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Abstract

Making use of a perturbed Lagrangian formulation, a finite element pro-
cedure for contact problems is developed for the general case in which node-
to-node contact no longer holds. The proposed procedure leads naturally to a
discretization of the contact interface into contact segments. Within the context
of a bilinear interpolation for the displacement field, a mixed finite element
approximation is introduced by assuming discontinuous contact pressure, constant
on the contact segment. Because of this piece-wise constant approximation, the
gap function enters into the formulation in an "average" sense instead of
through a point-wise definition. Numerical examples are presented that illus-
trate the performance of the proposed procedure.
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A Perturbed Lagrangian Formulation for the Finite Element
Solution of Contact Problems

Juan C. Simo ' Peter Wriggers *  Robert L. Taylor

Department of Civil Engineering, University of California, Berkeley.

1. Introduction

Current finite element formulations for contact problems based on either the classical
Lagrange parameter procedure [1,2,3,12,20] or the penalty function method [4,5.6,11], are
characterized by a point-wise enforcement of the contact constraint condition, in the sense that
penetration of the bodies is established on a nodal basis. Moreover, in this methods the
recovery of the contact pressure over the element from the contact nodal forces generally
requires an additional procedure. Within the framework of classical Lagrange multiplier
methods the contact condition is exactly satisfied by transforming the constrained problem into
an unconstrained one with the introduction of additional variables (Lagrange multipliers).
These extra variables add computational effort to the solution process which often requires spe-
cial procedures to handle the presence of zero diagonal terms. Penalty methods, on the other
hand, enable one to transform the constrained problem into an unconstrained one without
introducing additional variables. The constraint condition is now satisfied only approximately
for finite values of the penalty parameter. The main difficulty associated with these methods,
however, lies in the poor conditioning of the problem as the penalty is increased to more accu-
rately enforce the constraint condition. This is a well understood phenomenon, particularly in
the context of the incompressible and nearly incompressible problem in solid and fluid mechan-
ics (e.g. see [15,22,25] for a review). Recently, augmented Lagrangian procedures have been
proposed as a promising way to partially overcome these difficulties and "regularize" the penalty
formulation (e.g. see the survey in [7] and [8]).

Within the framework of linearized kinematics, it is possible to restrict the finite element
formulation of contact problems by assuming that node-to-node contact occurs. This is in fact
the case often considered in the literature [1,2,4,6,12,20,21]. In the general context of fully
nonlinear kinematics, however, it is no longer possible to place such a restrictive assumption on
the formulation. Several schemes have been devised, particularly from the computational side
[5,11], which are capable of enforcing the contact conditions in the general situation for which
node-to-node contact does not hold. In this paper, a novel approach for the enforcement of the
contact constraint in this general context is presented, based on a permurbed Lagrangian formula-
tion. We recall that the perturbed Légrangian is obtained from the classical Lagrangian func-
tional by regularization with a quadraric (positive) term in the Lagrange multiplier vector (e.g.,
see [15] Sec 3.2, and [22]).
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Our formulation may be summarized as follows. On the basis of the perturbed Lagran-
gian formulation of the contact problem, a mixed finite element approximation is introduced in
which the contact pressure is independently approximated over the contact interface. Such an
approach requires a special treatment of the contact surface, now viewed as an assembly of con-
tact segments which are unambiguously defined for the general situation where node-to-node
contact does no longer hold. As in the treatment of the incompressibility constraint several
approximation schemes are possible within the context of a perturbed Lagrangian formulation
(e.g. see [15,22 Chap. 3,25]). Confining our attention to the case of a bi-linear isoparametric
interpolation for the displacement field, it is assumed that the contact pressure is constant on
each contact segment. As a result of this piece-wise constant approximation of the contact
pressure, discontinuous across contact segments, the contact constraint is enforced in an "average"
sense on each contact segment. In effect, the average gap over a contact segment is the crucial
kinematic variable on the basis of which penetration between the two bodies is established.

The formulation advocated in this paper is intended for the general case of fully nonlinear
kinematics, although for simplicity in the presentation attention is restricted to the linear case.
This approach is applicable to contact problems involving two deformable bodies, as well as
problems involving a deformable body subjected to unilateral constraints. Furthermore,
although the contact pressure does not enter into the formulation explicitly it can be con-
sistently recovered via the augmented Lagrangian procedure.

The numerical examples presented in Section 5. are intended to demonstrate the
differences in performance of the procedure advocated here relative to established nodal penalty
methods.

2. Perturbed Lagrangian Formulation

In this section we develop the variational equations governing the contact problem with
linearized kinematics, based on the use of a perturbed Lagrangian procedure. First, we briefly
summarize some kinematic relations which are necessary for the description of the contact con-
straint condition. For simplicity, we shall confine our attention to the case of linear kinematics,
leaving the consideration of the finite deformation situation to a forthcoming paper. In addi-
tion, we restrict ourselves to frictionless contact problems throughout the developments that
follows.

2.1. Contact Kinematics. Consider two bodies with initial configurations denoted by €',
Q2cR3, and displacement fields given by

w'=d'x), x'eql; = d(x?), x%k0?. .1)

Further, assume that the bodies are in contact along a surface y© with unit normal field n(x).
This contact surface -not known in advance- may be characterized as follows. One assumes that
there are parts of the boundary 8.0 ' and .07 in the initial configurations Q' and Q72 of the
two bodies, which may be defined a priori, so that their images contain the contact surface; that
is,

ye=a'0.0) N 8*6.0Y . (2.2)
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The normal vector field to y®is given by
n=Vyx)/Vyxll. (2.3)
Let t! and t? be the traction vectors acting on the boundaries @'(8.0" and 82@.02 of the

bodies in contact through the surface y© Further, let go(x) be the initial gap between the two
bodies. Then, the local form of the contact condition may be formulated as follows

g=[u’-ull en+42>0, and t en=-t?en<0, on 9, (2.4a)

where g gives the current value of the gap. The current gap and the contact force are related
through the inequality conditions

W= u'l en+g=0 => then=—-t!en<90

1 w?—ull en+ g>0 => tten=—-t?en=0 (2.4)
Introducing the notation A = t' «n = —t? o n for the contact force acting on v*, the contact
conditions (2.4a,b) may be expressed in the following equivalent (Kuhn-Tucker) form

gh=0, A<0, g==0, on y". ‘ (2.5)

The form (2.5) of the contact condition is best suited for applications and immediately
leads to a variational formulation in terms of Lagrange parameters. By a slight abuse in nota-
tion we shall employ again the same symbol A\ for the Lagrange parameter.

Remark 2.1. The spaces of kinematically admissible variations or test functions for the
problem at hand are defined as ’

vi={n%a%a9—R’ | n* L a=o}, (4=12), (2.6)

where 8,0 *is the part of the boundary with prescribéd displacements ﬁAL Q4= u? Typically,
ut

an appropriate choice for V4 is H'(Q", see e.g., [23, Chap.5]. Note that V% (4=1,2) are
unconstrained configuration spaces which must be further restricted to account for the contact
constraint. The Lagrangian formulation discussed below avoids the introduction of this con-
straint and enables one to work directly with the unrestricted spaces V*as defined in (2.6). O

2.2. Perturbed Lagrangian Formulation. Throughout this section we consider the case
of an elastic material with stored energy function given by W(x,V %u), where a superposed S
indicates the symmetric part. Ignoring for the moment the interaction between bodies, the total
potential energy associated with each body in its final configuration u¥= 4“(x" is given by

e = dev—fpb"ouAdv— [ Pewtda, (41,2, 2.7)
8,04

where b” is the body force, t*is the surface traction specified on the part of the boundary
8,0 “ and p is the density. One of course requires that YN, =2 (4=1,2).

In order to build the contact constraint (2.5) into a variational formulation without res-
tricting the spaces of kinematically admissible variations V* we introduce a Lagrangian func-
tional II, (u‘ &’ ,A\), depending on a positive parameter € > 0, and defined by expression
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2
@y = 31 A(u")-t—f)\ u—u11.n+go}da—~—fx da . (2.8)
A1 ¥

The last term in (2.8) depending on € has the form of a penalty term and serves the purpose of
regularizing the classical Lagrangian. One refers to the functional Hz(ﬁl,ﬁz,)\) as an perturbed
Lagrangian, and expects that as € — o the solution obtained from (2.8) will converge (in the
sense of weak convergence) to the solution obtained by the classical Lagrange multiplier
method. For a discussion of this and related questions in the context of linear problems, we
refer to [15].

Remark 2.2. The stiffness matrix for the discrete problem arising from the classical
Lagrangian muitiplier method always contains zero diagonal terms. The solution of the algebraic
problem often requires special strategies, particularly in the three dimensional situation. From a
computational standpoint the addition to the Lagrangian of the "penalty term" depending on e,
leads to positive definite stiffness matrices for the discrete problem with non—zero diagonal
terms. O

For each € >0, the equilibrium configurations and corresponding contact pressures,
(). 821,), are characterized by rendering the perturbed Lagrangian Il (&l,8a2\.) stationary.
Accordingly, at (ﬁ!,ﬁf,xe) the following conditions must hold

Dl en*= —-(2—115(1'15”-?57)",)\6)[ 0= 0, (4=1,2) 2.9

DIl.g = ygn BN+ q)L . 2.10)

From conditions (2.9) and (2.10) and the expression (2.8) for II,, one obtains the following
two variational equations which form the basis of the mixed finite element approximation dis-

cussed in this paper

2 —
G = EDAHA-nA-FfAG[nZ—n]] enda=20 (2.11a)
A= | ¥E
Ae o
GgEfq ———E—+ 82— all en+ go|da=0 (2.11b)
,yc

In what follows, for notational simplicity we shall drop the subscript € in A and ﬁj’.

3. Mixed Finite Element Formulation.

In this section we consider a mixed finite element formulation for the numerical solution
of the class of contact problems outlined in Sect. 2, based on the variational equations (2.11).
To this end, we first examine some basic kinematic notions involved in the approximation of a
typical slideline (i.e., contact surface). An essential feature that characterizes the approach pro-
posed herein is the use of an "intermediate" contact surface which arises naturally from our
discretization of the contact interface into "contact segments", as illustrated in Fig. 3.1.

For simplicity, throughout the present development attention is focussed on the 4-node
isoparametric element. The proposed mixed finite element approximation based on equations
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F1G.3§ DISCRETIZATION OF THE CONTACT )
INTERFACE INTO "CONTACT SEGMENTS.

(2.11) will then be characterized by assuming constant contact pressures on each segment of the

interpolated slideline.

3.1. Kinematics of the Slide Line: Intermediate Contact Surface. During the deforma-
tion process, the two bodies Q! and Q2 under consideration come into contact along the sur-
face y ¢ which for the continuum problem is defined by (2.2). Consider now a standard finite
element discretization of the bodies Q “ defined as

— Eq__
0l=uas QNQf=w, iZj (4=12) (3.1)
i=1 /

As a result of this discretization, the parts of the boundary 8Q ! and 8Q 2 which according to
(2.2) contain y¢, are replaced by polygonal approximations in which the vertices are nodal
points. Further, due to the numerical formulation of the the contact conditions involving a
penalty term, conditions (2.4) do not exactly hold and penetration of one body into the other
necessarily occurs. The question then arises as to how the contact interface and its correspond-
ing normal field may be unambiguously characterized. A procedure often employed is to arbi-
trarily select either one of the surfaces 90 ! or §Q 2 as contact surface. This surface is often
referred to as master surface. The choice of master surface is apparent in the case of unilateral
(rigid) constraints or when one of the bodies in contact is much stiffer than the others. For
cases in which the bodies in contact posses similar stiﬁ"ness, the choice is no longer obvious and
may indeed bias the results. These difficulties have motivated the use of "symmetric treat-
ments" of the slideline such as the ones advocated in [5,11]. The procedure proposed herein,
on the other hand, replaces the notion of master surface by the intermediate contact surface.

Geometry of a typical contact segment. The description of the slideline that characterizes
the procedure proposed herein is illustrated in Fig 3.1, where a possible general discretization of
the contact interface is shown. As indicated in Fig. 3.1, the contact interface is divided into
contact segments which will allow a smooth definition of the gap function. A typical contact
segment, shown in Fig 3.2, is defined as follows.
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Consider two adjacent elements in the slideline with straight edges defined by their nodes
xj—x{ and xf—xf, respectively. Here, the superindices {1,2) refer to the body on which the
variable is defined. Let %' and %2 be the orthogonal projections of the nodes x3 and X4 onto
the edges x;—x| and x—x{, respectively, as shown in Fig. 3.2. The contact segment is defined
to be the quadrilateral specified by the points {X', x7, X% x§). The new nodal points X' and %
are obtained as a linear combination of the form

=1 -afxi+a’xs, a’€l0,1], (4=1,2). (3.2)

FIG.32 GEOMETRY ASSOCIATED WITH
A TYPICAL CONTACT SEGMENT.

Expressions for the coefficients o may be found in Box 1. Similarly, the displacement vector
at the new nodes X' and X is given in terms of the nodal displacements u{' and u4 of a typical
4-node isoparametric element by

=1 —adui'+atuf, U=1,2). (3.3)

Relative to a typical contact segment, we introduce tangential and normal unit vectors t’*.and n’
given for the planar case by the expressions

A xf - x{! A_ A oA
= =L pi=gxtd,  (4=12) (3.4)
x5 — x7l

Here, &; denotes the unit vector normal to the plane in which motion takes place. With the aid
of (3.4), the gaps g) and g; at the edges of the segment are obtained according to

gi=li—ulen'+ gl = wi- Q-aYu!—a'uj] en' + g
gr=[uj — 8T en’+ g2 = [u} — 2?uf - (1—a?d ufl en?+ g, (3.5)
where the initial gaps g{ and g¢ are defined in terms of the initial geometry as in Box 1. Once

the geometry of a typical contact segment has been defined the interpolation of the relevant
quantities within the contact segment may be accomplished as follows.
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BOX 1. Definition of a Contact Segment. Planar case

€ Projection of a node onto the opposite element edge
| (x3—x{) o(xf—x{) ,  (xf=x}) e(xj—xP
a = ITE a =
“Xr‘xx ||
® Coordinates of the segment-nodes

= (1—afxi'+ axs, xJ,x}

® Tangent and normal vectors

lIx3—x71I?

A A
X — X
t1'= —————  p?= ext?
szA— X1AH ’

® Initial gaps
gl = Ix{ —x3ll , g = lIx{ — x|

3.2. Interpolation within a Contact Segment. Let us first introduce an intermediate
contact line parametrized within the contact segment s by ¢ —y {(¢), with parameter ¢ chosen
for convenience as ¢£€ [0, 1], and such that

dy § xS Lz :
g (g)LO L, SEE| =Lt (.6)
where
=1
L= zf | dy 5€)/ de || de G.7)
=0

Denoting by u?(¢), £€[0, 1], the displacement of body Q “ within the contact segment, the gap
g(¢) is obtained according to

g(&) = [u(¢) — u'(®)] on(g) + gol&), (3.8)

and the "variation" of the gap given by (3.8) is computed with the aid of the directional deriva-

tive formula as

5g(&) = (&) — ' (©)] en(g) (3.9)

Nothing has been said so far about the explicit construction of the contact line £ —y {(¢).
Since its derivatives are specified by (3.6), one may interpolate this curve by Hermite polyno-
mials once the position of its end points at £ = 0 and € = 1 has been selected. That is, set

Y =U-px'+8x3, y'=10-8)x{+8%, (3.10)

where B€[0,1], is a pre-specified parameter. The limiting choices of 8 = 0,1 correspond to
selecting one of the two surfaces in contact as interpolated surface. The selection of the
appropriate 8 should be made on the basis of the relative stiffnesses of the bodies in contact.
Introducing the notation L, = [ly? — y'll, £~y (&) may be defined by the interpolation

2 2
Y& = F v Oy + LT 0.48)t", (3.11a)
A= A=l
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where { vy, v, 81,87} are the classical Hermite polynomials given by

) =1 —3£24283 vo(€) = 3¢2-2¢3

0:(&) = ¢(1 - ¢)? 8,(¢) = £2(1 — ¢) (3.11b)

Note that by evaluating the integral (3.7) with the aid of the trapezoidal rule we obtain
Ly= Ly = lly’~y'll. In the next section, it will be seen that the interpolation of & — v (¢) is
not explicitly needed in the final form of the finite element approximation since the integrals
over the segmeni are approximated by the trapezoidal rule.

3.3. Finite Element Approximation. Upon introduction of the finite element discretiza-
tion (3.1), the discrete version of the variational equations (2.11) may be expressed as

Emml lola/ f [ ] \

G+ Aslp—=n'lendl =0 g -
;1 sg e /;;.\: '
tolal

G, = lqu ———~+ (w’~u') enf T =0 T (3.12)
5= Ut S
ale™ il 4%
y g

Cre

Here, E refers to the total number of elements in the discretization, S refers to the total
number of contact segments in the slidelines, and G° denotes the restriction of G to an ele-
ment e. For the 4-node isoparametric element the displacement field is approximated according

to the standard C° interpolation

4 ‘ | ;
x|, =3 NOuf, (4=12), (3.13)
¢ I=1

where N/(x) are the shape function for the element 2 2 of body % Such an interpolation
leads to well known expressions for the element stiffness matrix and residual force vector (e.g.,
see [19]).

The essential point in the present development pertains to the approximation within a typ-
ical contact segment of the contact pressure A, In the context of the linear approximation for
the displacement field, our fundamental assumption is that the contact pressure is constant within
the contact segment; Le.,

s = Ax) L‘= CONSTANT . : (3.14)

Since no derivatives of A appear in (2.11a,b) no inter-segment continuity needs to be enforced
on A, Accordingly, the discrete equation (3.12), reduces to

A
G} Ef qs —-—;i-}- (u? = u) -n] dl =0, forany s€{l, - ,Suul. (3.15)
$

Therefore, as a result of the approximation (3.14), the contact pressure within a typical scg-
ment is given by the integral expression
1
= @ -u) nar = ‘f‘! £(&) lay &)/ at |l de (3.16)
Sy s £=0 if\;/,\-l ‘(,.n\yv\)
VARG R

Bt
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where the gap function g(£) is given by (3.8). Our final approximation is concerned with the
way in which (3.16) is computed. By evaluating (3.16) with the aid of the frapezoidal rule the
final result takes the simple form

}\.g='€2“(gl+g2)EE§sv (3.17)

where g) and g; are the gaps at the edges of the segment given by (3.5). It then follows from
(3.17) that within a contact segment the contact pressure is constant and proportional to the
average gap g;. By evaluating the integral terms over vy { appearing in (3.12); with the aid of
the trapezoidal rule, the discrete variational equations (3.12) take the final form

Eiotal Stotal 4
~ ¥ G+ T, E'nloc,i=0 (3.182)
e=1 s=1 /=1
A
G2~_“—+ZC[‘UI—O forany se{lo te 'aSmla/}a (318b)

where the expressions for the residual contact forces have been summarized for convenience in
Box 2. Equations (3.17) and (3.18) complete the proposed finite element approximation based
on the perturbed Lagrangian formulation (2.11) for the contact problem.

BOX 2. Contact Surface: Finite Element Approximation

® Approxnmatxon of average gap g, by trapezoidal rule
(81 + &)
® Residual Forces due to contact
GCLScE —€ Lsé_fs[i]'m oc/
1

—2—(n2+a1n1)

(1 _ 2 2
2(1 a9 n

where = -—l—(l—oz’)nl ¢

¢ = —(n +a’n?  f
® Tangent Stiffness due to Contact

4 4
DGZL cAu=¢eL;3 3 m;[KjAuyl
=10=

4
s
where Kji=c¢/®c¢j

4. Penalty Procedure via Perturbed Lagrangian.

To discuss the penalty solution procedure for the nonlinear system arising from (3.18a,b),
it is convenient to rephrase this problem in matrix notation as

Gi=nTIG+CAl=0 (4.1a)

GquT[—-%—+CTu]=O (4.1b)
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where

T T
n' = [nl’,....,'rpémml], u’ = luf,.., uf

{0la,

and (42)

qT= [q]’“'" qsm(al] * A I= [)‘]""")\Sloral] .

Here, G denotes the residual force vector for the unconstrained problem obtained from the ele-
ment contributions by the standard assembly procedure. In addition, C is a (S, X Egpr.n)
matrix, where #» is the spatial dimension of the problem, which expresses globally the local con-
tact conditions, and is obtained by assembly of the vectors ¢}

A penalty procedure may now be recovered from equations (4.1a,b) by exploiting the par-
titioned structure of this system and eliminating the Lagrange parameters at the local level.
Solving for A ; from equation (4.1b) and substituting back into (4.1a) yields the following non-
linear reduced system

n7IG+e(CCNHul=0 (4.3)

Eq. (4.3) has a structure which typically arises in the treatment of the contact problem by the
"pure” penalty method. It should be carefully noted, however, that in the perturbed Lagrangian
formulation employed here leading to equation (4.3), the contact condition is enforced in an
average sense over the contact segment. This is reflected in the use of the average gap g,
defined by (3.17) and results in an expression for the matrix C different from the one
corresponding to a standard penalty approach [5]. The reduced nonlinear system (4.3) may
now be solved with the aid of Newton’'s method leading to the algorithm summarized, for con-
venience, in Box 3.

BOX 3. Penalty Iteration.

® Update displacements
u(k+l) — u(k) —[K+e C(k) (C(k)) T]—l [G(k) + C(k)k(k)]

® Check for penetration
E(k+1) _ [C(k+l)] T qlkth)
® Update Lagrange Multipliers

x(k-H) = eE(k-H)

* It is a well known that as the penalty parameter € — oo the condition number of the
tangent matrix for the penalty method tends to infinity. Thus, the crucial step in the penalty
iteration procedure is the selection of the penaity parameter €. This choice is discussed at
length in the optimization literature [13,14]. In the context of finite elements procedures
applied to structural problems the optimal choice for the penalty has been discussed in e.g.
[9,10] and recently for contact problems in [12]. Useful guidelines for a selection of the
penalty parameter in practical situation are also contained in [5]. To some extent, the intrinsic
difficulties associated with the penalty iteration procedure can be circumvented by the aug-
mented Lagrangian iteration. These and related topics are discussed in [7].
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Remark 4.1. In the actual implementation of the penalty iteration method summarized in
Box 3 the check for penetration should be performed in the initialization phase on the unde-
formed configuration to exclude rigid body motions. O

Remark 4.2. In many contact problems the number of degrees of freedom in the slide-
line is small compared to the total number of degrees of freedom in the discretization. In the
context of linear analysis, static condensation [24] may be used to obtain a reduced system of
equations that contains only the nodes of the slideline as unknowns, see e.g., [1,12]. Splitting
the unknowns of the problem into two sets, one denoted by subscript ¢ and associated with the
nodes in the slidelines, and the other denoted by subscript @ and containing the remaining unk-
nowns, one obtains at an intermediate step of the Gaussian elimination process

[ﬁm + eCHR(CH) T} (KD - b)) = _[‘G‘C + Uy (0] (4.4)

where

K(‘c:‘—Kcr“KacK;alKam Ec= G, - KaCK;a]Ga- 4.5)

This small system of equations is now used in the contact iteration process. Obviously, the
matrix K. has to be stored to avoid recomputations which would otherwise eliminate the
advantage of the static condensation procedure. O

Remark 4.3. An alternative form of the penalty iteration for the contact problem arises
by exploiting the the special structure of the tangent matrix. The essential point to note is that
the tangent matrix K(T") =K+eCH(CH)T may be assembled by a sequence of rank one

SIIII(I/ :
updates of the form C¥(C¥)T= ¥ (¢*) ¥ (¢*) " With the aid of the Sherman-Morrison

s=1
formula for the inverse of a rank-one updated matrix, the inverse of the tangent matrix may be
readily obtained as the result of the following updating procedure

(K) ™' = (K~ ! - € ) ® @R (s=1, ..., Spat) (4.6)
14 €GP (e

where

(r5) B = K- 1(e5) 0 @.7)

The advantage of this solution strategy is that the the factorization of the matrix K for the
unconstrained problem needs to be performed only once. Note that this procedure entails the
solution of the system (4.7) for each contact segment. Thus, it becomes economical only when
the number of degrees of freedom in contact is small compared to the number of overall unk-
nowns. In addition, from a practical standpoint, its application to large problems only makes
sense in conjunction with the static condensation procedure discussed in Remark 4.2. It should
be noted that in this procedure K°® must be regular. O

5. Numerical Examples.

In this section we compare the performance of the procedure developed in this paper with
traditional penalty methods in which the contact constraint is enforced on a nodal basis. For
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this purpose we consider first the indentation of a rigid punch into an elastic foundation for the
case when nodes of the two bodies lying in the contact interface are not aligned. Two alterna-
tive implementations of the classical nodal penalty methods are considered which differ in the
particular treatment given to the slide line. The traditional approach in which a master and a
slave contact surface are defined a priori, and a symmetric treatment of the slide line employed
in [5,11] in which the role of master and slave surface is sequentially interchanged. To illus-
trate the overall performance of the proposed procedure in a practical situation, we conclude
this section with an example which involves contact of two flexible bodies and includes rate
independent elasto-plastic behavior.

Rigid Punch on an Elastic Foundation. If attention is restricted to the particular case of
linear kinematics, it is possible to enforce the contact conditions on a node-to-node basis.
However, in the more general context of large deformations, a node-to-node treatment is no
longer possible. Thus, with an eye directed towards nonlinear applications (to be considered in
a forthcoming paper), we address in this example performance in the general case not restricted
to node-to-node contact.

For this purpose we consider the indentation of a rigid punch with the foundation first
modeled by two elements, as shown in Fig. 5.1a. The elastic properties of the foundation
where taken as £ = 1.d+5, and v = 0.5, and the penalty parameter was chosen as € = 1.d+7.
The results obtained with the procedure advocated here and with the nodal penalty approach
with single and double pass on the slide line are shown in Fig. 5.1 to Fig. 5.14. In the present
approach, use of the average gap g defined by (3.15) results in the penetration profile depicted
in Tig. 5.15. This profile corresponds to an intermediate situation between the total penetration
obtained with the nodal penalty approach and single pass, as shown in Fig 5.14, and the
absence of penetration obtained with the double pass technique shown in Fig 5.1¢. For subse-
quent refinement of the mesh one obtains the profiles shown in Figs. 5.2a,b,c,d and Fig
5.3a,b,c,d. In the one pass calculation the surface of the foundation is taken as the master

surface.
TABLE 1. Nodal Penalty versus Proposed Method.
Number of Perturbed One Pass Two Pass Node to
Elements Lagrangian Penalty Penalty Node
2 ve || 1015x107% | 1.623x107> | 6.623x 1073 _
vy || 1.254x107% | 1.621x1072 | 8.882x 1073 _
8 v, || 9.580x107% | 8442x10-3 | 8.109x107? _
ve || 9.273x107 | 6914x107° | 8.105x1073 _
32 vo || 1.089x1072 | 9.687x107° | 9.614x 1073 _
vy || 1.089x1072 | 1.046x107% | 9.614x 1073 _
88 ve || 1.162x1072 | 1.256x1072 | 1.101x107% | 1.167x1072
vy | 1.162x1072 | 1.256x1072 | 1.101x 1072 1.167 x 1072
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The vertical displacement of the punch for increasingly refined meshes has been tabulated
in Table 1 for the three approaches considered. The solution obtained in the case of node-to-
node contact, for which all three approaches coincide, is also included in Table 1 for com-
parison purposes. The proposed procedure shows the closest agreement with the the node-to-
node approach. In addition, for reference purposes we note that the exact solution for the
indentation of a rigid punch on an elastic half space {17, p.73] giveé the value Ve = 1.891072
obtained with the aid of Simpson’s rule.

Flexible Punch on an Elastoplastic Foundation. As our final example we consider the
indentation of a flexible punch into an elastoplastic foundation. Our purpose is to illustrate the
performance of the proposed procedure in a more realistic situation that involves (a) general
(as opposed to node-to-node) contact, (b) inelastic (nonlinear) material response and (c) two
deformable bodies in contact. '

The finite element mesh, shown in Fig. 5.4, consists of 120 bi-linear isoparametric ele-
ments. The elastoplastic response of the foundation is characterized by a pressure independent
von Mises yield condition with kinematic/isotropic saturation hardening. The material proper-
ties of the model are also shown in Fig. 5.4. The mixed finite element formulation for this type
of elastoplastic model is discussed in [26].

For comparison purposes the problem is first soived ignoring inelastic effects. The
deformed finite element mesh and stress contours for the vertical stress corresponding to the
elastic case are shown in Figs. 5.5a,b. The analogous resuits for the elastoplastic case are
shown in Figs. 5.6a,b, and the plastic region is depicted in Fig. .6¢. Although no closed form
solution for this problem exists, a comparison between Fig 5.56 and Fig. 5.6 reveals that the
vertical stresses in the plastic case are considerably mitigated below the punch, as one would
expect. One should note that the mesh is not fine enough to obtain an accurate resolution of
the stress. This is apparent in the contact interface.

The above results demonstrate that the proposed procedure for the analysis of contact
problems is capable of handling a wide range of engineering applications. These include situa-
tions in which both bodies are flexible, with nonlinear inelastic behavior, and a general treat-
ment of the slide line not restricted to node-to-node contact.

6. Concluding Remarks.

(i) The mixed approximation to the perturbed Lagrangian proposed in this paper has been
discussed for the particular case of a linear approximation to the displacement field and
constant contact pressure over the contact segment. Related work in the context of the
incompressible problem suggest higher order interpolation schemes. Typically, one may
wish to consider a quadratic approximation for the displacement field in conjunction with
linear contact pressure distributions over the contact segment.

(ii) For the sake of simplicity in the presentation, attention has been restricted to the case of
linear kinematics. The proposed procedure, however, is particularly useful in the finite
case where node-to-node contact can no longer be assumed.




(iii)

(1]

[3]

[4]

[6]

[7]

(8]
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(10]

[11]

[12]
(13]
[14]
[15]

[16]
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The final solution algorithm has been formulated on the basis of a penalty procedure
obtained from the mixed formulation by eliminating the contact pressure at the element
level. Alternative iterative algorithms based on the use of augmented Lagrangian pro-
cedures are explored in [16].
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Figure Captions.

Figure 3.1, Discretization of the contact interface.
Figure 3.2. Geometry of a typical contact segment.

Figure 5.1. Rigid punch problem. 3-element mesh.
(a) Finite element mesh
(b) Proposed procedure based on perturbed Lagrangian formulation.
(c) Penalty formulation with symmetric (2-pass) treatment of the slide line.
(d) Penalty formulation with traditional (1-pass) treatment of the slide line.

Figure 5.2. Rigid punch problem. 1l1-element mesh.
(a) Finite element mesh.
(b) Proposed procedure based on perturbed Lagrangian formulation.
(c) Penalty formulation with symmetric (2-pass) treatment of the slide line.
(d) Penalty formulation with traditional (1-pass) treatment of the slide line.
Figure 5.3. Rigid punch on elastic foundation. 69-element mesh.
(a) Finite element mesh.
(b) Proposed procedure based on perturbed Lagrangian formulation.
(c) Penalty formulation with symmetric (2-pass) treatment of the slide line.
(d) Penalty formulation with traditional (1-pass) treatment of the slide line.

Figure 5.4. Indentation of a Flexible punch on an elastoplastic foundation. Finite element
mesh. 120-linear isoparametric elements.

Figure 5.5a. Indentation of a flexible punch. Deformed finite element mesh for the case
of an elastic foundation.

Figure 5.5b Indentation of a flexible punch. Stress contours of the vertical stress o, for
the case of elastic response of the foundation.

Figure 5.6a. Indentation of a flexible punch. Deformed finite element mesh for the case
of elasto— plastic response of the foundation.

Figure 5.6b. Indentation of a flexible punch. Stress contours of the vertical stress o ,, for
the case of elastoplastic response of the foundation.

Figure 5.6¢c. Indentation of a~flexible punch. Elastoplastic response of the foundation:
yield surface.
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‘ Elastoplastic Foundation: Material Properties.

- 18.

Bulk Modulus (K) 8000.00
Shear Modulus (G) 5000.00
Yield Stress (@ y) 5.00
75, Linear Hardening (H) 100.00
4 y X I U .. —— g
' -,
___’.
-————'__
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Figure 5.4. Indentation of a Flexible rigid punch on an elastoplastic foundation. Finite

element mesh. 120-linear isoparametric elements.




SCALE 50:1

NN

Figure 5.5a. Deformed finite element mesh for the case of an elastic foundation.




Figure 5.5b Stress contours of the vertical stress o,y for the case of elastic response of the
foundation.
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Figure 5.6a. Deformed finite element mesh for the case of elasto— plastic response of the
foundation.




Figure 5.6b. Stress contours of the vertical stress o, for the case of elastoplastic
response of the foundation.






