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Abstract

Real-time imaging of cellular and sub-cellular dynamics in vascularized organs requires image-

resolution, image-registration, and demonstrably intact physiology to be simultaneously 

optimized. This problem is particularly pronounced in the lung in which cells may transit at speeds 

> 1 mm/sec, and in which normal respiration results in large-scale tissue movements that prevent 

image registration. Here, we report video-rate, two-photon imaging of a physiologically intact 

preparation of the mouse lung that is at once stabilizing and non-disruptive. The application of our 

method provides evidence for differential trapping of T cells and neutrophils in mouse pulmonary 

capillaries and enables observation of neutrophil mobilization and dynamic vascular leak in 

response to stretch and inflammatory models of lung injury in mice. The system permits 

physiological measurement of motility rates of > 1 mm/sec, observation of detailed cellular 

morphology, and could be applied to other organs and tissues while maintaining intact physiology.

INTRODUCTION

The lung is a unique organ with an air-liquid interface exposing it to the environment and to 

a large volume of blood that transits the organ each minute. The lung microcirculation is 

also distinctive with a rich network of capillary segments with diameters as small as a few 

microns, which requires many leukocytes to deform their shape to pass through1. In fact, as 

compared to systemic vascular beds, the initial sequestration of neutrophils in the lung 

microcirculation is more dependent on mechanical forces than adhesion-mediated rolling 

along the endothelial surfaces2. Any perturbation to the integrity of the lung's air-liquid 
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interface can have devastating consequences resulting in lung vascular leak and 

compromised gas exchange. Furthermore, the nature of the collaboration between immune 

cells and structural elements of the lung has been inaccessible for real-time analysis.

The uniqueness of the lung requires direct imaging, however this demands both fast, high-

resolution, and penetrant imaging methodologies as well as demonstrable maintenance of 

intact physiology. The lung provides a particular challenge as it propagates motion due to 

cardiac contractions, pulsatile blood flow, and significant overall movements during the 

inhalation/exhalation cycle3. Compared to the submicron resolution demanded by analysis 

of deformability, these movements are on the scale of millimeters when measured at the 

pleural face of the lung. Previous protocols for imaging in the lung have relied upon 

methods such as isolation and re-perfusion of the lung ex vivo4, clamping of ventilation5, or 

capturing images at end-expiration or after cessation of mechanical ventilation6. While each 

of these approaches has been useful for lung imaging, an improvement was needed to 

address high-speed 3D cellular dynamics under physiological gas exchange and blood flow.

We addressed these issues via an optimized, resonant-scanning two-photon platform7. Our 

method adopted point-scanning multi-photon imaging which provides excellent depth 

penetration. The depth (z)-resolution across numerous air-liquid alveolar interfaces severely 

influences the coherence of light at the focus. Multi-photon excitation, with its inherent 

requirement for high-photon densities, is resistant to image degradation, compared to single 

photon approaches. Resonant scanning permits acquisition at or exceeding video-rate8 thus 

providing high temporal resolution of large cross-sectional areas. Finally, and most 

importantly, we have optimized a gentle stabilization system which limits tissue motion, 

even while permitting intact blood flow at predicted rates and providing continuous access 

to inhaled gases. We apply this system to describe immune cell circulation and cellular 

movement under steady state physiology and in lung inflammation and injury models. Our 

results suggest surveillance of the alveolar-capillary interface from the bloodstream.

RESULTS

Experimental setup and stabilization

To stabilize the lung for imaging in a live animal with minimal disruption of ventilation or 

circulation, we constructed a thoracic window3,9, modified for the mouse with a 4 mm 

internal diameter (Fig. 1a–b). An important feature of this device is its loose adherence to 

the lung surface via 20–25 mmHg of reversible vacuum spread over a large local area 

allowing for gas to enter and expand the lung but limiting the associated movement in the x, 

y and z dimensions. The vacuum in this device (red arrows, Fig. 1b) circulates through 

grooves adjacent to the imaging area and gently pulls the tissue into a shallow conical region 

(blue arrows) facing an imaging-grade coverslip. The vacuum further effectively sets the 

coverslip in a small groove along the outside dimension of the device.

For the surgical preparation, mice were anesthetized and a tracheotomy was done to 

facilitate mechanical ventilation. Mice were then placed in the right, lateral decubitus 

position and three left anterior ribs were resected revealing the left, anterior lung surface 

(Fig. 1c). The thoracic suction window, attached to a rigid strut and a micromanipulator, was 
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then positioned immediately above the left lung and 20–25 mmHg of suction was applied to 

gently immobilize the lung throughout the respiratory cycle (Fig. 1d). We chose the least 

amount of suction that allowed the lung to enter the thoracic window and remain throughout 

the respiratory cycle. While the applied suction is an increase above the negative pleural 

pressures in the intact thorax of spontaneously breathing mice10, it would be expected to 

dissipate in areas further away from the window itself, thus providing limited effects well 

within the range of two-photon excitation. The objective was then lowered onto the 12 mm 

glass coverslip for imaging with our two-photon microscope (Supplementary Fig. 1a online) 

in the central region of this preparation to minimize any effects of suction transmitted to the 

edges. We tested for any damage to the lungs from mechanical ventilation or thoracic 

suction using the gravimetric method to measure lung edema formation. We found no 

increase in lung edema after 2 hours of continuous ventilation and thoracic suction 

(Supplementary Fig. 1b online).

To demonstrate that there is still motion associated with inhalation/exhalation, 

Supplementary Movie 1 shows a time-lapsed movie of alveolar inflation and deflation under 

suction window conditions confirming that ventilation was maintained in the portion of lung 

contained within the thoracic window. One of the important advantages of two-photon 

microscopy is tissue penetration beyond that achievable with single-photon confocal 

approaches. We tested the z-depth capabilities of our method by injecting Texas Red dextran 

intravenously and scanning down in the z-axis. We captured images at different z-depths 

down to 125 microns (Supplementary Fig. 1c online), which allowed for the complete 

visualization of the capillary bed on top of and beneath the subpleural alveoli (Fig. 1e).

We next tested the stability of images that are captured from our imaging system. Using 

mice that ubiquitously express CFP (actin-CFP), ventilated at 120 breaths per minute (bpm), 

Fig. 1f shows un-averaged still images captured at 30 frames per sec (fps) of inspiration, 

expiration, and inspiration again with overlay images from three subsequent timepoints, 

revealing that the alveolar and microvascular structures are stable with our imaging 

technique (see also Supplementary Movie 2). Based on the limited movement of vessels 

even during respiration, we estimate we have reduced overall motion to approximately 5–10 

μm in all dimensions.

To quantify the stability and the deflections induced by mechanical ventilation captured at 

30 fps, we used the Pearson's coefficient between frames as shown in Fig. 1f, revealing that 

exactly four frames per breath are disrupted due to ventilation (120 bpm), but that the image 

reliably returns to a stable baseline after each respiratory cycle thus giving 20 fps with 

exceptional `co-localization' of tissue. Time-averaging (15 integrated video-rate frames) of 

our image acquisition also effectively averages out the four out of sync frames due to 

breathing (Fig. 1g and Supplementary Movie 3), producing low-noise images. An 

alternative approach to improve image stability is to remove the four frames where breathing 

was occurring in post-processing (Supplementary Fig. 1d, online). We also injected 

intravenous Texas Red dextran (70,000 MW) into wild-type mice to visualize the lung 

microcirculation. These blood vessels and rather slow-moving cellular shadows within are 

also stably captured with our system (Supplementary Movie 4).
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Perfusion and cellular behavior with thoracic suction

We next examined blood flow velocities in the lung contained within the thoracic window 

by intravenously injecting fluorescent microspheres (1 μm) into actin-CFP mice and tracking 

their movement inside microvasculature using fast acquisition rates (30 fps). In Fig 2a, an 

individual red fluorescent microsphere is tracked (dragon tails) during its transit through the 

imaging field of an 8–15 μm blood vessel. We observed a majority of beads to transit lung 

microvasculature at fast flow rates (109 ± 12 μm/s, mean ± s.e.m., Fig. 2b) through this 

small-sized blood vessel (Fig. 2a and Supplementary Movie 5). We also calculated bead 

speeds through a larger vessel (30 μm in diameter), which yielded faster flow rates of 280 ± 

53 μm/s (Fig. 2b and Supplementary Movie 6). Our calculated perfusion velocities in these 

blood vessels are similar to previous reports in the lung and in systemic microvasculature 

not using stabilized window methods11,12.

An important advantage of intravital imaging in the mouse is the availability of fluorescent 

reporter strains to facilitate cellular imaging and we sought to couple our method with these 

in order to understand how specific cell types behave as they transit the lung. Most notably, 

it has not been possible to assess the degree to which neutrophils or T cells may `patrol' the 

vasculature, given the extremely tight constrictions during their transit. We tracked the 

movement of endogenous LysM-GFP+ neutrophils in both small capillary segments 

(average 10–15 μm in diameter) and in larger vessels (average 30 μm in diameter, Fig. 2c) 

and we report the individual transit velocities of these cells (Fig. 2d). Sequential images of 

neutrophils (green) transiting a medium-sized blood vessel that has also been injected with 

red, fluorescent microspheres (1 μm) are shown (Fig. 2c, Supplementary Movie 6). GFP+ 

neutrophils transit at 1.42 ± 0.16 μm/s in capillary segments and at 97 ± 38 μm/s in vessels 

roughly twice as large (Fig. 2d). However, we observed a bimodal distribution of neutrophil 

perfusion velocities in medium-sized vessels, with one population of neutrophils transiting 

at speeds just below the rate of 1 μm beads and another population transiting much slower 

and rolling and even arresting along the endothelial surface (Supplementary Movie 6, Fig. 

2e). Some individual neutrophils remain trapped for long periods and move much more 

slowly even in larger-sized blood vessels, compared to the flow as calculated by the 

movement of much smaller beads. The heterogeneity of neutrophil transit velocities has 

been previously documented in the canine circulation13. In sum, this suggests both trapping 

in narrow capillaries but also continuous scanning of the lung vasculature under rapid flow.

We next tested the contribution of cell size or activation state to intravascular cell velocities 

in the lung and we observed a general trend in which larger and more activated cells move 

more slowly than naïve ones: naïve T cells (CD2-RFP) injected into the jugular vein move 

with a velocity of 2.48 ± 0.49 μm/s compared with T cells that have been activated for four 

days with their cognate antigen and with interleukin-2 (blasts), which transit at less than 0.5 

μm/s (Fig. 3a). With the 0.6 μm resolution capacity of our two-photon microscope, we were 

also able to detect that small (naïve) T cells did not evidently adopt elongated `amoeboid' 

characteristic morphology (Fig. 3b), even while undergoing evident surveillance of the 

capillary (Supplementary Movie 7). In contrast, larger, stimulated T cells were not only 

characteristically amoeboid but also make multiple projections, likely down two vessels at a 

junction (Fig. 3b). Furthermore, when naïve T cells were injected i.v., we detected their 
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entry into the capillary segments of the lung whereas T cell blasts were restricted to larger 

blood vessels and largely did not enter the capillary segments (Fig. 3c–d and Supplementary 

Movie 7). This pattern of distribution was likely explained by the size differences between 

these two cell types (Fig. 3e).

Neutrophil dynamics in lung inflammation and injury

A significant value in our system is that the lung continues to receive ventilation as it 

normally would and is under normal physiological blood flow, allowing for the direct 

examination of events when inhaled or intravascular agents first enter the lung. We applied 

our imaging technique under different pathologic conditions (Fig. 4) in order to examine the 

cellular changes that occur as inhaled material enters the lung. We imaged LysM-GFP mice 

injected with Texas Red dextran before and after intratracheal challenge with the neutrophil 

chemokine, MIP-2 (macrophage inflammatory protein-2; 5 μg) (Fig. 4a). As predicted by 

end-point studies, a large influx of GFP+ neutrophils after chemokine challenge occurred 

(Fig. 4b Supplementary Movie 8). Importantly, in control experiments when LysM-GFP 

mice were continuously ventilated under suction window conditions for 75 minutes, there 

was no artificial recruitment of neutrophils over time (Fig. 4c). Intratracheal challenge with 

MIP-2 produces a dynamic scrum of cells; we observed neutrophil crawling in the 

intravascular compartment, with individual cells rapidly changing their leading and trailing 

edges (Fig. 4d and Supplementary Movie 9). Additionally, we could identify mobile, 

extravascular neutrophils with rounded morphologies after chemokine challenge (Fig. 4e 

and Supplementary Movie 10). As this model provides global chemokine, it is perhaps not 

unexpected to see such active behaviors or intra-alveolar entry of cells. To examine a more 

physiological insult, we used a model of acute LPS inflammation and injury and identified 

similar neutrophil swarming after intratracheal LPS challenge (5 mg/kg, Fig. 4f–g and 
Supplementary Movie 11).

We also examined the dynamic leakage of dextran (70K MW) into the extravascular 

compartment, which is indicative of the increased lung vascular permeability characteristic 

of acute lung injury (Fig. 4h and Supplementary Movie 12). The averaged progressive 

increase in dextran leakage after intratracheal LPS was quantified, showing a differential 

rate of vascular leakage across the imaged alveoli (Fig. 4i, Supplementary Movie 12). In 

other words, some alveoli leaked faster than others, an observation that could not be made 

with common endpoint measurements of global lung vascular permeability.

Finally, we examined a model of ventilator-induced lung injury, an important contributor to 

excess mortality in critically ill patients14. We visualized and quantified dextran leakage 

into the interstitial and alveolar spaces in mice challenged with lung stretch compared with 

normal tidal volumes (Fig. 4j–k and Supplementary Movie 13). Again, we observed 

heterogeneity in the rates of vascular leak among the imaged alveoli.

DISCUSSION

The method we describe here provides demonstrably intact access to the circulation and lung 

microanatomy in the mouse and, with the combination of speed, sensitivity, resolution and 

stability, solves a number of problems that have prevented examination of important 
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processes in the lung. Importantly, the method does not involve interruption of ventilation 

with the attendant pulmonary vasoconstrictor response5 or artificial perfusion or removal of 

the organ from the host. Isolated, perfused lung preparations have been widely used in 

pulmonary research with great success and with the advantage of manipulating flow 

velocities and shear stresses15–17. However, this technique does not retain lymphatic flow, 

circulation is interrupted so that recruitment of cells from the bone marrow or lymphatic 

system is not possible, and perfusion through an artificial circulation may have unintended 

consequences on cellular behavior.

Our technique preserves both ventilation and perfusion. The rates of blood flow are similar 

to values presumed from other organs and there is visible evidence of ventilation, but this 

does not prevent imaging from taking place since the system reliably returns to its pre-

inspiration/expiration resting state. Imaging throughout the respiratory cycle is a significant 

technical advance over prior intravital lung preparations in which imaging either occurred 

with the interruption of ventilation or was timed for capture at only end-expiration6. Finally, 

our approach is durable with no detectable injury to the stabilized lung and we were able to 

routinely image for up to 3 hours, which is the longest period of imaging that we have 

attempted thus far.

Neutrophils uniquely traverse the lung compared to other tissues13, yet much of the studies 

of neutrophil rheology using intravital techniques have come from non-pulmonary organs, 

which may not accurately reflect the dynamics of the pulmonary microcirculation18. 

Neutrophil-mediated lung diseases, such as acute lung injury19, can now be studied directly. 

Our approach also permitted us to observe capture of multiple cell-types and to measure 

significant dwell times for lymphocytes that reach the small capillary segments. This stalling 

effect may provide ample opportunity for both surveillance and also for lung-remodeling 

factors to be deposited; these details are now open to investigation using this approach. 

Indeed, the method should enable the study of both the onset of adaptive immune responses 

and the homing of metastatic tumors to the lung. Breast tumor metastases and indeed normal 

breast ductal cells may establish residency in the lung20 and it will, for the first time, be 

possible to study this process as it unravels and possibly identify the supporting cells of the 

metastatic niche.

The limitations of our system include (1) imaging under positive pressure ventilation and not 

during spontaneous breathing and (2) imaging of only subpleural blood vessels and alveolar 

units, although we are able to image up to 125 microns below the pleural surface and it is 

worth noting that the subpleural and deeper parenchymal microvascular networks are 

generally thought to be similar in terms of vascular regulation21. A recent paper using glue 

to fix the lung surface to a coverslip provides a possible alternative method that may have 

similar benefits to those presented here but the physiologic integrity of that preparation has 

yet to be established22. While our system substantially improves upon existing approaches, 

there remains room for further improvements. For example, adaptive optics has recently 

been used to overcome the distortions associated with changes in refractive index as two-

photon light enters the target tissue23. Such an approach would undoubtedly be beneficial in 

the lung where light transverses many such interfaces at the surface of each subsequent air-

filled alveolus. Further advances in miniaturization, such as the use of gradient index 
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lenses24 or miniaturized lens elements should also be possible, which may result in even 

less invasive approaches that are possibly suitable for diagnostic thoracic imaging in human 

patients.

METHODS

Mice

The following mice were used in our experiments: C57BL/6 wild-type (Charles River); c-

fms-GFP25 in which GFP is driven under the CSF-1R promoter (highlights neutrophils, 

monocytes, and macrophages and were provided by Zena Werb (UCSF)); actin-CFP26 have 

the CFP transgene ubiquitously expressed and were obtained from I. Weissman (Stanford 

University); CD2-RFP (expressing RFP+ in all T cells and a small subset of NK cells), OT-

II TCR transgenic (OVA-specific Class II restricted), ubiquitin-GFP (GFP expression in all 

cells), and LysM-GFP (GFP+ neutrophils, monocytes, and macrophages) were obtained 

from The Jackson Laboratories. All experiments involving mice were approved by the 

Institutional Animal Care and Use Committee at the University of California, San Francisco.

Reagents

Texas Red dextran (70,000 molecular weight; Invitrogen); 1 μm, red fluorescent 

microspheres (Invitrogen); lipopolysaccharide (LPS) (from Escherichia coli O55:B5; 

Sigma-Aldrich); macrophage inflammatory protein-2 (MIP-2) (R&D Systems).

Thoracic suction window

We used a custom, thoracic suction window with a 4 mm internal diameter, fitted with a 

vacuum chamber, and accommodating a 12 mm glass coverslip.

Surgical preparation

Mice were anesthetized with Ketamine (80 mg/kg) and Xylaxine (12 mg/kg) i.p. and placed 

on a custom, heated microscope stage. PE-90 tubing was inserted into the trachea and 

sutured into place to facilitate mechanical ventilation with a rodent ventilator (Kent 

Scientific). Mice were ventilated with pressure control ventilation (12–15 cmH2O), a 

respiratory rate of 115 breaths per minute, FiO2 of 0.5–1.0, and PEEP of 3 cmH2O. 

Isoflurane was continuously delivered at 1% to maintain anesthesia and mice were given an 

i.p. bolus of PBS (1 ml) prior to the thoracic surgical procedure. The mice were then placed 

in the right lateral decubitus position and three left anterior ribs were resected and the left 

lung was carefully exposed. The thoracic suction window attached to a micromanipulator on 

the microscope stage was then placed into position and 20–25 mmHg of suction was applied 

(Amvex Corporation) to gently immobilize the lung. The two-photon microscope objective 

was then lowered into place over the thoracic suction window and a 12 mm coverslip. For 

intravenous injections, the right jugular vein was cannulated with a 30 gauge needle attached 

to PE-10 tubing for injections of cells or intravascular dyes.
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Two-photon microscopy

A custom resonant-scanning 2-photon instrument7 contains a four-photomultiplier tube 

detector (Hamamatus R5929), collects data at video rate, and utilizes an Olympus XLUMP 

FL20XW (NA 0.95) objective with an overfilled back aperture with a fill-factor of 

approximately 1. Samples were excited with a 5-W MaiTai TiSaphire laser (Spectra-

Physics) tuned to a wavelength of 910 nm, attenuated via a variable neutral density wheel to 

approximately 25–40% of power (0.175 – 0.28 W) and using emission wavelengths of 

440/40 nm (for CFP), 505/20 nm (for GFP), and 605/70 nm (for beads or dextran) were 

collected. A custom, four-dimensional acquisition module in VideoSavant digital video 

recording software (IO Industries) or in Micromanager was utilized for image acquisition. 

For time-lapse acquisition, each x–y stack spans 240 μm × 288 μm at an x–y resolution of 

0.6 μm per pixel. For z-stacks, we collected data at a z resolution of 2 μm. Z distances and 

averaged frames are indicated for each individual experiment.

Blood flow velocity experiments

Red, fluorescent microspheres (1 μm; Invitrogen) were injected into the right, jugular vein 

and imaged using a fast acquisition mode at 30 fps. Blood flow velocities were calculated by 

determining the speeds of the fastest perfusing beads through alveolar capillaries. All 

analyses were performed using Metamorph™ (Universal Imaging), Imaris™ (Bitplane Inc.) 

and Photoshop™ (Adobe Inc.) software.

Lung stretch injury

Lung stretch injury (ventilator-induced lung injury) was initiated by increasing the pressure 

controlled ventilation to 30 cmH2O and decreasing the PEEP to 0 cmH2O. Mice were also 

injected with Texas Red dextran (70,000 MW) via the jugular vein for the imaging of lung 

vascular leak.

MIP-2 and LPS-induced lung injury

Mice were intratracheally challenged with MIP-2 (5 μg; R&D Systems) or LPS from 

Escherichia coli O55:B5 (Sigma-Aldrich) at 5 mg/kg.

Quantifying lung vascular permeability

Alveolar spaces were defined by the absence of Actin CFP. Isosurfaces were drawn in the 

alveolar space using Imaris (Bitplane, Inc) manual surface creation tool. The relative amount 

of dextran within the space was determined by calculating the average red (TR dextran) 

intensity within the airspace.

Quantifying lung edema

The gravimetric method was used to measure the lung wet-to-dry weight ratio (grams/

grams) as previously described19,27. The right and left lungs were separately removed, 

weighed, placed in a drying oven at 55° C for 48 hours, and then weighed again to calculate 

the wet-to-dry weight ratio.
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T cell experiments

Activated ubiquitin-GFP OTII T cells were generated by incubating splenocytes and lymph 

node cells from an Ub-GFP OTII TCR transgenic mouse with ova peptide SIINFEKL 

(Sigma-Aldrich) and supplemented with recombinant mouse IL-2 (BD-Biosicences). They 

were transferred after 4 or 5 days of culture. Naïve CD2-RFP OTII cells were isolated and 

used immediately. A single cell suspension was isolated from lymph nodes and spleens of 

CD2 RFP/OTII TCR transgenic mice. Naïve CD4 T cells were purified using the Stemsep 

CD4 negative selection kit. T cells were transferred into actin-CFP mice via the jugular vein.

Statistics

Data is presented as mean ± standard error of the mean (s.e.m.). P values were determined 

by performing a two-tailed T test. To determe the stability of the imaging setup, Pearson's 

correlation coefficient of actin-CFP fluorescence intensity was measured for every frame 

with respect to the first frame, using the `co-localization' function in Imaris™.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental setup and image stability for intravital imaging of the mouse lung. (a) Anterior 

and posterior views of the thoracic suction window fitted with a coverslip. (b) Side-view 

rendering of the suction window showing suction chamber, cover slip (green arrows) and 

vacuum flows (blue arrows near tissue, red arrows toward suction regulator). (c) Surgical 

preparation of left thorax with exposed left lung. (d) Suction window in situ. (e) 

Representative images at the indicated depths in a mouse injected with Texas Red dextran, 

showing the capillary bed above and below the subpleural alveoli (left to right). Scale bar = 

50 μm (f–g) Still images of CFP fluorescence in an actin-CFP mouse lung at three time 

points, coded respectively as red, green and blue. Images were captured at 30 fps; in (f) each 

timepoint from (g) is aligned to produce a merged image. The plot shows the Pearson's 

coefficient from a 30 fps video over time. See also Supplementary Movie 2. (g), each frame 

represents 15 integrated images that are then merged (timepoints aligned). Scale bar = 50 

μm. The plot shows the Pearson's coefficient over time from a video taken using the 15 

integrated image acquisition. See also Supplementary Movie 3.
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Figure 2. 
Perfusion velocities of beads and neutrophils in the lung. (a) The micrographs show 

sequential images of individual beads traversing the lung microcirculation (yellow arrow 

heads), in actin-CFP mice injected i.v. with red fluorescent microspheres and then imaged at 

30 fps. Time elapsed after the first frame is indicated. Scale bar = 50 μm. See also 

Supplementary Movie 5. (b) The plot shows perfusion velocities of individual beads in 

small (109 ± 12 μm/s, mean ± s.e.m., n = 14) and medium-sized blood vessels (280 ± 53 

μm/s, mean ± s.e.m., n = 11, P < 0.001). Instantaneous = instantaneous bead speeds. 

Average = average speed of individual beads. (c) The micrograph shows four representative 

tracks of neutrophils (green) and beads (red) inside a vessel of an Actin-CFP/c-fms+ mouse 

injected with fluorescent microspheres and imaged at 30 fps. Scale bar = 10 μm. (d) The 

plots show the average and instantaneous speed of neutrophils in small (0.91 ± 0.16 μm/s, 

mean ± s.e.m., n = 5) and medium-sized (96.5 ± 37.8 μm/s, mean ± s.e.m., n = 5, P < 0.05) 

blood vessels. (e) Histogram of neutrophil perfusion velocities in a medium-sized blood 

vessel. See also Supplementary Movie 6.
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Figure 3. 
Perfusion velocities of T cells in the lung. (a) Track speed averages of naïve (2.48 ± 0.49 

μm/s, mean ± s.e.m., n = 4) and activated T cells (0.41 ± 0.07 μm/s, mean ± s.e.m., n = 4, P 

< 0.01) injected into the jugular vein of actin-CFP mice are plotted. See also Supplementary 

Movie 7. (b) Representative images showing the morphology of naïve T cells (CD2 RFP) 

and T cell blasts (ubiquitin-GFP). Yellow arrows indicate a T cell blast with two leading 

edges, likely extending into two vascular branches. Scale bar = 10 μm. (c) Width of the 

capillary segments containing naïve (5.61 ± 0.39 μm, mean ± s.e.m., n = 8) and activated T 

cells (7.75 ± 0.41 μm, mean ± s.e.m., n = 12, P < 0.01) are plotted. (d) Still images showing 

the sizes of intravascular naïve (left panel) and activated (blasts; right panel) T cells. Scale 

bar = 50 μm, 40 μm Z stack. (e) Average diameters of naïve (7.74 ± 0.23 μm, mean ± s.e.m., 

n = 12) and activated T cells (11.36 ± 0.40 μm, mean ± s.e.m., n = 12, P < 0.0001).
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Figure 4. 
Imaging inflammation and injury-induced neutrophil dynamics in physiologically intact 

lungs. (a) Images of the lung of a LysM-GFP mouse injected with Texas Red dextran and 

imaged before (left panel) and after (right panel) intratracheal instillation of MIP-2. Scale 

bar = 50 μm, 40 μm z stack. See also Supplementary Movie 8. (b) Number of GFP+ 

neutrophils in the imaging field before (16.75 ± 3.06 cells, mean ± s.e.m., n = 4) and after 

MIP-2 (44.25 ± 4.42 cells, mean ± s.e.m., n = 4, P < 0.01) instillation. (c) Number of GFP+ 

neutrophils in the lung vasculature under continuous suction (n = 4 for each timepoint). (d) 

Representative images of an intravascular GFP+ neutrophil. Scale bar = 10 μm, single z 

plane at 5:20, 6:40 and 9:20 min:sec. (e) Representative images of a GFP+ neutrophil 

moving within alveoli. Scale bar = 10 μm, single z plane at 0:40, 5:40 and 9:00 min:sec. See 

also Supplementary Movie 10. (f) Images of the lung of an actin-CFP/c-fms-GFP mouse 

before and after intratracheal instillation of LPS. Scale bar = 50 μm, 40 μm z stack. See also 

Supplementary Movie 11. (g) Number of neutrophils per field before (2.75 ± 0.48, mean ± 

s.e.m., n = 4) and after LPS instillation (10.25 ± 1.32, mean ± s.e.m., n = 4, P < 0.01). (h, j) 
Images of the lung of an actin-CFP mouse injected with Texas Red dextran and either 

challenged with intratracheal LPS for 50 minutes (h) or subjected to ventilator-induced lung 

injury for 60 minutes (j). Scale bar = 50 μm, 40 μm z stack. See also Supplementary Movie 

12, 13. (i, k) The plots shows the average intensity of fluorescent dextran in the alveolar 

space at the indicated times after LPS treatment (i) or ventilator-induced lung injury (k). 
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Blue lines are the pre-treatment average (n = 3 alveoli), red lines are individual alveoli 

measured post-treatment, and black lines are the post-treatment average (n = 5 alveoli).

Looney et al. Page 15

Nat Methods. Author manuscript; available in PMC 2011 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript




