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An Algorithm for Constructing Orthogonal and Nearly

Orthogonal Arrays with Mixed Levels and Small Runs

Hongquan Xu

Department of Statistics

University of Michigan

Ann Arbor, MI 48109-1285

(hqxu@umich.edu)

Orthogonal arrays are widely used in manufacturing and high-tech industries for quality and

productivity improvement experiments. For reasons of run size economy or flexibility, nearly

orthogonal arrays are also used. The construction of orthogonal or nearly orthogonal arrays can

be quite challenging. Most existing methods are complex and produce limited types of arrays.

This article describes a simple and effective algorithm for constructing mixed-level orthogonal

and nearly orthogonal arrays. It can construct a variety of small-run arrays with good statistical

properties efficiently.

KEY WORDS: Exchange algorithm; Generalized minimum aberration; Interchange algorithm;

Minimum moment aberration.

Consider an experiment to screen factors that may influence the blood glucose readings of a

clinical laboratory testing device. One two-level factor and eight three-level factors are included

in the experiments. The nine factors (Wu and Hamada 2000, Table 7.3) are (A) wash (no or yes),

(B) microvial volume (2.0, 2.5, or 3.0 ml), (C) caras H2O level (20, 28, or 35 ml), (D) centrifuge

RPM (2100, 2300, 2500), (E) centrifuge time (1.75, 3, 4.5 min), (F) sensitivity (0.10, 0.25, 0.50),

(G) temperature (25, 30, 37 0C), (H) dilution ratio (1:51, 1:101, 1:151), and (I) absorption (2.5, 2,

1.5). To ensure that all the main effects are estimated clearly from each other, it is desirable to

use an orthogonal array (OA). The smallest OA found for one two-level factor and eight three-level

factors requires 36 runs. However, the scientist wants to reduce the cost of this experiment and

plans to use an 18-run design. A good solution then is to use an 18-run nearly orthogonal array

(NOA).

The concept of OA dates back to Rao (1947). OAs have been widely used in manufacturing

and high-tech industries for quality and productivity improvement experiments as evidenced by
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many industrial case studies and recent design textbooks (Myers and Montgomery 1995; Wu and

Hamada 2000). Applications of NOAs can be found in Wang and Wu (1992), Nguyen (1996b) and

the references therein.

Formally, an orthogonal array (OA) (of strength two), denoted by OA(N, s1 · · · sn), is an N ×n

matrix of which the ith column has si levels and for any two columns all of their level combina-

tions appear equally often. It is said to be mixed if not all si’s are equal. For convenience, an

OA(N, sk1
1 · · · skr

r ) has ki columns with si levels. A nearly orthogonal array (NOA), denoted by

OA′(N, s1 · · · sn), is optimal under some optimality criterion (which to be defined later). From

estimation point of view, all the main effects of an OA are estimable and orthogonal to each other

while all the main effects of an NOA are still estimable but some of them are partially aliased with

others. Because balance is a desired and important property in practice, we here only consider

balanced OA′(N, s1 · · · sn) in which all levels appear equally often for any column. When an array

is used as a factorial design, each column is assigned to a factor and each row corresponds to a run.

Here we freely exchange the words of array and design, row and run, and column and factor.

The purpose of this paper is to present a unified and effective algorithm for constructing OAs

and NOAs with mixed levels and small runs. The algorithm can construct a variety of arrays

with good statistical properties efficiently. The paper is organized as follows. Section 1 introduces

the concept of J2-optimality and other optimality criteria. Section 2 describes an algorithm for

constructing mixed-level OAs and NOAs. The performance and comparison of the algorithm are

given in Section 3. The blood glucose experiment is revisited in Section 4 and concluding remarks

are given in Section 5.

1 Optimality Criteria

A combinatorial criterion, J2-optimality, is introduced in Section 1.1. It has the advantage of

convenience for programming and efficiency for computation. The statistical justification of J2-

optimality and other optimality criteria are given in Section 1.2.

1.1 The Concept of J2-Optimality

For an N × n matrix d = [xik], of which the kth column has sk levels, assign weight wk > 0 for

column k. For 1 ≤ i, j ≤ N , let δi,j(d) =
∑n

k=1 wkδ(xik, xjk), where δ(x, y) = 1 if x = y and 0
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otherwise. Define

J2(d) =
∑

1≤i<j≤N

[δi,j(d)]2.

A design is called J2-optimal if it minimizes J2. The J2 criterion can be used to measure the

nonorthogonality of a design because of the following inequality.

J2(d) ≥ L(n) = 2−1

( n∑
k=1

Ns−1
k wk

)2

+

(
n∑

k=1

(sk − 1)(Ns−1
k wk)2

)
−N

(
n∑

k=1

wk

)2
 , (1)

where the equality holds if and only if D is an OA. The proof is given in the Appendix. Therefore,

an OA is J2-optimal with any choice of weights if it exists while an NOA under J2-optimality may

depend on the choice of weights. The J2-optimality is a special case of the minimum moment

aberration proposed by the author for assessing nonregular designs and supersaturated designs.

The concept and theory of minimum moment aberration will appear elsewhere.

Now consider the change in the J2 value if a column is added to d or a pair of symbols are

switched in a column. First consider adding a column to d. Suppose column c = (c1, . . . , cN )′ is

added to d and let d+ be the new N × (n + 1) design. If c has sp levels and weight wp, then

δi,j(d+) = δi,j(d) + δi,j(c) for 1 ≤ i, j ≤ N, (2)

where δi,j(c) = wpδ(ci, cj). In addition, if the added column is balanced, it is easy to show that

J2(d+) = J2(d) + 2
∑

1≤i<j≤N

δi,j(d)δi,j(c) + 2−1Nw2
p(Ns−1

p − 1). (3)

Next consider switching a pair of symbols in the added column. Suppose the symbols in rows a

and b of the added column are distinct, i.e., ca 6= cb. If these two symbols are exchanged, then all

δi,j(c) are unchanged except that δa,j(c) = δj,a(c) and δb,j(c) = δj,b(c) are switched for j 6= a, b.

Hence, J2(d+) is reduced by 2S(a, b), where

S(a, b) = −
∑

1≤j 6=a,b≤N

[δa,j(d)− δb,j(d)][δa,j(c)− δb,j(c)]. (4)

These formulas provide an efficient way of updating the J2 value and will be used in the algorithm.

1.2 Other Optimality Criteria and Statistical Justification of J2-Optimality

In order to state the statistical justification of J2-optimality, it is necessary to introduce other

optimality criteria.
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It is well known that an s-level factor has s− 1 degrees of freedom. Commonly used contrasts

are from orthogonal polynomials, especially for quantitative factors. For example, the orthogonal

polynomials corresponding to levels 0 and 1 of a two-level factor are −1 and +1; the orthogonal

polynomials corresponding to levels 0, 1 and 2 of a three-level factor are −1, 0 and +1 for linear

effects and 1, −2 and 1 for quadratic effects, respectively.

For an N ×n matrix d = [xik], of which the kth column has sk levels, consider the main-effects

model

Y = β0I + X1β1 + ε,

where Y is the vector of N observations, β0 is the general mean, β1 is the vector of all the main

effects, I is the vector of ones, X1 is the matrix of contrast coefficients for β1, and ε is the vector

of independent random errors. Let X1 = (x1, . . . ,xm) and X = (x1/‖x1‖, . . . ,xm/‖xm‖), where

m =
∑

(si − 1). A design is said to be D-optimal if it maximizes |X ′X|. It is well known that

|X ′X| ≤ 1 for any design and that |X ′X| = 1 if and only if the original design d is an OA. Wang

and Wu (1992) proposed the following D criterion

D = |X ′X|1/m (5)

to measure the overall efficiency of an NOA.

It is well known in the optimum design theory that a good surrogate of the D criterion is the

(M,S) criterion (Eccleston and Hedayat 1974). A design is called (M,S)-optimal if it maximizes

tr (X ′X) and minimizes tr [(X ′X)2] among those which maximize tr (X ′X). The (M,S) criterion

is cheaper in computation than the D criterion. In addition, the (M,S) criterion is independent

of the coding of the treatment contrast while the D criterion does. It is easy to verify that for a

balanced design, all diagonal elements of X ′X are ones. Then the (M,S) criterion reduces to the

minimization of tr [(X ′X)2], which is the sum of squares of elements of X ′X, or equivalently to the

minimization of the sum of squares of off-diagonal elements of X ′X. This leads to the following

concept of A2-optimality.

Formally, if X ′X = [aij ], let

A2 =
∑
i<j

a2
ij ,

which measures the overall aliasing (or nonorthogonality) between all possible pairs of columns. In

particular, for a two-level design, A2 equals the sum of squares of correlation between all possible
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pairs of columns. A design is called A2-optimal if it minimizes A2. It is a good optimality criterion

of NOAs because A2 = 0 if and only if d is an OA. It is worth to note that the A2-optimality is

a special case of the generalized minimum aberration criterion proposed by Xu and Wu (2001) for

assessing nonregular designs.

Now we can state the statistical justification of the J2-optimality. The following identity relates

the J2 criterion to the A2 criterion. If wk = sk for all k, then

J2(d) = N2A2(d) + 2−1N

[
Nn(n− 1) + N

∑
sk −

(∑
sk

)2
]

. (6)

The proof is given in the Appendix. For convenience, the choice of wk = sk is called natural

weights. The J2-optimality, with natural weights, is equivalent to the A2-optimality and thus a

good surrogate of the D-optimality.

An obvious advantage of the J2 criterion over A2, (M,S) and D criterion is that J2 is cheaper

in computation and easier for programming because it avoids the coding of treatment contrasts.

An additional advantage of the J2 criterion is that it is more flexible because it uses weights to

control the structure of an NOA. Illustration of this advantage is given in the end of Section 3.2.

2 An Algorithm

The basic idea of the algorithm is to sequentially add columns to an existing design. The sequen-

tial operation is adopted for speed and simplicity. It avoids an exhaustive search of columns for

improvement, which could be complex and inefficient in computation. There are two types of op-

erations when adding a column: interchange and exchange. The interchange procedure, also called

pairwise-switch, switches a pair of distinct symbols in a column. For each candidate column, the

algorithm searches all possible interchanges and makes an interchange which reduces J2 most. The

interchange procedure is repeated until a lower bound is achieved or no further improvement is

possible. On the other hand, the exchange procedure replaces an existing column by a randomly

selected column. This procedure is allowed to repeat at most T times if no lower bound is achieved.

The value of T depends on the orthogonality of the current design. If the current design is an OA,

T = T1; otherwise, T = T2, where T1 and T2 are two constants controlled by the user. With any

specified weights w1, . . . , wn, the algorithm constructs an OA′(N, s1 · · · sn), of which the first n0

columns form an OA(N, s1 . . . sn0).
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The algorithm is given as follows:

1. For p = 1, . . . , n, compute the lower bound L(p) according to (1).

2. Specify an initial design d with two columns: (0, . . . , 0, 1, . . . , 1, . . . , s1 − 1, . . . , s1 − 1) and

(0, . . . , s2 − 1, 0, . . . , s2 − 1, . . . , 0, . . . , s2 − 1). Compute δi,j(d) and J2(d) by definition. If

J2(d) = L(2), let n0 = 2 and T = T1; otherwise, let n0 = 0 and T = T2.

3. For p = 3, . . . , n, do the following:

(a) Randomly generate a balanced sp-level column c. Compute J2(d+) by (3). If J2(d+) =

L(p), go to (d).

(b) For all pairs of rows a and b with distinct symbols, compute S(a, b) as in (4). Choose a

pair of rows with largest S(a, b) and exchange the symbols in rows a and b of column c.

Reduce J2(d+) by 2S(a, b). If J2(d+) = L(p), go to (d); otherwise, repeat this procedure

until no further improvement is made.

(c) Repeat (a) and (b) T times and choose a column c that produces the smallest J2(d+).

(d) Add column c as the pth column of d, let J2(d) = J2(d+) and update δi,j(d) by (2). If

J2(d) = L(p), let n0 = p; otherwise, let T = T2.

4. Return the final N × n design d, of which the first n0 columns form an OA.

This is an example of a column-wise algorithm. As noted by Li and Wu (1997), the advantage

of column-wise instead of row-wise operation is that the balance property of a design is retained

at each iteration. A simple way of adding an s-level column is to choose a best column from all

possible candidate columns. However, it is computationally impossible to enumerate all possible

candidate columns if the run size N is not small. There are in total
(

N
N/2

)
balanced columns for

s = 2 and
(

N
N/3

)(2N/3
N/3

)
balanced columns for s = 3. The number grows exponentially with N ; for

example,
(
24
12

)
= 2, 704, 156,

(
32
16

)
= 601, 080, 390,

(
18
12

)(
12
6

)
= 17, 153, 136, and

(
27
18

)(
18
9

)
≈ 2.8× 1011.

The interchange and exchange procedures used in the algorithm are a feasible approach for both

computation and efficiency. An interchange operation searches N2/4 columns for s = 2, N2/3

columns for s = 3 and less than N2/2 columns for any s. The interchange procedure usually

involves a few (typically less than 6) iterations. Compared to the size of all candidate columns, the
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interchange operation only searches a rather small portion of the whole space. Thus it is an efficient

local learning procedure but often ends up with a local minimum. For this particular reason, global

exchange procedures are also incorporated in the algorithm. It allows the search to move around

the whole space and not limited to a small neighborhood. As will be seen later, the global exchange

procedure with moderate T1 and T2 improves the performance of the algorithm tremendously.

The value of T1 and T2 controls the speed and performance of the algorithm. A large Ti value

allows the algorithm to spend more effort in searching a good column, which takes more time. The

choice of T1 and T2 depends on the type of design to be constructed. For constructing OAs, a

moderate T1, say 100, is recommended and T2 can be zero; for constructing NOAs, moderate T1

and T2 are recommended. More details are given in the next section.

Remark 1. Both interchange and exchange algorithms have been proposed by a number of authors

for various purposes. See Nguyen (1996a) and Li and Wu (1997) in the context of constructing

supersaturated designs.

Remark 2. The performance of the algorithm may depend on the order of levels. Our experience

suggests that it is most effective if all levels are arranged in a decreasing order, that is, s1 ≥ s2 ≥

. . . ≥ sn. The reason is that the number of balanced columns is much larger for a higher level than

a lower level.

Remark 3. The speed of the algorithm is maximized because only integer operations are required if

integral weights are used. For efficiency and flexibility, the algorithm is implemented as a function

in C language and can be called in S language. Both C and S source codes are available from the

author.

3 Performance and Comparison

The performance and comparison of the algorithm are reported in two parts for the construction

of OAs and NOAs.

3.1 Orthogonal Arrays

In the construction of OAs, the weights can be fixed at wi = 1, and T2 should be zero because it is

unnecessary to continue adding columns if the current design is not orthogonal. Here we study the
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choice of T1 in more details since it controls the performance of the algorithm.

The algorithm is tested with four choices of T1: 1, 10, 100 and 1000. For each specified OA and

T1, the algorithm is repeated for 1000 times. It either succeeds or fails in constructing an OA each

time. Table 1 shows the total number of OAs constructed and the average time in seconds per

repetition. The test was run on a Sun sparc workstation of CPU 400MHz. In the construction of

a mixed-level OA, as stated in Remark 2, the levels are arranged in a decreasing order. Table 1

clearly shows that there is a tradeoff between the success rate and speed, which depends on the

choice of T1. The success rate increases and the speed decreases as T1 increases. A good measure

is the number of OAs constructed per CPU time. The algorithm is least efficient for T1 = 1 and

more efficient for T1 = 10 or 100 than T1 = 1000. Overall, the choice of T1 = 100 gives a good

tradeoff between success rate and speed; therefore, it is generally recommended.

The construction of OAs has been and will continue to be an active research topic since Rao

(1947) introduced the concept. The construction methods include combinatorial, geometrical,

algebraic, coding theoretic, and algorithmic approaches. For the state-of-art in the construction

of OAs, see Hedayat, Sloane, and Stufken (1999). Here we focus on algorithmic construction and

compare existing algorithms with ours.

Many exchange algorithms have been proposed for constructing exact D-optimal designs (for a

review, see Nguyen and Miller 1992). These algorithms may be used to construct OAs; however,

they are inefficient and the largest OA which can be constructed is OA(12, 211) (Galil and Kiefer

1980). Modifying the exchange procedure, Nguyen (1996a) proposed an interchange algorithm for

constructing supersaturated designs. His program may be used to construct two-level OAs; the

largest OA which can be constructed is OA(20, 219).

Global optimization algorithms, such as simulated annealing (Kirkpatrick, Gelatt, and Vecchi

1983), thresholding accepting (Dueck and Scheuer 1990), and genetic algorithms (Goldberg 1989),

may be used for constructing OAs. These algorithms often involve a large number of iterations and

are very slow in convergence. These algorithms have been applied to many hard problems and are

documented to be powerful. However, in the construction of OAs, they are not effective (Hedayat

et al. 1999, p. 337). For example, those thresholding accepting algorithms in Fang, Lin, Winker,

and Zhang (2000) and Ma, Fang, and Liski (2000) failed to produce any OA(27, 313) or OA(28, 227).

DeCock and Stufken (2000) proposed an algorithm for constructing mixed-level OAs via search-
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ing some existing two-level OAs. Their purpose is to construct mixed-level OAs with as many two-

level columns as possible and their algorithm succeeded in constructing several new large mixed-level

OAs. Our purpose differs from theirs and is to construct all possible mixed-level OAs (with small

runs). In terms of constructing small-run OAs, our algorithm is more flexible and effective than

theirs. For example, our algorithm is quite effective in constructing an OA(20, 5128) which is known

to have maximal two-level columns while their algorithm failed to construct an OA(20, 5127). In

addition, our algorithm has succeeded in constructing several new 36-run OAs, which are not con-

structed by their algorithm. For instance, OA(36, 623226), OA(36, 623324), OA(36, 613328), and

OA(36, 613426) appear to be new and are given in Tables 2 and 3.

3.2 Nearly Orthogonal Arrays

Wang and Wu (1992) systematically studied NOAs and proposed some general combinatorial con-

struction methods. Nguyen (1996b) proposed an algorithm for constructing NOAs by adding two-

level columns to existing OAs. Ma et al. (2000) proposed two algorithms for constructing NOAs by

minimizing some combinatorial criteria via the thresholding accepting technique. Our algorithm

is compared with Wang and Wu’s combinatorial methods and Nguyen and Ma et al.’s algorithms.

The comparison is summarized in Table 4. All arrays are chosen according to the A2-optimality,

i.e., the J2-optimality with natural weights. Among designs with the same A2 value, the one with

the highest D efficiency is chosen. Orthogonal polynomial contrasts are used to calculate the D

efficiency as in (5). The number of nonorthogonal pairs is also reported for reference. In the con-

struction of an OA′(N, sn1
1 sn2

2 ), all s1-level columns, with weight s1, are entered ahead of s2-level

columns, with weight s2. Our algorithm is very effective and most arrays can be obtained within

seconds with the choice of T1 = T2 = 100.

The advantage of our algorithm is clear from Table 4. Among all cases, our arrays have the

smallest A2 value and the largest D efficiency, in addition to that our algorithm can construct

more arrays. Among the algorithms, the thresholding accepting algorithms of Ma et al. are most

complicated but perform the worst. The poor performance of their algorithms again suggests that

global optimization algorithms are not effective in the construction of OAs and NOAs. Nguyen’s

algorithm can only construct a small number of arrays due to its limitation. Among his 12 arrays

listed in Table 4, two arrays, OA′(12, 3129) and OA′(24, 31221), are worse than ours in terms of A2;
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and one array, OA′(20, 51215), is worse than ours in terms of both A2 and D. For reference, our

arrays are listed in Tables 5, 6, and 7, respectively.

Our algorithm has an additional feature, that is, weights can be used to control the structure

of NOAs. For example, consider the construction of an OA′(12, 3129). If the practitioner is more

concerned with the three-level factor, it is desirable to construct an NOA of which the three-level

column is orthogonal to any two-level column. On the other hand, if the practitioner is more

concerned with the two-level factors, it is desirable to construct an NOA of which all two-level

columns are orthogonal to each other. Such designs are referred to type I and type II, respectively,

by Wang and Wu (1992). Both types of NOAs can be easily constructed by the algorithm with a

proper choice of weights. For instance, a type I array can be obtained by assigning weight 10 to

a three-level column and weight 1 to a two-level column and a type II array can be obtained by

reversing the weight assignment.

4 Blood Glucose Experiment

Consider the blood glucose experiment described in the preface. The original experiment used

an OA(18, 2137) by combining two factors (F) sensitivity and (I) absorption into one factor. The

disadvantage of this plan is obvious, that is, there is no way to distinguish which original factor is

significant if the combined factor is identified to be significant. Unfortunately, data analysis of the

original experiment suggested that the combined factor was significant. The details of the design

matrix, response data and data analysis are given in Hamada and Wu (1992) and Wu and Hamada

(2000, chap 7-8).

An alternative of the previous plan, as mentioned in the preface, is to use an OA′(18, 2138).

Table 8 lists two OA′(18, 2138)’s. The first array, given in Nguyen (1996b), is obtained by adding

one column to an OA(18, 2137). The second array is constructed by the algorithm. The comparison

of these two NOAs is given in Table 9. For reference, the original plan of combined factors is also

included in Table 9.

Table 9 clearly shows that both NOAs are superior to the original plan. Either NOA has

a D efficiency of 0.967, which implies that all main effects can be estimated efficiently. Both

NOAs have the same overall nonorthogonality, i.e., A2 = 0.5. Nguyen array has one pair of

nonorthogonal columns and our array has three pairs of nonorthogonal columns. On the other hand,
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the nonorthogonal pair of Nguyen array has only six (among nine) different level combinations and

each nonorthogonal pair of our array has all nine level combinations. As a consequence, the aliasing

between any nonorthogonal pair of our array is one third of the aliasing between the nonorthogonal

pair of Nguyen array. Because, when planning the experiment, the experimenter does not know

which factors will turn out to be significant, it is important to minimize the maximum aliasing of

any two factors. Our array has the desired property, that is, the nonorthogonality is uniformly

spread among three pairs so that the nonorthogonality of each pair is minimized. Therefore, our

array is preferred to Nguyen’s.

5 Concluding Remarks

This paper proposes an efficient algorithm for constructing mixed-level OAs and NOAs. The basic

idea is to sequentially adding columns such that the resultant array is optimal with respect to

some optimality criteria. In particular, the J2-optimality is used for simplicity in programming

and efficiency in computation. The algorithm has the following advantages: (a) it is easy of use for

practitioners, (b) it is flexible for constructing various mixed-level arrays, and (c) it outperforms

existing algorithms in both speed and efficiency.

The sequential procedure avoids an exhaustive search of columns for improvement and is com-

putationally efficient. As all other algorithms do, this program may end up with a local minimum.

To overcome this problem, it is necessary to rerun the program M times, where M ranges from a

few to the thousands.

Traditionally, OAs are used for estimating main effects only. As main effect plans, all OAs are

equally good. For example, Cheng (1980) showed that OAs are universally optimal. Nevertheless,

recent advance in analysis strategies shows that OAs may entertain some interactions besides the

main effects under the effect sparsity principle (Hamada and Wu 1992). For this very reason, not

all OAs are equivalent any more. See Lin and Draper (1992), Wang and Wu (1995), Cheng (1995),

Box and Tyssedal (1996), Deng and Tang (1999), Tang and Deng (1999), and Xu and Wu (2001)

for classification or discrimination of OAs. Various purposes of the experiments require different

choices of OAs with different projective and other statistical properties. However, few standard

OAs are listed in most textbooks. The proposed algorithm is important in this regard because it

can construct many new OAs with different projective property efficiently. For example, Cheng
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and Wu (2001) constructed an OA(27, 38) via an ad hoc combinatorial method. They showed that

the new array is much superior to commonly used ones for their dual purposes of factor screening

and response surface exploration. It is not surprising that our algorithm can construct many

OA(27, 38)’s that are superior to their array. The algorithm has produced many other new OAs

with good statistical properties, which will be reported elsewhere.

Finally, data from an experiment using OAs and NOAs can be analyzed by stepwise selection

or Bayesian variable selection procedure. Details and examples are available in Hamada and Wu

(1992), Chipman, Hamada, and Wu (1997), and Wu and Hamada (2000, chap. 8).
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Appendix: Proofs

Proof of (1). For d = [xik]N×n, let nkl(a, b) = |{i : xik = a, xil = b}|. It is easy to verify that

N∑
i=1

N∑
j=1

δ(xik, xjk)δ(xil, xjl) =
sk−1∑
a=0

sl−1∑
b=0

nkl(a, b)2.

Then

2J2(d) =
N∑

i=1

N∑
j=1

[
n∑

k=1

wkδ(xik, xjk)

]2

−N

(
n∑

k=1

wk

)2

=
N∑

i=1

N∑
j=1

[
n∑

k=1

n∑
l=1

wkδ(xik, xjk)wlδ(xil, xjl)

]
−N

(
n∑

k=1

wk

)2

=
n∑

k=1

n∑
l=1

wkwl

 N∑
i=1

N∑
j=1

δ(xik, xjk)δ(xil, xjl)

−N

(
n∑

k=1

wk

)2

=
n∑

k=1

n∑
l=1

wkwl

[
sk−1∑
a=0

sl−1∑
b=0

nkl(a, b)2
]
−N

(
n∑

k=1

wk

)2

=
n∑

k=1

w2
k

[
sk−1∑
a=0

nkk(a, a)2
]

+
∑

1≤k 6=l≤n

wkwl

[
sk−1∑
a=0

sl−1∑
b=0

nkl(a, b)2
]
−N

(
n∑

k=1

wk

)2
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≥
n∑

k=1

w2
kN

2/sk +
∑

1≤k 6=l≤n

wkwl[N2/(sksl)]−N

(
n∑

k=1

wk

)2

=

(
n∑

k=1

Nwk/sk

)2

+

(
n∑

k=1

(sk − 1)(Nwk/sk)2
)
−N

(
n∑

k=1

wk

)2

,

where the inequality follows from the Cauchy-Schwartz inequality. In particular, the equality holds

if and only if all level combinations appear equally often for any pair of columns, i.e., d is an

OA.

Proof of (6). Because A2 is invariant with respect to the choice of treatment contrasts, it is con-

venient, as done in Xu and Wu (2001), to use the complex contrasts. For k = 1, . . . , n, let [z(k)
ip ] be

the standardized contrast coefficients of the kth factor such that
N∑

i=1

z
(k)
ip = 0 and

N∑
i=1

z
(k)
ip z

(k)
iq = δ(p, q)

for any p, q = 1, . . . , sk−1, where z is the complex conjugate of z. In particular, we use the following

complex contrasts

z
(k)
ip = ξpxik

k /N,

where ξk = exp(
√
−12π/sk) is a primitive skth root of unity in C. Then,

2N2A2(d) = 2N2
∑

1≤k<l≤n

sk−1∑
p=1

sl−1∑
q=1

∣∣∣∣∣
N∑

i=1

z
(k)
ip z

(l)
iq

∣∣∣∣∣
2

=
∑

1≤k 6=l≤n

sk−1∑
p=1

sl−1∑
q=1

∣∣∣∣∣
N∑

i=1

ξpxik
k ξqxil

l

∣∣∣∣∣
2

=
∑

1≤k 6=l≤n

sk−1∑
p=1

sl−1∑
q=1

N∑
i=1

ξpxik
k ξqxil

l

N∑
j=1

ξ
−pxjk

k ξ
−qxjl

l

=
N∑

i=1

N∑
j=1

∑
1≤k 6=l≤n

sk−1∑
p=1

ξ
p(xik−xjk)
k

sl−1∑
q=1

ξ
q(xil−xjl)
l

=
N∑

i=1

N∑
j=1

∑
1≤k 6=l≤n

[skδ(xik, xjk)− 1][slδ(xil, xjl)− 1]

=
N∑

i=1

N∑
j=1

( n∑
k=1

skδ(xik, xjk)

)2

−
n∑

k=1

[skδ(xik, xjk)]2 − 2(n− 1)
n∑

k=1

skδ(xik, xjk) + n(n− 1)


=

∑
1≤i6=j≤N

(
n∑

k=1

skδ(xik, xjk)

)2

+ N

(
n∑

k=1

sk

)2

13



−
n∑

k=1

[s2
k + 2(n− 1)sk]

N∑
i=1

N∑
j=1

δ(xik, xjk) + N2n(n− 1).

Note that
∑N

i=1

∑N
j=1 δ(xik, xjk) = N2/sk because d is balanced. Then,

2N2A2(d) = 2J2(d) + N

(
n∑

k=1

sk

)2

−
n∑

k=1

[s2
k + 2(n− 1)sk]N2/sk + N2n(n− 1)

= 2J2(d) + N

(
n∑

k=1

sk

)2

−N2
n∑

k=1

sk −N2n(n− 1)
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Table 1: Performance in the Construction of OAs

T1 = 1 T1 = 10 T1 = 100 T1 = 1000
Array No. Time No. Time No. Time No. Time
OA(9, 34) 1000 0.001 1000 0.001 1000 0.001 1000 0.001
OA(12, 211) 936 0.002 935 0.002 959 0.002 946 0.010
OA(16, 8128) 22 0.002 968 0.006 1000 0.007 1000 0.007
OA(16, 215) 72 0.002 999 0.009 1000 0.008 1000 0.008
OA(16, 45) 56 0.003 154 0.013 157 0.107 175 0.889
OA(18, 3721) 3 0.003 429 0.022 827 0.051 818 0.260
OA(18, 6136) 9 0.004 164 0.017 186 0.115 162 1.110
OA(20, 219) 0 0.005 549 0.029 634 0.090 638 0.444
OA(20, 5128) 0 0.003 44 0.020 322 0.107 335 0.782
OA(24, 223) 0 0.009 91 0.055 304 0.370 284 1.903
OA(24, 41220) 0 0.008 165 0.056 455 0.309 434 1.609
OA(24, 31216) 0 0.008 4 0.049 35 0.398 33 2.568
OA(24, 121212) 0 0.006 281 0.059 988 0.104 985 0.129
OA(24, 4131213) 0 0.007 4 0.045 56 0.383 53 2.507
OA(24, 6141211) 0 0.006 12 0.045 101 0.327 89 2.339
OA(25, 56) 5 0.009 93 0.077 120 0.608 107 5.989
OA(27, 9139) 0 0.012 104 0.106 970 0.433 1000 0.450
OA(27, 313) 0 0.013 0 0.091 2 0.878 3 7.782
OA(28, 227) 0 0.015 0 0.078 14 0.764 8 5.544
OA(32, 161216) 0 0.017 0 0.144 881 1.079 1000 1.158
OA(32, 8142218) 0 0.018 13 0.134 381 1.364 400 5.644
OA(40, 201220) 0 0.037 0 0.258 81 3.146 689 13.972

NOTE: For each array and each T1, the algorithm is repeated for 1000 times. The entries in the

columns show the total number of OAs constructed and the average time in seconds per repetition.
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Table 2: OA(36, 623226) and OA(36, 623324)

Run 1 2 3 4 5 6 7 8 9 10
1 0 0 0 2 0 0 1 0 0 1
2 0 1 2 1 1 1 1 0 0 0
3 0 2 1 1 1 0 1 0 1 0
4 0 3 0 0 0 0 0 1 1 0
5 0 4 1 0 0 1 0 1 0 1
6 0 5 2 2 1 1 0 1 1 1
7 1 0 1 0 1 1 0 0 0 1
8 1 1 0 1 1 0 1 1 0 0
9 1 2 0 1 0 1 0 1 1 1

10 1 3 2 0 1 0 0 0 1 0
11 1 4 2 2 0 0 1 0 1 1
12 1 5 1 2 0 1 1 1 0 0
13 2 0 2 2 1 1 0 0 1 0
14 2 1 1 0 0 0 0 1 1 1
15 2 2 0 2 0 0 0 0 0 0
16 2 3 1 1 1 1 1 1 0 1
17 2 4 2 1 0 1 1 1 1 0
18 2 5 0 0 1 0 1 0 0 1
19 3 0 2 1 0 0 1 1 1 1
20 3 1 0 0 0 1 1 0 1 1
21 3 2 2 0 1 1 0 1 0 0
22 3 3 1 2 0 1 1 0 0 0
23 3 4 0 2 1 0 0 1 0 0
24 3 5 1 1 1 0 0 0 1 1
25 4 0 0 0 1 1 1 1 1 0
26 4 1 1 2 0 1 0 0 1 0
27 4 2 1 2 1 0 1 1 1 1
28 4 3 2 1 0 0 0 0 0 1
29 4 4 0 1 1 1 0 0 0 1
30 4 5 2 0 0 0 1 1 0 0
31 5 0 1 1 0 0 0 1 0 0
32 5 1 2 2 1 0 0 1 0 1
33 5 2 2 0 0 1 1 0 0 1
34 5 3 0 2 1 1 1 1 1 1
35 5 4 1 0 1 0 1 0 1 0
36 5 5 0 1 0 1 0 0 1 0

Run 1 2 3 4 5 6 7 8 9
1 0 0 1 2 0 0 0 0 1
2 0 1 1 0 2 1 1 0 1
3 0 2 2 2 1 0 1 0 0
4 0 3 0 0 1 1 0 1 0
5 0 4 2 1 0 1 0 1 1
6 0 5 0 1 2 0 1 1 0
7 1 0 0 0 1 0 0 0 1
8 1 1 2 1 1 1 0 0 1
9 1 2 1 2 0 1 1 1 0

10 1 3 0 2 2 1 1 1 1
11 1 4 1 0 0 0 1 0 0
12 1 5 2 1 2 0 0 1 0
13 2 0 1 1 2 1 1 1 1
14 2 1 0 1 1 0 1 0 0
15 2 2 2 0 1 1 1 1 1
16 2 3 1 0 0 0 0 1 0
17 2 4 0 2 2 0 0 0 0
18 2 5 2 2 0 1 0 0 1
19 3 0 2 0 2 1 0 1 0
20 3 1 0 2 0 1 1 1 0
21 3 2 0 0 2 0 0 0 1
22 3 3 2 1 0 0 1 0 1
23 3 4 1 1 1 0 1 1 1
24 3 5 1 2 1 1 0 0 0
25 4 0 0 1 0 1 1 0 0
26 4 1 2 0 0 0 0 1 0
27 4 2 1 1 2 1 0 0 0
28 4 3 2 2 2 0 1 0 1
29 4 4 0 2 1 1 0 1 1
30 4 5 1 0 1 0 1 1 1
31 5 0 2 2 1 0 1 1 0
32 5 1 1 2 2 0 0 1 1
33 5 2 0 1 0 0 0 1 1
34 5 3 1 1 1 1 0 0 0
35 5 4 2 0 2 1 1 0 0
36 5 5 0 0 0 1 1 0 1

(i) OA(36, 623226) (ii) OA(36, 623324)
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Table 3: OA(36, 613328) and OA(36, 613426)

Run 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 1 0 1 1 1 0 1
2 0 1 0 2 1 0 1 0 1 0 0 0
3 0 2 1 1 0 0 1 1 0 1 1 1
4 0 0 2 1 1 0 0 0 1 0 1 1
5 0 1 1 0 0 1 0 0 0 1 1 0
6 0 2 2 2 1 1 1 1 0 0 0 0
7 1 0 1 2 0 0 1 1 1 1 1 0
8 1 1 0 0 0 0 0 0 0 0 0 0
9 1 2 2 1 1 1 0 1 0 1 0 1

10 1 0 1 2 1 1 0 1 1 0 1 0
11 1 1 0 1 1 0 1 0 0 1 1 1
12 1 2 2 0 0 1 1 0 1 0 0 1
13 2 0 2 0 1 1 1 0 0 1 1 0
14 2 1 1 1 1 1 0 1 1 1 0 1
15 2 2 0 2 0 0 0 1 1 0 0 1
16 2 0 2 0 0 0 1 1 0 0 1 1
17 2 1 1 1 1 1 1 0 1 0 0 0
18 2 2 0 2 0 0 0 0 0 1 1 0
19 3 0 1 2 0 1 0 0 0 0 0 1
20 3 1 2 1 0 0 0 1 1 0 1 0
21 3 2 1 2 1 0 1 0 0 1 0 1
22 3 0 2 1 0 0 1 0 1 1 0 0
23 3 1 0 0 1 1 1 1 0 0 1 1
24 3 2 0 0 1 1 0 1 1 1 1 0
25 4 0 0 2 1 1 1 0 1 1 1 1
26 4 1 1 0 0 0 1 1 1 1 0 1
27 4 2 1 1 0 1 0 0 0 0 1 0
28 4 0 0 1 0 1 1 1 0 0 0 0
29 4 1 2 2 1 0 0 1 0 0 1 1
30 4 2 2 0 1 0 0 0 1 1 0 0
31 5 0 0 1 1 0 0 1 0 1 0 0
32 5 1 2 2 0 1 1 1 0 1 0 0
33 5 2 0 1 0 1 1 0 1 0 1 1
34 5 0 1 0 1 0 0 0 0 0 0 1
35 5 1 2 2 0 1 0 0 1 1 1 1
36 5 2 1 0 1 0 1 1 1 0 1 0

Run 1 2 3 4 5 6 7 8 9 10 11
1 0 0 0 1 0 1 0 0 0 0 0
2 0 1 1 0 1 0 0 0 1 0 1
3 0 2 1 2 0 1 1 0 1 1 1
4 0 0 0 2 1 0 1 1 1 0 0
5 0 1 2 0 2 0 0 1 0 1 0
6 0 2 2 1 2 1 1 1 0 1 1
7 1 0 1 0 1 0 1 1 0 1 0
8 1 1 2 0 0 1 1 0 1 0 1
9 1 2 2 2 1 1 0 0 1 1 0

10 1 0 1 2 2 0 1 1 0 0 1
11 1 1 0 1 0 1 0 1 0 1 1
12 1 2 0 1 2 0 0 0 1 0 0
13 2 0 0 0 2 1 0 0 1 1 0
14 2 1 1 2 2 1 0 1 0 1 1
15 2 2 2 1 1 0 1 0 0 0 1
16 2 0 2 0 0 0 1 0 1 1 1
17 2 1 1 1 0 0 0 1 1 0 0
18 2 2 0 2 1 1 1 1 0 0 0
19 3 0 2 1 1 1 0 1 1 0 1
20 3 1 2 2 1 0 0 0 0 1 0
21 3 2 1 0 0 1 0 1 0 0 0
22 3 0 1 1 2 1 1 0 1 1 0
23 3 1 0 2 0 0 1 0 0 0 1
24 3 2 0 0 2 0 1 1 1 1 1
25 4 0 0 2 0 0 0 1 1 1 1
26 4 1 2 1 2 0 1 1 1 0 0
27 4 2 1 0 1 1 0 1 1 0 1
28 4 0 2 2 2 1 0 0 0 0 1
29 4 1 0 0 1 1 1 0 0 1 0
30 4 2 1 1 0 0 1 0 0 1 0
31 5 0 2 0 0 1 1 1 0 0 0
32 5 1 1 2 2 1 1 0 1 0 0
33 5 2 2 2 0 0 0 1 1 1 0
34 5 0 1 1 1 0 0 0 0 1 1
35 5 1 0 1 1 1 1 1 1 1 1
36 5 2 0 0 2 0 0 0 0 0 1

(i) OA(36, 613328) (ii) OA(36, 613426)
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Table 4: Comparison of NOAs with Run Size ≤ 24

Wang & Wu Nguyen Ma et al. The Author
Array A2 D Np A2 D Np A2 D Np A2 D Np
OA′(6, 3123) .333 .901 3 .333 .901 3 .333 .901 3 .333 .901 3
OA′(10, 5125) .720 .883 10 .400 .967 10 .400 .967 10 .400 .967 10
OA′(12, 4134) .750 .946 6 - - - .750 .946 6 .750 .946 6
OA′(12, 2334) .750 .946 6 - - - .750 .946 6 .750 .946 6
OA′(12, 6125) .667 .911 6 .444 .959 4 .778 .911 3 .444 .959 4
OA′(12, 6126) - - - .667 .947 6 .889 .909 4 .667 .947 6
OA′(12, 3129) 1.00 .867 9 .889 .933 8 .833 .905 5 .778 .933 6
OA′(12, 2135) 1.25 .877 10 - - - - - - 1.25 .877 10
OA′(12, 2732) - - - - - - .917 .899 6 .861 .909 6
OA′(12, 2533) - - - - - - .875 .877 6 .875 .877 6
OA′(15, 5135) .800 .882 10 - - - .800 .882 10 .800 .882 10
OA′(18, 2138) - - - .500 .967 1 - - - .500 .967 3
OA′(18, 3723) .333 .970 3 .333 .970 3 .432 .970 7 .333 .970 3
OA′(18, 9128) .346 .985 28 .346 .985 28 .346 .985 28 .346 .985 28
OA′(20, 51215) 2.16 .838 30 1.00 .922 25 ?a .623 14 .760 .925 19
OA′(24, 8138) .875 .897 28 - - - 2.24 .845 31 .875 .897 28
OA′(24, 31221) 2.33 .853 21 .889 .968 8 .833 .953 14 .722 .968 23
OA′(24, 61215) 2.00 .870 18 .111 .994 1 1.17 .934 12 .111 .994 1
OA′(24, 61218) - - - .667 .974 6 2.50 .761 18 .667 .974 6
OA′(24, 21311) 2.75 .871 55 - - - - - - 2.01 .895 56
OA′(24, 3147) 5.44 .594 21 - - - - - - 2.56 .858 21

NOTE: Np is the number of pairs of nonorthogonal columns. Wang and Wu arrays are based on

the construction method in their Section 6.
a The value can not be determined because no design is given in Ma et al.
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Table 5: OA′(12, 3129)

Run 1 2 3 4 5 6 7 8 9 10
1 0 0 1 0 1 1 1 0 0 0
2 0 1 0 0 1 1 0 0 1 0
3 0 0 1 1 0 1 0 1 1 1
4 0 1 0 1 0 0 1 1 0 0
5 1 0 0 0 0 0 0 0 0 1
6 1 1 1 0 0 0 1 0 1 1
7 1 0 1 1 1 0 0 1 1 0
8 1 1 0 1 1 1 1 1 0 1
9 2 0 0 1 0 1 1 0 1 0

10 2 1 1 0 0 1 0 1 0 0
11 2 0 0 0 1 0 1 1 1 1
12 2 1 1 1 1 0 0 0 0 1

NOTE: The first five columns form an OA(12, 3124). The pairs of non-orthogonal columns (1, 6)

and (1, 10) have an A2 value of 0.167; the pairs of non-orthogonal columns (2, 9), (3, 7), (4, 8),

and (6, 10) have an A2 value of 0.111; and all other pairs of columns are orthogonal.
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Table 6: OA′(20, 51215)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0
2 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 1
4 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1
5 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1
6 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0
7 1 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0
8 1 1 1 0 1 0 0 0 0 0 1 1 1 0 1 1
9 2 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0

10 2 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1
11 2 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0
12 2 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1
13 3 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0
14 3 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0
15 3 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1
16 3 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1
17 4 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1
18 4 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
19 4 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1
20 4 1 0 1 1 1 1 0 0 1 1 0 1 0 1 0

NOTE: The first seven columns form an OA(20, 5126). The pairs of non-orthogonal columns are

(2, 11), (3, 12), (4, 13), (4, 14), (4, 15), (4, 16), (5, 9), (6, 8), (6, 14), (6, 15), (6, 16), (7, 10), (8,

14), (8, 15), (8, 16), (13, 14), (13, 15), (13, 16) and (14, 16), and each pair has an A2 value of 0.04.
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Table 7: OA′(24, 31221)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1
2 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1
3 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1
4 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0
5 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0
6 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1
7 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0
8 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0
9 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1

10 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0
11 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0
12 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1
13 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0
14 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0
15 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1
16 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1
17 2 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1
18 2 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0
19 2 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1
20 2 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
21 2 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0
22 2 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1
23 2 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0
24 2 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1

NOTE: The first 11 columns form an OA(24, 31210). The pair of non-orthogonal columns (5, 19)

has an A2 value of 0.111; the pairs of non-orthogonal columns (4, 15), (4, 17), (5, 19), (6, 20), (6, 21),

(6, 22), (9, 17), (9, 18), (9, 22), (10, 20), (10, 21), (10, 22), (11, 12), (11, 15), (11, 22), (12, 14), (12, 21),

(14, 18), (15, 20), (17, 21), (18, 20), (20, 22), and (21, 22) have an A2 value of 0.028; and all other

pairs of columns are orthogonal.
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Table 8: OA′(18, 2138)

Run 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 0 0
2 0 0 1 1 1 1 1 1 0
3 0 0 2 2 2 2 2 2 0
4 0 1 0 0 1 1 2 2 1
5 0 1 1 1 2 2 0 0 1
6 0 1 2 2 0 0 1 1 1
7 0 2 0 1 0 2 1 2 2
8 0 2 1 2 1 0 2 0 2
9 0 2 2 0 2 1 0 1 2

10 1 0 0 2 2 1 1 0 1
11 1 0 1 0 0 2 2 1 1
12 1 0 2 1 1 0 0 2 1
13 1 1 0 1 2 0 2 1 2
14 1 1 1 2 0 1 0 2 2
15 1 1 2 0 1 2 1 0 2
16 1 2 0 2 1 2 0 1 0
17 1 2 1 0 2 0 1 2 0
18 1 2 2 1 0 1 2 0 0

Run 1 2 3 4 5 6 7 8 9
1 0 0 1 0 2 1 0 2 0
2 0 1 0 1 2 0 0 1 1
3 0 2 2 2 0 1 0 1 2
4 0 0 0 2 1 1 1 0 1
5 0 1 1 2 0 0 2 0 0
6 0 2 0 1 0 2 1 2 0
7 0 0 2 1 1 0 2 2 2
8 0 1 1 0 1 2 1 1 2
9 0 2 2 0 2 2 2 0 1

10 1 0 0 2 2 2 2 1 2
11 1 1 0 0 0 1 2 2 1
12 1 2 1 1 1 1 2 1 0
13 1 0 1 1 0 2 0 0 1
14 1 1 2 2 1 2 0 2 0
15 1 2 1 2 2 0 1 2 1
16 1 0 2 0 0 0 1 1 0
17 1 1 2 1 2 1 1 0 2
18 1 2 0 0 1 0 0 0 2

(i) Nguyen (ii) The Author

NOTE: The first eight columns of each design form an OA(18, 2137). (i) The pair of non-orthogonal

columns (2, 9) has an A2 value of 0.5. (ii) The pairs of non-orthogonal columns (3, 9), (5, 9), and

(8, 9) have an A2 value of 0.167.

Table 9: Comparison of OA′(18, 2138)

Array D A2 Np a2

Original Plan 0.000 2.0 1 2.000
Nguyen 0.967 0.5 1 0.500
The Author 0.967 0.5 3 0.167

NOTE: Np is the number of pairs of nonorthogonal columns and a2 is the maximum aliasing among

pairs of nonorthogonal columns.
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