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Abstract
DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity
to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such
as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and
neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the
utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts,
totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the
hippocampus, thalamus and nucleus accumbens (NAcc)—three subcortical regions selected for their associations with
disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant
associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and
nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs)
associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in
learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA
methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the
relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in
neurodegeneration and neuropsychiatric conditions.

Introduction

Structural brain measures are important correlates of
developmental and health outcomes across the lifetime. A
large body of evidence has revealed age-related reductions
in grey matter structures across the brain [1], notably in the
hippocampus, which correlates with declining memory
performance in older adults [2, 3]. Recent findings from
large-scale neuroimaging analyses within the ENIGMA

consortium have revealed consistent patterns of cortical
[4, 5] and subcortical [5–8] brain volume reductions
across several neuropsychiatric disorders. Of all structures
reported, the hippocampus was the most consistently and
robustly altered, being smaller in major depressive dis-
order [6], schizophrenia [7], attention deficit hyperactivity
disorder [8], obsessive-compulsive disorder (OCD) [9],
and posttraumatic stress disorder [10]. Other notable
changes included volume reductions in the thalamus
and nucleus accumbens (NAcc) in schizophrenia [7, 8], as
well as volume increases in the same regions in paediatric
OCD [9].

Such differences in brain structure may fundamentally
reflect the effects of genetic and environmental factors and
their interplay, as suggested by the study of discordant
monozygotic twins [11]. DNA methylation is an epige-
netic mechanism that may underlie gene–environment
contributions to brain structure. It is under the influence
of genetic [12, 13] and developmental [13–15]
factors and plays an important role in brain development

These authors contributed equally: Paul M. Thompson, Gunter
Schumann

* Sylvane Desrivières
sylvane.desrivieres@kcl.ac.uk

Extended author information available on the last page of the article.

Supplementary information The online version of this article (https://
doi.org/10.1038/s41380-019-0605-z) contains supplementary material,
which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-019-0605-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-019-0605-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-019-0605-z&domain=pdf
http://orcid.org/0000-0001-5399-2953
http://orcid.org/0000-0001-5399-2953
http://orcid.org/0000-0001-5399-2953
http://orcid.org/0000-0001-5399-2953
http://orcid.org/0000-0001-5399-2953
https://doi.org/10.1038/s41380-019-0605-z
https://doi.org/10.1038/s41380-019-0605-z


and disease, by regulating gene expression. DNA
methylation is also a mechanism through which external
stimuli, such as the environment, may contribute to
expression of common diseases such as neurodegenera-
tive disorders [16].

While efforts to identify genetic factors influencing brain
structure have flourished in recent years [17–19], epigenetic
studies of brain-related phenotypes remain very sparse.
A considerable constraint is the need for a surrogate tissue
for epigenetic studies of the living human brain. Crucially,
while initial reports have demonstrated that although DNA
methylation patterns are largely tissue-specific, often dif-
fering between blood and brain [20, 21], there are also
similarities [22] and blood DNA methylation shows pro-
mise as a biomarker for brain-related traits, including neu-
ropsychiatric disorders [23–27], cognitive ability [28, 29]
and future psychopathology [26]. However, only a few
studies of small sample sizes have reported associations
between blood DNA methylation and brain phenotypes
[26, 30–32].

Here, we built upon these findings and performed a large
multisite epigenome-wide association study (EWAS) of
structural brain volumes in 3337 individuals from 11
cohorts. We focussed on analyses of the hippocampus,
thalamus and NAcc, based on relevance of these subcortical
brain regions for disease and on heritability of these phe-
notypes. We selected the hippocampus as the brain structure
most consistently and robustly altered in neuropsychiatric
disorders, as described above. We also selected the thala-
mus and NAcc as subcortical regions with the highest and
lowest twin-based heritability estimates, respectively
[18, 33], to test a model according to which a substantial
fraction of the heritability of complex traits may be due to
epigenetic variation [34].

Material and methods

Subjects and brain measures

The brain phenotypes examined in this study are from the
ENIGMA analysis of high-resolution MRI brain scans of
volumetric measures (full details in [18]). Our analyses
were focussed to mean (of left and right hemisphere)
volumetric measures of three subcortical areas: the hip-
pocampus, thalamus and NAcc, selected for their link to
disease, different levels of heritability, and developmental
trajectories. MRI brain scans and genome-wide DNA
methylation data were available for 3337 subjects from 11
cohorts (Supplementary Table 1). All participants in all
cohorts in this study gave written informed consent and
sites involved obtained approval from local research eth-
ics committees or Institutional Review Boards.

DNA methylation microarray processing and
normalization

Blood DNA methylation was assessed for each study using
the Illumina HumanMethylation450 (450k) microarray,
which measures CpG methylation across >485,000 probes
covering 99% of RefSeq gene promoters [35], following the
manufacturer’s protocols. Standardised quality control
procedures and quantile normalization were performed
using the minfi Bioconductor package in R [36]. Please refer
to Supplementary Materials and Methods for more details.

Epigenome-wide association analysis

EWAS with volumes of the thalamus, hippocampus and
NAcc were performed for each site separately with standar-
dised procedures (see Supplementary Materials and Methods
for details), where control variables included sex, age, age [2],
intracranial volume, methylation composition (the first four
components), blood cell-type composition (the first two
components), sample batches (when applicable), recruitment
centres (when applicable) and disease status (when applic-
able). For studies with data collected across several centres,
dummy-coded covariates were also included in the model.

Results from each cohort were then meta-analysed by
combining correlations (fisher’s r-to-Z transformed) across
all 11 cohorts with a fixed effect model, weighted by the
corresponding inversed variance [37]. False discovery rates
(FDR) were computed (correcting for the number of brain
regions tested and the number of DNA methylation probes)
and FDR < 0.05 was considered statistically significant.
Differentially methylated regions (DMRs) were identified
by applying the Comb-p algorithm [38] (Supplementary
Materials and Methods).

Results

Associations of DNA methylation with subcortical
volumes: analyses of individual CpG sites

We first investigated the association of DNA methylation at
individual CpG sites in whole blood samples with the mean
bilateral volumes of the hippocampus, thalamus and NAcc.
Meta-analysis was applied by combining correlations across
all 11 cohorts with a fixed effect model, weighting for
sample size. We identified two CpGs associating with the
volume of the hippocampus (Fig. 1a; Supplementary
Table 2) at an experiment-wide (correcting for the number
of brain regions tested) FDR < 0.05. The analyses of tha-
lamus and NAcc volumes identified no CpG reaching the
experiment-wide FDR threshold. Q–Q plots for the P values
of the analyses showed no evidence of P value inflation.

Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes:. . . 3885



The CpGs associated with hippocampal volume explained
each 0.9% of the phenotypic variance. Their effects were
consistent across cohorts, with similar effect sizes for
the cg26927218 site (P > 0.1, Cochran’s Q test), while
moderate heterogeneity in the magnitude, but not the
direction of effects was noted for cg17858098 (Fig. 1b).
Effect sizes for analyses with and without patients across
the 11 cohorts were very highly correlated (r ≥ 0.99) for
CpGs with P < 1 × 10−3, indicating that these effects were
unlikely driven by disease. These CpGs were annotated to
the brain-specific angiogenesis inhibitor 1-associated pro-
tein 2 (BAIAP2) gene (also known as IRSp53; cg26927218)
—encoding a synaptic protein whose expression in the
hippocampus is required for learning, memory [39] and
social competence [40] and to the enoyl-CoA hydratase-1
(ECH1; cg17858098), which encodes an enzyme involved
in the β-oxidation of fatty acids [41].

CpGs associated with hippocampal volume showed
effects specific for this structure rather than pleiotropic
effects. Of the 340 CpGs associated with hippocampus
volume at P < 5 × 10−4 (Supplementary Table 2), 71% were
associated only with the hippocampus, 21% were shared
with the thalamus and few with the NAcc (Fig. 1c). These
closer epigenetic links between hippocampus and thalamus

reflected closer correlations between their volumes (rH*T=
0.367, P= 5.78 × 10−34 and rH*N= 0.201, P= 8.36 × 10−11,
for correlations of hippocampal volumes with thalamus and
NAcc volumes, respectively).

Associations of DNA methylation with subcortical
volumes: differentially methylated regions

The analyses described above did not account for effects of
DNA methylation clusters at regions formed by spatially
correlated CpGs, which often occur within regulatory regions
in the genome and are powerful means to control gene
expression. Therefore, in the following analyses, we set out to
identify such DNA methylation clusters (i.e. differentially
methylated regions, DMRs) by applying the comb-p algo-
rithm [38] to our epigenome-wide meta-analyses of hippo-
campal volume (see Supplementary Materials and Methods).
Several DMRs significantly associated with the volume of
hippocampus in the meta-analysed results (Šidák [42] cor-
rected P < 0.05, number of consecutive probes ≥E2; total
numbers of DMRs= 20; Table 1). A DMR that included the
cg26927218 site was identified (Pcorrected= 9.44 × 10−4), fur-
ther supporting the association of BAIAP2 methylation with
hippocampal volume. In addition to being identified from the

Fig. 1 a Manhattan plots (left) summarizing the association results for
the hippocampus, thalamus and NAcc volumes. The red and blue lines
represent the genome-wide FDR significance level (corrected for three
brain regions) and non-corrected FDR significance level, respectively.
Quantile–quantile plots (right) of multivariate GWAS of all traits
(volumes of the hippocampus, thalamus and accumbens) show that the
observed P values only deviate from the expected null distribution at
the most significant values, indicating no undue inflation of the results.
b Forest plots show the effect (i.e. correlations between CpG methy-
lation and hippocampus volume) at each of the contributing sites to the

meta-analysis. The size of the dot is proportional to the sample size,
the correlation level is shown on the x-axis, and confidence interval is
represented by the line. c Pie chart of distribution of the 340 CpGs
associated with hippocampus volume at P < 5 × 10−4. The chart indi-
cates the proportion of these CpG sites that are unique to the hippo-
campus or that are also associated (nominally, at p < 0.05) with the two
other volumetric phenotypes investigated. In general, CpGs that
influence other phenotypes than hippocampus volume have higher
effect on thalamus than on NAcc volume

3886 T. Jia et al.
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meta-analysed data, three of these DMRs were identified in at
least two cohorts, when analyses were run on EWAS results
of each cohort separately, indicating that their association with
brain volumes were unlikely to be due to chance. They were
located within the cardiomyopathy associated gene 5
(CMYA5; Pcorrected= 8.47 × 10−14; this DMR is subsequently
referred to as DMR1), encoding an expression biomarker for
diseases affecting striated muscle [43–46] and possibly a
schizophrenia risk gene [47]; the hematopoietically expressed
homeobox (HHEX; Pcorrected= 9.27 × 10−5; DMR2) gene,
encoding a homeobox transcription factor controlling
stem cells pluripotency and differentiation in several tissues
[48–52], and a well-known risk loci for type 2 diabetes [53],
as well as the carnitine palmitoyltransferase 1B (CPT1B;
Pcorrected= 2.45 × 10−4; DMR3) gene, encoding a rate-
limiting enzyme in the mitochondrial beta-oxidation of
long-chain fatty acids, whose expression enhances repro-
gramming of somatic cells to induced pluripotent stem cells
[54], cancer cell self-renewal and chemoresistance [55]. There
was a significant degree of correlation of DNA methylation at
these DMRs (r= 0.155, P= 7.30 × 10−8 and r= 0.147, P=
2.91 × 10−7, for DMR1 versus DMR3 and DMR1 versus
DMR2, respectively). These three DMRs were also taken
forward for further analyses.

Effects of differential methylation on gene
expression

We measured the impact of DNA methylation on expres-
sion of neighbouring genes (cis-effects) in 631 IMAGEN
subjects for which DNA methylation and mRNA expression
data were available (see Supplementary Materials and
Methods). Methylation at most loci affected gene expres-
sion, with the effects of DMRs being larger than that of
individual CpGs (i.e. cg26927218). Several isoforms are
expressed from BAIAP2, and isoform-specific effects were
observed for cg26927218; methylation at this locus corre-
lated with increased expression of the short isoform for
BAIAP2 (β= 0.016, P= 5 × 10−3; Fig. 2a). There were no
significant effects of cg17858098 on ECH1 mRNA levels
(β=−0.008, P= 0.201). Given the correlations between
the selected three DMRs noted above, we controlled for
methylation at the other two DMRs when testing for effects
of a given DMR on gene expression. As shown in Fig. 2b,
DMR1 methylation had no effect on expression of CMYA5
(β=−0.227, P= 0.492), tending instead to have contrast-
ing effects on expression of neighbouring genes (β=
−0.410, P= 0.039 and β= 0.554, P= 0.019 for PAPD4
and MTX3, respectively). Methylation at DMR2 increased
expression of its closest gene, HHEX (β= 0.351, P=
0.020). Methylation at DMR3 had strong effects on
expression of the adjacent CPT1B gene (β= 1.670, P=
2.55 × 10−59). Trans-effects were also noted for this

DMR, as it associated with increased expression of PAPD4
(β= 0.724, P= 1.21 × 10−7), a gene adjacent to DMR1.

Correlations of DNA methylation between blood
and brain

To investigate if the above findings would remain relevant for
the brain, we first compared methylation levels at the selected
differentially methylated loci (i.e. two CpG sites and three
DMRs) in blood and brain tissues sampled from the same
individuals to establish the degree to which blood methylation
levels at selected loci correlated with their brain methylation
patterns. Then, we compared the degree of these blood–brain
covariations (i.e. the extent to which of DNA methylation in
blood correlated with DNA methylation in brain) to the cor-
responding Z-values from the hippocampal EWAS. We
evaluated these effects across all three DMRs, as well as
within each DMR. It is important to point out that higher
degree of blood–brain covariations in methylation, which
indicates a higher proportion of shared information between
blood and brain, would result in increased strength in asso-
ciation between blood DNA methylation and hippocampus
volume, solely if this association was indeed mediated by
brain DNA methylation. Please see Supplementary Materials
and Methods for details of the approach.

We compared methylation levels at these sites in blood
and brain tissues (prefrontal cortex, entorhinal cortex,
superior temporal gyrus and cerebellum) sampled from
the same individuals (N= 75) using the blood–brain DNA
methylation comparison tool [56] (see Supplementary
Materials and Methods; Supplementary Table 3). There
was no significant correlation between blood and brain
methylation levels at the individual CpG sites
(cg26927218—BAIAP2 and cg17858098—ECH1). On
the other hand, interindividual variation in whole blood
was a moderate predictor of interindividual variation in all
tested cortical brain areas for DMR1 and DMR3 (stron-
gest correlations: r= 0.54, P= 1.20 × 10−6 and r= 0.59,
P= 2.37 × 10−8, respectively; Supplementary Table 3).
For DMR2, correlations were more varied with the
strongest correlation in the superior temporal gyrus (r=
0.37, P= 9.68 × 10–4; Supplementary Table 3). Generally,
correlations were stronger in cortical brain regions than in
the cerebellum. Crucially, the degree of blood–brain
covariations in DNA methylation at these sites predicted
associations between blood DNA methylation and hip-
pocampus volume with moderate to large effect sizes
(Supplementary Table 4 and Supplementary Fig. 1).
These effects were particularly notable in the superior
temporal gyrus, across all three DMRs (r= 0.751, t=
4.54, df= 16, Pone tailed = 6.6 × 10−3 after Bonferroni
correction for four brain regions), and at each DMR (r=
0.707, t= 2.65, df= 7, Pone tailed= 0.017 for DMR1; r=

3888 T. Jia et al.



0.964, t= 5.14, df= 2, Pone tailed= 0.018 for DMR2; r=
−0.748, t=−2.52, df= 5, Pone tailed= 0.027 for DMR3).
There was also moderate prediction by the degree
of covariation of DNA methylation in prefrontal cortex,
across all three DMRs (r= 0.417, t= 1.84, df= 16,
Pone tailed = 0.042), and with DMR2 (r= 0.966, t= 5.26,
df= 2, Pone tailed = 0.017). These results strongly suggest
that associations between hippocampal volume and blood
DNA methylation levels at the selected DMRs are largely
mediated by their DNA methylation levels in the brain
(see Supplementary Materials and Methods for more
details).

Another comparison between methylation in blood and
other brain regions—Brodmann area (BA)7 (parietal cor-
tex); BA10 (anterior prefrontal cortex) and BA20 (ventral
temporal cortex)—using a smaller dataset of 16 BECon
post-mortem samples [57] revealed similar patterns
(see Supplementary Materials and Methods; Supplementary
Fig. 2). For DMR1, there were moderate correlations

between blood and BA7 methylation at all CpGs (r=
0.13–0.47) and between blood and BA10 for most CpGs
(r= 0.13–0.30). For DMR3, correlations between blood
and brain methylation were strong in all areas (r=
0.37–0.86), while the degree of correlations varied at
DMR2 ranging from −0.35 to 0.34, depending on the CpG
site and the brain area.

Genetic contributions to differential DNA
methylation associated with hippocampal volume

Given that genetic factors may underlie the correlations
between DNA methylation in different tissues, we searched
for methylation QTLs in two datasets. A search in the ARIES
mQTL database [58] identified several SNPs associated with
methylation at the DMR1 and DMR3 loci (see Supplementary
Materials and Methods; Supplementary Table 5A). The
strongest mQTLs, rs131758 and rs4441859, affected methy-
lation such that the A-allele at these SNPs associated with
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increased methylation at DMR3 and DMR1, respectively.
These effects were replicated in two other datasets [59, 60]
(see Supplementary Materials and Methods; Supplementary
Table 5B). Remarkably, eQTL analyses indicated that these
alleles correlated with expressions of CMYA5 and CPT1B,
albeit differently. While the effects of the rs4441859_A allele
were tissue-specific, the rs131758_A allele increased CPT1B
expression in all tissues, including the brain (Supplementary
Table 5C and Supplementary Fig. 3).

Furthermore, we considered whether there was a significant
overlap between DNA methylation differences identified in
this study and SNPs associated with hippocampal volume. To
test this, we used the recent genome-wide association studies
of hippocampal volume conducted by ENIGMA [18]
(excluding the IMAGEN data; GWAS association thresholds
P < 5 × 10–6 and P < 5 × 10−7) as a dataset for significant
hippocampal SNP regions, adapting MAGENTA [61]
(see Supplementary Materials and Methods), the gene sets-
based enrichment analysis tool for GWAS data to the analysis
of methylation data. SNPs were merged into genomic regions
that were then examined for overlap with DNA methylation
identified in hippocampal EWAS performed in the IMAGEN
sample. These analyses revealed a significant overlap between
DNA methylation loci and SNP loci influencing hippocampal
volume (Supplementary Table 6).

Discussion

In this large epigenome-wide meta-analysis we identified for
the first time differentially methylated CpG sites and geno-
mic regions whose levels of DNA methylation correlate with
variation in hippocampal volume. We further demonstrate
the potential of using blood to discover epigenetic bio-
markers for the living human brain. Methylation at these
sites affect the expression of genes required for hippocampal
function and metabolic regulation. At the identified sites, the
observation that DNA methylation variation in blood can
mirror that of brain tissues, and that the degree of this
covariation could predict the association of blood DNA
methylation with hippocampus volume, helps us generate
hypotheses as to how modifiable factors such as diet and
lifestyle may contribute to some of the impairments asso-
ciated with diabetes and neurodegenerative conditions [62].

Changes in hippocampal volumes are hallmarks of brain
development predictive of cognitive deficits generally
associated with aging and neurodegeneration. While large
hippocampal volume is linked with good memory and
cognitive function, hippocampal atrophy is associated with
the development of a range of neurodegenerative [63] and
neuropsychiatric disorders [6–8, 10]. Modifiable factors
such as obesity, exercise, stress and medication can reduce
or increase the size of the hippocampus throughout life [63].

Collectively, our findings support these observations,
pointing to associations of hippocampal volume with fatty
acid metabolism, as discussed below.

Two of the top hits identified (CPT1B and ECH1) encode
key enzymes involved in β-oxidation of fatty acids. These
enzymes act on the same pathway, CPT1B being necessary
for the transport of long-chain fatty acids into the mito-
chondria and ECH1 for a key step in their β-oxidation. Fatty
acids (notably the omega-3 polyunsaturated fatty acids)
benefit brain development and healthy brain aging by
modulating neurogenesis and protecting from oxidative
stress throughout the lifespan [64]. More specifically, neural
precursors in the hippocampus and subventricular zone
require fatty acid oxidation for proliferation [65]. This led to
the proposition that abnormalities in brain lipid metabolism
contribute to hippocampal dysfunction in AD by their
ability to suppress neurogenesis at early stages of disease
pathogenesis [66]. Accordingly, fatty acid metabolism in
the brain seems to be closely related to the pathogenesis of
Alzheimer’s disease [67].

Further links between metabolism and hippocampal
volume were suggested by our identification of a region
annotated to a replicated risk locus for T2D (HHEX) [53].
The metabolic alterations observed in T2D may induce
cognitive dysfunction [68] by exacerbating declines in
hippocampal volumes associated with aging [69] and AD
pathology [70], a process to which HHEX may contribute
[71]. This is supported by findings that genetic variations
within the HHEX gene region may underlie the association
of T2D with AD, with the HHEX rs1544210_AA genotype
interacting with diabetes to increase the risk of dementia
and AD by more than fourfold [71]. Furthermore, indivi-
duals with diabetes who carry the HHEX rs1544210_AA
genotype tend to have significantly smaller hippocampal
volumes than those without these conditions [71].

DNA methylation at most loci had clear, albeit distinct
effects on gene expression. Notable transcript-specific
effects were observed for cg26927218 on BAIAP2. The
cg26927218 locus is located in a DNase I hypersensitive
site, characteristic of regions actively involved in tran-
scriptional regulation [72], within a consensus DNA bind-
ing sequence for the MYC associated factor X (MAX)—a
transcription factor controlling cell proliferation, differ-
entiation, and apoptosis. MAX belongs to a class of tran-
scription factors that recognize CpG-containing DNA
binding sequences, only in their unmethylated form
[73, 74]. Thus, methylation at cg26927218 may affect
expression of the BAIAP2 short variant by directly inter-
fering with the function of this transcription factor. A role
for the region surrounding cg26927218 in transcriptional
regulation is further supported by findings showing that a
genetic variant (rs8070741) near cg26927218 enhances
cortical expression of the BAIAP2 short variant [75].
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Besides the hippocampus, none of the other two sub-
cortical structures investigated generated significant results.
This may reflect a unique role of the hippocampus in brain
development, possibly related to it being a site of neuro-
genesis. These findings are also consistent with the relative
heritability of the different subcortical structures, indicating
higher twin-based heritability estimates for larger (hippo-
campus and thalamus) compared with smaller (NAcc)
subcortical structures but overall low SNP-based heritability
[18]. This supports the model according to which a sub-
stantial fraction of the heritability of complex traits is due to
epigenetic variation [34]. Our analyses on genetic con-
tributions to DMRs’ effects also suggest that epigenetic
control is partially modulated by genetic variations, which
is further suggested by the overlap between GWAS and
EWAS of hippocampal volume.

In conclusion, we have identified DNA methylation at
several loci that correlate with hippocampus volume, which
suggest for the first time possible biological pathways by
which modifiable and metabolic factors might contribute to
the pathology of neurodegenerative diseases. A clear lim-
itation is the small number of cohorts for which both MRI
and DNA methylation data are available, we nonetheless
provide a rigorous roadmap that should encourage larger
and more extensive future studies. We also acknowledge
several other limitations, such as the shortage of datasets
enabling direct comparison of blood and brain DNA
methylation patterns. In particular, the lack of datasets
including the hippocampus as a brain region prevented us
from establishing a direct link between DNA methylation in
blood and in the hippocampus. However, we do provide
evidence showing that DNA methylation in the superior
temporal gyrus mediates associations between blood DNA
methylation and hippocampal volume. Also, given the
cross-sectional nature of this study, none of the associations
identified can be claimed to be causal. Nevertheless, our
work demonstrates the usefulness of combining peripheral
DNA methylation markers and neuroimaging measures for
biomarker discovery in common neurological and neu-
ropsychiatric conditions.
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