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Optimization and sensitivity of a global

biogeochemistry ocean model using combined in situ

DIC, alkalinity, and phosphate data

Eun Young Kwon1,2 and François Primeau1

Received 23 August 2007; revised 29 November 2007; accepted 21 April 2008; published 7 August 2008.

[1] We present a systematic parameter optimization and sensitivity analysis of a
three-dimensional global ocean biogeochemistry model. We use the global data sets of
dissolved inorganic carbon (DIC), alkalinity, and phosphate to constrain the parameters of
a biogeochemistry model which include the stoichiometric ratios rC:P and rN:P, the
fraction s of organic material production allocated to dissolved organic matter (DOM), the
lifetime 1/k of DOM, the exponent a in the power law for the depth profile of the
remineralization of particulate organic carbon (POC), the rain ratio R of CaCO3, and the
e-folding length scale d for the depth profile of CaCO3 dissolution. The
data-constrained parameter values are rC:P = 137 ± 11, s = 0.74 ± 0.04,
1/k = 1.7 ± 0.5 years, a = �0.97 ± 0.07, R = 0.081 ± 0.008, and d = 2100 ± 300 m. The
postoptimization carbon export from POC is 15 ± 1 Gt/a and from CaCO3 is
1.2 ± 0.1 Gt/a of which 67 ± 4% dissolves above 2000 m. The ± ranges indicate an
average 1% decrease in the fraction of the spatial variance in the observed tracer data
captured by the model. The sensitivity of the model to its parameters is presented in terms
of sensitivity patterns defined as the derivative of the model’s equilibrium tracer
distribution with respect to the parameters (S patterns). The soft-tissue, carbonate, and gas
exchange pump mechanisms responsible for the sensitivities are presented. The pump
decomposition of the S patterns illustrates quantitatively how changes in organic
and inorganic carbon fluxes are coupled with the large-scale ocean circulation and how the
gas exchange pump couples to the global ventilation patterns through changes in
surface chemistry.

Citation: Kwon, E. Y., and F. Primeau (2008), Optimization and sensitivity of a global biogeochemistry ocean model using

combined in situ DIC, alkalinity, and phosphate data, J. Geophys. Res., 113, C08011, doi:10.1029/2007JC004520.

1. Introduction

[2] A difficult problem in climate modeling is selecting
the proper level of complexity for ocean biogeochemistry
modules in order to minimize the uncertainty of atmospher-
ic carbon dioxide predictions. While complex models can in
principle better represent potential climate feedbacks and
regional ecosystem variations, they have the disadvantage
of having a larger number of parameters that are difficult to
constrain from limited observational and experimental data.
For example, the study of Friedrichs et al. [2006] has
demonstrated in the context of a 1-D ecosystem model, that
complex models can have worse predictive skill than their
simpler counterparts when there is insufficient data to
properly constrain a large number of parameters. The study
of Friedrichs et al. [2006] also suggests that a proper

comparison of different models requires that each model’s
parameter set be first optimized objectively, and that the
sensitivity of the model parameters should be taken into
account. For global models there have been few systematic
parameter sensitivity and optimization studies. Models often
use parameter values that have been tuned in different
circulation models, and parameter correlations are rarely
taken into account.
[3] It is our opinion that one of the goals of global ocean

biogeochemistry modeling should be to perform systematic
parameter optimization and sensitivity analysis of a hierarchy
of models of varying complexity. The usual approach to
analyzing the sensitivity of a model consists of changing a
parameter, rerunning the model long enough for the transi-
ents to die off and recording the change in the output.
Because the time for a global model to reach a new equilib-
rium after a parameter is changed is on the order of several
thousand years the usual ‘‘hand-tuning’’ approach to opti-
mizing parameters can yield only limited results. We need an
alternative that can overcome the excessive computational
costs associated with the slow model spin-up. For this we
have recently developed a fully implicit solver for obtaining
steady state solutions of a global ocean biogeochemistry
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model [Kwon and Primeau, 2006, hereinafter KP06]. The
new solver eliminates the need to explicitly time step the
governing equations and thus makes it possible, for the first
time, to conduct a systematic parameter sensitivity analysis
of a global ocean biogeochemistry model.
[4] Here we continue the line of study begun in KP06 and

present a systematic parameter optimization and sensitivity
analysis for a biogeochemistry model based on the formu-
lation used for phase 2 of the Ocean Carbon-Cycle Model
Intercomparison Project (OCMIP-2), [Najjar et al., 2007].
The results related to the phosphorous-cycle component of
the model were reported previously in KP06. Here we focus
on the model’s carbon and alkalinity cycles.
[5] In OCMIP-2 type models, the carbon and nitrogen

cycles are keyed to phosphorus using C:N:P stoichiometry
ratios. Net community production is obtained semidiagnos-
tically by restoring PO4 toward the observed PO4 field
whenever the simulated surface PO4 concentration exceeds
the observed value. The production and cycling of particulate
organic matter (POM), semilabile dissolved organic matter
(DOM) and CaCO3 are then related to the new production
through the following parameters: (1) rC:P, the stoichiomet-
ric ratio of carbon to phosphorus, (2) rN:P, the stoichiometric
ratio of nitrogen to phosphorus, (3) s, the fraction of organic
material production allocated to DOM, (4) R, the ratio of
CaCO3 export production to particulate organic carbon
export production, (5) k, the first-order decay rate constant
for DOM, (6) a, the exponent in the power law for the depth
profile of the remineralization of POM, and (7) d, the length
scale for the depth profile of CaCO3 dissolution (see Table 1
and section 2.2). The reference OCMIP-2 model [Najjar et
al., 2007] uses parameter values culled frommultiple studies,
in which subsets of the parameters were tuned separately
[Anderson and Sarmiento, 1994; Yamanaka and Tajika,
1996, 1997].
[6] A novel aspect of our study is that we combine global

observations of PO4, dissolved inorganic carbon (DIC) and
total alkalinity (TA) to optimize the entire parameter set
simultaneously. Parameter interactions are thus taken into
account, and by computing the shape of the cost function we
are also able to obtain important information about the degree
to which various parameters are constrained independently
from the rest. We also perform a sensitivity analysis of the
global equilibrium distributions of DIC and TA to changes in
model parameters by computing sensitivity patterns defined
as partial derivatives of equilibrium solutions with respect to
the parameters. The sensitivity patterns help us explain the
parameter interactions and the degree to which different
parameters are constrained in our multiparameter optimiza-
tion results.

[7] The sensitivity patterns also provide a unique oppor-
tunity to elucidate the inner workings of the ocean’s carbon
cycle. By decomposing the sensitivity patterns using the
pump separation method of Volk and Hoffert [1985] as
modified by Gruber and Sarmiento [2002] we can learn
how different parameterized biogeochemical processes cou-
ple with the global circulation and the air-sea carbon
exchange to redistribute carbon within the ocean. The result
is a decomposition of the DIC sensitivities into components
associated with the soft-tissue, carbonate, and gas exchange
pumps that are particularly useful for obtaining a mecha-
nistic understanding of the model’s behavior.
[8] This paper is organized as follows. We present the

implicit ocean biogeochemistry model in section 2, the
parameter sensitivity analysis in section 3, followed by
the parameter optimization study in section 4. Discussion
and conclusions are presented in section 5.

2. Implicit Ocean Biogeochemistry Model

2.1. Transport Model

[9] As in KP06, we use an offline transport model
coupled to an OCMIP-2 biogeochemistry model. The trans-
port operator is derived from the time-averaged velocity and
eddy-diffusivity tensor fields taken from the solution of a
fully spun-up dynamical ocean general circulation model
(OGCM). The offline transport model like the parent
OGCM has a spatial horizontal resolution of approximately
3.75� � 3.75� and 29 vertical levels ranging in thickness
from 50 m at the surface to 300 m near the bottom. The
parent OGCM uses the KPP vertical mixing scheme [Large
et al., 1994] and the GM isopycnal eddy-mixing scheme
[Gent and McWilliams, 1990]. Extensive details about the
model’s tracer transport characteristics can be found in the
works of Primeau [2005], Primeau and Holzer [2006], and
Holzer and Primeau [2006, 2008].

2.2. Biogeochemistry Model

[10] The biogeochemistry model uses the OCMIP-2 for-
mulation described in Najjar et al. [2007]. Biological
production is driven by the supply of phosphate according
to the parameterization

Jprod ¼
rC:P

t
PO4½ � � PO4½ �obs
� �

Q PO4½ �ð Þ; ð1Þ

where rC:P is the C:P ratio and t is the restoring timescale.
Q([PO4])� 1

2
[1 + tanh{([PO4]� [PO4]obs)/l}] is a smoothed

step function used to switch off production when the surface
[PO4] drops below the observed value. The smoothing is
needed for our implicit solver based on Newton’s method to
converge (KP06) but gives essentially the same solution as
the original discontinuous step function formulation.
[11] For each mole of organic carbon produced, a fraction

s is allocated to dissolved organic carbon (DOC). The
remainder is exported as particulate organic carbon
(POC). Through rC:P the DOC field is exactly proportional
to the dissolved organic phosphorous (DOP) field and does
not require its own prognostic equation. The export flux of
POC at the base of the euphotic zone (z = zc) is given by

Fo ¼ 1� sð Þ
Z 0

zc

Jproddz: ð2Þ

Table 1. Description of Parameters

Parameter Description

rC:P Stoichiometric ratio of carbon to phosphorus
rN:P Stoichiometric ratio of nitrogen to phosphorus
s fraction of organic carbon production allocated into DOC
R ratio of CaCO3 to POC production
k first-order decay rate constant for DOC
a exponent in the power law for the depth profile of the

remineralization of POC
d length scale for the depth profile of CaCO3 dissolution
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[12] Since the phosphorus cycle is independent of the
DIC and TA cycles, we first obtain equilibrium solutions for
PO4 and DOP separately as was done in KP06, and then use
the resulting Jprod and DOP fields to drive the TA and DIC
models.
[13] To compute the air-sea fluxes of carbon the solution

of the seawater CO2 system is needed. For this the surface
water [TA] is needed. The TA field is obtained (indepen-
dently of the DIC solution) by solving

@ TA½ �
@t
þ u 
 r TA½ � � r Kr TA½ �ð Þ ¼ JvTA þ JbTA: ð3Þ

[14] JvTA is the virtual flux of TA due to the concentrating
and diluting effects of freshwater evaporation and precipi-
tation. JbTA is the source-sink term of TA due to the
biological production and remineralization of organic nitro-
gen and CaCO3,

JbTA ¼ �
rN:P

rC:P
JbCorg

þ 2JbCaCO3
; ð4Þ

where rN:P is the N:P ratio. The organic carbon sink-source
term for DIC above and below the base of the euphotic zone
is given by

JbCorg
¼ rC:P� k DOP½ � � Jprod for z > zc ð5Þ

and

JbCorg
¼ rC:P� k DOP½ � þ @

@z
FPOC zð Þ for z < zc; ð6Þ

in which FPOC(z) is the downward flux of POC parameter-
ized using a power law as in the work of Martin et al.
[1987] and zc = �75 m,

FPOC zð Þ ¼ z

zc

� �a

Fo: ð7Þ

[15] In addition to exporting organic carbon, marine
organisms can also export CaCO3 hard shells. This export
flux is taken to be proportional to the export of POC. The
rain ratio R is the proportionality constant at the base of the
euphotic zone. The exported CaCO3 is assumed to dissolve
in the water column according to the vertical flux profile
represented by an exponential curve. Above and below the
base of the euphotic zone, the CaCO3 sink-source term for
DIC takes the form:

JbCaCO3
¼ � 1� sð ÞR� Jprod for z > zc ð8Þ

and

JbCaCO3
¼ @

@z
FCaCO3

zð Þ for z < zc ð9Þ

where

FCaCO3
zð Þ ¼ R� Fo exp

z� zc

d

� �
ð10Þ

is the downward flux of CaCO3. The parameter d is the
length scale for the remineralization of CaCO3. In this
model, there is no sedimentation of Corg and CaCO3. All the
flux that enters through the top of the bottom grid box is
assumed to be remineralized within the bottom box.
[16] Once the solutions for the PO4 and TA cycles are

known, the DIC field can be obtained by solving

@ DIC½ �
@t

þ u 
 r DIC½ � � r Kr DIC½ �ð Þ ¼ JvDIC þ JgDIC þ JbDIC:

ð11Þ

[17] JvDIC is the virtual flux of DIC due to the concen-
trating and diluting effects of freshwater evaporation and
precipitation. JgDIC denotes the surface flux of carbon due
to air-sea gas exchange and is a function of both DIC and
TA. The formulation and parameterization for air-sea carbon
fluxes follow the OCMIP-2 protocol [Najjar et al., 2007] of
which the computation of the gas transfer velocity is
adapted from Wanninkhof [1992]. JbDIC is the source-sink
term of DIC due to the biological production and reminer-
alization of carbon,

JbDIC ¼ JbCorg
þ JbCaCO3

: ð12Þ

2.3. Implicit Equilibrium Solver

[18] The model’s governing equations can be expressed
symbolically as follows

d

dt

PO4½ �
DOP½ �

� 	
¼ G1

PO4½ �
DOP½ �

� 	
;m

� �
; ð13Þ

d

dt
TA½ � ¼ G2 TA½ �;m; PO4½ �

DOP½ �

� 	� �
; ð14Þ

d

dt
DIC½ � ¼ G3 DIC½ �;m; TA½ �; PO4½ �

DOP½ �

� 	� �
: ð15Þ

where m = [d, a, k, s, R, rC:P, rN:P] is the set of model
parameters. Equation (13) governs the phosphorous cycle.
Equation (14) governs the total alkalinity cycle and
equation (15) governs the carbon cycle. Note that [PO4]
and [DOP], the dependent state variables in (13), appear
only parametrically in G2 and G3 and that [TA], the
dependent state variable in (14), appears only parametrically
in G3. Consequently, equations (13), (14), and (15) can be
solved sequentially without having to solve the fully
coupled system simultaneously.
[19] Our method of obtaining steady state solutions

is thus to set the time derivatives in equations (13), (14),
and (15) to zero and use Newton’s method [e.g., Kelly,
2003] to solve

G1
PO4½ �
DOP½ �

� 	
;m

� �
¼ 0; ð16Þ
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for [PO4] and [DOP], and then to solve

G2 TA½ �;m; PO4½ �
DOP½ �

� 	� �
¼ 0; ð17Þ

for [TA], and finally to solve

G3 DIC½ �;m; TA½ �; PO4½ �
DOP½ �

� 	� �
¼ 0; ð18Þ

for [DIC].
[20] The Newton’s solver consists of iterating

X  X � @G

@X

� ��1
G Xð Þ ð19Þ

until maxjG(X)j < tol where tol is chosen to be as small as
possible given the finite machine precision. Newton’s
method requires that the Jacobian matrix, (@G/@X), be
inverted at every iteration. For this we use a factor-and-
solve approach as implemented in the MUMPS sparse
matrix solver [Amestoy et al., 2001]. The factored matrix is
then available for the sensitivity analysis (see section 3.1).
For our model, steady solutions to the full model can be
obtained in approximately 1 h on a single processor
workstation. Obtaining the same solution using a time
stepping approach would take on the order of a week.

2.4. Equilibrium Solutions Based on OCMIP-2
Reference Parameters

[21] In this section, we present the equilibrium solutions
of TA and DIC obtained using the OCMIP-2 reference
parameters and compare with the observed fields. The
reference parameters used for the OCMIP-2 simulation are
listed in Table 2. Figure 1 shows depth-averaged concen-
trations of TA in the left column and DIC in the right
column with the simulated fields in the top row and
observed fields in the middle. Figures 2 and 3 show
respectively the zonal averages of [TA] and [DIC]. The
bottom rows in Figures 1 to 3 show the equilibrium
solutions based on our optimized parameter set. A discus-
sion of the optimized solutions is deferred until section 4.5.
[22] There is a clear contrast in both [DIC] and [TA]

between the Atlantic and Pacific that is well captured by the

model (Figure 1). The model however has a pronounced
maximum in the equatorial Pacific that is absent in the
observations. The PO4 field, not shown here, but plotted in
KP06 shows a similar pattern. In the study of KP06,
optimizing the parameters that control the production and
consumption of DOP reduced the excess [PO4] in the
equatorial Pacific Ocean by approximately 70%. The
remaining discrepancy suggests that the errors in the trans-
port model are responsible for at least part of the excess
[PO4] in the eastern equatorial Pacific in accord with
previous studies by Aumont et al. [1999] and Matear and
Holloway [1995]. The same errors in the circulation and in
the parameters that control DOP production are likely to be
also responsible for part of the deficiencies in the simulated
TA and DIC fields. Our results presented in section 4.5
show that this is indeed the case.
[23] The zonally averaged TA distribution is presented in

Figure 2 for the Atlantic, Indian, and Pacific oceans. Our
model captures the gross features of the observed TA
distribution with depleted [TA] near the surface and a
gradual increase in [TA] with depth. As in the observations,
the highest [TA] values are located at depth in the northern
parts of the Indian and Pacific oceans. The model also
captures the elevated [TA] in the subtropical surface waters
of each basin. In particular, the higher [TA] in the surface
subtropical Atlantic caused by excess evaporation over
precipitation is well captured by the model.
[24] Our simulation with the OCMIP-2 parameters over-

estimates the basin-to-basin contrast of the TA concentra-
tion. [TA] is underestimated in the upper North Atlantic
waters and overestimated in the deep North Pacific. Another
discrepancy can be seen in the deep Atlantic Ocean.
Simulated [TA] is higher than observed by approximately
30 meq/kg below 3000 m. As mentioned in KP06 for the
case of PO4, the discrepancy in the deep Atlantic ocean is
likely due to the shortcomings of the transport model
because Antarctic Bottom Water (AABW) intrudes too far
north, pushing the North Atlantic Deep Water (NADW) to a
depth that is shallower than observed. Because the AABW
has higher levels of preformed TA than does NADW, the
transport error results in elevated [TA] near the bottom of
the Atlantic Ocean, where the contribution of AABW is
higher than that of NADW. In addition, the downward
CaCO3 fluxes and dissolution at depth further increase
[TA] along the pathway of bottom water as it reaches farther
northward than in the real ocean.
[25] The overall patterns of zonally averaged [DIC] are

well reproduced by the model (Figure 3). In both the

Table 2. Reference (OCMIP-2) and Optimized (OPT) Parameter Values

Parameter rC:P rN:P s 1/k (years) a R d (m)

OCMIP-2a 117 16 0.67 0.5 �0.9 0.07 3500
OPT 137 24 0.74 1.7 �0.97 0.081 2100
1% Rangeb 126–149 13–36 0.69–0.78 1.2–2.3 �1.04–�0.90 0.072–0.089 1800–2400
OPT(rN:P = 16)c 142 16 0.73 1.8 �0.96 0.073 2100

aOCMIP-2 reference parameter values as given by Najjar et al. [2007].
bThe ranges indicate the parameter sensitivities and are computed on the basis of an average 1% decrease in the fraction of the spatial

variance in the tracer data captured by the model while the other parameters are held constant at their optimal values.
cOptimized parameter values when rN:P is held constant at its reference value rN:P = 16.
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observation and the simulation, [DIC] is lowest above the
thermocline and increases gradually with depth. The model
also captures the observed basin-to-basin contrast within the
deep ocean. However there is a discrepancy in the location
of the [DIC] maximum. The model produces the highest
[DIC] levels in the area centered near 10�N at a depth of
approximately 2500 m in the Pacific whereas the observed
[DIC] maximum is located near 1500 m northward of 30�N.
The discrepancy in the highest [DIC] zone is also found in
the PO4 simulation (KP06) and is likely due to the com-
bined effect of biogeochemistry and circulation errors in the
model. Too weak upwelling of North Pacific waters com-
pared to the real ocean produces a nutricline that is too deep
in our model. As a result, primary production in the
Northern Pacific surface ocean is nearly shut off because
of the lack of nutrient supply from below.
[26] In the next section we present sensitivity patterns that

show how changes in the biogeochemistry parameters affect
the spatial distribution of TA and DIC. The sensitivity
analysis then paves the way for understanding the results

of the parameter optimization study which we present in
section 4.

3. Model Sensitivity Analysis

3.1. Definition of Sensitivity Patterns and
Computational Method

[27] The standard approach for obtaining the sensitivity
of a model to its parameters consists of running the model to
obtain a reference solution, varying an input parameter,
rerunning the model and recording the change in the
model’s output. Albeit being conceptually straightforward
the method is computationally expensive and greatly limits
the scope of parameter sensitivity analysis for global ocean
biogeochemistry models.
[28] We obtain the sensitivity of the equilibrium tracer

fields using an alternative approach that can take advantage
of the computations already done as part of the Newton
solver to greatly reduce the overall computational costs. Our
approach is to compute the partial derivatives of the

Figure 1. Depth-averaged [TA] in meq kg�1 (left column) and [DIC] in mmol kg�1 (right column). Top
panels: equilibrium solutions obtained using the OCMIP-2 reference parameters, Middle panels:
GLODAP observed fields, Bottom panels: equilibrium solutions obtained using the optimized
parameters.
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equilibrium tracer fields directly. In the limit of a small
parameter perturbation the standard approach to sensitivity
analysis yields precisely a finite difference approximation to
these partial derivatives.
[29] To obtain an equation for the sensitivity of the

equilibrium TA field to one of the model parameters, we
take the partial derivative of equation (17) with respect to the
parameter. Denoting the particular parameter by m, we have

@ TA½ �eq
@m

¼ � @G2

@ TA½ �eq

" #�1


 @G2

@m
þ @G2

@ PO4;DOP½ �eq

" #
@ PO4;DOP½ �eq

@m

 !
: ð20Þ

Similarly, for the sensitivity of the equilibrium DIC field to
a parameter m, we take the partial derivative of equation (18)
with respect to m to obtain

@ DIC½ �eq
@m

¼ � @G3

@ DIC½ �eq

" #�1
@G3

@m
þ @G3

@ TA½ �eq

" #
@ TA½ �eq
@m

 

þ @G3

@ PO4;DOP½ �eq

" #
@ PO4;DOP½ �eq

@m

!
: ð21Þ

[30] In equations (20) and (21) all terms are vectors
except those in square brackets which are matrices. The
two matrices requiring inversion in equations (20) and (21)
are exactly the Jacobian matrices that are already factored as
part of the Newton solver applied to equations (17) and
(18). The sensitivity of the equilibrium solutions can there-
fore be obtained with a negligible increase in the overall
computational cost.
[31] In the remainder of this paper we will refer to the

three-dimensional sensitivity patterns given by the partial
derivatives of the equilibrium [TA] and [DIC] with respect
to a model parameter as S patterns and denote them using
the following shorthand notation

STAm �
@ TA½ �
@m

and SDICm � @ DIC½ �
@m

; ð22Þ

where m can be any one of the model parameters [rC:P,
rN:P, s, k, a, R, d].
[32] In Figures 4 and 6, we present the resulting STA and

SDIC patterns, respectively. The reference state for which we
compute the sensitivity patterns is the equilibrium solution
obtained with the standard OCMIP-2 parameter values
listed in Table 2. It turns out that the structure of the S
patterns is not too sensitive to the reference parameter state.
Thus our discussion in this paper is valid regardless we used

Figure 2. Zonally averaged [TA] distribution in meq kg�1 in the Atlantic (left column), Indian (middle
column), and Pacific (right column) oceans for the simulation using the OCMIP-2 reference parameters
(top row), the GLODAP observed field (middle row), and for the simulation using the optimized
parameter set (bottom row).
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the OCMIP-2 parameters or the optimized parameters that
will be discussed in section 4.

3.2. Decomposition Method of SDIC Patterns

[33] The mechanisms that are responsible for the oceanic
carbon cycle can be better understood with the concept of
the carbon pumps [Volk and Hoffert, 1985]. Here we adopt
the pump separation method developed by Gruber and
Sarmiento [2002] to separate the SDIC patterns into three
sensitivity components: sensitivities due to the soft-tissue
pump, the carbonate pump and the gas exchange pump.
Analogous to the three pumps in the work of Gruber and
Sarmiento [2002], the soft-tissue pump produces the sensi-
tivity component that would be obtained if there were only
organic material fluxes in the absence of gas exchange. The
carbonate pump produces the sensitivity component that
would be obtained if only CaCO3 sources-sinks took place
in the absence of air-sea gas exchange. The remaining SDIC

pattern explains the net effect of the evasion or invasion of
carbon to and from the atmosphere due to a parameter
change. The SDIC pattern is thus separated into the three
components,

SDICm ¼ SDICsoft

m þ SDICcarb

m þ SDICgasx

m : ð23Þ

[34] To derive the decomposition of the SDIC patterns, we
begin by decomposing the deviation of the preindustrial

DIC distribution from its global mean value into the three
components as follows:

D DIC½ � ¼ D DIC½ �softþD DIC½ �carbþD DIC½ �gasx; ð24Þ

where the D operator yields the anomaly field with respect
to the global mean, i.e.,

D DIC½ � ¼ DIC½ � � DICh iref ; ð25Þ

where hDICiref represents the global mean of [DIC] at the
reference parameter set,

DICh iref¼
1

V

Z
V

DIC½ �ref dV ð26Þ

where V is the total volume of the global ocean. Likewise
the anomaly fields for [PO4] and [TA] can be obtained from

D PO4½ � ¼ PO4½ � � PO4h iref ; ð27Þ

and

D TA½ � ¼ TA½ � � TAh iref ; ð28Þ

Figure 3. Zonally averaged [DIC] distribution in mmol kg�1 in the Atlantic (left column), Indian
(middle column) and Pacific (right column) oceans for the simulation using the OCMIP-2 reference
parameters (top row), the GLODAP observed field (middle row), and for the simulation using the
optimized parameter set (bottom row).
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Figure 4
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respectively. Because we seek to explain the net change in
the DIC distribution induced by a parameter change, the
anomaly field should retain all changes that have occurred
including a net increase or decrease of carbon storage.
Therefore the global mean value hDICiref is referenced to a
fixed parameter set whereas the tracer distribution [DIC] is
subject to change with varying parameter values. The soft-
tissue component is obtained by multiplying the C:P ratio to
the deviation of phosphate and the carbonate component is
computed using the nitrogen-corrected TA deviation
[Brewer et al., 1975],

D DIC½ �soft¼ rC:P�D PO4½ � ð29Þ

and

D DIC½ �carb¼
D TA½ � þ rN:P�D PO4½ �

2
: ð30Þ

The remaining DIC deviation is the gas exchange
component, thus equation (24) becomes

D DIC½ � ¼ rC:P�D PO4½ � þD TA½ � þ rN:P�D PO4½ �
2

þD DIC½ �gasx: ð31Þ

The partial derivative of equation (31) with respect to a
parameter m yields

@D DIC½ �
@m

¼ @ rC:P�D PO4½ �ð Þ
@m

þ 1

2

@ D TA½ � þ rN:P�D PO4½ �ð Þ
@m

� �

þ
@D DIC½ �gasx

@m
: ð32Þ

Note that the term on the left hand side is equivalent to Sm
DIC,

and the first, second and third terms on the right hand side
are respectively contributions from the soft-tissue pump,
carbonate pump and gas exchange pump to the Sm

DIC pattern.
Equation (32) can be expressed using the S pattern notation
as

SDICm ¼ rC:P� SPO4m þ 1

2
STAm þ rN:P� SPO4m

� �
þ SDICgasx

m ; ð33Þ

if m 2 {s, 1/k, a}, as

SDICm ¼ 1

2
STAm þ SDICgasx

m ; ð34Þ

if m 2 {R, d}, as

SDICm ¼ DPO4 þ
1

2
STAm þ SDICgasx

m ; ð35Þ

if m = rC:P and as

SDICm ¼ SDICgasx

m ; ð36Þ

if m = rN:P. The missing terms in equations (34) through
(36) are due to the fact that SR

PO4 = Sd
PO4 = SrC:P

PO4 = SrN:P
PO4 = 0

and SrN:P
TA + DPO4 = 0 (see equation (43) in the next

section). As a result, the soft-tissue pump components for
m = R, d, rN:P and the carbonate pump component for m =
rN:P are absent. The resulting decomposed SDIC patterns
are presented in Figure 7 and discussed in section 3.5.

3.3. Decomposition Method of STA Patterns

[35] We also decompose the STA patterns to the contribu-
tions from the soft-tissue pump and the carbonate pump,

STAm ¼ STAsoft

m þ STAcarb

m : ð37Þ

[36] To derive the decomposition of the STA patterns, we
begin by decomposing the deviation of TA distribution from
its global mean value into the two components as follows:

D TA½ � ¼ D TA½ �softþD TA½ �carb: ð38Þ

The soft-tissue component is given by

D TA½ �soft¼ �rN:P�D PO4½ �; ð39Þ

and the remaining [TA] deviation becomes the carbonate
component. Taking partial derivatives of equation (38) with
respect to a parameter m, we obtain

@D TA½ �
@m

¼ @ �rN:P�D PO4½ �ð Þ
@m

þ @D TA½ �carb
@m

: ð40Þ

Using the S pattern notation, equation (40) can be rewritten
as

STAm ¼ �rN:P� SPO4m þ STAcarb

m ; ð41Þ

if m 2 {s, 1/k, a}, as

STAm ¼ STAcarb

m ; ð42Þ

if m 2 {R, d, rC:P} and as

STAm ¼ �D PO4½ �; ð43Þ

Figure 4. STA patterns showing the sensitivity of the equilibrium solution of TA to changes in the parameter values. From
top to bottom, SrC:P

TA [meq kg�1 (molC/molP)�1], SrN:P
TA [meq kg�1 (molN/molP)�1], Ss

TA [meq kg�1], S1/k
TA [meq kg�1 year�1],

Sa
TA [meq kg�1], SR

TA [meq kg�1] and Sd
TA [meq kg�1 km�1]. The zonally averaged TA sensitivities in the Atlantic (left

column), Indian (middle column), and Pacific (right column) are shown. Warm colors correspond to positive sensitivities
and cold colors correspond to negative sensitivities.
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if m = rN:P. The soft-tissue components for m = R, d, rC:P
are absent in equation (42) because SR

PO4 = Sd
PO4 = SrC:P

PO4 = 0.
Since SrN:P

TA itself is equal to the minus anomaly field of
PO4, the carbonate component for m = rN:P is absent in
equation (43). The resulting decomposed STA patterns are
presented in Figure 5 and discussed in the following section.

3.4. S Patterns for TA: STA Patterns

[37] The STA patterns (Figure 4) show how parameter
perturbations that result in a decrease of [TA] in surface
waters are accompanied by a commensurate increase in
deeper waters, and vice versa. The pattern reflects changes
in uptake in sunlit surface waters tied to a necessary change
in export flux and subsurface remineralization. The sensi-
tivity patterns further show how the biologically driven
fluxes couple to the circulation to produce a large-scale
redistribution of the tracer within and across ocean basins.
For example, the zero sensitivity contour above which [TA]
increases and below which [TA] decreases (or vice versa)
shows a clear contrast across the basins. The zero sensitivity
line lies deeper in the Atlantic relative to the Indian and
Pacific oceans. The formation and transport of NADW are
responsible for the penetration of water properties acquired
at the surface into the interior of the Atlantic Ocean. At the
same time, changes in the downward flux of biogenic
particles result in changes in [TA] at depths that are then
carried into the Indian and Pacific oceans by the lower
branch of the global overturning circulation. The accumu-
lated changes then upwell in the tropics and northern
hemisphere causing the zero sensitivity line to bow upward
in those basins.
[38] The STA patterns show that an increase in rC:P, R or d

tends to enhance the vertical and basin-to-basin contrasts of
[TA] while an increase in rN:P, s, 1/k or a tends to reduce
the contrasts. The tendency is the result of the parameter
change influencing either organic nitrogen or CaCO3 cycles.
However, as illustrated in Figure 5, changes in CaCO3

fluxes dominate the STA patterns over changes in organic
nitrogen fluxes for all parameters except rN:P. Parameter
changes that lead to increased export production of CaCO3

enhance the vertical and basin-to-basin contrasts of [TA]
while parameter changes that lead to decreased export of
CaCO3 tend to reduce the contrasts. For example, increases
in rC:P and R both raise the CaCO3 export production from
the surface waters and subsequent dissolution in the abyssal
waters. An increase in the dissolution length scale d also
increases the downward CaCO3 transport. Therefore in-
creasing rC:P, R and d causes a reduction of [TA] in the
upper oceans and newly formed NADW and, at the same
time, causes an accumulation of [TA] in the older water
masses of the North Pacific. On the other hand, increasing
s, 1/k or a results in decreased CaCO3 production.
Increases in s and 1/k both decrease the export production
of POC (see Figure 8 in KP06) to which the production of
CaCO3 is proportional. A deeper remineralization of organic

matter resulting from an increased a also reduces new
production of organic carbon and CaCO3 by decreasing
the supply of nutrients into the euphotic layer. Therefore,
increasing s, 1/k or a erodes the vertical and basin-to-basin
contrasts of [TA]. While all the parameters except rN:P
influences [TA] through the CaCO3 cycle, rN:P influences
[TA] via POM fluxes. An increase in rN:P tends to erode the
vertical gradient of [TA] through increased organic nitrogen
export.
[39] One important feature of the TA distribution is that

different subsets of parameters have sensitivity patterns with
very similar shapes. For example, SrC:P

TA , Sa
TA, SR

TA and Sd
TA

have similar structures. Ss
TA and S1/k

TA also show similar
patterns. This leads to correlations among the parameters
and has important implication for our optimization results as
we discuss in section 4.3.

3.5. S Patterns for DIC (SDIC)

[40] The SDIC patterns (Figure 6) show how DIC is
redistributed in response to changes in the parameters. In
addition to being affected by changes in biological produc-
tion and remineralization occurring within the ocean, the
DIC distribution is also affected by carbon gained or lost
through air-sea gas exchange. Parameter changes that en-
hance the soft-tissue pump cause the uptake of CO2 from
the atmosphere into the ocean by reducing the surface DIC
concentration relative to the deep ocean. On the other hand,
an enhancement of the carbonate pump causes outgassing of
carbon by reducing the surface [TA] and consequently
increasing the oceanic pCO2. The resulting carbon exchange
is the combined effect of both changes in the soft-tissue
pump and the carbonate pump. The decomposed SDIC

patterns presented in Figure 7 further elucidate the param-
eter change impact on carbon distribution through the three
pumps. In the following three subsections, we describe the
SDIC pattern for each parameter.
3.5.1. Parameters rC:P and rN:P
[41] Increasing rC:P enhances the vertical and basin-to-

basin contrasts of DIC (first row in Figure 6). It produces a
prominent depletion of DIC in newly formed NADW and a
maximum enrichment in the oldest water of the North
Pacific. This is because both the soft-tissue and carbonate
pumps become stronger in response to the increased C:P
ratio (first row in Figure 7). With an increase in rC:P the
amount of organic carbon consumed and remineralized in
the deeper ocean is increased for a fixed amount of new
production. Albeit smaller in magnitude, increasing rC:P
also increases CaCO3 fluxes through the dependency of
CaCO3 formation on the export of POC. The enhanced soft-
tissue and carbonate pumps however have opposing impacts
on air-sea carbon exchange. The ocean tends to take up CO2

with the enhanced soft-tissue pump while the enhanced
carbonate pump tends to release CO2 to the atmosphere.
The gas exchange component shows the net uptake, which
implies that the impact of the enhanced soft-tissue pump

Figure 5. The zonally averaged STA patterns along the Atlantic (right column) are decomposed into contributions from the
soft-tissue pump (left column) and the carbonate pump (middle column). From top to bottom, SrC:P

TA [meq kg�1 (molC/
molP)�1], SrN:P

TA [meq kg�1 (molN/molP)�1], Ss
TA [meq kg�1], S1/k

TA [meq kg�1 year�1], Sa
TA [meq kg�1], SR

TA [meq kg�1] and
Sd
TA [meq kg�1 km�1]. The same color scale is applied to all components for each parameter, but contour intervals are

adjusted to better show detailed structure of each component.
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Figure 6
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Figure 6. SDIC patterns showing the sensitivity of the equilibrium solution of DIC to change in the parameter values.
From top to bottom, SrC:P

DIC [mmol kg�1 (molC/molP)�1], SrN:P
DIC [mmol kg�1 (molN/molP)�1], Ss

DIC [mmol kg�1], S1/k
DIC [mmol

kg�1 year�1], Sa
DIC [mmol kg�1], SR

DIC [mmol kg�1] and Sd
DIC [mmol kg�1 km�1]. The zonally averaged DIC sensitivities in

the Atlantic (left column), Indian (middle column) and Pacific (right column) are shown. Warm colors correspond to
positive sensitivities and cold colors correspond to negative sensitivities.

Figure 7. The zonally averaged SDIC patterns along the Atlantic (fourth column) are decomposed into
contributions from the soft-tissue pump (first column), the carbonate pump (second column), and the gas
exchange pump (third column). From top to bottom, SrC:P

DIC [mmol kg�1 (molC/molP)�1], SrN:P
DIC [mmol kg�1

(molN/molP)�1], Ss
DIC [mmol kg�1], S1/k

DIC [mmol kg�1 year�1], Sa
DIC [mmol kg�1], SR

DIC [mmol kg�1] and
Sd
DIC [mmol kg�1 km�1]. The same color scale is applied to all components for each parameter, but

contour intervals are adjusted to better show detailed structure of each component.
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dominates over the impact of the enhanced carbonate pump
when controlling air-sea carbon fluxes.
[42] For this OCMIP-2 type model, the rN:P parameter

influences DIC only through air-sea CO2 exchange. Increas-
ing rN:P causes an increase in surface [TA] in all basins as
shown by SrN:P

TA in Figure 4. This shifts the surface water
CO2 system equilibrium to favor a net uptake of CO2 from
the atmosphere. Consistent with the surface [TA] change,
SrN:P
DIC (second row in Figures 6 and 7) shows the highest
sensitivities in the subtropical surface oceans. The sensitiv-
ity decreases gradually with depth because the carbon
originates from the atmosphere.
3.5.2. Parameters s and 1/k
[43] Zonally averaged Ss

DIC and S1/k
DIC show similar

patterns (third and fourth rows in Figure 6). The maximum
enrichment of DIC is observed near the subtropical
thermocline in the three basins. In contrast, DIC is mostly
depleted in the thermocline of the Indian and Pacific
tropical regions. The Ss

DIC and S1/k
DIC patterns are best

captured by their soft-tissue components indicating the
dominant role played by organic carbon fluxes in the net
DIC distribution when s or 1/k is perturbed (third and
fourth rows in Figure 7). Increasing s or 1/k causes an
increase in the global inventory of DOM. This leads to an
increase in the amount of DOC that is transported away
from production zones by surface currents before being
remineralized. This lateral transport of carbon causes [DIC]
to decrease in areas where surface currents are divergent
such as in the equatorial oceans and causes [DIC] to
increase in areas where surface currents are convergent such
as in the subtropical gyres. The lateral contrasts are clearly
visible in S1/k

DIC and Ss
DIC shown in Figures 6 and 7. An

increase in either s or 1/k tends to decrease the export
production of POC (Figure 8 in KP06) and also of CaCO3.
The reduced CaCO3 fluxes erode the vertical gradient of
[DIC]. The similar biological effects of the parameter
changes yield nearly identical patterns in the soft-tissue and
carbonate components for Ss

DIC and S1/k
DIC.

[44] Despite gross similarities in the sensitivity patterns
for s and 1/k, the net effect on air-sea carbon exchange is
different for each parameter. Increasing s decreases the
capacity of the ocean to store carbon, while increasing 1/k
increases it. This can be seen in the gas exchange compo-
nent of Ss

DIC and S1/k
DIC shown in Figure 7. The opposing

effect is due to the different response of the soft-tissue
component of [DIC] in the surface ocean with changes in
either 1/k or s. With an increase in s less DIC is exported as
POC so that the surface [DIC] increases. An increase in 1/k
on the other hand allows a larger fraction of the DOC to
remineralize below the surface because of its longer
lifetime. As a result, the soft-tissue component of [DIC]
decreases in some parts of the surface ocean. The
differences in surface [DIC] then influences the air-sea
carbon exchange explaining the different sensitivities. The
overall effect is that negative sensitivities associated with s
are dominant for the gas exchange component of Ss

DIC

whereas the weaker negative sensitivities for S1/k
DIC are

present only in the water masses ventilated through the
northern North Atlantic and North Pacific, not shown, but
that are visible when zonal averages for individual basins
are plotted.

3.5.3. Parameter a
[45] The Sa

DIC pattern is mostly positive in all three basins
(fifth row in Figure 6). By increasing a, a larger fraction of
POC reaches the deep ocean. The strength of the soft-tissue
pump is thus enhanced as can be seen in the fifth row of
Figure 7. The resulting decrease in surface [DIC] is most
pronounced in the thermocline of the equatorial oceans. The
negative sensitivities shown in the equatorial thermocline is
a consequence of subsurface convergence and upwelling
which can return nutrients remineralized in the upper
thermocline back to the euphotic layer. A deeper reminer-
alization of POC leads to less reentrainment of carbon from
below, causing [DIC] to decrease considerably in that area.
The increased downward flux of POC couples with the
Atlantic-to-Pacific deepwater flow to produce the large
increase in [DIC] in the bottom waters of the Pacific.
[46] The carbonate component of Sa

DIC contoured in
Figure 7 shows the global effects of reduced production
of CaCO3 resulting from deeper sequestration of nutrients.
The reduced production and dissolution of CaCO3 increase
[DIC] in the upper ocean while decreasing [DIC] in the
deeper ocean. We can infer from the strengthened soft-tissue
pump and the weakened carbonate pump that the oceanic
pCO2 would decrease significantly because of changes in
biologically driven [DIC] and [TA] near the surface. The
gas exchange component indeed shows that the entire ocean
basins favor uptake of CO2 as manifested by widespread
positive signs of Sa

DIC. We also note that North Atlantic
Deep Water mass responds most sensitively to an increase
in a in terms of carbon uptake.
3.5.4. Parameters R and d
[47] The SR

DIC and Sd
DIC patterns (sixth and seventh rows

in Figures 6 and 7) show the combined effects from the
carbonate pump and the gas exchange pump. An increase in
R increases the export of CaCO3 from the euphotic layer.
This produces an enhanced vertical and basin-to-basin
contrast in DIC. A deeper dissolution of CaCO3 also causes
a larger fraction of CaCO3 to be pumped into the deeper
part of the ocean and so also produces an enhancement in
the vertical and basin-to-basin contrasts of DIC. Compared
to that of SR

DIC, the carbonate component of Sd
DIC is charac-

terized by contour lines concentrated at depths below
�2000 m (also seen in Sd

TA in Figure 4). This is because d
affects [DIC] only through dissolution processes of which
the reference e-folding length scale is 3500 m. In compar-
ison, R influences [DIC] through both production and
dissolution. As a result, the upper ocean also shows con-
siderable sensitivities with respect to a change in R. An
increase in either R or d raises the oceanic pCO2 and thus
the ocean releases carbon as can be seen in the gas exchange
component of SR

DIC and Sd
DIC.

3.6. General Remarks on SDIC Patterns

[48] The sensitivity of the three pump components shows
how changes in biological processes couple with different
aspects of the ocean circulation (Figure 7). The soft-tissue
component shows coupling with both the wind-driven and
meridional overturning circulations. The parameters s and
1/k interact most strongly with the wind-driven circulation
while rC:P and a interact predominantly with the over-
turning circulation. The carbonate component shows that
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changes in CaCO3 fluxes are coupled with the deep circu-
lation below the thermocline. The gas exchange component
is tightly coupled with the global ventilation patterns. In
particular, NADW responds most sensitively to changes in
a, s, R, and d. New water is formed and transported into the
interior over the highly productive North Atlantic Ocean,
giving NADW high sensitivities to changes in production
and remineralization. For changes in rC:P, rN:P and 1/k,
high sensitivities are also evident in subtropical thermocline
water masses.
[49] One important feature of the SDIC patterns is that they

have distinct patterns across the parameters. The combina-
tion of the three sensitivity components results in more or
less unique patterns of the sensitivity. The distinct sensitiv-
ity pattern allows the parameters to be constrained better
using DIC data than TA data. We discuss the implication of
the distinct patterns for parameter constraint in section 4.3.

4. Parameter Optimization

4.1. Optimization Method and Data

[50] To optimize the biogeochemical model parameters,
we form a cost function which provides an objective
measure of the model-data misfit. The cost function is the
weighted sum of the fraction of unexplained variance of
PO4, TA and DIC integrated over the global ocean given by

C mð Þ ¼ w1

PO4½ � � PO4½ �obs
� �2D E

Var PO4½ �obs
� � þ w2

TA½ � � TA½ �obs
� �2D E
Var TA½ �obs
� �

þ w3

DIC½ � � DIC½ �obs
� �2D E

Var DIC½ �obs
� �

� w1C
PO4 mð Þ þ w2C

TA mð Þ þ w3C
DIC mð Þ; ð44Þ

where the angle brackets are operators that compute the
global mean of tracer concentrations as defined in
equation (26) and where the subscript obs denotes the
observed tracer field. The denominators are the spatial variances
of observed tracer distributions, i.e., Var([PO4]obs) �
h([PO4]obs � h[PO4]obsi)2i, Var([TA]obs) � h([TA]obs �
h[TA]obsi)2i and Var([DIC]obs)� h([DIC]obs� h[DIC]obsi)2i.
The weights, w1, w2 and w3 can be adjusted to take into
account the relative uncertainties of PO4, TA and DIC
measurements. The CPO4(m), CTA(m) and CDIC(m) represent

the PO4, TA and DIC components of the cost function,
respectively. We chose w1 = w2 = w3 = 1 and discuss the
sensitivity of our results to this particular choice of weights
in section 4.2.
[51] We use the globally gridded data sets of PO4 from

World Atlas 2001 [Conkright et al., 2002] and of TA and
DIC from GLODAP [Key et al., 2004] to constrain the
parameters. The cost function is computed by interpolating
the observations to our model grid. While atmospheric
pCO2 is fixed at the preindustrial level of 278 ppm in our
steady state solver, the DIC data is constructed on the basis
of the 1990s observations [Key et al., 2004]. We estimate
the anthropogenic DIC distribution and add it to our
preindustrial equilibrium DIC field before minimizing the
model-data difference. To estimate the cumulative amount
of anthropogenic carbon taken up by the ocean until the
year 1990, we time-integrate the carbon model starting from
the reference preindustrial equilibrium distribution with
atmospheric CO2 prescribed to follow the observed record
from 1765 to 1990 according to the OCMIP-2 protocol
(http://www.ipsl.jussieu.fr/OCMIP/). The difference field
between the DIC distribution in 1990 and that in the
preindustrial time is then added to our preindustrial equi-
librium DIC field when evaluating the model-data misfit.
[52] We optimize all seven parameters simultaneously by

minimizing the discretized version of equation (44). In the
discretized version of the cost function, the square of model-
data difference at each grid point is weighted by the volume
of the grid box. For convenience and ease of use, we
adopted Matlab’s FMINSEARCH routine to minimize the
cost function. This routine uses the Nelder-Mead simplex
algorithm [see Lagarias et al., 1998, and references there-
in]. For our seven parameter cost function the minimum was
found after several hundred iterations. The Nelder-Mead
simplex algorithm is a robust minimization algorithm but it
does not utilize the cost function gradient during its search.
Given the smoothness of our cost function we expect that a
factor of 10 decrease in the number of function evaluations
could have been achieved had we adopted a quasi-Newton
method for the optimization itself.

4.2. Optimized Parameters

[53] Our optimization significantly improves the agree-
ment between the model and observations (Table 3). Before
optimizing the parameters, the simulation with OCMIP-2
parameters captures 61%, 49% and 49% of the spatial
variance of the PO4, TA and DIC fields. The simulation
using the optimized parameter set increases the variance
captured by the model to 70%, 71% and 75%, respectively.
[54] The optimized parameter values are given in Table 2.

To determine how well each parameter is constrained, we
also present in Figure 8 the contour plots of the cost
function in the proximity of its minimum. The plots are

Table 3. Percentage of the Spatial Variance in the Tracer Fields

Captured by the Model Before and After the Optimizationa

Data OCMIP-2 OPT OPT(rN:P = 16)

Phosphate 61 70 70
Total alkalinity 49 71 71
DIC 49 75 75

aUnits are percent.

Figure 8. Contour plots of 100 � (C(m) � C(mopt)) showing the shape of the cost function for the combined data of
PO4, TA and DIC with variations in parameters, where C(mopt) = 0.30 + 0.29 + 0.25 = 0.84. The parameters indicated on
the x axis and the y axis are varied in the neighborhood of their minima (Table 2) with the other parameters being held
constant at their optimal values. A cross marks the location of the minimum of the cost function and the deviations from
the minimum value are contoured. We arbitrarily draw contour lines at 3, 10 and increments of 10 afterward. The
contour labeled 3 corresponds to an average 1% decrease in the fraction of the spatial variance in the observed tracer
data captured by the model.
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two-dimensional cross sections through the cost function in
parameter space. The cost function is evaluated by comput-
ing steady state solutions on a grid of parameter values in
the neighborhood of the optimal parameter set. In Figure
8 we discretized the parameter ranges using equally spaced
points with 10 points for s and 1/k, 16 points for d, rC:P
and rN:P, 20 points for a and 21 points for R. A cross marks
the location of the minimum of the cost function multiplied
by 100, which is 100 � 0.84 = 84, and the deviations from
the minimum value are contoured. Thus the contour line of
‘‘3’’ indicates an average 1% decrease in the fraction of the
spatial variance in the observed tracer data captured by the
model. From the shape of the contour lines, we can extract
information on the extent to which the parameters are
constrained either individually or in combination.
4.2.1. Stoichiometry Ratios: rC:P and rN:P
[55] After optimization we obtain C:N:P ratios of

137:24:1. These are higher than 117 ± 14/16 ± 1/1, which
Anderson and Sarmiento [1994] estimate on the basis of a
nonlinear inverse model and nutrient data. Large values for
the C:P ratio have been reported in previous studies [e.g.,
Takahashi et al., 1985] but our estimate of the N:P ratio is
greater than the reference value by 50%. Such a large value
has not been reported elsewhere.
[56] A contour plot of the cost function as a function of

rC:P and rN:P in Figure 8 shows how rC:P is relatively well
constrained in comparison to rN:P. For example, the in-
crease in the cost function by 3 results in a ±8% change in
rC:P, i.e., 126–149, when all parameters except rC:P are
held constant at their optimal values. However, for the same
increase in the cost function rN:P changes by ±46%, i.e.,
13–36. The relatively weak sensitivity of the cost function
to rN:P results in a relatively larger uncertainty for rN:P
compared to rC:P.
[57] We speculate that the poor constraint on rN:P is

because the OCMIP-2 model does not explicitly simulate
important processes associated with the nitrogen cycle
[Najjar et al., 2007]. In the OCMIP-2 model, the rN:P is
used only to account for the contribution of nitrate fluxes to
TA and plays a role in controlling DIC distribution only
through gas exchange processes. Thus, by using model
formulations resolving the nitrogen cycle and combining
with nitrogen data, it might be possible to better constrain
rN:P.
4.2.2. Parameters Controlling CaCO3 Fluxes Only:
R and d
[58] We obtain the CaCO3 production ratio R = 0.081

which is larger than the value of R = 0.07 used as the
reference OCMIP-2 value. Our value is slightly larger than
the range R = 0.06–0.08 suggested by Yamanaka and Tajika
[1996] but falls within the range of 0.06 ± 0.03 given by
Sarmiento et al. [2002] and within the range of R = 0.07–
0.10 given by Jin et al. [2006].
[59] Our optimized value d = 2100 m is 40% smaller than

d = 3500 m obtained from Yamanaka and Tajika [1996] and

used as the reference OCMIP-2 value. This large change in
the value of d is significant because of the relatively high
sensitivity of the cost function to changes in d (Figure 8).
An increase in the cost function by 3 suggests the optimal
range of d = 1800–2400 m. By changing the value of d
from the reference to optimal value with the other param-
eters being held at their optima, the cost function decreases
by as much as 50. The e-folding length scale of d = 2100 m
produces the profile of CaCO3 downward fluxes that grad-
ually decrease throughout the entire water column, indicat-
ing that a significant fraction of exported CaCO3 dissolves
at depths shallower than the global mean calcite saturation
horizon (See Figure 11 and discussion in section 4.4).
Our optimization result thus provides an alternative line of
evidence in support for the existence of processes leading to
CaCO3 dissolution at depths shallower than the calcite
saturation horizon in the Atlantic, Indian and Pacific oceans
obtained using TA* [Chung et al., 2003; Sabine et al., 2002;
Feely et al., 2002]. That we obtain a similar result using a
different approach is important because the recent study of
Friis et al. [2006] has suggested that the studies using the
TA* tracer have not properly taken into account the influ-
ence of transport.
4.2.3. Parameters s, 1/k, and a
[60] In a previous study (KP06), we reported results from

optimization of s, 1/k and a using only PO4 data. In the
present study, we find that the optimization using the
combined data set of PO4, TA and DIC leads to only minor
changes in the optimal parameter values of s, 1/k and a.
The optimized value for s is identical within 2 significant
figures to our previous value. Our new optimized value of
a = �0.97 is only slightly larger than the value a = �1.0 we
obtained previously. Our new optimized value of 1/k =
1.7 years lies in between 1.0 and 2.8 years we obtained
previously. The shape of the cost function based on the
equally weighted combination of DIC, TA and PO4 pre-
sented in the s � 1/k plot of Figure 8 is also similar to the
cost function based on only PO4 shown in KP06. This
indicates that 1/k and to a lesser extent s remain relatively
poorly constrained even with the addition of DIC and TA
data as can be deduced from the strong correlation between
the sensitivity patterns for STA and SDIC for both s and 1/k.
[61] In our previous study (KP06), we attributed a large

fraction of model improvement to changes in the two
parameters, s and 1/k that control DOM production and
remineralization, because of their effect on the nutrient
trapping problem in the eastern equatorial oceans. We find
that this same effect also improves the agreement between
the model and the observations for DIC and TA as we
discuss in section 4.5.

4.3. Relative Importance of DIC and TA for
Constraining Parameters

[62] We investigate the degree to which DIC or TA alone
constrains the parameters by plotting two-dimensional con-

Figure 9. The TA component of Figure 8, 100 � (CTA(m) � CTA(mopt)) where CTA(mopt)) = 0.29. The parameters indicated
on the x axis and the y axis are varied in the neighborhood of their minima (Table 2) with the other parameters being held
constant at their optimal values. A cross marks the location of the minimum of the cost function and the deviations from the
minimum value are contoured. We arbitrarily draw contour lines at 1, 5 and increments of 5 afterward. The contour labeled
1 corresponds to a 1% decrease in the fraction of the spatial variance in the observed TA data captured by the model.
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tour plots of the DIC and TA cost-function components in
Figures 9 and 10. The minimum of the total cost function,
indicated by the cross, approximately coincides with the
minimum of each component. This suggests that the opti-
mum parameter set is insensitive to the choice of the weights
in the cost function (i.e., w1, w2 and w3 in equation (44)).
Figures 9 and 10 do show however that the two components
of the cost function have different shapes, indicating that
uncertainty estimates would depend on the particular choice
of weights. For example, the rC:P-R plot for the TA
component of the cost function shows that the parameters
are constrained mostly to a one-dimensional family in which
rC:P and R are negatively correlated whereas the DIC
component of the cost function shows little correlation
between each parameter. To summarize the similarities in
the S patterns, we show the correlation coefficient for
each pair of STA patterns (lower triangle in Table 4) and
for each pair of SDIC patterns (upper triangle in Table 4). As
one expect from a visual inspection of the STA patterns
shown in Figure 4, all pairs of the STA patterns are highly
correlated. We see correlation coefficients that exceed jrj =
0.8 in all of the pairs except for rN:P-d, which has jrj = 0.74.
In contrast, the SDIC patterns are relatively less correlated.
Only the pairs s � 1/k, R � d, 1/k � R and a-rC:P have the
correlation coefficients jrj > 0.8. As a result, these parameter
pairs (in particular, s � 1/k and d-R) are not well con-
strained independently using either TA data or DIC data.
[63] Combining multiple tracers for the optimization is

particularly complimentary for pairs of parameters that have
S patterns with correlation coefficients of opposing signs.
This is the case for a-rC:P and rC:P-rN:P where the
combination of TA and DIC data greatly improves the
ability of the inversion to resolve individual parameters.

4.4. Export of Organic Carbon and CaCO3

[64] The postoptimization globally integrated POC export
at the base of the euphotic layer is 14.8 GtC/a. The
preoptimization value using the OCMIP-2 reference param-
eters was 15.5 GtC/a. Interestingly, the estimated POC
export production estimated in KP06 after having optimized
only the parameters associated with the phosphorous cycle
was also 14.8 GtC/a despite having used a C:P stoichiom-
etry ratio rC:P = 117. The effect of optimizing all the model
parameters using the combined PO4, DIC and TA data has
been to lower the net export of particulate organic phos-
phorus in comparison to the optimization of KP06 so that
the implied POC export remained fixed even though rC:P
increased from 117 to 137.
[65] In comparison to the OCMIP-2 reference value, the

globally integrated CaCO3 export production from the
euphotic layer increases from 1.09 GtC/a to 1.20 GtC/a.
In spite of the greater export production at the depth of
75 m, the vertical profiles of CaCO3 fluxes (Figure 11)
show that smaller amounts of CaCO3 are exported below a

depth of �700 m for the optimized solution. This can be
attributed to the substantial reduction in the dissolution
length scale of CaCO3 after optimization. As a result the
optimized model suggests that a greater fraction of CaCO3

is regenerated in the upper ocean above �2600 m. The
optimized solution is consistent with the study of Feely et
al. [2004] which estimated that up to 60% of total water
column dissolution occurs above a depth of 2000 m. For our
model with optimized parameters 67% of the CaCO3 export
is dissolved in the upper 2000 m. Our model is unable to
distinguish between dissolution in the water column and in
the sediments since it does not include any sedimentation
processes or inputs of CaCO3 from rivers.
[66] We find that the combined data sets of PO4, TA and

DIC constrain well the export production of POC and
CaCO3. Figures 12a and 12b show the globally integrated
CaCO3 export production as a function of s and 1/k and as
a function of a and rC:P. We overlay the contour line of the
1% decrease in the fraction of spatial variance captured by
the model, which is taken from Figure 8, over the contour
plots of the CaCO3 export production. The minimum and
maximum of the globally integrated CaCO3 export produc-
tion within the parameter space defined by a 1% decrease
in the fraction of spatial variance captured by the model is
1.1 GtC/a and 1.3 GtC/a. With the rain ratio of R = 0.081,
the POC export production is constrained to 15 ± 1 GtC/a.
Our study suggests that the spatial distributions of PO4, TA
and DIC are highly sensitive to changes in the export of
POC and CaCO3. In other words, having a right amount of
downward export of POC and CaCO3 provides a necessary
condition for minimizing the model-data misfit. We also
point out that the vertical export of biogenic material
depends sensitively on aspects of the ocean circulation that
are responsible for bringing nutrients to the euphotic layer
[e.g., Gnanadesikan et al., 2002]. This implies that the
optimized value of the export production of CaCO3 shown
in Figures 12a and 12b would shift toward higher values if
we used transport models with higher vertical mixing
regimes and lower values if we used transport models with
lower vertical mixing regimes. The fraction of CaCO3 that
dissolves above a depth of 2000 m is a function of d only
and constrained to 67 ± 4% of which ±4 is obtained by
allowing a 1% decrease in the fraction of spatial variance
captured by the model (Figure 12c).

4.5. Equilibrium Solutions Based on
Optimized Parameters

[67] We present the equilibrium solutions based on the
optimized parameters listed in Table 2. The vertically and
zonally averaged TA and DIC fields are presented in the
bottom panels of Figures 1 through 3. The top and middle
panels show respectively the solutions obtained using the
OCMIP-2 reference parameters and the observed TA and

Figure 10. The DIC component of Figure 8, 100 � (CDIC(m) � CDIC(mopt)) where CDIC(mopt)) = 0.25. The parameters
indicated on the x axis and the y axis are varied in the neighborhood of their minima (Table 2) with the other parameters
being held constant at their optimal values. A cross marks the location of the minimum of the cost function and the
deviations from the minimum value are contoured. We arbitrarily draw contour lines at 1, 5 and increments of 5 afterward.
The contour labeled 1 corresponds to a 1% decrease in the fraction of the spatial variance in the observed DIC data captured
by the model.
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DIC fields. The simulation with the OCMIP-2 reference
parameters was discussed in section 2.4.
[68] The most noticeable improvement is made in the

equatorial Pacific Ocean, where column-averaged [TA] and
[DIC] are significantly reduced (Figure 1). Approximately
50% of the excess [TA] and approximately 64% of the
excess [DIC] in the reference simulation are removed in the
optimized solution. This is attributable to increased dis-
solved organic matter in high-productivity upwelling
regions in the equatorial oceans. As discussed in section
4.2.3, the increased DOM pools are mainly due to increased
s and 1/k. Dissolved forms of nutrients and carbon are
transported laterally by the ocean currents while being
remineralized. The lateral transport of DOM then causes a
decrease in the production of organic matter and CaCO3 in
the upwelling region. As a result, part of the nutrient
trapping problem is reduced.
[69] Zonally averaged [TA] and [DIC] distributions also

show better agreements in terms of the vertical and basin-to-
basin contrasts (Figures 2 and 3). With the optimized
parameters, the simulated [TA] and [DIC] are increased in
NADW and decreased in deep waters in the North Pacific
Ocean. The reduced vertical and basin-to-basin contrasts are
consistent with the weakened carbonate pumps after opti-
mization. As shown in Figure 11 and discussed in section
4.4, the larger fraction of CaCO3 that dissolves in the upper
ocean leads to weakening of the carbonate pump.
[70] It is important to point out that some discrepancies

between the simulated and observed fields remain in spite of
the improvements made after optimization. For example, the
excess [TA] and [DIC] in high-productivity equatorial
Pacific Ocean are not completely removed. The discrep-
ancies in the AABW in the Atlantic are also barely

improved for both TA and DIC fields. Except for a slight
improvement shown in the TA field, our simulation still
overestimates both [TA] and [DIC] near the bottom of the
Atlantic. Our optimized parameter set also fails to capture
high concentrations of TA and DIC in the thermocline of the
North Pacific Ocean. As we discussed in KP06 and in
section 2.4 these errors are likely due to circulation errors,
but the need to add additional complexity to the biogeo-
chemistry model cannot be ruled out.

5. Discussion and Conclusions

[71] Our sensitivity and optimization study has been made
computationally feasible by the use of an implicit solver
based on Newton’s method to obtain steady state solutions of
phosphate (PO4), dissolved organic phosphorous (DOP),
total alkalinity (TA) and dissolved inorganic carbon (DIC).
Our study uses global DIC, TA and PO4 tracer data to
optimize the parameters in Table 1, which control the tracer
distributions through stoichiometric ratios and the produc-
tion and remineralization of organic and inorganic carbon.
We also compute sensitivity patterns (S patterns) by taking

Table 4. Correlation Coefficients Between Pairs of STA Patterns

(Lower Triangle) and Between Pairs of SDIC Patterns (Upper

Triangle)

Parameter s 1/k a R d rC:P rN:P

s 0.95 �0.32 �0.72 �0.62 �0.59 0.21
1/k 1.00 �0.08 �0.84 �0.75 �0.35 0.45
a 0.97 0.97 �0.24 �0.17 0.83 0.74
R �0.99 �0.99 �0.99 0.94 0.00 �0.79
d �0.88 �0.86 �0.93 0.91 �0.05 �0.74
rC:P �0.99 �0.99 �0.99 1.00 0.91 0.60
rN:P 0.91 0.92 0.88 �0.91 �0.74 �0.91

Figure 11. (a) Globally integrated CaCO3-C fluxes with
depth in GtC a�1 obtained using the OCMIP-2 reference
parameters (blue curve) and using the optimized parameter
set (red curve), (b) Globally averaged CaCO3 dissolution
rates with depth in mmol kg�1 a�1.

Figure 12. Globally integrated export production CaCO3-C in GtC a�1 (a) as a function of s and 1/k
and (b) as a function of a and rC:P (c) the fraction of CaCO3 that dissolves above a depth of 2000 m as a
function of R and d. The 1% uncertainty contour lines of the cost function from Figure 8 are overlaid for
the three panels.
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partial derivatives of equilibrium solutions with respect to
the parameters.
[72] Our sensitivity analysis is useful not only to help

understand the parameter optimization result but also to
elucidate the mechanisms that impact tracer distributions
when parameter values are changed. We introduce a
novel decomposition method that allows us to interpret
the S patterns through changes in the soft-tissue, carbonate
and gas exchange pumps. The decomposed S patterns
illustrate quantitatively how the carbonate pump couples
to the deep branch of the overturning circulation through
d, how the soft-tissue pump couples to the wind-driven
circulation through s and 1/k and to the overturning
circulation through rC:P and a, and how the gas exchange
pump couples strongly with the newly ventilated NADW
through a, s, R and d.
[73] The S patterns for TA show similar patterns for all

parameters because it is dominated by the contribution from
the carbonate pump. The S patterns for DIC show more
distinct structures across parameters because the three
pumps are more equally important to redistribute carbon
in the model’s ocean-atmosphere system. The distinct
patterns imply that the parameters can be better constrained
individually when the DIC data is used in conjuction with
the TA data.
[74] For the most part, the present work has focused on

the parameter sensitivity and optimization as a means of
improving simulations. But our parameter optimization can
be thought of as the solution to an inverse problem that
seeks to constrain uncertain biogeochemical parameters
using observations. For example, our optimization can be
thought of as an alternative to tracer based methods such as
the method used by Anderson and Sarmiento [1994] for
determining rN:P and rC:P or to the TA* method used by
Chung et al. [2003], Sabine et al. [2002], and Feely et al.
[2002] to determine the depth of CaCO3 dissolution. From
this point of view the circulation model provides prior
information about the ocean circulation that helps reduce
the indeterminacy due to transport in tracer inversion. The
study of Jin et al. [2006] uses a global circulation model in
a similar spirit to estimate export fluxes.
[75] As a parameter inversion, our study is incomplete

because we have not provided probabilistic uncertainty
estimates for our optimal parameters. Formal uncertainty
estimates can be obtained in a straightforward way from the
Hessian of the cost function [e.g., Thacker, 1989], except
that without having included an estimate of the spatial
covariance of the model-data residuals, the apparent number
of degrees of freedom in the combined DIC, TA and PO4

data set is so large (n = 163,884) that it produces unaccept-
ably small error estimates. That the number of degrees of
freedom in the residuals is in fact much less is easy to see
from the smoothness of the model output and of the
WOA01 and GLODAP data sets. We are currently working
on a procedure in which we estimate the spatial covariance
matrix for the residuals as part of the inversion and hope to
report on this work elsewhere.
[76] The sensitivity of the cost function indicates that our

optimized parameters rC:P = 137, s = 0.74, a = �0.97, R =
0.081 and d = 2100 m are relatively well constrained
whereas rN:P = 24 and 1/k = 1.7 years are less well
constrained in this study. The poor constraint on rN:P and

1/k is thought to be due to the biogeochemistry model that
does not resolve important processes controlling the param-
eters. For example, Anderson and Sarmiento [1994] point
out the importance of considering denitrification processes
when constraining the N:P ratio. This suggests that the
relatively poor constraint on rN:P might be improved by
explicitly resolving the nitrogen cycle so that nitrogen data
might be used to further constrain rN:P. The parameter 1/k
could be better constrained if we resolved a seasonal cycle
of DOM and if we used DOM data.
[77] Nonetheless the higher C:P ratio and the significantly

smaller dissolution length scale of CaCO3 that we obtain in
this optimization compared to their reference values seem
robust. Because our estimate of rN:P did not appear robust
and seemed unacceptably large we repeated the optimiza-
tion holding the N:P ratio fixed at its reference value of
rN:P = 16. The resulting optimized values rC:P = 141, s =
0.73, 1/k = 1.8 years, a = �0.96, R = 0.073 and d = 2100 m
all remained within the 1% cost-function sensitivity ranges
(Table 2). This gives us additional confidence that with the
exception of rN:P our optimization results are robust.
[78] The strong coupling of ocean physical and biogeo-

chemical dynamics as shown in the S patterns implies that
the behavior of the model’s carbon system would differ if
the circulation and ventilation fields changed. The high
sensitivity of model solution to circulation has been pointed
out in several previous studies [e.g., Najjar et al., 2007].
This highlights the importance of conducting sensitivity and
optimization studies similar to ours in several different
circulation models and seasonally varying circulations.
Such studies will help better constrain model parameters
and better quantify their uncertainty so as to improve the
predictive skill of simulations of the future carbon cycle.
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