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Abstract 

This study investigated the use of state-trace analysis (Bamber, 
1979) when applied to computational models of human learning. 
We aimed to investigate the performance of simple recurrent 
networks (SRNs) on a sequence learning task. Elman’s (1990) 
SRN and Cleeremans & McClelland’s (1991) Augmented SRN are 
both benchmark models of human sequence learning. The 
differences between these models, comprising of an additional 
learning parameter and the use of response units activated by 
output units constituted our main manipulation. The results are 
presented as a state-trace analysis, which demonstrates that the 
addition of an additional type of weight component, and response 
units to a SRN produces multi-dimensional state-trace plots. 
However, varying the learning rate parameter of the SRN also 
produced two functions on a state-trace plot, suggesting that state-
trace analysis may be sensitive to variation within a single process.  

Keywords: Learning; state-trace analysis; SRN; sequence 
learning; Augmented SRN; 

Introduction 
State-trace analysis (Bamber, 1979) is a method that aims to 
establish whether one or more underlying processes are 
influencing behavior on a given task. The method has been 
applied to a variety of paradigms, including remember-
know tasks (e.g. Dunn, 2008), face recognition (e.g. Loftus, 
Oberg, & Dillon 2004), categorization (e.g. Newell, Dunn & 
Kalish, 2010) and a variety of other areas (see Prince, 
Brown & Heathcote, 2011).  

The procedure for a state-trace analysis is to plot the 
relationship between two dependent variables (dimensions) 
on two or more tasks (states). If these points follow a single, 
monotonic function, it can be hypothesized that the same 
latent variable underlies performance on the tasks. The 
influence of more than one latent variable on the tasks is 
implied when the state plots do not follow the same 
function, i.e. more than one monotonic function is 
visualized. 

Computational models are created in the full knowledge 
of the processes involved in their construction. Thus, the 
primary use of state-trace analysis, to attempt to quantify 
latent psychological variables, does not seem to directly 
lend itself to computational modeling. But the fact that we 
should be able to make some predictions from the nature of 
the models about the types of processes involved in any 
simulation helps us interpret any state-trace analysis of the 
data produced by the simulation. This paper seeks to apply 
state-trace analysis to the simulation results produced by 
computational models on a sequence learning task both to 

evaluate the different types of model and as a means of 
evaluating the state-trace methodology itself. 

The computational models chosen for this analysis are the 
simple recurrent network (SRN) introduced by Elman 
(1990) and the Augmented SRN (Cleeremans and 
McClelland, 1991). The basic SRN model is simple (see 
Figure 1), involving feed-forward input activation through a 
hidden layer. The activations of this hidden layer are copied 
back on each trial into a context layer, which is then fed 
back into the hidden layer as input on the next trial. This 
ensures that the representations of the previous trial are 
carried over, and gives the model the ability to learn 
sequential information.  

 

 
Figure 1: The architecture of the SRN (Elman, 1990). 
 

Cleeremans and McClelland (1991) further developed the 
SRN in order to give a better account of the sequential 
effects demonstrated by human participants. This 
augmented simple recurrent network (AugSRN) differs 
from Elman’s (1990) original architecture firstly in the 
inclusion of response units post-output. As a consequence, 
when making a response to the stimuli in an experiment, 
this response remains primed over future trials for a short 
time (Remington, 1969), because the response units are 
activated by the output units and feed activation back into 
the output units on the next trial. 

The AugSRN also accounts for the priming of certain 
sequential pairings (Cleeremans & McClelland, 1991) by 
assuming that back propagation is implemented on not one 
set of connection weights, but two. One component is a set 
of slow weights, which produce small but permanent 
changes with minimal decay. These are complemented by 
fast weights, which have a higher learning rate but also a 
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greater rate of decay: simulating transient, short-term 
learning.  

Both models have successfully simulated a range of 
human datasets (Cleeremans, 1993), including modeling 
sequence learning in serial reaction time (SRT) tasks. Jones 
and McLaren (2009) found that an AugSRN could produce 
the detailed pattern of subsequence learning demonstrated 
by participants in their experiments. Using a two-choice 
SRT task participants received continuous strings of stimuli 
that followed an exclusive-or rule two-thirds of the time. If 
the previous two responses were the same (XX or YY), then 
the current trial would be one response (X), and if the 
previous two had not been the same (XY or YX) this would 
lead to the other response (Y). Participants under incidental 
conditions found it hard to learn about the subsequence 
XXX compared to the other types, a result which was 
successfully simulated by the AugSRN.  

In a later experiment Yeates, Jones, Wills, McLaren and 
McLaren (submitted) used the same two-choice SRT task to 
investigate human sequence learning. Participants in this 
study were divided into two groups, both of which received 
sequences governed by a rule that they were not informed 
about. In one group, the current trial could be predicted two-
thirds of the time to be different to the trial before last, i.e. 
‘first different to third’ (Group 1: XXY, XYY, YYX, YXX) 
and in the other the current trial would be predicted to be the 
same as the trial before last, ‘first same as third’ (Group 2: 
XXX, XYX, YYY, YXY). Poorer performance was 
predicted in Group 2 under incidental conditions based on 
Jones and McLaren’s (2009) earlier findings that 
participants were unable to learn about subsequence XXX 
(or YYY). The manipulation did indeed produce this 
difference between Groups. We found that variants of the 
SRN and AugSRN could simulate these data to differing 
extents depending on the parameterisation of the model 
(Yeates et al., submitted), which suggests that the 
differences between the SRN and AugSRN may be of 
interest in this context.  

SRNs are considered to be single-process models (e.g. 
Frensch & Miner, 1994; Kinder & Shanks, 2003), where 
parameters can be altered to produce different effects, but 
these involve essentially one process. The standard view is 
that the two connection weight components in an AugSRN 
represent the same kind of process; of learning through back 
propagation, and that their differences are of amount and not 
kind. Varying the learning rate affects the efficiency of 
learning across training (Kinder & Shanks, 2001; 
McClelland & Rumelhart, 1986). However, one might hold 
the view that the two connection weight components are in 
fact different processes within the AugSRN, accounting for 
long- and short-term learning. Similarly, as response units 
were introduced to take account for short term priming of 
the previous response (Cleeremans & McClelland, 1991), 
we could argue that this additional component may also 
represent an additional, different process.  

We therefore hypothesize that when comparing 
performance of the SRN and AugSRN we will see a clearly 

multi-dimensional state-trace plot, as the two models are 
different in kind. Further to this, we aim to examine the 
components of the AugSRN in more detail, with the aim to 
investigate whether state-trace analysis considers these 
additions to the original SRN separate processes within the 
model.  

Given this analysis, our approach was to produce a state-
trace analysis of these models’ performance on a task based 
closely on the two-choice serial reaction time (SRT) 
experiments described in Jones & McLaren (2009) and 
Yeates, Jones, Wills, McLaren and McLaren (submitted). 
We aimed to compare the performance of these networks on 
this task, varying the free parameters of the models.  

 
Modeling Sequence Learning 

The SRT paradigm involves participants responding to 
stimuli on screen that follow some sequence (Nissen & 
Bullemer, 1987; Lewicki, Czyzewska, and Hoffman, 1987). 
Therefore, faster and more accurate responses are expected 
for those trials that are predicted by the sequences learnt in 
comparison to a control group, who would receive the same 
task but with a pseudorandom ordering (e.g. 
Anastasopoulou & Harvey, 1999, Jones & McLaren, 2009). 
 
SRT Task Outline 
The task experienced by each network follows closely that 
we have used with human participants, and lasted for two 
sessions, each with 20 blocks. Each block comprised 120 
continuous trials of stimuli appearing on the right or left. 
The sequences making up each block were constructed 
differently for Group 1 and 2, and for the networks acting as 
control groups. For the experimental networks, all blocks in 
the first session and the first fifteen sequences in the second 
session were constructed from 40 triplets that followed the 
rule for each Group (Group 1: XXY, XYY, YYX, YXX; 
Group 2: XXX, XYX, YYY, YXY). Networks thus received 
ten of each subsequence type per block.  

Two-thirds of experimental training trials followed the 
rule, as the third trial in a triplet was always consistent with 
the rule, as were half of first and second trials in a triplet by 
chance when subsequences were randomly concatenated. 
Test and control group training blocks were made up of 
pseudorandom sequences that included an equal amount of 
all subsequence types. 
 
Model Construction 
The parameters varied in the model for the purpose of the 
state-trace analysis are the number of hidden units and the 
learning rates, as well as the presence or absence of 
response units and presence of one or two connection 
weight components. Two units for both input and output 
were chosen to represent the stimuli (right or left circle fill) 
and predictions for the next trial (right or left), respectively. 
The activation of a single input unit was set to one, with the 
other set to zero to correspond to a left or right stimulus 
presentation. The units in each layer, from input and context 
to hidden and to output units, fed activation forward to 
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every unit in the layer above (see Figure 1). The activation 
of the hidden and output units were determined by the 
logistic activation function (Rumelhart, Hinton, & Williams, 
1986). Hidden unit activation was copied back to the 
context units on each trial with a lag of one cycle of the 
network. Each hidden unit also had a bias: a variable 
connection from a unit that had a constant activation of one. 
The hidden units mapped recurrently to the context units on 
a one-to-one basis. The feed-forward connections comprised 
of either one or two connection weights. These were 
modified by the back-propagation algorithm, which we ran 
without a momentum term (Rumelhart et al., 1986).  

To simulate the experiment with humans reported in 
Yeates et al. (submitted), each model was run 128 times to 
match the number of participants taking part in the empirical 
study. Half of these simulations acted as controls (trained on 
pseudorandom sequences), with half receiving experimental 
sequences. 32 experimental networks followed Group 1 
rules (‘first different to third’) and 32 followed Group 2 
rules (‘first same as third’). Initial connection weights were 
set for each network to random values between -0.5 and 0.5. 
Each simulation involved training for one session and 
fifteen blocks of a second session, followed by five blocks 
of test sequences. Therefore each simulation received 4200 
training trials and 600 test trials.  

The mean square error (MSE) was calculated as the 
difference between the location of the next trial, and the 
prediction of the model (see Jones & McLaren, 2009). This 
was taken as the measure of performance of the model on 
the task. As in previous simulations of these tasks, the MSE 
for trials consistent with the trained rule was taken from the 
MSE for inconsistent trials (Jones & McLaren, 2009; Yeates 
et al., submitted). This produces an estimate of learning 
about those trained sequences, and is also computed for 
control simulations. Half of the control simulations are 
assigned to the dummy variable Group 1, where ‘first 
different to third’ subsequences (XXY, XYY, YYX, YXX) 
are taken from the matching ‘first same as third’ 
subsequence (XXX, XYX, YYY, YXY). The remaining 32 
simulations follow the Group 2 inconsistent-consistent 
calculation, with the MSE on ‘first same as third’ 
subsequences taken from the MSE on ‘first different to 
third’ subsequences. Comparing the differences between 
experimental and control groups on these scores allows 
learning to be assessed without any confound in terms of 
sequential effects (see Anastasopoulou & Harvey, 1999; 
Jones & McLaren, 2009). To summarize then, good learning 
will result in a larger difference of the form (Control 
network MSE for inconsistent trials - Control network MSE 
for consistent trials) - (Experimental network MSE for 
inconsistent trials - Experimental network MSE for 
consistent trials), as a lower MSE indicates better learning. 
 
State-Trace Analysis 1: SRN and AugSRN 
The task was simulated on an SRN and AugSRN with 20 
hidden units. The SRN had a learning rate of 0.4, the 
AugSRN had a slow learning rate of 0.4 and a fast learning 

rate of 0.533. The AugSRN also possessed response units, 
unlike the SRN.  

Results. Both models produced significant learning of 
both sequences, which was analyzed by means of an 
ANOVA with subsequences and blocks as within-subject 
factors, and experimental versus control as a between 
subject factor. The SRN exhibited a significant difference in 
consistent-inconsistent MSE scores between experimental 
and control simulations, F(1,124) = 613.6, p < .001. The 
AugSRN also demonstrated learning, F(1,124) = 1113, p < 
.001. As this difference of differences measures the learning 
in experimental networks compared to networks that 
experienced pseudorandom sequences (controlling for 
sequential effects), this difference is used to provide our 
index of learning and performance in what follows. 

The SRN and AugSRN constituted the two states we 
wished to analyze, and we plotted performance of Group 1 
against Group 2 on the axes as the dimensions. The plots 
follow the trace of training over collapsed blocks of five, 
with the seven points shown constituting the 35 training 
blocks. Figure 2 shows the state-trace plot of this data. 

Figure 2. State-trace plot showing learning of AugSRN and 
SRN across training blocks of simulations.  
 
Inspection of Figure 2 clearly suggests that there are two 
different, monotonic functions on the plot. We analyzed the 
data using hierarchical multiple regression, with the 
hypotheses that the model predicting Group 2 performance 
from Group 1 performance would be improved by the 
addition of Model Type as a variable, indicating a multi-
dimensional model of the data. We simply coded this as a 
dichotomous nominal variable, with the AugSRN arbitrarily 
labeled as 1 and the SRN as 2. The addition of Model Type 
into the regression model significantly improved the R2

adj 
value from 70.2% to 92.1%, ΔR2 : F(1,11) = 34.1, p < .001, 
and overall, the model had a significant fit, F(2,11) = 76.7, p 
< .001; Group 2 = -.944xGroup 1 - .029xModel Type + 
.064. This corroborates the impression that the data on this 
plot require more than one function for a good fit, which 
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suggests that there is more than one underlying process 
governing performance in these simulations. The conclusion 
is that the SRN and the AugSRN differ in kind (which is 
perhaps not surprising – though they are very similar types 
of model), but the important finding here is that the state-
trace methodology is sensitive to this difference. 

Discussion. This confirms our predictions about how we 
expected state-trace to represent learning by these different 
networks on this task, producing different functions and so 
confirming that they are genuinely different types of model. 
This could easily be attributed to either or both of the two 
differences between the SRN and AugSRN. We now 
investigate whether these models are themselves best 
characterized as single or multi-process models of learning.  

 
State-Trace Analysis 2: Connection weight 
components 
Here we ran simulations on four different models, two had 
response units and two had no response units. Within these 
dyads, we aimed to compare whether fast and slow weight 
components (the states in this state-trace analysis) were 
driving the multi-dimensional model seen in our first State-
Trace Analysis. Therefore Model 1 had one connection 
weight component with response units, Model 2 had two 
connection weight components with response units (an 
AugSRN), Model 3 had one connection weight component 
with no response units (a standard SRN), and Model 4 had 
two connection weight components with no response units. 
Both had 20 hidden units and slow and fast weights of .4 
and .533 respectively, as in the previous simulation. 

Results. All four models learnt the sequences, analyzed as 
in Simulation 1. Model 1 showed a significant difference 
between experimental and control performance, F(1,124) = 
853.6, p < .001. Models 2 and 3 showed learning, as seen in 
the results of State-Trace Analysis 1. Finally, Model 4 
demonstrated the same learning, F(1,124) = 1634, p < .001. 

When comparing models with one and two connection 
weight components we can see from Figures 3 and 4, which 
show the state-trace plots for models with and without 
response units respectively, that two monotonic functions 
appear.  

When conducting a hierarchical linear regression as 
described in State-Trace Analysis 1, we this time coded 
Model as a predictor with the values of 1 and 2 for one and 
two components, respectively. Introducing Model into the 
regression alongside Group 1 in predicting Group 2 
performance for models with response units (see Figure 3) 
produced a significant improvement in the R2

adj value from 
84.7% to 93.1%, ΔR2 : F(1,11) = 15.9, p = .002, and overall, 
the model had a significant fit, F(2,11) = 89.4, p < .001; 
Group 2 = 1.231 Group 1 + .014 Model Type - 
.007. Similarly, when there are no response units (see Figure 
4) adding Model as a predictor improves the regression 
model, with a significant improvement in the R2

adj value 
from 56.0% to 89.6%, ΔR2 : F(1,11) = 40.0, p < .001, and 
overall, the model had a significant fit, F(2,11) = 56.9, p < 
.001; Group 2 = 1.008xGroup 1 + .042xModel Type - .041.  

Figure 3. State-trace plot for Model 1 (one connection 
weight component) and Model 2 (two connection weight 
components) across training.  
 

 
Figure 4. State-trace plot showing learning of Model 3 (one 
connection weight component) and Model 4 (two 
connection weight components), neither of which have 
response units, across training.  
 

Discussion. Both in models with and without response 
units, multi-dimensional state-trace plots are produced when 
comparing those with one or two connection weight 
components. The state-trace analysis suggests that the two 
models are driven by different underlying processes, which 
in this case is due to the presence or absence of fast weights. 
Following the state-trace logic, this suggests that the two 
weight components within an AugSRN should be 
considered as distinct, different learning processes. 
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State-Trace Analysis 3: Response units 
Does the addition of response units to the basic SRN, or an 
SRN with two connection weight components, produce 
separate functions on the state-trace plot? The same four 
models are presented below, comparing Models 1 (no 
response units) and 3 (with response units), which both have 
one component, and Models 2 (no response units) and 4 
(with response units), which both have two connection 
weight components.  

Results. We compare Models depending on whether they 
have response units or not, coded as 1 and 0, respectively. 
See Figures 5 and 6 for state-trace plots of one and two 
connection weight component models. We find that in 
models with one component, adding Model as a variable 
significantly improves the regression model, the R2

adj value 
improves from 92.3% to 95.6%, ΔR2 : F(1,11) = 10.3, p = 
.008, and overall, the model had a significant fit, F(2,11) = 
143.8, p < .001; Group 2 = .942xGroup 1 + .013xModel 
Type + .006.  

 
Figure 5. State-trace plot showing learning of Model 1 (with 
response units) and Model 3 (no response units), which both 
have only one connection weight component, across training 
blocks of simulations.  
 
Comparing Models 2 and 4, with response units, the 
regression does not significantly improve when adding 
Model as a variable into the regression.  

Discussion. Whilst the functions are not as distinct as in 
State-Trace Analysis 2, the comparison of models with and 
without response units still suggests a multi-dimensional 
structure. That the models with two connection weight 
components failed to reach significance is perhaps more a 
criticism of the linear regression method when analyzing 
these data. The fact that the separation of the two plots is 
less impressive (in size and reliability) when the presence 
(or not) of the response units is the manipulation than when 
the use of one vs. two sets of weights also suggests that for 
the type of model considered here, the main difference 

between the AugSRN and the standard SRN is the 
distinction between fast and slow weights. 
 

 
Figure 6. State-trace plot showing learning of Model 2 (with 
response units) and Model 4 (no response units), which both 
have two connection weight components, across training 
blocks of simulations.  
 
State-Trace Analysis 4: Learning Rates 
Finally, to ensure that the differences seen in State-Trace 
Analysis 2 between one and two component models were 
not simply a result of the total amount or rate of learning, 
we varied the learning rates of the one component model, 
keeping the hidden units set at 20. We set the learning rate 
to 0.933, equal to the sum of the fast and slow learning rates 
employed in the AugSRN simulations to plot alongside the 
earlier one process model with a learning rate of 0.4. We are 
aware that a one component SRN with a learning-rate equal 
to the sum of two component’s learning-rates is not a direct 
equivalent. Nevertheless, our manipulation should allow us 
to discover if varying learning rate over this range produces 
different state-trace plots. 

Results. An SRN with a Learning Rate of 0.933 learns the 
task, F(1,124) = 556.8, p < .001. The state-trace plot of 
these data, alongside the original Learning Rate of 0.4 can 
be seen in Figure 7, which clearly shows two functions. 
When adding the learning rate as a regressor into a model 
predicting Group 2 performance from Group 1 performance, 
the R2

adj value improves from 75.8% to 92.4%, ΔR2 : F(1,11) 
= 27.2, p < .001, and this model overall had a significant fit, 
F(2,11) = 79.9, p < .001; Group 2 = .895xGroup 1 + 
.048xLearn Rate - .010.  
Discussion. The state-trace plot and the regression analysis 
clearly demonstrate two separate functions, which according 
to state-trace analysis suggests the presence of multiple 
processes. However, the two models differ only in the 
values assigned to their learning rates. State-trace analysis 
proposes that a multi-dimensional state-trace plot will result 
from the presence of multiple processes in a given dataset, 
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which implies the influence of more than one than one latent 
variable within the SRN on performance. This suggests that 
either state-trace analysis is sensitive to differences within a 
single process, or alternatively the SRN must be considered 
a multi-process model of learning. 

 
Figure 7 State-trace plot for an SRN with different learning 
rates (shown on graph). 
 
                           General Discussion 
The analyses of SRNs with one or two learning components, 
and those with or without response units give separate 
functions on state-trace plots, suggesting the presence of 
more than one latent psychological variable. However, 
simple variation of the rate at which the SRN learnt also 
produced a multi-dimensional state-trace plot, which raises 
questions for the interpretation of multi-dimensional state-
trace plots. A parameter search, varying learning rates and 
number of hidden units, has been conducted and, within a 
reasonable range for the SRN on this SRT task, produces 
the same functions as the data presented above. We 
recognise that the regression method employed in analysing 
the data is limited to roughly linear functions, and suggest 
that other methods (e.g. Newell, Dunn & Kalish, 2010; 
Prince, Brown & Heathcote, 2011) are also explored. But 
our analyses are, if anything, insensitive to the differences 
visualised by the plots, so this does not compromise our 
conclusions 

It seems, then, that not only multiple processes, but 
variations within a single process can produce multi-
dimensional state-trace plots. The implications for state-
trace analysis as a tool for the investigation of the number of 
latent variables underlying human behaviour needs to be 
considered, and further analysis of computational models 
with this technique is recommended.  
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