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Abstract

N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction has been implicated in the 

pathophysiology of schizophrenia, including auditory processing abnormalities reflected by the 

mismatch negativity (MMN) event-related potential component. Evidence suggesting cognitive 

benefits from nicotine administration, together with the high rate of cigarette use in patients with 

schizophrenia, has stimulated interest in whether nicotine modulates NMDAR hypofunction. We 

examined the interactive effects of ketamine, an NMDAR antagonist that produces transient 

schizophrenia-like neurophysiological effects, and nicotine, a nicotinic acetylcholine receptor 

(nAChR) agonist, in 30 healthy volunteers to determine whether nicotine prevents or attenuates 
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MMN abnormalities. Secondary analyses compared the profile of ketamine and schizophrenia 

effects on MMN using previously reported data from 24 schizophrenia patients (Hay et al., 2015). 

Healthy volunteers completed four test days, during which they received ketamine/placebo and 

nicotine/placebo in a double-blind, counterbalanced design. MMN to intensity, frequency, 

duration, and frequency+duration double deviant sounds was assessed each day. Ketamine 

decreased intensity, frequency, and double deviant MMN amplitudes, whereas nicotine increased 

intensity and double deviant MMN amplitudes. A ketamine x nicotine interaction indicated, 

however, that nicotine failed to attenuate the decrease in MMN associated with ketamine. 

Although the present dose of ketamine produced smaller decrements in MMN than those 

associated with schizophrenia, the profile of effects across deviant types did not differ between 

ketamine and schizophrenia. Results suggest that while ketamine and schizophrenia produce 

similar profiles of MMN effects across deviant types, nicotinic agonists may have limited potential 

to improve these putative NMDAR hypofunction-mediated impairments in schizophrenia.

Keywords

mismatch negativity; electroencephalography; schizophrenia; NMDAR hypofunction; ketamine; 
nicotine

1. Introduction

A cornerstone of the glutamatergic N-methyl-D-aspartate receptor (NMDAR) hypofunction 

model of schizophrenia is evidence that NMDAR antagonists such as ketamine induce 

symptoms, neurocognitive deficits, and neurophysiological abnormalities similar to those 

observed in schizophrenia (Krystal et al., 2003; Moghaddam and Javitt, 2012; Moghaddam 

and Krystal, 2012). Therefore, NMDAR antagonists provide an elegant pharmacological 

model of NMDAR-mediated abnormalities in schizophrenia. Given that dopaminergic 

antipsychotic medications do not improve neurocognitive or neurophysiological 

abnormalities in schizophrenia (Buchanan et al., 2007; Ford et al., 1994; Keefe et al., 2007; 

Umbricht et al., 1998, 1999), there is interest in identifying novel pharmacological targets 

with potential to improve these abnormalities, directly or via amelioration of NMDAR 

hypofunction. One possible target is nicotinic acetylcholine receptor (nAChR) augmentation, 

which has been shown to improve cognition (Newhouse et al., 2004; Rezvani and Levin, 

2001; Swan and Lessov-Schlaggar, 2007) and associated neurophysiological measures 

(Polich and Criado, 2006; Pritchard et al., 2004). Accordingly, we examined whether 

pharmacological augmentation of nAChRs can attenuate the neurophysiological 

consequences of NMDAR hypofunction induced by ketamine. We focused on the mismatch 

negativity (MMN), an event-related potential (ERP) component that is reduced by 

schizophrenia (see Erickson et al., 2016) and NMDAR antagonists (see Rosburg and 

Kreitschmann-Andermahr, 2016).

MMN is an auditory ERP elicited by infrequent deviant sounds interspersed among frequent 

“standard” sounds. MMN has been considered to reflect auditory echoic memory (Näätänen 

et al., 2005; Näätänen and Kähkönen, 2009; Näätänen et al., 2004) and predictive coding in 

the auditory system (Friston, 2005; Garrido et al., 2009; Stephan et al., 2006; Stephan et al., 
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2009). Although MMN is elicited pre-attentively (Näätänen and Kähkönen, 2009), it 

correlates with higher-order cognition and functional outcomes in schizophrenia patients 

(Baldeweg et al., 2004; Hamilton et al., in press; Light and Braff, 2005; Wynn et al., 2010) 

and healthy individuals (Light et al., 2007).

MMN amplitude is reduced in schizophrenia (Erickson et al., 2016; Umbricht and Krljes, 

2005). Moreover, NMDAR antagonists reduce MMN in animal (e.g., Ehrlichman et al., 

2008; Javitt et al., 1996) and human (Gunduz-Bruce et al., 2012; Heekeren et al., 2008; 

Knott et al., 2012; Kreitschmann-Andermahr et al., 2001; Schmidt et al., 2013; Umbricht et 

al., 2000) studies. A recent meta-analysis showed ketamine to significantly reduce MMN 

amplitude in most human studies (Rosburg and Kreitschmann-Andermahr, 2016), despite 

some failures to demonstrate these effects (Mathalon et al., 2014; Oranje et al., 2000; Roser 

et al., 2011). Conversely, some have shown nAChR agonists, principally nicotine, to enhance 

MMN amplitude in healthy individuals (Baldeweg et al., 2006; Dunbar et al., 2007; 

Harkrider and Hedrick, 2005; Martin et al., 2009), although others failed to demonstrate this 

enhancement (Inami et al., 2005; Inami et al., 2007; Knott et al., 2011; Martin et al., 2009; 

Mathalon et al., 2014). Some have shown enhancement of MMN by nAChR agonists only in 

subgroups of individuals with low MMN amplitudes at baseline (Impey et al., 2015; Knott et 

al., 2015; Knott et al., 2014; Smith et al., 2015). In schizophrenia, the effects of nicotine 

have also been mixed (see Dulude et al., 2010; Fisher et al., 2012; Inami et al., 2007). Mixed 

results may partly depend on the type of deviance used to elicit MMN in specific studies, 

arguing for use of multi-deviant paradigms within a single study (Näätänen et al., 2004).

Several mechanisms may explain potential nAChR agonist enhancement of neurocognitive 

and neurophysiological function. Nicotinic agonists facilitate glutamatergic 

neurotransmission in rat prefrontal cortex (Gioanni et al., 1999; Lambe et al., 2003) and 

hippocampus (Radcliffe et al., 1999), possibly via presynaptic nAChRs (McGehee et al., 

1995) or GABA interneurons (Alkondon et al., 1999; Ji and Dani, 2000). Importantly, 

nicotine has been shown to attenuate or reverse NMDAR antagonist-induced memory and 

attentional deficits in rats (Levin et al., 1998; Rezvani and Levin, 2003), whereas NMDAR 

antagonists can block nicotinic enhancement of memory consolidation in mice (Ciamei et 

al., 2001). In a study examining the interaction of ketamine and nicotine in healthy humans, 

ketamine reduced frequency deviant MMN, but co-administration of nicotine blocked this 

effect in a subgroup prone to sub-threshold delusional/hallucinatory experiences (Knott et 

al., 2012). Previously, we failed to replicate these effects on duration deviant MMN 

(Mathalon et al., 2014), although we may have lacked sufficient power given the study’s 

small sample size.

Accordingly, the present placebo-controlled study examined the interactive effects of 

ketamine and nicotine on MMN in a relatively large sample of healthy volunteers. We 

hypothesized that 1) ketamine alone would reduce MMN amplitude, 2) nicotine alone would 

increase MMN amplitude, and 3) nicotine combined with ketamine would attenuate 

ketamine’s disruptive effects on MMN. Given inconsistent effects of ketamine and nicotine 

on MMN as a function of the type of auditory deviance used, we implemented a multi-

deviant paradigm to simultaneously examine drug effects on intensity, frequency, duration, 

and frequency+duration double deviant MMN.
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Because we used the identical paradigm in a previous study documenting MMN amplitude 

deficits in 24 early illness schizophrenia patients relative to healthy controls (Hay et al., 

2015), we conducted a secondary analysis comparing the z-score profile of ketamine effects 

(relative to placebo norms) in the current sample with the z-score profile of schizophrenia 

effects (relative to healthy control norms) across MMN deviant types.

2. Methods

2.1 Ketamine-Nicotine Study Participants

Participants were 30 healthy individuals (see Table 1) representing a subgroup from a 

previous report of ketamine-nicotine effects on neurocognitive measures (for full description 

of inclusion/exclusion criteria, see D’Souza et al. (2012)). Participants had no personal 

lifetime or family history of a major Axis I disorder based on structured interview (First et 

al., 2002) and were medically healthy based on physical exam and clinical laboratory 

testing. Participants were instructed to refrain from consuming illicit drugs, prescription 

medications not approved by the research team, and alcohol for two weeks before and 

throughout participation. Participants were also instructed not to smoke cigarettes after 

midnight before each test day. Heavy tobacco users (>15 cigarettes per day) were excluded 

from participation to prevent nicotine withdrawal precipitated by test day abstinence, which 

could be difficult for heavy smokers to tolerate (see D’Souza et al., 2012). A minority of 

subjects described themselves as current smokers, and daily tobacco use ranged from none 

(n = 20) to 15 (n = 1) cigarettes per day.

2.2 Early Schizophrenia Study Participants

Data from a prior study (Hay et al., 2015) of 24 early illness schizophrenia spectrum patients 

(ESZ), defined as being within five years of first hospitalization or initiation of antipsychotic 

treatment (age M=23.95, SD=5.17), and 21 healthy controls (age M=22.89, SD=4.26), were 

used to compare effects of ketamine on MMN to the effects schizophrenia. Sample 

characteristics and results, which demonstrated reduced MMN amplitudes across deviant 

types in ESZ compared to healthy controls, are described in Hay et al. (2015).

Both studies were approved by the Institutional Review Boards of the Veterans Affairs 

Connecticut Healthcare System and Yale University School of Medicine. All participants 

provided written informed consent.

2.3 MMN Paradigm

MMN was elicited using a variant of the “Optimum-1” multi-deviant paradigm (Näätänen et 

al., 2004) presented through Etymotic ER-3A insert earphones. Four types of auditory 

deviants (intensity, frequency, duration, frequency+duration double; each 12.5%) were 

presented in pseudorandom order within a sequence of standard tones (50%), totaling 2640 

tones. The standard tone comprised of 3 sinusoidal partial frequencies of 500, 1000, and 

1500Hz with 5ms rise and fall times and had a 75ms duration. These partials were presented 

at 75 dB SPL, 72 dB SPL, and 69 dB SPL, respectively. Deviant tones were identical to the 

standard tone except for the specified deviant feature: intensity deviant tones were either 10 

dB higher (50% of intensity deviants) than the standard tone or 10 dB lower (50%); 
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frequency deviant tones had either sinusoidal partials 10% higher (50%) than the frequency 

of the standard tone or 10% lower (50%); duration deviant tones were 125ms in duration 

(i.e., 50ms longer than the standard tone); and frequency+duration double-deviant tones 

were 125ms in duration and additionally had either sinusoidal partials 10% higher (50%) or 

10% lower (50%) than the standard tone. Tones were presented with a 500ms stimulus onset 

asynchrony. The paradigm was presented in 4 blocks of approximately 5 minutes each, and 

the first 15 tones in each block were all standard tones. To minimize the influence of 

attention on MMN, participants were instructed to ignore auditory stimuli while performing 

a picture-name verification task (Perez et al., 2012).

2.4 Electroencephalographic data acquisition and preprocessing

Electroencephalography (EEG) data were recorded using Neuroscan Synamps amplifiers 

and acquired using a 0.05–200Hz band pass filter with a 1000Hz sampling rate from a 22-

channel EasyCap (Brain Products GmbH), with an FPz ground electrode and linked earlobes 

as a reference channel. Vertical and horizontal electro-oculograms (VEOG and HEOG) were 

recorded to correct for eye blink and eye movement artifacts. Electrode impedances were 

maintained at <10kΩ, with most sites <5kΩ.

Data were segmented into 1000ms epochs time-locked to auditory stimulus onset (−500 to 

500ms) and were baseline corrected (−50 to 0ms). VEOG and HEOG channels were used to 

correct for ocular artifacts using a regression-based algorithm (Gratton et al., 1983). Outliers 

were identified for each electrode and epoch and replaced by interpolated values using a 

previously published automated EEG data cleaning routine (Nolan et al., 2010). Epochs 

containing amplitudes greater than ±75μV were rejected. ERP averages were determined 

using a sorted averaging method as previously described (Hay et al., 2015; Perez et al., 

2014; Rahne et al., 2008). Resulting mean waveforms were low-pass filtered at 30Hz, and 

deviant-standard difference waves were calculated for six frontocentral electrodes (F3, Fz, 

F4, C3, Cz, C4). MMN amplitude was identified at each electrode as the most negative peak 

between 90–290ms, or 160–290ms for duration deviant MMN because of its later peak 

latency. Participants’ data were excluded from analysis for a given test day if they had <100 

trials for one or more deviant type (n=3 test days excluded).

2.5 Study Design and Procedure

This study was a double-blind, randomized, placebo-controlled, counterbalanced crossover 

2x2 design (active ketamine or placebo-ketamine and active nicotine or placebo-nicotine), 

over 4 test days, with a minimum of 3 days between each test session. Participants fasted 

overnight and received a standard breakfast prior to testing. Breath carbon monoxide (CO) 

testing was performed on the morning of each test day to verify abstinence from cigarette 

smoking, and expired CO levels ≥10ppm resulted in cancellation of the test day. For expired 

CO levels between 10ppm and 14ppm, subjects were retested after two hours and the test 

day was cancelled if the repeated CO level remained ≥10ppm. Vital signs were assessed 

regularly throughout testing. Ketamine and nicotine blood levels were assessed before and 

throughout drug administration, and methodological details and results of these assays have 

been previously presented (D’Souza et al, 2012). MMN was assessed 70 minutes after initial 
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infusion, following cognitive and behavioral testing, the results of which were previously 

published (D’Souza et al., 2012).

Ketamine was administered intravenously as a 0.23mg/kg bolus over 1 minute, followed by 

an initial maintenance infusion at .58mg/kg/hour for 30 minutes, followed by a reduced 

infusion rate of 0.29mg/kg/hour for 64 minutes, a protocol used previously to achieve stable 

ketamine plasma levels (Anticevic et al., 2015; Driesen et al., 2013) and at similar doses 

administered in previous studies of ketamine effects on MMN (see Rosburg and 

Kreitschmann-Andermahr, 2016). Nicotine was infused intravenously with a loading dose of 

13.5μg/kg over 10 minutes followed by a constant infusion of 31.02μg/kg over 85 minutes to 

achieve and maintain nicotine levels of 10ng/mL throughout the ketamine infusion. For the 

placebo conditions, normal saline (sodium chloride 0.9%) was administered in a manner 

identical to the active drug conditions.

2.6 Statistical Analysis

MMN data were fitted using a mixed effects model with a compound symmetric variance-

covariance matrix and p-values adjusted for Analysis of Variance (ANOVA) type statistics to 

include 5 participants who did not complete all test days (2 with 1 day, 1 with 2 days, 2 with 

3 days). In this model, ketamine (active vs. placebo-ketamine), nicotine (active vs. placebo-

nicotine), deviant type (intensity, frequency, duration, frequency+duration double), 

frontocentral lead (frontal, central), and lateral lead (left, midline, right) were within-

subjects factors, sequence (i.e., test day order) was a between-subjects factor, and participant 

was a random factor. Post-hoc contrasts with Bonferroni correction were used to parse 

higher order interactions.

For secondary analyses comparing ketamine effects with previously reported schizophrenia 

effects (Hay et al., 2015) on the MMN deviant type profiles, MMN peak amplitudes at the 

Fz electrode, where MMN is maximal, were converted to z-scores for each deviant type, 

expressing MMN amplitudes as deviations, in standard units, from the control condition/

group used in each study. For ketamine participants, z-scores were calculated by subtracting 

the placebo-ketamine day group mean MMN amplitude from each participant’s ketamine 

day MMN amplitude and dividing by the placebo-ketamine day standard deviation 

(excluding both nicotine days). For ESZ participants, z-scores were calculated by 

subtracting the healthy control group mean MMN amplitude from each ESZ participant’s 

MMN amplitude and dividing by the healthy control group standard deviation. An ANOVA 

model with a between-subjects factor of group (ketamine vs. schizophrenia), a within-

subjects factor of deviant type, and a random factor of participant directly compared 

ketamine z-scores to ESZ z-scores. Bonferroni correction was applied to post-hoc contrasts.

3. Results

3.1 Effects of Ketamine and Nicotine on MMN

Grand average ERP waveforms and scalp topography maps are presented in Figure 1. MMN 

amplitude means are presented in Figure 2. MMN amplitudes appear attenuated (i.e., less 

negative) during ketamine compared to saline, whereas during nicotine, MMN appears 
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enhanced (i.e., more negative) compared to saline. During ketamine+nicotine, MMN 

generally appeared attenuated relative to saline but comparable to ketamine alone.

Results of the mixed effects model are presented in Table 2. There was a main effect of 

ketamine, indicating an overall reduction of MMN amplitude by ketamine relative to 

placebo-ketamine. There was also a main effect of nicotine, indicating an overall increase in 

MMN amplitude by nicotine relative to placebo-nicotine. A main effect of deviant type was 

also evident, indicating largest MMN amplitudes for double followed by intensity, 

frequency, and duration deviants. These main effects were qualified by ketamine x nicotine, 

ketamine x deviant type, and nicotine x deviant type interactions. Examination of the 

nicotine effect during ketamine and placebo-ketamine demonstrated that nicotine, relative to 

placebo-nicotine, increased MMN amplitudes during placebo-ketamine but not ketamine 

infusion. Examination of the ketamine effect during nicotine and placebo-nicotine revealed 

that ketamine, relative to placebo-ketamine, attenuated MMN amplitudes during both 

nicotine and placebo-nicotine infusions.

Follow-up contrasts parsing the ketamine x deviant type interaction showed that ketamine, 

relative to placebo-ketamine, reduced intensity, frequency, and double deviant MMN, but not 

duration deviant MMN. Parsing of the nicotine x deviant type interaction showed that 

nicotine, relative to placebo-nicotine, increased MMN amplitude only for intensity and 

double deviants.

Additionally, a frontocentral lead effect indicated larger MMN amplitudes at frontal relative 

to central leads. Finally, a lateral lead effect indicated larger MMN amplitudes at midline 

relative to right and left hemisphere leads, as well as at right relative to left leads.

3.2 Comparison of Ketamine and Schizophrenia Effects on MMN

Figure 3 shows the mean ketamine effect and schizophrenia effect z-score profiles across 

MMN deviant types. A main effect of group (F(1,50)=5.77, p=0.020) indicated that 

schizophrenia produced a larger decrement in MMN than the current dose of ketamine 

across deviant types. There was also a main effect of deviant type (F(3,150)=3.10, p=0.029), 

with post-hoc contrasts revealing significantly smaller MMN decrements across groups to 

duration deviants compared to frequency deviants (p=.008). The group x deviant type 

interaction was not significant (F(3,150)=0.61, p=0.61), indicating that the profiles of 

ketamine and schizophrenia effects on MMN did not differ by deviant type.

4. Discussion

The present study investigated the effects of intravenous nicotine, an nAChR agonist, on 

reductions in MMN induced by ketamine, an NMDAR antagonist, in a relatively large 

sample of healthy volunteers. Given inconsistencies in ketamine and nicotine effects on 

MMN in the prior literature, our use of a multi-deviant paradigm allowed us to investigate 

differential drug effects on various dimensions of auditory deviance simultaneously in the 

same sample. As expected, ketamine produced a reduction in MMN, particularly for 

intensity, frequency, and frequency+duration double deviant types.
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Although nicotine alone enhanced MMN amplitudes for intensity and frequency+duration 

double deviants, it did not prevent MMN amplitude reduction induced by ketamine. 

Consistent with our prior small study showing that nicotine did not enhance MMN when 

combined with ketamine (Mathalon et al., 2014), as well as the previously reported results 

from the current study showing that nicotine failed to mitigate the deleterious cognitive and 

behavioral effects of ketamine (D’Souza et al., 2012), results suggest that nicotinic agonists 

may not be able to overcome impairments produced by acute NMDA receptor blockade. 

Results do contrast with one report of MMN augmentation by nicotine gum during ketamine 

administration in healthy individuals (Knott et al., 2012); however, this study used a lower 

dose of ketamine than the present study and nicotine effects were limited to a “psychosis-

prone” subgroup.

While unable to mitigate the effects of ketamine, nicotine alone increased intensity and 

frequency+duration double deviant MMN, but not frequency or duration deviant MMN. 

Previous studies have also shown nicotine to enhance MMN for some deviant types but not 

others, but effects are not consistent across prior studies. Some of these inconsistencies may 

arise from pharmacokinetic and pharmacodynamic variability associated with different 

routes of nicotine administration, including intravenous (current study), gum (Baldeweg et 

al., 2006; Dulude et al., 2010; Impey et al., 2015; Knott et al., 2014; Martin et al., 2009; 

Smith et al., 2015), and transdermal patch (Harkrider and Hedrick, 2005; Inami et al., 2005; 

Inami et al., 2007), affecting time to onset of action and peak levels achieved.

The reduction of MMN amplitudes by ketamine is consistent with previous reports (see 

Rosburg and Kreitschmann-Andermahr, 2016) and parallels work demonstrating other 

schizophrenia-like neurophysiological, cognitive, and behavioral effects of ketamine in 

healthy individuals (e.g., see Cho et al., 2008; D’Souza et al., 2012; Kort et al., 2017; 

Mathalon et al., 2014). Our results further corroborate the role of glutamate NMDAR 

neurotransmission in the neurophysiological mechanisms of MMN, and given the well-

established reduction of MMN amplitude in schizophrenia, they support the NMDAR 

hypofunction model and its theorized role in mediating MMN deficits.

The comparison of ketamine and schizophrenia effects on MMN suggest that the present 

dose of ketamine produced smaller MMN decrements than did schizophrenia. Overall, both 

produced MMN deficits and the difference in effects would likely be eliminated by using a 

higher dose of ketamine. More importantly, the profile of MMN deficits across deviant types 

did not differ between ketamine and schizophrenia. Interestingly, both ketamine and 

schizophrenia appeared to produce a relatively smaller deficit in duration deviant MMN 

relative to other deviant types, especially frequency deviants, despite prior evidence 

suggesting that duration deviant MMN may be most sensitive to schizophrenia (e.g., see 

Umbricht and Krljes, 2005), particularly in the early phase of illness (Todd et al., 2008). 

Likewise, we did not find a significant reduction in duration deviant MMN by ketamine, 

which has similarly been reported by prior studies (Gunduz-Bruce et al., 2012; Mathalon et 

al., 2014; Oranje et al., 2000; Roser et al., 2011). Indeed, a meta-analysis did not find 

evidence that duration deviant MMN is more affected by ketamine than frequency deviant 

MMN (Rosburg and Kreitschmann-Andermahr, 2016). Taken together, these results suggest 
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that when presented in the same paradigm, ketamine produces a similar pattern of MMN 

deficits as schizophrenia that may not significantly depend on the eliciting deviant type.

The present study is limited by the use of a single ketamine dose, precluding the 

examination of dose-response effects on MMN. Nonetheless, our ketamine dosing and 

infusion protocol was chosen because it has been frequently used in prior studies to induce 

psychotomimetic effects and neurocognitive deficits resembling schizophrenia (Anticevic et 

al., 2015; DeLorenzo et al., 2015; Driesen et al., 2013; Gunduz-Bruce et al., 2012; Krystal et 

al., 2006). In addition, our sample included some light smokers, raising the possibility that 

nicotine’s effects were limited by baseline occupancy of nAChRs and that pro-cognitive 

effects of nicotine were confounded by the effects of reversal of nicotine withdrawal in our 

smoking participants. Unfortunately, we did not have enough smokers and non-smokers in 

our sample to permit a direct analysis of interactions with smoking status. Nonetheless, we 

believe such effects were minimized in our sample by exclusion of heavy smokers, and 

further, it is important to note that prior studies have shown nicotine to enhance MMN in 

smokers (Baldeweg et al., 2006; Harkrider and Hedrick, 2005; Martin et al., 2009). In 

addition, given the high prevalence of smoking among individuals with schizophrenia, 

confining our sample to non-smokers would have significantly limited the generalizability of 

our results to the schizophrenia population.

Despite these limitations, the present findings suggest differential effects of nAChR and 

NMDAR systems on MMN, with the dominance of the detrimental consequences of 

NMDAR blockade when combined with augmentation of nAChR activity. Furthermore, 

results imply that nAChR neurotransmission does not significantly alter the effects of acute 

NMDAR antagonism, suggesting that nicotinic agonists may have limited potential to 

ameliorate putative NMDAR hypofunction-mediated impairments in schizophrenia.
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Figure 1. 
Mismatch negativity (MMN) for each drug condition and deviant type. Event-related 

potential (ERP) difference waveforms averaged across electrodes F3, Fz, F4, C3, Cz, and C4 

for each deviant type are shown for each drug condition (left). Scalp voltage topography 

maps of MMN amplitudes are shown for Saline, Ketamine Alone, Nicotine Alone, and 

Nicotine+Ketamine in columns from left to right for each MMN deviant type. MMN 

topography maps show the group means of MMN amplitudes around the peak latency ±10 

ms (indicated by gray bars in ERP difference waveform plots).
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Figure 2. 
Mean MMN peak amplitudes (averaged over electrodes F3, Fz, F4, C3, Cz, and C4) for each 

drug condition. Error bars represent standard errors.
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Figure 3. 
MMN amplitudes of schizophrenia patients z-scored to the MMN amplitudes of healthy 

control subjects (purple), and MMN amplitudes during ketamine infusion z-scored to the 

MMN amplitudes during saline infusion (yellow).
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Table 1

Demographic data of ketamine-nicotine study participants (n=30).

Variable Number of Subjects

Gender (male/female) 16/14

Smoking status (smoker/non-smoker) a 10/20

Handedness (right/left) 27/3

Mean (SD)

Age (years) 26.0 (6.1)

Education (years) 15.4 (2.5)

a
Smoker status defined by any cigarette smoking, ranging from (<1 cigarette/week to 15 cigarettes /day). Of the individuals who reported current 

smoking, 2 participants reported smoking 10–15 cigarettes/day, while the rest reported light or social smoking (i.e., 2 reported smoking 3–4 
cigarettes/day, 3 reported 1 cigarette/day, 1 reported 5–6 cigarettes/week, and 2 reported <1 cigarette/week).

Schizophr Res. Author manuscript; available in PMC 2019 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hamilton et al. Page 18

Table 2

Mixed effects model of ketamine and nicotine effects on MMN amplitudes.

Effect df F p Direction of Effect

Ketamine (Ketamine vs. Placebo-Ketamine) 1,26 85.11 <0.0001 Placebo-Ketamine < Ketamine

Nicotine (Nicotine vs. Placebo-Nicotine) 1,26 8.83 0.0063 Nicotine < Placebo-Nicotine

Deviant Type 3,87 322.19 <0.0001 Double < Intensity < Frequency < 

Duration a

Frontocentral Lead 1,29 71.79 <0.0001 Frontal < Central

Lateral Lead 2,58 17.22 <0.0001 Midline < Right < Left b, Midline < 

Left a

Frontocentral Lead x Lateral Lead 2,58 1.57 0.2172

Frontocentral Lead x Ketamine 1,26 3.69 0.0657

Lateral Lead x Ketamine 2,52 0.00 0.9972

Frontocentral Lead x Lateral Lead x Ketamine 2,52 0.07 0.9300

Frontocentral Lead x Nicotine 1,26 0.03 0.8688

Lateral Lead x Nicotine 2,52 0.28 0.7559

Frontocentral Lead x Lateral Lead x Nicotine 2,52 0.71 0.4972

Ketamine x Nicotine 1,22 13.97 0.0011

 Nicotine effect during Placebo-Ketamine 1,22 22.66 <0.0001 Nicotine < Placebo-Nicotine

 Nicotine effect during Active Ketamine 1,22 0.61 0.6099

 Ketamine effect during Placebo-Nicotine 1,22 15.92 0.0006 Placebo Ketamine < Ketamine

 Ketamine effect during Active Nicotine 1,22 81.72 <0.0001 Placebo-Ketamine < Ketamine

Frontocentral Lead x Ketamine x Nicotine 1,22 0.00 0.9935

Lateral Lead x Ketamine x Nicotine 2,44 0.31 0.7367

Frontocentral Lead x Lateral Lead x Ketamine x Nicotine 2,44 0.01 0.9921

Frontocentral Lead x Deviant Type 3,87 1.53 0.2134

Lateral Lead x Deviant Type 6,174 0.19 0.9781

Frontocentral Lead x Lateral Lead x Deviant type 6,174 0.10 0.9965

Ketamine x Deviant Type 3,78 5.73 0.0014

 Ketamine effect for Intensity-Deviant 1,78 27.77 <0.0001 Placebo-Ketamine < Ketamine

 Ketamine effect for Frequency-Deviant 1,78 44.36 <0.0001 Placebo-Ketamine < Ketamine

 Ketamine effect for Duration-Deviant 1,78 1.54 0.2204

 Ketamine effect for Double-Deviant 1,78 31.47 <0.0001 Placebo-Ketamine < Ketamine

Frontocentral Lead x Ketamine x Deviant Type 3,78 0.43 0.7322

Lateral Lead x Ketamine x Deviant Type 6,156 0.12 0.9941

Frontocentral Lead x Lateral Lead x Ketamine x Deviant Type 6,156 0.02 1.0000

Nicotine x Deviant Type 3,78 2.77 0.0470

 Nicotine effect for Intensity-Deviant 1,78 7.24 0.0088 Nicotine < Placebo-Nicotine

 Nicotine effect for Frequency-Deviant 1,78 0.47 0.4949

 Nicotine effect for Duration-Deviant 1,78 1.35 0.2504

 Nicotine effect for Double-Deviant 1,78 8.29 0.0051 Nicotine < Placebo-Nicotine

Frontocentral Lead x Nicotine x Deviant Type 3,78 0.23 0.8747

Lateral Lead x Nicotine x Deviant Type 6,156 0.39 0.8861
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Effect df F p Direction of Effect

Frontocentral Lead x Lateral Lead x Nicotine x Deviant Type 6,156 0.05 0.9996

Ketamine x Nicotine x Deviant Type 3,66 0.34 0.7994

Frontocentral Lead x Ketamine x Nicotine x Deviant Type 3,66 0.05 0.9839

Lateral Lead x Ketamine x Nicotine x Deviant Type 6,132 0.21 0.9728

Frontocentral Lead x Lateral Lead x Ketamine x Nicotine x Deviant 
Type

6,132 0.02 0.9999

Sequence 19,10 0.69 0.7682

Note. Follow-up analyses to parse significant interactions are shown in italics and survive Bonferroni adjustment for multiple comparisons.

a
ps < .0001.

b
ps < .01.
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