the progression to recurrent asthma and wheeze 
within this vulnerable population.

Some, but not all, prior studies of general pediatric 
populations have identified childhood exposure to O3 as a risk 
factor for asthma.9,44–47 We found a consistently higher risk 
for both current wheeze and current asthma among children 
who had a history of infant bronchiolitis with higher expo-
sure to O3. All estimated O3 concentrations were below US 
Environmental Protection Agency (EPA) regulatory exposure 
limits, with similar variability to previous studies in North 
America.45,46 Kim et al.23 also reported a higher prevalence of 
similar outcomes among school-aged children in Korea with 
both history of bronchiolitis in infancy and higher O3, defined 
as above the sample mean (concentrations not provided). Their 
analysis included children who did not have bronchiolitis in 
infancy and reported a high odds ratio for children with both 

FIGURE 1.  Associations between air pollution exposure and (A) current wheeze and (B) current asthma at age 4–6 years among 
infants with bronchiolitis in the first year of life. Relative risks and 95% confidence intervals are presented for 2-unit differences in 
particulate matter 2.5 (PM2.5) and ozone (O3) and 5-unit differences in nitrogen dioxide (NO2). Minimal models were adjusted 
for age at outcome assessment, sex, season, year of birth, and site; main models additionally included race, preterm birth, birth-
weight, maternal education, income, maternal history of asthma, smoking during pregnancy, neighborhood deprivation index, 
cotinine, and reported postnatal secondhand smoke exposure; extended models additionally included duration of breastfeeding, 
household size, and pets in the home during the first year of life.
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risk factors compared to those with neither current wheeze nor 
current asthma.23

We hypothesized that we would observe an adverse 
effect of PM2.5 as well, given evidence for PM2.5 on asthma 
risk in many general pediatric populations.9–11,44,45,47 However, 
we found no association between higher PM2.5 exposure and 
risk of current wheeze or current asthma at age 4–6 years 
among those with bronchiolitis. Our estimates contained large 
CIs and PM2.5 concentrations and variability were modest and 
below annual EPA regulatory limits. We identified no other 
studies that examined the effects of exposure to PM2.5 among 
children with bronchiolitis. In studies of traffic exposure, 
an important source of both PM2.5 and NO2, new wheezing 
and new physician diagnosis of asthma were more common 
among children who had both a history of bronchiolitis and 
traffic exposure compared with children who had neither risk 
factor24 as well as among those with severe bronchiolitis who 
lived less than 100 meters from a major roadway with recur-
rent wheeze.25 However, relatively small sample sizes of indi-
viduals with both bronchiolitis and higher air pollution lead to 
estimated effects with wide CIs.23,24 Future studies with larger 
sample sizes and more variable exposures to PM2.5 may offer 
more precise estimates for this pollutant.

In our analysis of the potential effect modification of 
PM2.5 exposure on asthma and wheeze by the maternal his-
tory of asthma, we observed reduced risk among mothers 

with a history of asthma and null estimates among those 
without. A cautious interpretation is warranted owing to the 
small sizes of the respective groups in this exploratory analy-
sis. In addition to unmeasured confounding, one speculation 
for this unanticipated observation is potential differences in 
behaviors between mothers based on their own asthma his-
tory. For example, those with asthma in the setting of higher 
air pollution exposure may be more inclined to limit their 
children’s exposures to asthma risk factors through behaviors 
such as reducing indoor air contaminants that influence indoor 
air quality. Although we were able to control for exposure to 
household pets and tobacco smoke, we could not character-
ize cleaning products or home pesticide use, the presence of 
mold or moisture damage, candles or gas stove use, or clean-
ing practices to control dust.

Contrary to our hypothesis, we observed higher NO2 
exposure associated with a lower risk of both current asthma 
and wheeze in the main models. In general population stud-
ies, higher NO2 exposure postnatally has consistently been 
associated with a higher risk of asthma and wheeze develop-
ment.9,11,23,44,45,47,48 Although our estimated NO2 concentra-
tions were all below annual EPA regulatory limits in our study, 
they were similar to those reported in these general population 
studies. Our results contrast with the Korea-based Children’s 
Health and Environmental Research cohort, where NO2 in 
the presence of bronchiolitis was associated with a higher 

FIGURE 2.  Associations between air pollution exposure and asthma risk at age 4–6 years by the maternal history of asthma status 
among infants with bronchiolitis in the first year of life. Relative risks and 95% confidence intervals are presented for 2-unit differ-
ences in particulate matter 2.5 (PM2.5) and ozone (O3) and 5-unit differences in nitrogen dioxide (NO2). P-values shown are for 
the interaction term between air pollution and maternal history of asthma. Models were adjusted for age at outcome assessment, 
sex, season, year of birth, site, race, preterm birth, birthweight, maternal education, income, maternal history of asthma, smoking 
during pregnancy, neighborhood deprivation index, cotinine, and reported postnatal secondhand smoke exposure.
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risk of asthma and wheeze.23 We again observed reduced 
effect estimates only among those with a maternal history of 
asthma and higher NO2. As described above, explanations 
for this may include unmeasured confounding as well as dif-
ferences in behaviors where mothers with asthma are more 
precautious regarding exposure to sources of indoor air pol-
lutants. Perhaps more importantly, concentrations of ambient 
NO2 and O3 are often negatively correlated owing to well-
described atmospheric chemical reactions where NO2 reacts 
and is consumed in the formation of ground-level O3.

49 Others 
have observed negative correlations between NO2 and O3 in 
epidemiologic analysis46 as well as observed effect estimates 
of NO2 and O3 in opposite directions.44,46,50 It is possible the 
lower risk observed with higher NO2 exposure reflects a proxy 
for the adverse impact of O3 exposure in our study, that is, 
the “protective” findings of higher NO2 may be demonstrat-
ing lesser risk for areas with lower O3 concentrations. This 
is supported by our sensitivity analyses of mutual adjustment 
for PM2.5, NO2, and O3 that resulted in a shift to null effect 
estimates for NO2 whereas estimates for O3 remain similar 
to the single-pollutant analysis. Additionally, the three-way 
interaction GAM mixture model suggested the possibility of 
complex interactions between exposures to PM2.5, NO2, and 
O3, which warrant exploration in future studies. However, the 
sample size in this analysis limits this interpretation owing 

to the possibility for spurious associations. We did not detect 
effect modification by child sex for any pollutants.

Asthma is an imprecise diagnosis in early childhood51 
and we rely on parent report of outcomes, although using 
a well-validated instrument.34 We attempt to approximate 
symptomatic asthma diagnosis using strictly defined current 
asthma, which is of major public health relevance,52 while we 
examined combined asthma and wheeze owing to the overlap 
in characteristics between the primary outcomes in young chil-
dren. In the analysis of strictly defined current asthma, which 
required a recognition of the term “asthma” in defining the 
child’s health history, estimates were nearly the same for O3 
whereas were more attenuated for NO2 and PM2.5. Estimates 
of combined current wheeze and asthma were not substan-
tially different from the primary analysis for any pollutants.

This analysis has notable strengths including the utiliza-
tion of a pooled and geographically diverse population that 
enhances the generalizability of the results. Additionally, we 
estimated air pollution exposures from validated spatiotem-
poral models with fine-scale prediction enabling granular 
characterization at participant residences and consideration of 
timing relevant to a conceptual model of air pollution effects 
after bronchiolitis in the first year of life. Additionally, robust 
adjustment for key confounding and precision variables was 
possible in these well-characterized cohorts. Unlike prior 

FIGURE 3.  Associations between air pollution exposure and (A) current wheeze and (B) current asthma at age 4–6 years by child 
sex among infants with bronchiolitis in the first year of life. Relative risks and 95% confidence intervals are presented for 5-unit 
differences in nitrogen dioxide (NO2) and 2-unit differences in ozone (O3) and fine particulate matter (PM2.5). P-values shown are 
for the interaction term between air pollution and child sex. Models were adjusted for age at outcome assessment, sex, season, 
year of birth, site, race, preterm birth, birthweight, maternal education, income, maternal history of asthma, smoking during 
pregnancy, neighborhood deprivation index, cotinine, and reported postnatal secondhand smoke exposure.
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research on air pollution and child health effects, this study 
focuses specifically on an important vulnerable subpopulation 
and allowed examination of effect modification in this group 
by child sex and maternal history of asthma status.

Some limitations of note include the nonspecific phras-
ing of the survey question used for inclusion that could conflate 
bronchiolitis with some non-bronchiolitis-caused wheezing as 
well as the lack of information on the severity of infection. This 

could bias results towards the null owing to the potential of not 
capturing exclusively those who truly had bronchiolitis or if air 
pollution effects were only evident among more severe infec-
tions, such as hospitalized cases. The outcome definitions, as in 
many studies of air pollution and child asthma, relied on care-
giver report, which may have led to outcome misclassification 
based on the ability of a caregiver to recognize wheeze in their 
children or access to health care and understanding of an asthma 

FIGURE 4.  Associations between air pollutant exposure and (A) current wheeze and (B) current asthma at age 4–6 after simulta-
neous adjustment for nitrogen dioxide (NO2), ozone (O3), and fine particulate matter (PM2.5) among infants with bronchiolitis in 
the first year of life. The multipollutant model simultaneously adjusted for all three pollutants. Relative risks and 95% confidence 
intervals for current wheeze and current asthma are reported per 5 ppb NO2, 2 ppb O3, or 2 µg/m3 PM2.5, as in the main model. 
Models were also adjusted for age at outcome assessment, sex, season, year of birth, site, race, preterm birth, birthweight, mater-
nal education, income, maternal history of asthma, smoking during pregnancy, neighborhood deprivation index, cotinine, and 
reported postnatal secondhand smoke exposure.

TABLE 4.  Sensitivity analysis of associations with air pollution exposure using strict current asthma and combined current 
wheeze and asthma outcomes and co-adjustment for pre-bronchiolitis air pollution

Outcomea NO2 RR (95% CI) O3 RR (95% CI) PM2.5 RR (95% CI) 

Strict current asthmab 0.78 (0.50–1.2) 1.3 (0.97–1.8) 0.87 (0.27–2.8)

Combined current wheeze and asthmab 0.62 (0.42–0.90) 1.3 (1.0–1.7) 0.75 (0.40–1.5)

Current asthmab 0.62 (0.42–0.91) 1.4 (1.1–1.8) 0.65 (0.29–1.5)

Current wheezeb 0.60 (0.39–0.90) 1.3 (1.0–1.7) 0.74 (0.35–1.6)

Adjusted for pregnancy- age 1 air pollution exposure

Current asthmac 0.51 (0.34–0.76) 1.3 (1.0–1.7) 0.61 (0.28–1.3)

Current wheezec 0.51 (0.33–0.77) 1.3 (0.96–1.6) 0.58 (0.31–1.1)

aRelative risks are per 5 ppb NO2, 2 ppb O3, and 2 µg/m3 PM2.5 as in the main model and are adjusted for age at outcome assessment, sex, season, year of birth, site, race, preterm 
birth, birthweight, maternal education, income, maternal history of asthma, smoking during pregnancy, neighborhood deprivation index, cotinine, and reported postnatal secondhand 
smoke exposure.

bSample restricted to participants not missing strict current asthma; sample size reduced to 215 for all outcomes.
cSample using full analytic set of 224 participants.
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diagnosis. As noted above, the questions used were derived 
from the validated and widely applied ISAAC survey.53 The full 
address history from birth to age 4 years was not available for 
this study sample. The inability to capture ambient exposures at 
all residences and nonresidential locations during the exposure 
window as well as potential indoor air factors and pollutants 
at home may additionally introduce some exposure misclassi-
fication. As previously discussed, biased exposure assessment 
could occur if a maternal history of asthma influences other 
known asthma risk factors which are not characterized. Finally, 
the sample size of children with bronchiolitis available in our 
pooled analysis, whereas greater than the prior literature, was 
relatively modest limiting the precision of our estimates.

In conclusion, the high burden of subsequent asthma 
development among infants with bronchiolitis underscores the 
public health importance of understanding potentially modifi-
able risk factors such as childhood exposure to air pollution. 
Despite relatively modest O3 concentrations estimated in the 
study population, our results are consistent with the hypoth-
esis that small increases in this pollutant may be of particular 
concern for the development of asthma among this subpopu-
lation. Further exploration of air pollution effects on children 
after bronchiolitis infection is warranted and should consider 
modifying factors including genetic susceptibility and bron-
chiolitis severity.
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