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Abstract

Quantum Eigenstate Filtering and Its Applications

by

Yu Tong

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Lin Lin, Chair

Recent years have seen rapid progress in the field of quantum algorithms for lin-
ear algebra problems. These algorithms can solve important problems in quantum
chemistry, condensed matter physics, and quantum field theory simulation, with po-
tentially exponential speedup compared to classical algorithms. The progress is in
part due to the development of new methods to implement matrix functions on a
quantum computer. Examples include the linear combination of unitaries (LCU)
method, quantum signal processing (QSP), and quantum singular value transforma-
tion (QSVT), which is closely related to QSP. Using these methods, one can construct
matrix functions to filter out unwanted eigenstates of a given Hermitian matrix, and
thereby obtain a target eigenstate on a quantum computer. This technique we call
quantum eigenstate filtering.

We focus our attention on two specific problems: ground state preparation and energy
estimation, and solving linear systems. For the ground state preparation problem,
we want to prepare the ground state, i.e., the lowest eigenstate of the Hamiltonian
H, while for ground state energy estimation, we want to estimate the ground state
energy, i.e., the the lowest eigenvalue of the Hamiltonian H. The ground state
energy estimation problem is cannot be solved in polynomial time even on a quantum
computer in the worst case. However, this problem becomes tractable with additional
assumptions, which may be satisfied in many real-world applications. In this work
we assume access to a good initial guess of the ground state, such that its overlap
with the ground state is lower bounded by a parameter γ. Under this assumption,
we present quantum algorithms based on the quantum eigenstate filtering technique
to estimate the ground state energy and to prepare the ground state, with nearly
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optimal scaling with respect to both γ and the precision.

The above mentioned algorithms work in the setting where the quantum computers
are fully fault-tolerant, i.e., the noise is sufficiently suppressed through quantum error
correction. We also present an algorithm to estimate the ground state energy in the
early fault-tolerant setting, in which the the algorithm is limited by the number
of qubits available and the coherence time. In this setting our algorithm uses a
simple circuit and lower circuit depth at the expense of longer runtime. However the
algorithm can still achieve the optimal Heisenberg-limited precision scaling despite
these restrictions.

The quantum eigenstate filtering technique is also useful in solving the quantum
linear system problem, in which we are asked to solve Ax = b on a quantum computer.
We show that the problem can be solved with a query complexity almost matching
its lower bound by traversing the adiabatic path using quantum eigenstate filtering.

Chapter 1 introduces the basic problem setup and provides an overview of the results
in this paper. Chapter 2 presents the nearly optimal algorithms for ground state
preparation and energy estimation. Chapter 3 discussed implementation on early
fault-tolerant devices. Chapter 4 applies quantum eigenstate filtering to solve the
quantum linear system problem. Chapters 2, 3, 4 are based on [Lin, Tong, Quantum
4 (2020), p. 372], [Lin, Tong, PRX Quantum 3.1 (2022), p. 010318], [Lin, Tong,
Quantum 4 (2020), p. 361] respectively, all of which are published under CC BY 4.0.
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Chapter 1

Introduction

Recent advances in quantum computing technologies have given rise to prospects for
using quantum computers and quantum algorithms to achieve significant speedup in
certain important tasks. A major motivation of the development of quantum com-
puting technologies is the fact that a fault-tolerant quantum computer can factor
large integers exponentially faster than any known classical algorithms [147]. How-
ever, there are other tasks, which may more directly further understanding of nature,
that quantum computers can potentially perform much more efficiently than classi-
cal computers. Among these tasks are the simulation of systems that are by nature
quantum mechanical, which is the focus of this work.

The quantum systems we consider come from quantum chemistry [23, 120, 28,
104, 153], condensed matter physics [4, 103], and also from spatially discretizing a
quantum field theory [99, 137, 162]. The simulation tasks can be roughly divided
into two categories: static simulation and dynamic simulation. For the former, our
goal is to estimate observable expectation values in the ground state or the thermal
state. In this setting, we are particularly interested in the ground state energy. For
the latter, we want to estimate expectation values during real-time evolution. We
will mainly focus on the first task in this work, but will also briefly discuss the second
task.

Many classical algorithms have been developed for the first task, but none of
the current classical method can obtain the ground state energy with polynomial
precision, with a runtime that is polynomial in the system size, and there is good
reason from a complexity theory point of view that no such classical or quantum
algorithm can exist for the generic case, because this problem is shown to be QMA-
hard [102, 100, 130, 6]. However, under the assumption that we have an initial state
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with an inverse polynomially large overlap1 with the ground state, it is possible for
a quantum computer to attain polynomial precision in polynomial time.

Let us state the problem more formally. We consider a quantum system consisting
of n qubits, whose state can be described by a vector in the Hilbert space H =
(C2)⊗n = C2n . The Hilbert space dimension is therefore N = 2n. The evolution of
the quantum system is governed by a Hamiltonian H, which is a Hermitian operator
on the Hilbert space H. We can write down the eigenpairs of H as (λk, |ψk⟩), with

H |ψk⟩ = λk |ψk⟩ .

The eigenvalues are arranged in the ascending order so that λk ≤ λk+1. In particular,
|ψ0⟩ is the ground state and λ0 is the ground state energy. Without loss of generality
we assume ∥H∥ ≤ 1. This can always be achieved by rescaling H.

Although dynamical simulation is not the focus of this work, it is still useful to
introduce the basic concepts here. The time evolution of the quantum system is
described by the Schrodinger equation

i
d

dt
|ϕ(t)⟩ = H |ϕ(t)⟩ ,

where |ϕ(t)⟩ is the state of the system. We can alternatively describe it using the
time evolution operator e−iHt, so that

|ϕ(t)⟩ = e−iHt |ϕ(0)⟩ .

The simulation of time evolution, also known as Hamiltonian simulation, on a gate-
based quantum computer, is a major research direction, and we will be using some
of the relevant results [113, 34, 35, 115, 116, 114, 56, 34, 60, 163, 55, 153, 13, 14].

1.1 The input model

Because we want to design algorithms that run in polynomial time and space, we
cannot store the value of each entry of H in classical memory, as this procedure alone
would take O(exp(n))2 time. In all the settings we care about in this work, e.g.
quantum chemistry, condensed matter, quantum field theories, H admits a succinct
classical description that takes up only poly(n) memory. This succinct description
enables us to construct what is know as a block encoding of the Hamiltonian H.

1The overlap between two pure states |ϕ⟩ and |ψ⟩ is defined to be | ⟨ϕ|ψ⟩ |.
2In this work we use the following asymptotic notations besides the usual O notation: we write

f = Ω(g) if g = O(f); f = Θ(g) if f = O(g) and g = O(f); f = Õ(g) if f = O(g polylog(g)).
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We say that a unitary UH is an (α,m, ϵ)-block encoding of H if

∥α(⟨0m| ⊗ In)UH(|0m⟩ ⊗ In)−H∥ ≤ ϵ.

A more intuitive way to understand block encoding is the following: UH is a unitary
whose upper-left block is gives the Hamiltonian up to the subnormalization factor
α, i.e.,

UH ≈
(
H/α ·
· ·

)
.

In general, block encoding UH can be implemented with poly(n) quantum gates, thus
enabling us to load the Hamiltonian into our algorithm efficiently.

There are also situations in which we assume that the Hamiltonian H is accessed
through its time evolution operator e−iτH , where τ < π/∥H∥ is chosen to so that
the eigenvalues of H can be obtained from those of e−iτH unambiguously. Because
e−iτH is already a unitary, we do not necessarily need to block encode it in another
unitary.

These two input models are in fact equivalent if we ignore the overhead that
comes from converting between them, which is a reasonable thing to do in the fully
fault-tolerant setting. e−iτH can be obtained from the block encoding UH through
Hamiltonian simulation, and UH can be obtained from e−iτH through matrix loga-
rithm implemented using quantum singular value transformation [85, Corollary 71].

1.2 The ground state and the ground state

energy

Much of this work will focus on preparing the ground state |ψ0⟩ and estimating the
ground state energy λ0 of a quantum system. To circumvent the problem presented
by the QMA-completeness results, we assume that we can efficiently prepare a quan-
tum state |ϕ0⟩ such that | ⟨ψ0|ϕ0⟩ | ≥ γ. γ is treated as a parameter in the cost
analysis of our algorithm. If γ ≥ 1/poly(n), then on a quantum computer, with
QPE, we can estimate the ground state energy λ0 to precision ϵ = 1/poly(n) in
poly(n) time.

For ground state preparation, we need a further assumption, namely that the
spectral gap, i.e., λ1− λ0, is at least ∆ > 0. If ∆ ≥ 1/poly(n), then the ground state
and the excited states can be distinguished in polynomial time, thus enabling us to
prepare the ground state in poly(n) time.

If our goal is only a polynomial time algorithm, then we can stop here. However,
to actual scaling with respect to γ and ϵ matters a lot in a realistic implementation
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of the algorithms, since they can results in orders of magnitude difference in the
runtime. A goal of this work is therefore to improve the dependence on γ and
precision in the tasks of ground state energy estimation and state preparation.

1.3 The quantum phase estimation algorithm

Let us first examine in more detail how well QPE can perform the tasks. The QPE
uses the following circuit:

|0⟩ H •

QFT†|0⟩ H •
...

... · · · ...
|0⟩ H •
ρ e−iτH e−2iτH e−2ℓ−1iτH

(1.1)

In the above circuit, H denotes the Hadamard gate, and the and QFT denotes the
quantum Fourier transform. There are ℓ qubits in the energy register (the qubits
initialized in |0⟩). τ is chosen so that τ∥H∥ ≤ π to ensure that we can determine the
eigenvalues of H without worrying about whether it should be λk or λk + 2π/τ . We
measure the cost by how many times we need to query the time evolution operator
e−iτH .

Let us first have a intuitive, and idealized, understanding of what this algorithm
does, and then discuss the important caveats later. After running the circuit and
measuring the energy register, i.e., the qubits on which the time evolution e−iτH

is controlled, with probability pk = | ⟨ϕ0|ψk⟩ |2, the output will correspond to an
eigenvalue λk, and the state register, i.e., the last register on which the time evolution
is performed, will yield an eigenstate |ψk⟩. Note that these probabilities add up to
one because the eigenstates form a complete basis of H and |ϕ0⟩ is a normalized
eigenstate. In this way, we can simply run the QPE algorithm, and with probability
p0 we will simultaneously obtain the ground state and the ground state energy. In
order to ensure that what we get is indeed the ground state rather than an excited
state, we need to repeat the procedure multiple times and take the minimum energy
measurement. The probability of getting λ0 and |ψ0⟩ in this way is

1− (1− p0)Ns

if the procedure is repeated Ns times. We want this probability to be at least 1− δ,
and consequently we need to set Ns = O(p−1

0 log(δ−1)).
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The above picture is however oversimplified. It assumes that the phases τλk can
be estimated perfectly, and is therefore in violation of the Heisenberg limit [88, 87,
182, 181]. In the analysis below, we will take into account the inevitable phase error.
We need to choose τ so that τλ0 + 2π > τλk + τϵ. This is to ensure that the error
from the largest eigenvalue does not wrap around the torus [−π, π] to interfere with
the lowest eigenvalue. Upon running the circuit and measuring the energy register
the output will yield a phase estimate τ ϕ̂ such that ϕ̂ ≈ λk, rather than ϕ̂ = λk,
with probability pk. The output ϕ̂ approximates λk in a probabilistic sense: with
probability at least 1 − ϑ, |ϕ̂ − λk| ≤ ϵ. In other words, for each k, the event
|ϕ̂− λk| ≤ ϵ happens with probability at least pk(1− ϑ). In order to achieve this the
number of times we need to query e−iτH is O(ϑ−1ϵ−1).

Ground state energy estimation with QPE

We then follow the discussion in [110] to see what this means for ground state energy
estimation. If we take the approach of performing QPE Ns times and taking the
minimum of the energy measurements, then for an event that only has O(1/Ns)
probability of happening in a single run, the probability of this event occurring at
least once in the total Ns repetitions is now O(1), which means that we cannot ensure
that the error happens with sufficient low probability. To ensure that the ground
state energy error in the end is at most ϵ with probability at least 1 − δ, the error
probability in each QPE run needs to be smaller than ϑ = δ/Ns. Consequently the
evolution time in each run, as analyzed in the previous paragraph, is O(Nsδ

−1ϵ−1).
The procedure needs to be repeated Ns times to get the ground state, and as a result
the number of times we need to query e−iτH is

O(N2
s δ

−1ϵ−1) = O(p−2
0 δ−1ϵ−1 log2(δ−1)) = O(γ−4δ−1ϵ−1 log2(δ−1)). (1.2)

This query complexity scaling is sub-optimal in the γ and δ dependence, making
QPE expensive when the initial overlap is small and when we require high confidence
in the estimate. A simple way to improve the δ dependence is to take the median
classically as a post-processing step. We can set δ = 2/3 in (1.2), and get multiple
outputs from Nm runs. Taking the median of all these outputs ensure that the proba-
bility of having an error larger than ϵ decays exponentially, and is upper bounded by
e−Ω(Nm) due to the Chernoff bound. We therefore need to choose Nm = O(log(δ−1))
to ensure an 1− δ success probability, and the query complexity becomes

O(γ−4ϵ−1 log(δ−1)). (1.3)
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The γ dependence is however not improved, which will be one of the focuses of this
work. In fact, in Section 1.6, also discussed in more detail in Chapter 2, we will see
that a quartic speedup is possible.

Ground state preparation with QPE

QPE can also help us prepare the ground state. For this task we need to assume
that the spectral gap is at least ∆ > 0. We also need to choose τ so that τλ0+2π >
τλk + τ∆ similar to what we did for energy estimation. Running the QPE circuit
and before performing measurements, the quantum state of the whole system is

2ℓ−1∑

m=0

|m⟩


 1

2ℓ

2ℓ−1∑

j=0

eij(
2mπ

2ℓ
−τH) |ϕ0⟩


 =

2ℓ−1∑

m=0

|m⟩K
(
2mπ

2ℓ
− τH

)
|ϕ0⟩ , (1.4)

where K(x) denotes the Dirichlet kernel

K(x) =
1

2ℓ

2ℓ−1∑

j=0

eijx. (1.5)

This kernel is 2π-periodic and satisfies

|K(x)| ≤ CK
|2ℓx| ,

for x ∈ [−π, π] and some constant CK that does not depend on ℓ or x [126, Eq. (5.34)].
We then measure the energy register, and with probability | ⟨ϕ0|ψ0⟩ |2(1−O( 1

2ℓ∆
))

we will get a state that is O( 1
γ2ℓ∆

) away from |ψ0⟩ in 2-norm distance. If we want

the state preparation error to be below ϵ, we need 2ℓ = O( 1
γ∆ϵ

), and the procedure

needs to be repeated O(γ−2 log(δ−1)) times for it to succeed with probability at least
1− δ. We can therefore prepare the ground state to within error ϵ using

O(γ−3∆−1ϵ−1 log(δ−1)) (1.6)

queries to e−iτH .

Improved implementations of QPE

The above scalings for ground state preparation (Eq. (1.6)) and energy estimation
(Eq. 1.3) can be improved in various ways. The first thing we can do is to modify the
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QPE kernel K(x) in (1.5). This kernel decays slowly as 2ℓ, which is proportional to
the total number of queries, increases, and this results in large error in ground state
preparation, and large uncertainty in ground state energy estimation. There are two
methods to make the kernel decay exponentially in the number of queries. The first
method is called high-confidence QPE [105, 135, 124], which takes multiple phase
estimates and compute the median coherently (which means without measurement).
In the end the coherent median will have an error probability that decays exponen-
tially with the number of queries. In this method we need to have multiple energy
registers to store the phase estimates. The second method is to utilize a resource
state [26, Section II B] to implement a Kaiser window filter [145]. This method does
not require multiple energy registers, and can achieve the same effect as the first
method. With either of these two methods, we can solve the ground state energy
estimation problem with query complexity

Õ(γ−2ϵ−1 log(δ−1)), (1.7)

and the ground state preparation problem with query complexity

Õ(γ−2∆−1 log(ϵ−1δ−1)). (1.8)

For ground state preparation, if the ground state energy is known within error
< ∆, further improvement can be obtained by using amplitude amplification [42]
instead of running the QPE multiple times. This leads to a quadratic speedup in
terms of the dependence on γ. We get the following query complexity for ground
state preparation

Õ(γ−1∆−1 log(ϵ−1δ−1)). (1.9)

However, knowledge of the ground state energy is necessary here because we
need to know what energy measurement result to amplify. Consequently, we cannot
directly apply amplitude amplification to the grounds state energy problem to get a
similar quadratic speedup. Therefore, a natural question to ask is, can we estimate
the ground state energy with an almost linear dependence on γ−1? In Chapter 2,
based on Ref. [111], we will give an affirmative answer to this question. A very
important tool to solve this problem is quantum algorithms for matrix functions,
which we will introduce next.

1.4 Quantum algorithms for matrix functions

For quantum algorithms for matrix functions, the goal is to get a block encoding
(introduced in Section 1.1) of f(A) for a function f , when A is given through its own
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block encoding. In this work we will focus on the case where A is Hermitian. The
quantum phase estimation algorithm is closely connected to the implementation of
matrix functions, as when we measure the energy register, from (1.4) we can see that
we are actually implementing a matrix function K(2mπ

2ℓ
− τH) if the measurement

outcome is m.
In fact one of the conceptually simplest way to implement matrix functions is

through QPE: we can first run QPE to get the eigenvalues of A, apply f to the
eigenvalues in superposition, and apply controlled rotations to record the transformed
eigenvalues in the amplitudes. This is exactly what was done in the famous Harrow-
Hassidim-Lloyd (HHL) algorithm for solving linear systems [93].

A drawback of this approach is that it is often difficult to attain high precision.
The HHL algorithm solves a linear system Ax = b with Õ(κ2ϵ−1) queries to A to
obtain a normalized solution. Here κ is the condition number of A. In essence, the
HHL algorithm approximately implements the matrix function A−1 with Õ(κϵ−1)
queries to A, and applies it to the right-hand side b, which is represented by a
quantum state. To achieve the scaling mentioned above the HHL algorithm also needs
to use amplitude amplification. Despite the potential exponential speedup compared
to a classical linear system solver, both the dependence on κ and ϵ are sub-optimal.
Two types of matrix function algorithms were later developed that enable evaluating
matrix function to high precision: the linear combination of unitaries (LCU) method
[34, 59] and the quantum signal processing (QSP) method [117, 115, 86]. Both

methods enable us to implement the matrix function A−1 with Õ(κ log(ϵ−1)) queries
to A, achieving an exponential speedup in the precision dependence compared to the
HHL algorithm.

If we want to use the LCUmethod to implement a matrix function f(A), assuming
A is Hermitian, we will first construct a Fourier approximation of f :

f(x) ≈
J∑

j=−J

Cje
−ijτx,

for x on certain parts of the real axis. This is important since f may not be a periodic
function. The LCU circuit allows us to block encode

∑J
j=−J Cje

−ijτA, which approx-
imates f(A). Because Fourier approximation can achieve exponential accuracy for
functions with good enough regularity, the LCU method can help us achieve high
precision easily. The cost of this approach depends linearly on J , and also on the
ℓ1-norm of the coefficients, i.e.

∑
j |Cj|. Besides the ancilla qubits needed to block

encode A, we need O(log(J)) extra ancilla qubits to store the coefficients Cj.
Rather than Fourier approximation, QSP relies on polynomial approximation,

which typically yields the same error scaling as the Fourier approximation (we only
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Figure 1.1: The filter polynomials with degrees 2ℓ for ℓ = 16 and 32. The plot is
from Ref. [112].

care about certain parts of the real axis, as otherwise periodicity may present a
problem). Compared to LCU, QSP uses a more compact circuit, using only O(1)
additional ancilla qubits beyond the ones required to block encode A. Moreover, it
avoids the subnormalization factor that comes from summing the operators e−ijτA in
LCU, and as a result can oftentimes remove some of the logarithmic factors in the
complexity. QSP can also be modified into the quantum singular value transforma-
tion (QSVT) algorithm that allows implementing generalized matrix functions for
non-Hermitian A. The cost of the procedure mainly depends on the degree of the
polynomial. The implementation of the QSP circuit requires finding a sequence of
phase factors corresponding to the polynomial we want to implement, and this can
be a numerically difficult task even though it is proved to be solvable in polynomial
time. Extensive work has been done in recent years on finding the phase factors in
a numerically stable and efficient way [50, 70, 168, 178].

1.5 Eigenstate filtering through QSP

We will show that the matrix functions algorithms can be used to prepare eigenstates
of H. Suppose we have a function f(x) that is peaked at x = 0, with f(0) = 0, but
falls to 0 rapidly away from x = 0, such as the function shown in Figure 1.1. Then
we can apply it to H − λk, and we will get

f(H − λk) = |ψk⟩ ⟨ψk|+
∑

k′ ̸=k

f(λk′ − λk) |ψk′⟩ ⟨ψk′ | .
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Now suppose that there is a spectral gap ∆ separating λk from other eigenvalues,
then we can design f so that |f(x)| ≤ ϵ when x is at least ∆ distance away from 0
and within the range of the eigenvalues. Then we will have

∥f(H − λk)− |ψk⟩ ⟨ψk| ∥ ≤ ϵ.

Therefore f(H − λk) approximates the projection operator |ψk⟩ ⟨ψk|. With this
projection operator, we can apply it to a quantum state (a initial guess) that has
overlap with |ψk⟩, then the resulting quantum state will be close to |ψk⟩. If the
overlap between the initial guess and |ψk⟩ is at least γ, then the quantum state we
get through this procedure will have an O(γ−1ϵ) error.

Using the construction in Ref. [112], which is also discussed in Chapter 4, we can
construct a polynomial with degree 2ℓ with ℓ = O(∆−1 log(ϵ−1)) that satisfies the
above requirements. Figure 1.1 shows the polynomial we construct. A closed-form
expression can be found:

f(x) =
Tℓ

(
−1 + 2x

2−∆2

1−∆2

)

Tℓ
(
−1 + 2 −∆2

1−∆2

) , (1.10)

where Tℓ(x) is the ℓ-th Chebyshev polynomial of the first kind. This polynomial is
inspired by the shifted and rescaled Chebyshev polynomial discussed in [143, Theo-
rem 6.25]. It is in fact the optimal polynomial for this task as proved in Section 4.11
(also [112, Appendix E]).

Because the error in the polynomial construction can be amplified by a factor
O(γ−1) in the quantum state we get, instead of precision ϵ we need to get to a higher
precision γϵ. Therefore the polynomial degree needed is O(∆−1 log(γ−1ϵ−1)). This
procedure needs to be repeated O(γ−2 log(δ−1)) times to ensure a success probability
of at least 1− δ.

This automatically enables us to prepare the ground state |ψ0⟩ if we have exact
knowledge of the ground state energy λ0. However, knowing the ground state energy
exactly is oftentimes too much a requirement and is in fact unnecessary.

Now suppose we know that λ0 ≤ µ−∆/2 and λ1 ≥ µ+∆/2 for some µ, then we
can design a polynomial f(x) such that, within the range of the eigenvalues of H,
|1−f(x)| ≤ ϵ for x ≤ −∆/2, and |f(x)| ≤ ϵ for x ≥ ∆/2. This polynomial is shaped
like a step function, but instead of a jump discontinuity, it has a smooth transition
from 1 to 0. Construction for such a polynomial is provided in [115, 86]. Applying
this polynomial to implement f(H − µ), we will be able to prepare the ground state
in much the same way as discussed above. This enables us to prepare the ground
state, using amplitude amplification, with

O(γ−1∆−1 log(γ−1ϵ−1)) (1.11)
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queries to H to ensure a success probability of at least 1− δ. This is similar to the
scaling we need for the most advanced version of QPE, and the QSP algorithm uses
fewer ancilla qubits.

1.6 Binary search for ground state energy

This section briefly summarizes the binary search method, to be discussed in detail
in Chapter 2, which is based on Ref. [111]. We use the matrix function methods to
estimate the ground state energy. Surprisingly, this yields better query complexity
then QPE. The main result is summarized in Theorem 8. We first observe that the
ground state energy problem can be converted into a binary search problem. We
know that the ground state energy is somewhere in the interval [−∥H∥, ∥H∥] (∥H∥
might not be known exactly but we can replace it with any upper bound of ∥H∥).
If we can determine, for any given x, whether λ0 < x or λ0 > x, then we can simply
do binary search to find x.

However, exactly implementing this procedure is not possible for the input model
we consider due to the intrinsic uncertainty of a quantum system. What we have to
settle for is a fuzzy binary search. At each search step, we know that λ0 ∈ [λL, λR],
and we want to see which one of the following is true: either λ0 ∈ [λL,

1
3
λL + 2

3
λR],

or λ0 ∈ [2
3
λL+

1
3
λR, λR]. Note that when λ0 ∈ [2

3
λL+

1
3
λR,

1
3
λL+

2
3
λR], both of them

are true. This is why we call this a fuzzy binary search. The above problem for each
search step we call the fuzzy bisection problem [69, Definition 5]. This problem is
equivalent to a promise problem using theoretical computer science terms: suppose
we are given the promise that either λ0 ∈ [λL,

2
3
λL+

1
3
λR] or λ0 ∈ [1

3
λL+

2
3
λR, λR], we

are then asked to decide which one is true. The reason of this equivalence is because
when λ0 ∈ [2

3
λL + 1

3
λR,

1
3
λL + 2

3
λR] we can output anything and it is always correct

for the fuzzy bisection problem we consider.
Once we can solve this fuzzy bisection problem, we can design an algorithm that

proceeds iteratively. If λ0 ∈ [λL,
1
3
λL+

2
3
λR] then we can update λR to be 1

3
λL+

2
3
λR,

and if λ0 ∈ [2
3
λL+

1
3
λR, λR] then we can update λL to be 2

3
λL+

1
3
λR. In this way we

get a new pair of λL and λR such that λL ≤ λ0 ≤ λR and λR − λL shrinks by 2/3.
Once we have λR − λL ≤ 2ϵ, we can choose λL+λR

2
as our estimate for λ0, and the

estimation error will be at most ϵ.
Now we will discuss how to solve the fuzzy bisection problem using the matrix

function technique. We find a polynomial f that, within the range of the eigenvalues
of H, satisfies |f(x)− 1| ≤ ϵ′ for x ≤ 2

3
λL +

1
3
λR, |f(x)| ≤ ϵ′ for x ≥ 1

3
λL +

2
3
λR. We

shall see that the fuzzy bisection problem can be solved by looking at the amplitude
∥f(H) |ϕ0⟩ ∥ where |ϕ0⟩ is the initial guess of the ground state that is guaranteed to
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have an overlap | ⟨ψ0|ϕ0⟩ | ≥ γ. If λ0 ∈ [λL,
2
3
λL + 1

3
λR], then

∥f(H) |ϕ0⟩ ∥ =
∥∥∥∥∥
∑

k

f(λk) ⟨ψk|ϕ0⟩ |ψk⟩
∥∥∥∥∥ ≥ |f(λ0) ⟨ϕ0|ψ0⟩ | ≥ γ(1− ϵ′);

if λ0 ∈ [1
3
λL + 2

3
λR, λR], then

∥f(H) |ϕ0⟩ ∥ =
∥∥∥∥∥
∑

k

f(λk) ⟨ψk|ϕ0⟩ |ψk⟩
∥∥∥∥∥ ≤ ϵ′.

We choose ϵ′ so that γ(1 − ϵ′) − ϵ′ ≥ Ω(γ). Therefore the two situations above can
be distinguished by estimating the amplitude ∥f(H) |ϕ0⟩ ∥ to precision O(γ). Using
the amplitude estimation algorithm [42], this can be done with O(γ−1) queries to
f(H) and the circuit preparing |ϕ0⟩, to ensure a success probability of at least 2/3.
The O(γ−1) scaling here is the key why we can estimate the ground state energy
with linear dependence on γ−1. Because we are solving a decision problem involving
two possible outcomes, we can use majority voting to boost the success probability
to 1 − δ′ with O(log(δ′−1)) repetitions. There are in total O(log(ϵ−1)) search steps
and we need all of them to succeed. Therefore in order to achieve a final success
probability of 1− δ we need δ′ = O(δ log−1(ϵ−1)).

The next key thing to figure out is the degree of f . We can use the approximate
step function we discussed above for the task of ground state preparation, whose
degree largely depends inverse proportionally on the length of the interval in which
the function transitions from 1 to 0. In our present case, the transition interval
length is (λR − λL)/3. For the last search step, this length is proportional to ϵ, and
in all previous steps the length shrinks by 2/3 in each step. Therefore the sum of all
polynomial degrees is proportional to

1

ϵ

(
1 +

2

3
+

(
2

3

)2

+ · · ·
)

= O(ϵ−1).

Putting the above analysis together we can see that the query complexity of our
algorithm is

Õ(γ−1ϵ−1 log(δ−1)) (1.12)

to estimate the ground state energy to within additive error ϵ with probability at
least 1−δ, using an initial guess |ϕ0⟩ with | ⟨ϕ0|ψ0⟩ | ≥ γ. Thus we are able to achieve
the desired quadratic improvement in terms of the γ dependence compared to QPE
in 1.7.
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1.7 Implementation on an early fault-tolerant

quantum computer

This section is a brief summary of Chapter 3, which is based on Ref. [110]. The circuit
implementation of the algorithm in the previous section uses many ancilla qubits
for amplitude estimation, and requires that we need to maintain coherence, i.e.,
preserving the quantum state in superposition and protecting from error, during the
entire computation. On early fault-tolerant quantum computers [47, 27, 41, 108], we
may be able to maintain coherence for considerable length of time through quantum
error correction, yet it is still desirable to reduce the coherence time requirement.
More concretely, we suppose we are considering two algorithms to solve a problem.
In one algorithm we need to run a circuit of depth d1 N1 times and take average of
the results, and in the second algorithm we need to run a circuit of depth d2 N2 times
and take average. Now we assume d1N1 < d2N2, and yet d1 > d2, then in the early
fault-tolerant setting, it may still be preferable to use the second algorithm despite
the larger total runtime. It is also preferable to reduce the number of qubits needed
as much as possible, since a single logical qubit typically require a large number of
physical qubit to implement for error correction.

This issue is of great importance for an early demonstration of useful quantum
advantage. In order to use quantum computers to solve classically intractable prob-
lems that are at the same time useful, on the one hand we need improvement in
quantum hardware and error correcting codes, and on the other hand we can design
our algorithms with the these limitations in mind, and reduce the requirement on
hardware. Quantum chemistry is widely considered a promising field in which we can
hope to demonstrate quantum advantage, due to the computational challenges on
the classical side. In this section, as well as in Chapter 3, we will design an algorithm
motivated by the above discussion for the ground state energy estimation problem.
Despite the limitations on the circuit depth and number of qubits, we find that we
are still able to reach the Heisenberg-limited precision scaling [88, 87, 182, 181] for
this problem, which is the best precision scaling possible due to limitations placed
by the law of quantum mechanics.

Our algorithm uses a simple and widely used circuit of the following form

|0⟩ H • W H

ρ e−ijτH

(1.13)

where H is the Hadamard gate. We choose W = I or W = S† where S is the phase
gate, depending on the quantity we want to estimate. This is the same circuit used
to perform the Hadamard test. In Ref. [110], and also in Chapter 3, we found that
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in fact this circuit can be used to extract spectral properties of the Hamiltonian H.
In particular, it can be used to compute the cumulative distribution function (CDF)
corresponding to the spectral measure

p(x) =
K−1∑

k=0

pkδ(x− τλk), x ∈ [−π, π], (1.14)

where pk = | ⟨ϕ0|ψk⟩ |2 is the overlap between the initial guess of the ground state
with the k-th eigenstate. We can extract information of the ground state energy λ0
from the CDF, because λ0 corresponds to the first jump discontinuity of the CDF.
Using a similar binary search approach to the one we discussed in Section 1.6, we can
estimate λ0 to within additive error ϵ with total runtime that scales linearly in ϵ−1.
The main result is summarized in Corollary 15. The Heisenberg-limited precision
scaling is reached by using randomized evolution times in the circuit, in a manner
that is similar to the unbiased multi-level Monte Carlo method in [140, 141].

In [180], this framework was extended to estimate the expectation value of observ-
ables in the ground state. Ref. [166] considered using randomized compiling within
this framework to reduce the circuit depth overhead that comes from implementing
the time-evolution operator. More recently, in Ref. [69], it is shown that we can insert
Pauli-X rotations between the controlled time evolution operators to quadratically
improve the overlap dependence without increasing the circuit depth. The same pa-
per also shows that the improvement with respect to the overlap dependence becomes
quartic if one is allows a larger circuit depth. Besides the ancilla qubits and circuit
depth, Ref. [8] also considered minimizing the use of multi-qubit control structures,
which may be another difficulty for early fault-tolerant quantum computers. These
results provide a versatile toolbox to estimate ground state properties in the early
fault-tolerant setting.

1.8 Application to the quantum linear system

problem

Besides the ground state problem, quantum eigenstate filtering is also useful in solv-
ing the quantum linear system problem (QLSP), which we briefly discussed in Section
1.4. This section summarizes the QLSP algorithm in Chapter 4, which is based on
Ref. [112]. A natural application of the QLSP is in computing Green’s function. For a
Hamiltonian H, the Green’s function involves quantity such as ⟨Ψ|ai(z −H)−1a†j|Ψ⟩,
where |Ψ⟩ is the ground state, a†i , aj are the creation and annihilation operators, and
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z is a complex number. This quantity naturally involves solving a linear system with
coefficient matrix z −H, whose dimension is exponential in the system size.

In QLSP, we want to solve a linear system Ax = b, where A is a matrix of
size N × N . In the quantum setting we need to specify further what we mean
here. We assume that A is given through its block encoding, and its singular values
are contained in the interval [1/κ, 1], and consequently κ is an upper bound of its
condition number. Usually it is assumed that A can be constructed from the sparse
matrix oracles [34, 59, 154]. b is assumed to be accessed through a unitary oracle
that prepares a normalized quantum state |b⟩ that is parallel to b. The goal is to
prepare a normalized quantum state |x⟩ that is parallel to A−1 |b⟩. More precisely,
we want a state |x⟩ such that

∥∥∥∥|x⟩ −
A−1 |b⟩
A−1 |b⟩

∥∥∥∥ ≤ ϵ,

for the allowed error ϵ > 0. We are primarily interested in the query complexity, i.e.,
the number of queries to the above mentioned oracles. Since for all state-of-the-art
algorithms the number of queries to all oracles are the same asymptotically, we do
not need to specify the oracle when talking about the query complexity.

As mentioned before, the seminal HHL algorithm has a query complexity Õ(κ2ϵ−1).
This gives a potentially exponential speedup compared to classical algorithms be-
cause if A is sparse and its elements efficiently computable, then the oracles use
O(polylog(N)) gates, and thus the total runtime of the algorithm is Õ(polylog(N)κ2ϵ−1).

This is in contrast with classical methods that typically have Õ(poly(N, κ, log(ϵ−1)))
scaling.

Compared to classical algorithms, the HHL algorithm has worse scaling with re-
spect to κ and ϵ. Later works improved both the κ dependence and the ϵ dependence.
For the κ dependence, in Ref. [12], variable-time amplitude amplification (VTAA),
a generalization of the standard amplitude amplification algorithm that allows us to
amplify the success probability of quantum algorithms by stopping different branches
at different times, was first used to successfully improve the dependence on κ to be
almost linear, and the query complexity is Õ(κϵ−3). In [59], combining VTAA with
the LCU approach we discussed in Section 1.4 for implementing the matrix function
A−1, the query complexity can be improved to Õ(κpolylog(ϵ−1))), which is almost
optimal with respect to both κ and ϵ. A sublinear in κ scaling is not possible unless
BQP = PSPACE, which is regraded as highly unlikely [93]. A similar strategy may
be applied to accelerate QSVT. Despite the success in terms of the query complex-
ity, it is worth noting that the VTAA algorithm is a complicated procedure and can
be difficult to implement, and that the overhead that shows in the polylogarithmic
factor can be significant.
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Another approach to reach the linear in κ scaling is through casting the QLSP
into an eigenvalue problem, and solving it adiabatically. In Ref. [154], the authors
constructed an adiabatic path H(s) = sH1+(1−s)H0, which adiabatically connects
|0⟩ |+⟩ |x⟩, an eigenstate of H(1) = H1 corresponding to the eigenvalue 0, to an initial
state |0⟩ |−⟩ |b⟩ (a 0-eigenstate of H(0) = H0) which is easy to prepare. Importantly,
along the entire the adiabatic path the spectral gap ofH(s) is lower bounded ∆∗(s) =√
(1− s)2 + s2/κ2 [154]. With this adiabatic path, one can either traverse it using

adiabatic time evolution [15], or quantum Zeno effect with phase randomization

[150, 154]. The former achieves a query complexity of Õ(κ log4(ϵ−1)) while the latter

achieves Õ(κϵ−1).
In Chapter 4, based on Ref. [112], we introduce another method to traverse

the adiabatic through quantum Zeno effect, replacing phase randomization with a
projection operator implemented using QSP, and the filter polynomial f(x) in (1.10).

With this construction, we can obtain a query complexity of Õ(κ log(ϵ−1)) for solving
the QLSP. A formal statement of the result can be found in Theorem 29. This was
the best query complexity for solving the QLSP until recently, when the discrete
adiabatic theorem was used to design a new algorithm for this problem, yielding a
O(κ log(ϵ−1)) scaling [63], which removes a log(κ) factor from our algorithm.

The lower bound result from Ref. [93] tells us that we cannot hope to further
improve the κ dependence for generic sparse linear systems. However, for quan-
tum systems with certain structures, it is still possible to get further improvement,
even to entirely remove the condition number dependence through preconditoning.
Ref. [161] provides such an example: for certain systems of the form (A + B)x = b,
we can instead solve (I+A−1B)x = A−1b, and this can remove the condition number
dependence in the ideal scenario, such as when we consider linear systems coming
from discretizing partial differential equations.

1.9 Outlook

In this work we primarily consider algorithms based on black-box oracles, in which
the structure of the Hamiltonian or the QLSP coefficient matrix is ignored. The
optimality of our result, guaranteed by query complexity lower bounds, indicates
that if we want to get further improvement, we need to use more structure of the
problem we study. For the QLSP, the preconditioning technique provides an example
of how special structure can be useful. Looking for such special structures in the
ground state problem is of even greater interest due to the central role it plays in
many disciplines of science.
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Our ground state algorithm relies on the assumption of an initial guess with good
overlap. While mean field solutions oftentimes yield surprisingly good overlap, it is
very easy to construct examples in which the overlap decays exponentially with the
system size [165]. On the other hand, some classical algorithms do not need such
assumptions. Examples include the density matrix renormalization group algorithm
(DMRG) [169, 131, 146], in which the quantum state is optimized for a growing
subset of the quantum system, and density matrix embedding theory (DMET) [106,
107, 164, 44, 173, 67, 156, 68, 175, 174], in which we only need to solve small
subsystems to beyond mean field accuracy because the influence of the rest of the
system is incorporated into an effective Hamiltonian. The former algorithm is based
on the entanglement area law [64, 71, 94, 21, 20, 17, 16, 65, 1, 2], and the latter
is based on the low entanglement between the system and the environment beyond
a buffer (the bath). Identifying and utilizing such structures are very important in
designing quantum algorithms that overcome the limitations of the black-box oracle
model mentioned above.

Designing algorithms for the early fault-tolerant setting is another direction where
meaningful progress can be made. Lowering the hardware requirement for quantum
computers as the error correcting technology matures is extremely important for an
early demonstration of useful quantum advantage. We have discussed algorithms
for ground state energy estimation for the early fault-tolerant setting in Section 1.7,
but can similar things be done for other tasks, such as the QLSP and thermal state
preparation? Can we design algorithms that use very few ancilla qubits and low
circuit depth to perform these tasks with provable performance guarantee? These
are meaningful open problems to be explored further.
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Chapter 2

Near-optimal algorithms for the
ground state

Preparing the ground state of a given Hamiltonian and estimating its ground en-
ergy are important but computationally hard tasks. However, given some additional
information, these problems can be solved efficiently on a quantum computer. We
assume that an initial state with non-trivial overlap with the ground state can be
efficiently prepared, and the spectral gap between the ground energy and the first
excited energy is bounded from below. With these assumptions we design an algo-
rithm that prepares the ground state when an upper bound of the ground energy
is known, whose runtime has a logarithmic dependence on the inverse error. When
such an upper bound is not known, we propose a hybrid quantum-classical algorithm
to estimate the ground energy, where the dependence of the number of queries to
the initial state on the desired precision is exponentially improved compared to the
current state-of-the-art algorithm proposed in [Ge et al. 2019]. These two algo-
rithms can then be combined to prepare a ground state without knowing an upper
bound of the ground energy. We also prove that our algorithms reach the complexity
lower bounds by applying it to the unstructured search problem and the quantum
approximate counting problem.

2.1 Introduction

Estimating ground energy and obtaining information on the ground state of a given
quantum Hamiltonian are of immense importance in condensed matter physics, quan-
tum chemistry, and quantum information. Classical methods suffer from the expo-
nential growth of the size of Hilbert space, and therefore quantum computers are
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expected to be used to overcome this difficulty. However even for quantum com-
puter, estimating the ground energy is a hard problem: deciding whether the small-
est eigenvalue of a generic local Hamiltonian is greater than b or smaller than a for
some a < b is QMA-complete [102, 100, 130, 6].

Therefore to make the problem efficiently solvable we need more assumptions.
We denote the Hamiltonian we are dealing with by H, and consider its spectral
decomposition H =

∑
k λk |ψk⟩ ⟨ψk| where λk ≤ λk+1. The key assumption is that

we have an initial state |ϕ0⟩ which can be efficiently prepared by an oracle UI , and
has some overlap with the ground state |ψ0⟩ lower bounded by γ. This is a reasonable
assumption in many practical scenarios. For instance, even for strongly-correlated
molecules in quantum chemistry, there is often a considerable overlap between the
true ground state and the Hartree-Fock state. The latter can be trivially prepared
in the molecular orbital basis, and efficiently prepared in other basis [104]. For the
moment we also assume the spectral gap is bounded from below: λ1 − λ0 ≥ ∆.

With these assumptions we can already use phase estimation coupled with am-
plitude amplification [42] to prepare the ground state, if we further know the ground
energy to high precision. To our knowledge, the most comprehensive work on ground
state preparation and ground state energy estimation was done by Ge et al. [80],
which provided detailed complexity estimates for well-known methods such as phase
estimation, and proposed new methods to be discussed below. As analyzed in [80,
Appendix A], in order to prepare the ground state to fidelity1 1 − ϵ, the runtime

of the controlled-time-evolution of the Hamiltonian is Õ(1/(γ2∆ϵ)) 2, and the num-

ber of queries to UI is Õ(1/γ), assuming the spectral norm of H is bounded by a
constant. This is however far from optimal. Poulin and Wocjan [134] proposed a
method that, by executing the inverse of phase estimation to filter out the unwanted
components in the initial state, can prepare a state whose energy is in a certain
given range. A different choice of parameters yields a way to prepare the ground
state to fidelity 1 − ϵ by running the controlled-time-evolution of the Hamiltonian
with Õ(1/(γ∆) log(1/ϵ)) runtime, and using Õ(1/γ) queries to UI [80, Appendix C].

A key difference between ground state preparation and Hamiltonian simulation,
where significant progress has been made in recent years [113, 34, 35, 115, 116,
114, 56], is its non-unitary nature. The recent development of linear combination
of unitaries (LCU) method [34, 59] provided a versatile tool to apply non-unitary
operators. Using LCU, Ge et al. proposed a new method to filter the initial state by
applying a linear combination of time-evolutions of different time length [80], which
achieves the same complexity, up to logarithmic factors, as the modified version of

1In this work, the fidelity between states |x⟩ , |y⟩ is defined to be |⟨x|y⟩|.
2In this work the notation Õ(f) means O(fpoly log(f)) unless otherwise stated.
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Poulin and Wocjan’s method discussed above.
All of the above methods prepare the ground state assuming the ground energy is

known to high precision. When the ground energy is unknown, Ge et al. proposed a
method to estimate the ground energy using a search method called minimum label
finding [80]. This method can estimate the ground energy to precision h by running

the controlled-time-evolution of the Hamiltonian for Õ(1/(γh3/2)) 3, and querying

UI Õ(1/(γ
√
h)) times. It is worth noting that their method requires h = Õ(∆),

and therefore is very expensive when the gap is extremely small. When the ground
energy is not known a priori, Ge et al. proposed a method to first estimate the
ground energy and then apply the LCU approach.

In recent years several hybrid quantum-classical algorithms have been developed
to estimate the ground energy, or to prepare the ground state, or both. The vari-
ational quantum eigenvalue solver (VQE) [133] has gained much attention recently
because of its low requirement for circuit depth and its variational structure. However
the exact complexity of this algorithm is not clear because it relies on a proper choice
of ansatz and needs to solve a non-convex optimization problem. Other such algo-
rithms include quantum imaginary-time evolution, quantum Lanczos [123], and quan-
tum filter diagonalization [132, 151]. Their complexities are either quasi-polynomial
or unknown.

The recent development of block-encoding [34] and quantum signal processing
(QSP) [117, 115, 86] enables us to apply non-unitary operators, specifically poly-
nomials of a block-encoded matrix efficiently. It uses a minimal number of ancilla
qubits, and avoids the Hamiltonian simulation. These will be the basic tools of this
work, of which we give a brief introduction below.

Block-encoding is a powerful tool to represent a non-unitary matrix in the quan-
tum circuit. A matrix A ∈ CN×N where N = 2n can be encoded in the upper-left
corner of an (m+ n)-qubit unitary matrix if

∥A− α(⟨0m| ⊗ I)U(|0m⟩ ⊗ I)∥2 ≤ ϵ. (2.1)

In this case we say U is an (α,m, ϵ)-block-encoding of A. Many matrices of practical
interests can be efficiently block-encoded. In particular we will discuss the block-
encoding of Hamiltonians of physical systems in Section 2.7.

Using the block-encoding of a Hermitian A, QSP enables us to construct block-
encodings for a large class of polynomial eigenvalue transformations of A. We pay

3In [80], the meaning of the notation Õ(·) is different from that in our work. In particular, Õ(·)
in [80] hides all factors that are poly-logarithmic in 1/h, 1/ϵ, 1/γ, and 1/∆, regardless of what is
inside the parentheses. We preserve their notation when citing their results since these factors do
not play an important role when comparing the complexities of our methods.
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special attention to even or odd polynomials with real coefficients, because we only
apply this type of polynomial eigenvalue transformation in this work. Also for sim-
plicity we assume the block-encoding is done without error. [86, Theorem 2] enables
us to perform eigenvalue transformation of A for polynomials of definite parity (even
or odd).

Theorem 1 (QSP for polynomials of definite parity). Let U be an (α,m, 0)-block-
encoding of a Hermitian matrix A. Let P ∈ R[x] be a degree-ℓ even or odd real
polynomial and |P (x)| ≤ 1 for any x ∈ [−1, 1]. Then there exists an (1,m + 1, 0)-

block-encoding Ũ of P (A/α) using ℓ queries of U , U †, and O((m+1)ℓ) other primitive
quantum gates.

Remark 2. [86, Theorem 2] provides a singular value transformation for any square
matrix A and polynomials of definite parity. When A is a Hermitian matrix, the
eigenvalue transformation is the same as the singular value transformation [86, Page
203]. A related statement in the same paper is [86, Theorem 31], which describes
the eigenvalue transformation of a Hermitian matrix for an arbitrary polynomial, by
means of a linear combination of two polynomials of even and odd parities respec-
tively.

Constructing the quantum circuit for QSP requires computing a sequence of phase
factors beforehand, and there are classical algorithms capable of doing this [92]. Some
recent progress has been made to efficiently compute phase factors for high-degree
polynomials to high precision [50, 70]. In this work, unless otherwise specified, we
assume the phase factors are computed without error.

Using the tools introduced above, we assume the Hamiltonian H is given in its
(α,m, 0)-block-encoding UH . This, together with UI , are the two oracles we assume
we are given in this work. QSP enables us to filter eigenstates using fewer qubits than
LCU. In [112] a filtering method named optimal eigenstate filtering is introduced. It
is based on an explicitly constructed optimal minimax polynomial, and achieves the
same asymptotic complexity, ignoring poly-logarithmic factors, as the method by Ge
et al. when applied to the ground state preparation problem if the ground energy is
known exactly.

In this work we first develop a filtering method that filters out all eigenstates
corresponding to eigenvalues above a certain threshold. This filtering method enables
us to prepare the ground state of a Hamiltonian with spectral gap bounded away
from zero when only an upper bound of the ground energy is known, unlike in
the filtering methods discussed above which all require either exact value or high-
precision estimate of the ground energy. Our filtering method has an exponentially
improved dependence on precision compared to Kitaev’s phase estimation [101] and
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uses fewer qubits compared to other variants of the phase estimation algorithm [134,
80]. This filtering method, applied to the initial state given in our assumption, also
enables us to tell whether the ground energy is smaller than a or greater than b
for some b > a, with high probability. Therefore a binary search yields a ground
energy estimate with success probability arbitrarily close to one. We then combine
the filtering method and ground energy estimation to prepare the ground state when
no non-trivial bound for the ground energy is known. A comparison of the query
complexities between the method in our work and the corresponding ones in [80],
which to our best knowledge achieve state-or-the-art query complexities, are shown
in Table 2.1.

Preparation
(bound known)

Ground energy Preparation
(bound un-
known)

UH
This work O

(
α
γ∆

log(1
ϵ
)
)

Õ
(
α
γh

log( 1
ϑ
)
)

Õ
(

α
γ∆

log( 1
ϑϵ
)
)

Ge et al. Õ
(

α
γ∆

)
Õ
(
α3/2

γh3/2

)
Õ
(

α3/2

γ∆3/2

)

UI
This work O

(
1
γ

)
Õ
(

1
γ
log(α

h
) log( 1

ϑ
)
)
Õ
(

1
γ
log( α

∆
) log( 1

ϑ
)
)

Ge et al. Õ
(

1
γ

)
Õ
(

1
γ

√
α
h

)
Õ
(

1
γ

√
α
∆

)

Extra This work O(1) O(log( 1
γ
)) O(log( 1

γ
))

qubits Ge et al. O(log( 1
∆
log(1

ϵ
))) O(log( 1

h
)) O(log( 1

∆
log(1

ϵ
)))

Table 2.1: The query complexities of algorithms and number of extra qubits used in
our work and the corresponding ones by Ge et al. in [80]. α, γ,∆, ϵ are the same as
above and h is the precision of the ground energy estimate. By extra qubits we mean
the ancilla qubits that are not part of the block-encoding. In this work the ground
energy estimation algorithm and the algorithm to prepare ground state without a
priori bound have success probabilities lower bounded by 1 − ϑ, while in [80] the
corresponding algorithms have constant success probabilities. The complexities for
algorithms by Ge et al. are estimated assuming Hamiltonian simulation is done as
in [114]. The usage of the notation Õ is [80] different from that in our work, as
explained in footnote 3.

From the query complexities in Table 2.1 we can see our method for ground
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energy estimation achieves a exponential speedup in terms of the dependence of
number of queries to UI on the ground energy estimate precision h and a speedup
of 1/

√
h factor in the dependence of number of queries to UH on the precision.

Moreover, Ge et al. assumes in their work that the precision h = Õ(∆), while we
make no such assumptions. This gives our algorithm even greater advantage when
the gap is much smaller than desired precision. This becomes useful in the case of
preparing a low energy state (not necessarily a ground state). Because Ge et al.
used a slightly different query assumption, i.e. access to time-evolution rather than
block-encoding, when computing the complexities for methods in [80] in Table 2.1 we
assume the Hamiltonian simulation is done with O(αt) queries to UH , and the error
is negligible. This can be achieved using the Hamiltonian simulation in [114], and
cannot be asymptotically improved because of the complexity lower bound proved
in [34]. Therefore the comparison here is fair even though our work makes use of
a different oracle. Also [80] assumed a scaled Hamiltonian H with its spectrum
contained in [0, 1]. We do not make such an assumption, and therefore the α factor
should be properly taken into account as is done in Table 2.1.

Organization: The rest of the paper is organized as follows. In Section 2.2 we
use QSP to construct block-encodings of reflectors and projectors associated with
eigen-subspaces. In Section 2.3 we use the projectors to prepare ground state when
an upper bound of the ground energy is given. In Section 2.4 we introduce the
ground energy estimation algorithm, a hybrid quantum-classical algorithm based on
the binary search, and use it to prepare the ground state when no ground energy
upper bound is known a priori. In Section 2.5 we show the dependence of our
query complexities on the overlap and gap is essentially optimal by considering the
unstructured search problem. We also show the dependence of our ground energy
estimation algorithm on the precision is nearly optimal by considering the quantum
approximate counting problem. In Section 2.6 we use our methods to prepare low-
energy states when the spectral lower gap is unknown, or even when the ground
state is degenerate. In Section 2.7 we discuss practical issues and future research
directions.

2.2 Block-encoding of reflector and projector

A key component in our method is a polynomial approximation of the sign function in
the domain [−1,−δ]∪ [δ, 1]. The error scaling of the best polynomial approximation
has been studied in [75], and an explicit construction of a polynomial with the same
error scaling is provided in [115] based on the approximation of the erf function. We
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quote [86, Lemma 14] here with some small modification:

Lemma 3 (Polynomial approximation of the sign function). For all 0 < δ < 1,
0 < ϵ < 1, there exists an efficiently computable odd polynomial S(·; δ, ϵ) ∈ R[x] of
degree ℓ = O(1

δ
log(1

ϵ
)), such that

(1) for all x ∈ [−1, 1], |S(x; δ, ϵ)| ≤ 1, and

(2) for all x ∈ [−1,−δ] ∪ [δ, 1], |S(x; δ, ϵ)− sign(x)| ≤ ϵ.

Remark 4. Compared to [86, Lemma 14] we have rescaled the interval from [−2, 2]
to [−1, 1], and this does not result in any substantial change.

When we have the (α,m, 0)-block-encoding of a Hermitian matrixH =
∑

k λk |ψk⟩ ⟨ψk| ∈
CN×N , N = 2n, λk ≤ λk+1, we can construct a (α + |µ|,m + 1, 0)-block-encoding
of matrix H − µI using of [86, Lemma 29] for any µ ∈ R. Then using QSP, by
Theorem 1, we can obtain an (1,m + 2, 0)-block-encoding of −S(H−µI

α+|µ| ; δ, ϵ) for any

δ and ϵ. If we assume further that ∆/2 ≤ mink |µ− λk|, then we let δ = ∆
4α
, and by

Lemma 3 all the eigenvalues of −S(H−µI
α+|µ| ; δ, ϵ) are ϵ-close to either 0 or 1. Therefore

−S(H−µI
α+|µ| ; δ, ϵ) is ϵ-close, in operator norm, to the reflector about the direct sum of

eigen-subspaces corresponding to eigenvalues smaller than µ:

R<µ =
∑

k:λk<µ

|ψk⟩ ⟨ψk| −
∑

k:λk>µ

|ψk⟩ ⟨ψk| ,

and thus the block-encoding is also an (1,m+2, ϵ)-block-encoding of R<µ. We denote
this block-encoding by REF(µ, δ, ϵ). We omitted the dependence on H because H
as well as its block-encoding is usually fixed in the rest of the paper.

In the above discussion we have used QSP in a black-box manner. For concrete-
ness, we present a single-qubit illustrative example to demonstrate how to use a
block-encoded Hamiltonian to construct the reflector in Appendix 2.8.

Because our goal is to prepare the ground state, we will use the projector more
often than the reflector. Now we construct a block-encoding of projector using
REF(µ, δ, ϵ) by the following circuit

|0⟩ H • H

|0m+2⟩
REF(µ, δ, ϵ)|ϕ⟩

(2.2)
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where H is the Hadamard gate, and we denote this circuit as PROJ(µ, δ, ϵ). Note
that

(⟨0m+3| ⊗ I)PROJ(µ, δ, ϵ)(|0m+3⟩ ⊗ I)
=
(
⟨+| ⟨0m+2| ⊗ I

)(
|0⟩ ⟨0| ⊗ I ⊗ I + |1⟩ ⟨1| ⊗ REF(µ, δ, ϵ)

)(
|+⟩ |0m+2⟩ ⊗ I

)

=
1

2

(
I + (⟨0m+2| ⊗ I)REF(µ, δ, ϵ)(|0m+2⟩ ⊗ I)

)
,

and we have

∥(⟨0m+3| ⊗ I)PROJ(µ, δ, ϵ)(|0m+3⟩ ⊗ I)− P<µ∥

≤ 1

2
∥(⟨0m+2| ⊗ I)REF(µ, δ, ϵ)(|0m+2⟩ ⊗ I)−R<µ∥

≤ ϵ

2
.

Here P<µ is the projector into the direct sum of eigen-subspaces corresponding to
eigenvalues smaller than µ

P<µ =
∑

k:λk<µ

|ψk⟩ ⟨ψk|=
1

2
(I +R<µ).

Therefore PROJ(µ, δ, ϵ) is an (1,m+ 3, ϵ/2)-block-encoding of P<µ. In fact this can
still be seen as an application of linear combination of block encoding [86, Lemma 29],
using the relation P<µ = 1

2
(R<µ + I).

We use the following lemma to summarize the results

Lemma 5 (Reflector and projector). Given a Hermitian matrix H with its (α,m, 0)-
block-encoding UH , with the guarantee that µ ∈ R is separated from the spectrum of
H by a gap of at least ∆/2, we can construct an (1,m+ 2, ϵ)-block-encoding of R<µ,
and an (1,m+ 3, ϵ/2)-block-encoding of P<µ, both using O( α

∆
log(1

ϵ
)) applications of

UH and U †
H , and O(mα∆ log(1

ϵ
)) other one- and two-qubit gates.

We remark that for the block-encoding PROJ(µ, δ, ϵ), even a failed application of
it can give us potentially useful information. We have

PROJ(µ, δ, ϵ) |0m+3⟩ |ϕ⟩ = |0⟩ |0m+2⟩P<µ |ϕ⟩+ |1⟩ |0m+2⟩P>µ |ϕ⟩+
1√
2
|−⟩ |E⟩ ,

where P>µ = I − P<µ and |E⟩ satisfies ∥ |E⟩ ∥ ≤ ϵ. Thus when we apply the block-
encoding and measure the first two registers, i.e. the first m + 3 qubits, we have
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probability at least 1 − ϵ2

2
to obtain an outcome with either 0 or 1 followed by

(m+ 2) 0’s. In the former case the projection has been successful, and in the latter
case we have obtained an approximation of P>µ |ϕ⟩.

If we do not treat the output of 1 followed by m + 2 0’s as failure then there is
another interpretation of the circuit PROJ(µ, δ, ϵ): this is an approximate projective
measurement {P<µ, P>µ}. In fact the whole circuit can be seen as phase estimation
on a reflector, which needs only one ancilla qubit.

2.3 Algorithm with a priori ground energy

bound

With the approximate projector developed in the previous section we can readily
design an algorithm to prepare the ground state. We assume we have the Hamiltonian
H given through its block-encoding as in the last section. If we are further given an
initial state |ϕ0⟩ prepared by a unitary UI , i.e. UI |0n⟩ = |ϕ0⟩, and the promises that
for some known γ > 0, µ, and ∆, we have

(P1) Lower bound for the overlap: | ⟨ϕ0|ψ0⟩ | ≥ γ,

(P2) Bounds for the ground energy and spectral gap: λ0 ≤ µ−∆/2 < µ+∆/2 ≤ λ1.

Here µ is an upper bound for the ground energy, ∆ is a lower bound for the spectral
gap, and γ is a lower bound for the initial overlap. Now suppose we want to prepare
the ground state to precision ϵ, we can use Lemma 5 to build a block-encoding of the
projector P<µ = |ψ0⟩ ⟨ψ0|, and then apply it to |ϕ0⟩ which we can prepare. This will
give us something close to |ψ0⟩. We use fidelity to measure how close we can get. To
achieve 1− ϵ fidelity we need to use circuit PROJ(µ,∆/4α, γϵ), and we denote,

P̃<µ = (⟨0m+3| ⊗ I)PROJ(µ,∆/4α, γϵ)(|0m+3⟩ ⊗ I)

then the resulting fidelity will be

| ⟨ψ0|P̃<µ|ϕ0⟩ |
∥P̃<µ |ϕ0⟩ ∥

≥ | ⟨ψ0|ϕ0⟩ | − γϵ/2
| ⟨ψ0|ϕ0⟩ |+ γϵ/2

≥ 1− γϵ

| ⟨ψ0|ϕ0⟩ |
≥ 1− ϵ.

Here we have used

∥P̃<µ |ϕ0⟩ ∥ ≤ ∥P<µ |ϕ0⟩+ (P̃<µ − P<µ) |ϕ0⟩∥ ≤ | ⟨ψ0|ϕ0⟩ |+ γϵ/2.
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This is when we have a successful application of the block-encoding. The success
probability is

∥P̃<µ |ϕ0⟩ ∥2 ≥
(
∥P<µ |ϕ0⟩ ∥ −

γϵ

2

)2
≥ γ2

(
1− ϵ

2

)2
.

With amplitude amplification [42] we can boost the success probability to Ω(1) with
O( 1

γ
) applications of PROJ(µ,∆/4α, γϵ) and its inverse, as well as O(m

γ
) other

one- and two- qubit gates. Here we are describing the expected complexity since
the procedure succeeds with some constant probability. In amplitude amplification
we need to use a reflector similar to the oracle used in Grover’s search algorithm
[90]. Instead of constructing a reflector from PROJ(µ,∆/4α, γϵ) we can directly use
REF(µ,∆/4α, γϵ) constructed in the previous section.

We summarize the results in the following theorem

Theorem 6 (Ground state preparation with a priori ground energy bound). Suppose
we have Hamiltonian H =

∑
k λk |ψk⟩ ⟨ψk| ∈ CN×N , where λk ≤ λk+1, given through

its (α,m, 0)-block-encoding UH . Also suppose we have an initial state |ϕ0⟩ prepared
by circuit UI , as well as the promises (P1) and (P2). Then the ground state |ψ0⟩ can
be prepared to fidelity 1− ϵ with the following costs:

1. Query complexity: O( α
γ∆

log( 1
γϵ
)) queries to UH and O( 1

γ
) queries to UI ,

2. Number of qubits: O(n+m),

3. Other one- and two- qubit gates: O(mα
γ∆

log( 1
γϵ
)).

2.4 Algorithm without a priori ground energy

bound

Next we consider the case when we are not given a known µ to bound the ground
energy from above. All other assumptions about H and its eigenvalues and eigen-
states are identical to the previous sections. The basic idea is to test different values
for µ and perform a binary search. This leads to a quantum-classical hybrid method
that can estimate the ground energy as well as preparing the ground state to high
precision.

All eigenvalues must be in the interval [−α, α], thus we first partition [−α, α] by
grid points −α = x0 < x1 < . . . < xG = α, where xk+1 − xk = h for all k. Then
we attempt to locate λ0 in a small interval between two grid points (not necessarily
adjacent, but close) through a binary search. To do a binary search we need to be
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able to tell whether a given xk is located to the left or right of λ0. Because of the
random nature of measurement we can only do so correctly with some probability,
and we want to make this probability as close to 1 as possible. This is achieved using
a technique we call binary amplitude estimation.

Lemma 7 (Binary amplitude estimation). Let U be a unitary that acts on two
registers, the first register indicating success or failure. Let A = ∥(⟨0|⊗ I)U(|0⟩ |0⟩)∥
be the success amplitude. Given γ0 and γ1, ∆ := γ1 − γ0 > 0, provided that A is
either smaller than γ0 or greater than γ1, we can correctly distinguish between the
two cases, i.e. output 0 for the former and 1 for the latter, with probability 1 − δ
using O((1/∆) log(1/δ)) applications of (controlled-) U and its inverse.

Proof. The proof is essentially identical to the proof for gapped phase estimation in
[12, 59]. We can perform amplitude estimation up to error ∆/4 with O(1/∆) appli-
cations of U and U †. This has a success probability of 8/π2 according to Theorem 12
of [42]. We turn the estimation result into a boolean indicating whether it is larger
or smaller than (γ0 + γ1)/2. The boolean is correct with probability at least 8/π2.
Then we do a majority voting to boost this probability. Chernoff bound guarantees
that to obtain a 1 − δ probability of getting the correct output we need to repeat
O(log(1/δ)) times. Therefore in total we need to run U and U † O((1/∆) log(1/δ))
times.

We then apply binary amplitude estimation to the block-encoding of the projector
defined in (2.2) PROJ(xk, h/2α, ϵ

′) for some precision ϵ′ to be chosen. We denote the
amplitude of the “good” component after applying block-encoding by

Ak = ∥(⟨0m+3| ⊗ I)PROJ(xk, h/2α, ϵ
′)(|0m+3⟩ |ϕ⟩)∥,

which satisfies the following:

Ak




≥ γ − ϵ′

2
, λ0 ≤ xk−1,

≤ ϵ′

2
, λ0 ≥ xk+1.

We can then let
ϵ′ = γ/2,

the two amplitudes are separated by a gap lower bounded by γ/2. Therefore we can
run the binary amplitude estimation, letting U in Lemma 7 be

U = PROJ(xk, h/2α, ϵ
′)(I ⊗ UI),
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to correctly distinguish the two cases where λ0 ≤ xk−1 and λ0 ≥ xk+1 with probability
1− δ, by running PROJ(xk, h/2α, ϵ

′), UI , and their inverses O((1/γ) log(1/δ)) times.
The output of the binary amplitude estimation is denoted by Bk.

We then define E as the event that an error occurs in the final result of binary
amplitude estimation when we are computing Bk for some k such that xk+1 < λ0 or
xk−1 > λ0 in our search process. All future discussion is conditional on Ec meaning
that there is no error in binary amplitude estimation for Bk when xk+1 < λ0 or
xk−1 > λ0. This has a probability that is at least (1− δ)R where R is the number of
times binary amplitude estimation is run.

Conditional on Ec, almost surely (with probability 1) Bk = 1 when λ0 ≤ xk−1

and Bk = 0 when λ0 ≥ xk+1. Therefore Bk = 0 tells us λ0 > xk−1 and Bk = 1 tells
us λ0 < xk+1. Bk and Bk+1 combined give us the information as shown in Table 2.2.

Bk Bk+1 Position of λ0
1 1 λ0 < xk+1

0 0 λ0 > xk
0 1 xk−1 < λ0 < xk+2

1 0 xk < λ0 < xk+1

Table 2.2: Conditional on Ec, Bk and Bk+1 can provide us with the information as
shown in the table.

Algorithm 1 Binary search to locate λ0

L← 0, U ← G
while U − L > 3 do
k = ⌊(L+ U)/2⌋
Run binary amplitude estimation to get Bk and Bk+1.
switch (Bk, Bk+1)
case (1, 1): U ← k + 1
case (0, 0): L← k
case (0, 1): return k − 1, k + 2
case (1, 0): return k, k + 1

end switch
end while
return L, U
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Using the Table 2.2 we can do the binary search as outlined in Algorithm 1. For
the ℓ-th step in Algorithm 1 we denote the integer variables U and L by Uℓ and Lℓ.
In all four outcomes for (Bk, Bk+1), if the algorithm does not terminate at this step,
then the new Uℓ+1 − Lℓ+1 will be at most (Uℓ − Lℓ)/2 + 1. Since U0 − L0 = G at
the very beginning, we can show inductively Uℓ − Lℓ ≤ (G − 2)/2ℓ + 2. Therefore
when ℓ ≥ log2(G − 2) we have Uℓ − Lℓ ≤ 3. Thus the algorithm must terminate in
⌈log2(G)⌉ = O(log(α/h)) steps. The output we denote by L and U . They satisfy
xL < λ0 < xU and U − L ≤ 3.

If we want the whole procedure to be successful with probability at least 1 − ϑ,
then we need Prob(Ec) ≥ 1− ϑ. Since

Prob(Ec) ≥ (1− δ)⌈log2(G)⌉ ≥ (1− δ)log2(4α/h),

we only need, for small ϑ,

δ ≤ ϑ

2 log2(4α/h)
.

Algorithm 1 enables us to locate λ0 within an interval of length at most 3h. In
total we need to run binary amplitude estimation at most O(log(α/h)) times. Each
amplitude estimation queries PROJ(xk, h/2α, ϵ

′) and UI O((1/γ) log(1/δ)) times,
where ϵ′ = γ/2. Therefore the number of queries to UH and UI are respectively

O
(
α

γh
log
(α
h

)
log

(
1

γ

)
log

(
log(α/h)

ϑ

))
, O

(
1

γ
log
(α
h

)
log

(
log(α/h)

ϑ

))
.

In particular, in the procedure above we did not use (P2) but only used (P1).
Therefore we do not need to assume the presence of a gap. The result can be
summarized into the following theorem:

Theorem 8 (Ground energy). Suppose we have Hamiltonian H =
∑

k λk |ψk⟩ ⟨ψk| ∈
CN×N , where λk ≤ λk+1, given through its (α,m, 0)-block-encoding UH . Also suppose
we have an initial state |ϕ0⟩ prepared by circuit UI , as well as the promise (P1).
Then the ground energy can be estimated to precision h with probability 1 − ϑ with
the following costs:

1. Query complexity: O
(
α
γh

log
(
α
h

)
log
(

1
γ

)
log
(

log(α/h)
ϑ

))
queries to UH and

O
(

1
γ
log
(
α
h

)
log
(

log(α/h)
ϑ

))
queries to UI ,

2. Number of qubits: O(n+m+ log( 1
γ
)),

3. Other one- and two- qubit gates: O
(
mα
γh

log
(
α
h

)
log
(

1
γ

)
log
(

log(α/h)
ϑ

))
.
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The extra O(log(1/γ)) qubits needed come from amplitude estimation, which
uses phase estimation. If we use Kitaev’s original version of phase estimation using
only a single qubit [101], we can reduce the number of extra qubits to O(1). With
Theorem 8 we can then use Algorithm 1 to prepare the ground state without knowing
an upper bound for the ground energy beforehand, when in addition to (P1) we have
a lower bound for the spectral gap:

(P2’) Bound for the spectral gap: λ1 − λ0 ≥ ∆.

We first run Algorithm 1 to locate the ground energy in an interval [xL, xU ] of length
at most ∆. Then we simply apply PROJ((xL + xU)/2,∆/4α, γϵ) to |ϕ0⟩. This will
give us an approximate ground state with at least 1 − ϵ fidelity. Therefore we have
the following corollary:

Corollary 9 (Ground state preparation without a priori bound). Suppose we have
Hamiltonian H =

∑
k λk |ψk⟩ ⟨ψk| ∈ CN×N , where λk ≤ λk+1, given through its

(α,m, 0)-block-encoding UH . Also suppose we have an initial state |ϕ0⟩ prepared by
circuit UI , as well as the promises (P1) and (P2’). Then the ground state can be can
be prepared to fidelity 1− ϵ with probability 1− ϑ with the following costs:

1. Query complexity: O
(

α
γ∆

(
log
(
α
∆

)
log
(

1
γ

)
log
(

log(α/∆)
ϑ

)
+ log

(
1
ϵ

)))
queries

to UH and O
(

1
γ
log
(
α
∆

)
log
(

log(α/∆)
ϑ

))
queries to UI ,

2. Number of qubits: O(n+m+ log( 1
γ
)),

3. Other one- and two- qubit gates: O
(
mα
γ∆

(
log
(
α
∆

)
log
(

1
γ

)
log
(

log(α/∆)
ϑ

)
+ log

(
1
ϵ

)))
.

It may be sometimes desirable to ignore whether the procedure is successful or
not. In this case we will see the output as a mixed state whose density matrix is

ρ = Prob(Ec) |ψ̃0⟩ ⟨ψ̃0|+ ρ′,

where |ψ̃0⟩ is the approximate ground state with fidelity at least 1 − ϵ, which is
produced conditional on the event Ec, and Trρ′ = Prob(E). Then this mixed state
will have a fidelity lower bounded by

⟨ψ0|ρ|ψ0⟩ ≥ Prob(Ec)| ⟨ψ̃0|ψ0⟩ |2 ≥ (1− ϑ)(1− ϵ)2.

If we want to achieve
√
1− ξ fidelity for the mixed state, we can simply let ϑ = ϵ =

ξ/3. Thus the number of queries to UH and UI are Õ( α
γ∆

log(1
ξ
)) and Õ( 1

γ
log( α

∆
) log(1

ξ
))

respectively.
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2.5 Optimality of the query complexities

In this section we prove for the ground state preparation algorithms outlined in
Section 2.3 and Section 2.4 the number of queries to UH and UI are essentially
optimal. We will also show our ground energy estimation algorithm has an nearly
optimal dependence on the precision. We first prove the following complexity lower
bounds:

Theorem 10. Suppose we have a generic Hamiltonian H =
∑

k λk |ψk⟩ ⟨ψk| ∈
CN×N , where λk ≤ λk+1, given through its (α,m, 0)-block-encoding UH , and α =
Θ(1). Also suppose we have an initial state |ϕ0⟩ prepared by circuit UI , as well as the
promises (P1) and (P2). Then the query complexities of preparing the ground state
|ψ0⟩ of H to fidelity at least

√
3/2 satisfy

1. When ∆ = Ω(1), and γ → 0+, the number of queries to UH is Ω(1/γ);

2. When γ = Ω(1), and ∆→ 0+, the number of queries to UH is Ω(1/∆);

3. When ∆ = Ω(1), and γ → 0+, it is not possible to accomplish the above task
using O(1/γ1−θ) queries to UI and O(poly(1/γ)) queries to UH for any θ > 0.

Proof. We prove all three lower bounds by applying the ground state preparation
algorithm to the unstructured search problem. In the unstructured search problem
we try to find a n-bit string t marked out by the oracle

Ut = I − 2 |t⟩ ⟨t| .

It is proved for this problem the number of queries to Ut to find t with probability
1/2 is lower bounded by Ω(

√
N) where N = 2n [31].

This problem can be seen as a ground state preparation problem. We find that
|t⟩ is the ground state of Ut, which is at the same time a unitary and therefore an
(1, 0, 0)-block-encoding of itself. Therefore Ut serves as the UH in the theorem. The
spectral gap is 2. Also, let

|u⟩ = 1√
N

∑

s

|s⟩

be the uniform superposition of all n-strings, then we have ⟨u|t⟩ = 1√
N
, and |u⟩ can

be efficiently prepared by the Hadamard transform since H⊗n |0n⟩ = |u⟩. Therefore
H⊗n serves as the UI described in the theorem.

If the ground state preparation problem can be solved with o(1/γ) queries to UH
for fixed ∆ to produce an approximate ground state with fidelity at least

√
3/2, then

from the above setup we have γ = 1/
√
N , and we can first find the approximate



CHAPTER 2. NEAR-OPTIMAL ALGORITHMS FOR THE GROUND STATE33

ground state and then measure in the computational basis, obtaining t with prob-
ability at least 3/4. Therefore the unstructured search problem can be solved with
o(
√
N) queries to the oracle Ut, which is impossible. Thus we have proved the first

lower bound in our theorem.
To prove the second lower bound we want to create a situation in which the

overlap is bounded from below by a constant but the gap vanishes. We need to
introduce the Grover diffusion operator

D = In − 2 |u⟩ ⟨u| . (2.3)

which can be efficiently implemented. Then we define

H(τ) = (1− τ)D + τUt, (2.4)

and consider H(1/2). Because both span(|u⟩ , |t⟩) and its orthogonal complement are
invariant subspaces of D and Ut, and both operators become the identity operator
when restricted to the orthogonal complement of span(|u⟩ , |t⟩), we only need to look
for the ground state in the 2-dimensional subspace span(|u⟩ , |t⟩). In this subspace,
relative to the basis {|u⟩ , |t⟩}, the matrix representation of H(1/2) is

(
0 −⟨u|t⟩

− ⟨t|u⟩ 0

)
= − 1√

N

(
0 1
1 0

)
.

Therefore the ground state of H(1/2) is

|Ψ⟩ = |u⟩+ |t⟩√
2 + 2√

N

.

and therefore ⟨Ψ|u⟩ = ⟨Ψ|t⟩ = 1/
√
2 +O(1/

√
N) for large N . Furthermore, the gap

is ∆(1/2) = 2/
√
N .

Therefore |t⟩ can be prepared in the following way: we first prepare the ground
state of H(1/2), whose block-encoding is easy to construct using one application of

Ut. The resulting approximate ground state we denote by |Ψ̃⟩. Then we measure |Ψ̃⟩
in the computational basis. If there is some non-vanishing probability of obtaining t
then we can boost the success probability to above 1/2 by repeating the procedure
and verifying using Ut.

If the second lower bound in the theorem does not hold, then |Ψ̃⟩ can be prepared
with o(1/∆(1/2)) = o(

√
N) queries to the block-encoding of H(1/2) and therefore

the same number of queries to Ut. Because the angle corresponding to fidelity is the
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great-circle distance on the unit sphere, we have the triangle inequality (using that

| ⟨Ψ̃|Ψ⟩ | ≥
√
3/2)

arccos | ⟨Ψ̃|t⟩ | ≤ arccos | ⟨Ψ|t⟩ |+ arccos | ⟨Ψ̃|Ψ⟩ | ≤ 5π

12
+O

(
1√
N

)
.

Therefore for large N we have | ⟨Ψ̃|t⟩ | ≥ cos(5π/12) +O(1/
√
N) > 1/4. The prob-

ability of getting t when performing measurement is at least 1/16. Therefore we
can boost the success probability to above 1/2 by O(1) repetitions and verifications.
The total number of queries to Ut is therefore o(

√
N). Again, this is impossible.

Therefore we have proved the second lower bound in our theorem.
For the last lower bound we need to create some trade off between the gap and

the overlap. We consider preparing the ground state of the Hamiltonian H(1/2 −
N−1/2+δ), 0 < δ < 1/6, whose block-encoding can be efficiently constructed with a
single application of Ut, as an intermediate step. It is shown in Appendix 2.9 that
the ground state is

|Φ⟩ = |u⟩+ 1

4
N−δ |t⟩+O(N−2δ). (2.5)

Therefore

γu = | ⟨Φ|u⟩ | = 1 +O(N−2δ), γt = | ⟨Φ|t⟩ | =
1

4
N−δ +O(N−2δ).

Also we show in Appendix 2.9 that the gap is

∆(1/2−N−1/2+δ) = 4N δ−1/2 +O(N−1/2−δ). (2.6)

We first apply the algorithm described in Section 2.3 to prepare the ground
state of H(1/2 − N−1/2+δ) to fidelity 1 − N−2δ/128. Using the overlap γu and the

gap in (2.6), the approximate ground state, denoted by |Φ̃⟩, can be prepared with
O(N1/2−δ log(N)) queries to the block-encoding of H(1/2−N−1/2+δ), and therefore
the same number of queries to Ut.

The overlap between |Φ̃⟩ and |t⟩ can again be bounded using the triangle inequal-
ity

arccos | ⟨Φ̃|t⟩ | ≤ arccos | ⟨Φ|t⟩ |+ arccos | ⟨Φ̃|Φ⟩ |

≤ arccos

(
N−δ

4

)
+ arccos

(
1− N−2δ

128

)
+O(N−2δ)

≤ π

2
− N−δ

4
+

√
2× N−2δ

128
+O(N−2δ)

=
π

2
− N−δ

8
+O(N−2δ).
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Therefore we have

γ̃t = | ⟨Φ̃|t⟩ | ≥
N−δ

8
+O(N−2δ).

If the last lower bound in our theorem does not hold, we can then prepare the
ground state of Ut by using the initial state |Φ̃⟩ only O(1/γ̃1−θt ) times for some θ > 0,
and the number of queries to Ut at this step, i.e. not including the queries used for
preparing |Φ̃⟩, is O(1/γ̃pt ) for some p > 0. Therefore the total number of queries to
Ut is

O
(
N1/2−δ log(N)

γ̃1−θt

+
1

γ̃pt

)
= O(N1/2−δθ log(N) +N δp).

This complexity must be Ω(N1/2) according to the lower bound for unstructured
search problem. Therefore we need δp ≥ 1/2. However we can choose δ to be arbi-
trarily small, and no finite p can satisfy this condition. Hence we have a contradiction.
This proves the last lower bound in our theorem.

When we look at the query complexities of the ground state preparation algo-
rithms in Secs. 2.3 and 2.4, we can use Õ notation to hide the logarithmic factors,
and both algorithms use Õ( α

γ∆
) queries to UH and Õ( 1

γ
) queries to UI when we

want to achieve some fixed fidelity. Given the lower bound in Theorem 10 we can
see the algorithm with a priori bound for ground energy essentially achieves the op-
timal dependence on γ and ∆. The algorithm without a priori bound for ground
energy achieves the same complexity modulo logarithmic factors, while using less
information. This fact guarantees that the dependence is also nearly optimal.

We will then prove the nearly optimal dependence of our ground energy estimation
algorithm on the precision h. We have the following theorem:

Theorem 11. Suppose we have a generic Hamiltonian H =
∑

k λk |ψk⟩ ⟨ψk| ∈
CN×N , where λk ≤ λk+1, given through its (α,m, 0)-block-encoding UH , and α =
Θ(1). Also suppose we have an initial state |ϕ0⟩ prepared by circuit UI , as well as
the promise that | ⟨ϕ0|ψ0⟩ | = Ω(1). Then estimating the ground energy to precision
h requires Ω(1/h) queries to UH .

This time we convert the quantum approximate counting problem, which is closely
related to the unstructured search problem, into an eigenvalue problem. The quan-
tum approximate counting problem is defined in the following way. We are given a
set of n-bit strings S ⊂ {0, 1}n specified by the oracle Uf satisfying

Uf |x⟩ =
{
− |x⟩ x ∈ S,
|x⟩ x /∈ S,



CHAPTER 2. NEAR-OPTIMAL ALGORITHMS FOR THE GROUND STATE36

for any x ∈ {0, 1}n. We want to estimate the size |S|/N up to relative error ϵ. It

has been proven that this requires Ω
(

1
ϵ

√
N
|S|

)
queries to Uf for |S| = o(N) [125,

Theorem 1.13], where N = 2n, for the success probability to be greater than 3/4,
and this lower bound can be achieved using amplitude estimation [42].

We convert this problem into an eigenvalue problem of a block-encoded Hamilto-
nian. Let |u⟩ be the uniform superposition of the computational basis and D be the
Grover diffusion operator defined in (2.3). Then define the following (n + 1)-qubit
unitary (H is the Hadamard gate)

UH = (H⊗ In)[|0⟩ ⟨0| ⊗D − |1⟩ ⟨1| ⊗ (UfDUf )](H⊗ In),

which can be implemented using two applications of controlled-Uf . We define

H = (⟨0| ⊗ In)UH(|0⟩ ⊗ In) =
1

2
(D − UfDUf ).

Note that here H is given in its (1, 1, 0)-block-encoding UH . Let

|u⟩ = a |u0⟩+
√
1− a2 |u1⟩

where the unit vectors |u0⟩ and |u1⟩ satisfy

Uf |u0⟩ = − |u0⟩ , Uf |u1⟩ = |u1⟩ ,

then we find a =
√
|S|/N . We only need to estimate the value of a to precision

O(ϵ′
√
N/|S|) in order to estimate |S|/N to precision ϵ′.

We analyze the eigenvalues and eigenvectors ofH. It can be verified that {|u0⟩ , |u1⟩}
span an invariant subspace of H, and relative to this orthonormal basis H is repre-
sented by the matrix (

0 −2a
√
1− a2

−2a
√
1− a2 0

)
.

In the orthogonal complement of this subspace, H is simply the zero matrix. There-
fore H has only two non-zero eigenvalues ±2a

√
1− a2 corresponding to eigenvectors

|ψ∓⟩ =
1√
2
(|u0⟩ ∓ |u1⟩).

The ground state of H is therefore |ψ+⟩ with ground energy −2a
√
1− a2. We can

use |u⟩ as the initial state, with an overlap ⟨ψ+|u⟩ = 1√
2
(a+

√
1− a2) ≥ 1√

2
.

We use this Hamiltonian to prove Theorem 11:
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Proof. Assume toward contradiction that there exists an algorithm that estimates
the ground energy to precision h using only o(1/h) queries to UH . Then we use
this algorithm to estimate the ground energy of the block-encoded Hamiltonian con-
structed above, for a = o(1), which means |S| = o(N). Estimating 2a

√
1− a2 to

precision O(h) enables us to estimate a to precision O(h). Setting h = ϵ′
√
N/|S|,

then this algorithm can estimate |S|/N to precision ϵ′, with success probability at
least 3/4. Since we are interested in the relative error we set ϵ′ = ϵ|S|/N . Therefore

the whole procedure uses only o(1/h) = o(1
ϵ

√
N
|S|) queries to UH and therefore twice

the amount of queries to Uf . This contradicts the lower bound for the approximate
counting problem in [125].

Remark 12. Theorem 11 can also be viewed as a consequence of the optimality of
the quantum phase estimation algorithm [37]. If instead of the block-encoding UH we
have e−iτH as the oracle for some τ such that |τ |∥H∥ ≤ π, then even when given
the exact ground state of H, [37, Lemma 3] gives a query complexity lower bound
Ω(1/h) for estimating the ground energy to within additive error h. This provides
a different proof of the above theorem, since e−iτH and the block-encoding of H are
interconvertible: one can efficiently implement e−iτH via Hamiltonian simulation
starting from a block-encoding of H [114], and can efficiently obtain a block-encoding
of H by querying e−iτH according to [85, Corollary 71].

2.6 Low-energy state preparation

It is known that estimating the spectral gap ∆ is a difficult task [10, 66, 30]. Our
algorithm for finding ground energy, as discussed in Theorem 8, does not depend on
knowing the spectral gap. However both of our algorithms for preparing the ground
state in Theorem 6 and Corollary 9 require a lower bound of the spectral gap. We
would like to point out that if we only want to produce a low-energy state |ψ⟩,
making ⟨ψ|H|ψ⟩ ≤ µ for some µ > λ0, as in [134], then this can be done without
any knowledge of the spectral gap. In fact this is even possible for when the ground
state is degenerate.

To do this, we need to first assume we have a normalized initial state |ϕ0⟩ with
non-trivial overlap with the low-energy eigen-subspaces. Quantitatively this means
for some γ, δ > 0, if we expand the initial state in the eigenbasis of H, obtaining
|ϕ0⟩ =

∑
k αk |ψk⟩, then

∑
k:λk≤µ−3δ |αk|2 ≥ γ2. Then we can use the block-encoded

projection operator in (2.2) to get

|ψ′⟩ = (⟨0m+3| ⊗ I)PROJ(µ− 2δ, δ, ϵ′)(|0m+3⟩ ⊗ |ϕ0⟩),
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for some precision ϵ′. Now we expand |ψ′⟩ in the eigenbasis to get |ψ′⟩ =∑k βk |ψk⟩,
and denote |φ′⟩ = ∑

k:λk<µ−δ βk |ψk⟩. We then have, because of the approximation
to the sign function,

∥ |ψ′⟩ − |φ′⟩ ∥ ≤ ϵ′

2
, ⟨φ′|φ′⟩ ≥ γ2(1− ϵ′

2
)2, ⟨φ′|H|φ′⟩ ≤ (µ− δ) ⟨φ′|φ′⟩ .

From the above bounds we further get

⟨ψ′|H|ψ′⟩
⟨ψ′|ψ′⟩ ≤

⟨φ′|H|φ′⟩+ ∥H∥ϵ′ + ∥H∥ϵ′2/4
⟨φ′|φ′⟩ − ϵ′ ≤

µ− δ + αϵ′+αϵ′2/4
γ2(1−ϵ′/2)2

1− ϵ′

γ2(1−ϵ′/2)2
.

Now denoting |ψ⟩ = |ψ′⟩ /∥ |ψ′⟩ ∥ we can make ⟨ψ|H|ψ⟩ ≤ µ by choosing ϵ′ =
O(γ2δ/α). Therefore the total number of queries to UH required is O( 1

δγ
log( α

δγ
))

and the number of queries to UI is O( 1γ ).
From this we can see that if the initial state |ϕ0⟩ has a overlap with the the

ground state that is at least γ, and we want to prepare a state with energy upper
bounded by λ0 + δ, the required number of queries to UH and UI are O( 1

δγ
log( α

δγ
))

and O( 1
γ
) respectively. If we do not know the ground energy beforehand we can use

the algorithm in Theorem 8 to estimate it first. Note that none of these procedures
assumes a spectral gap.

2.7 Discussions

In this work we proposed an algorithm to prepare the ground state of a given Hamil-
tonian when a ground energy upper bound is known (Theorem 6), an algorithm to
estimate the ground energy based on binary search (Theorem 8), and combining
these two to get an algorithm to prepare the ground state without knowing an up-
per bound a priori (Corollary 9). By solving the unstructured search problem and
the approximate counting problem through preparing the ground state, we proved
that the query complexities for the tasks above cannot be substantially improved, as
otherwise the complexity lower bound for the two problems would be violated.

All our algorithms are based on the availability of the block-encoding of the tar-
get Hamiltonian. This is a non-trivial task but we know it can be done for many
important settings. For example, Childs et al. proposed an LCU approach to block-
encode the Hamiltonian of a quantum spin system [58], in which the Hamiltonian
is decomposed into a sum of Pauli matrices. In [116], Low and Wiebe outlined the
methods to construct block-encoding of Hubbard Hamiltonian with long-range in-
teraction, and of quantum chemistry Hamiltonian in plane-wave basis, both using
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fast-fermionic Fourier transform (FFFT) [28]. The FFFT can be replaced by a series
of Givens rotations which gives lower circuit depth and better utilizes limited connec-
tivity [104, 98]. Any sparse Hamiltonian whose entries can be efficiently computed
can also be block-encoded using a quantum walk operator [33, 34, 59].

We remark that the quantum circuit used in our method for ground energy es-
timation can be further simplified. The main obstacle to applying this method to
near-term devices is the need of amplitude estimation, which requires phase esti-
mation. It is possible to replace amplitude estimation by estimating the success
probability classically. In the context of binary amplitude estimation in Lemma 7,
we need to determine whether the success amplitude is greater than 3γ/4 or smaller
than γ/4. This can be turned into a classical hypothesis testing to determine whether
the success probability is greater than 9γ2/16 or smaller than γ2/16. A simple Cher-
noff bound argument tells us that we need O(log(1/ϑ)/γ2) samples to distinguish the
two cases with success probability at least 1 − ϑ, as opposed to the O(log(1/ϑ)/γ)
complexity in amplitude estimation.

In this approach, the only quantum circuit we need to use is the one in (2.2).
The circuit depth is therefore only O((α/h) log(1/γ)). It also does not require the
O(log(1/γ)) qubits that are introduced as a result of using amplitude estimation.
These features make it suitable for near-to-intermediate term devices.

In [112] we proposed an eigenstate filtering method (similar in spirit to the method
proposed in Section 2.3), and we combined it with quantum Zeno effect [57, 39] to
solve the quantum linear system problem. The resulting algorithm utilizes the fact
that the desired eigenstate along the eigenpath always corresponds to the eigenvalue
0. In the setting of quantum Zeno effect based state preparation, in which we have
a series of Hamiltonians and wish to incrementally prepare the ground state of each
of them, our algorithm in Theorem 6 can be used to go from the ground state of
one Hamiltonian to the next one, provided that we have a known upper bound for
the ground energy. In the absence of such an upper bound, there is the possibility
of using the algorithm in Corollary 9 to solve this problem. However in this setting
we only want to use the initial state once for every Hamiltonian, since preparing the
initial state involves going through the ground state of all previous Hamiltonians.
This presents a challenge and is a topic for our future work.

It is worth pointing out that none of the Hamiltonians used in the proofs of lower
bounds in Section 2.5 is a local Hamiltonian, and therefore our lower bounds do not
rule out the possibility that if special properties such as locality are properly taken
into consideration, better complexities can be achieved.
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2.8 An example of block-encoding and

constructing the reflector

In this section we use σx, σy, and σz to denote the three Pauli matrices. We use
H to denote the Hadamard gate. We consider a single-qubit illustrative example of
block-encoded matrix and obtain the corresponding reflector through QSP.

The matrix we consider is

H(a) = aσx + (1− a)I,

for 0 ≤ a ≤ 1. Its block-encoding can be using the following circuit

V (a) V †(a)

σx

where

V (a) =

( √
a −

√
1− a√

1− a √
a

)
.

We denote the above circuit by UH(a). This is a (α,m, 0)-block-encoding of H(a)
where α = 1 and m = 1, since we can readily check that

(⟨0| ⊗ I)UH(a)(|0⟩ ⊗ I) = H(a).

The eigendecomposition of H(a) is

H(a) = |+⟩ ⟨+|+ (1− 2a) |−⟩ ⟨−| ,

with eigenvalues λ+(a) = 1, λ−(a) = 1− 2a. Our goal is to implement the reflector

R<0(a) = −sign(H(a)) = − |+⟩ ⟨+| − sign(1− 2a) |−⟩ ⟨−| .

To do this we need an odd polynomial S(x; δ, ϵ) introduced in Lemma 3. Instead of
the construction done in Ref. [115] we use the Remez algorithm [138] to obtain this
polynomial. We choose δ = 0.2 and the L∞ error of the residual is required to be
less than 10−4, i.e. ϵ ≤ 10−4.

Given the polynomial S(x; δ, ϵ), using the optimization method proposed in Ref. [70],
we find a polynomial P (x) ∈ C[x] of odd degree d such that

max
x∈[−1,1]

|ReP (x)− S(x; δ, ϵ)| ≤ ϵ′,
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|0⟩ H e−iφdσz e−iφd−1σz · · · e−iφ0σz H

|0m⟩
UH(a) U †

H(a)
· · ·

UH(a)
|ψ⟩ · · ·

Figure 2.1: The circuit implementing the polynomial eigenvalue transformation
through QSP for an odd polynomial with phase factors {φj}dj=0. H is the Hadamard
gate and σz is the Pauli-Z gate.

where P (x) is characterized by a sequence of phase factors {φj}dj=0 satisfying

(
P (x) ·
· ·

)
= eiφ0σz

d∏

j=1

[R(x)eiφjσz ], (2.7)

where

R(x) =

(
x

√
1− x2√

1− x2 −x

)
.

The existence of the phase factors is guaranteed by [86, Theorem 5]. Ref. [70] uses
quasi-Newton method to solve a least squares problem to obtain these phase factors,
and we terminate the iteration only when L∞ error of the residual of the real part is
smaller than ϵ′ = 10−4.

The circuit in Figure 2.1 with phase factors {φj}dj=0 implements the transforma-
tion H/α 7→ ReP (H/α) ≈ S(H/α; δ, ϵ). The various components of this circuit are
explained in detail in [86, Figure 3]. An important component of this circuit is

e−iφσz

where the first register has one qubit, the second register has m-qubits, and the
open bullet indicates control-on-zero for multiple control qubits. This component
implements the operator

|0⟩ ⟨0| ⊗ (eiφ(2|0
m⟩⟨0m|−I)) + |1⟩ ⟨1| ⊗ (e−iφ(2|0

m⟩⟨0m|−I)).

For a detailed discussion see [86, Corollary 11].
Using the above circuit, Lemma 5 guarantees that when the eigenvalues of H(a)

are contained in [−1,−δ] ∪ [δ, 1], we will have a good approximation of R<0(a).
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Figure 2.2: The error of implementing R<0(a) for a ∈ [0, 1] using QSP, with poly-
nomial S(x; δ, ϵ) where δ = 0.2 and ϵ is of the order of 10−4. The vertical axis uses
logarithmic scale.

However when at least one eigenvalue, which in our case can only be λ−(a) = 1−2a,
is in (−δ, δ), or in other words when a ∈ (0.4, 0.6), there is no such guarantee. We
plot the operator norm error between the approximate reflector obtained through
QSP and the exact reflector R<0(a) in Figure 2.2. It can be seen in the figure that
the error is smaller than 10−4 everywhere except for a ∈ (0.4, 0.6), where the error
spikes.

2.9 Gap and overlap in the unstructured search

problem

In this appendix we compute the spectral gap of the Hamiltonian H(1/2−N−1/2+δ)
for H(τ) defined in (2.4), 0 < δ < 1/6, and the overlap between its ground state and
|u⟩ and |t⟩ defined in Section 2.5.

The first thing we should realize is that we only need to care about the subspace
of the Hilbert space spanned by |u⟩ and |t⟩. In the orthogonal complement of this
subspace H(τ) is simple a multiple of identity. In this subspace, with respect to the
non-orthogonal basis {|u⟩ , |t⟩}, the operator H(1/2−N−1/2+δ) is represented by the
following matrix

N δ−1/2

(
−2 −(N−δ + 2N−1/2)

−(N−δ − 2N−1/2) 2

)
. (2.8)
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Direct calculation shows the eigenvalues are

λ± = ±N δ−1/2
√

4 +N−2δ − 4N−1 = ±N δ−1/2(2 +
1

4
N−2δ +O(N−4δ)).

Thus we obtain the spectral gap in (2.6). To simplify notation we let λ̃ = N1/2−δλ+.
We then compute the ground state. We first find an eigenvector corresponding to
λ−

|χ⟩ = N δ((N−δ + 2N−1/2) |u⟩+ (−2 + λ̃) |t⟩)

= (1 + 2N δ−1/2) |u⟩+ (
1

4
N−δ +O(N−3δ)) |t⟩

= |u⟩+ 1

4
N−δ |t⟩+O(N δ−1/2).

We still need to normalize |χ⟩. The normalization factor is

∥ |χ⟩ ∥ =
√

(1 + 2N δ−1/2)2 + (
1

4
N−δ +O(N−3δ))2 +

2√
N
(1 + 2N δ−1/2)(

1

4
N−δ +O(N−3δ))

= 1 +O(N−2δ).

Note that the third term under the square root comes from the overlap between |u⟩
and |t⟩, and it does not play an important role asymptotically. Therefore normalizing
we have the expression for the normalized eigenstate (2.5).
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Chapter 3

Quantum algorithms for the early
fault-tolerant setting

Under suitable assumptions, the quantum phase estimation (QPE) algorithm is able
to achieve Heisenberg-limited precision scaling in estimating the ground state en-
ergy. However, QPE requires a large number of ancilla qubits and large circuit
depth, as well as the ability to perform inverse quantum Fourier transform, making
it expensive to implement on an early fault-tolerant quantum computer. We propose
an alternative method to estimate the ground state energy of a Hamiltonian with
Heisenberg-limited precision scaling, which employs a simple quantum circuit with
one ancilla qubit, and a classical post-processing procedure. Besides the ground state
energy, our algorithm also produces an approximate cumulative distribution function
of the spectral measure, which can be used to compute other spectral properties of
the Hamiltonian.

3.1 Introduction

Estimating the ground state energy of a quantum Hamiltonian is of immense impor-
tance in condensed matter physics, quantum chemistry, and quantum information.
The problem can be described as follows: we have a Hamiltonian H, acting on n
qubits, with the eigendecomposition

H =
K−1∑

k=0

λkΠk,

where Πk is the projection operator into the λk-eigensubspace, and λk’s are increas-
ingly ordered. Each eigenvalue may be degenerate, i.e. the rank of Πk can be more
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than one. We assume we can access the Hamiltonian H through the time evolution
operator e−iτH for some fixed τ . Our goal is to estimate the ground state energy λ0
to within additive error ϵ.

Some assumptions are needed as otherwise this problem is QMA-hard [102, 100,
130, 6]. We assume we are given a state described by its density matrix ρ. Let
pk = Tr[ρΠk]. Then if p0 (i.e. the overlap between the initial state and the ground
state) is reasonably large we can solve the ground state energy estimation problem
efficiently. This assumption is reasonable in many practical settings. For example, in
quantum chemistry, the Hartree-Fock method usually yields an approximate ground
state that is easy to prepare on a quantum computer. At least for relatively small
molecular systems, the Hartree-Fock state can often have a large overlap with the
exact ground state [165]. Therefore we may use the Hartree-Fock solution as ρ in
this setting. Other candidates of ρ that can be relatively easily prepared on quantum
computers have been discussed in Refs. [25, 155, 165], and an overview of methods
to choose ρ can be found in [119, Section V.A.2].

The computational complexity of this task depends on the desired precision ϵ.
Even in the ideal case where the exact ground state is given, this dependence cannot
be better than linear in ϵ−1 for generic Hamiltonians [24]. This limit is called the
Heisenberg limit [88, 87, 182, 181] in quantum metrology. This notion is closely
related to the time energy uncertainty principle [7, 8, 54, 24]. This optimal scaling
can be achieved using the quantum phase estimation (QPE) algorithm [101], which
we will discuss in detail later.

Much work has been done to develop the algorithms for ground state energy
estimation both for near-term quantum devices [133, 120, 129, 96], and fully fault-
tolerant quantum computers [3, 134, 81, 111]. Relatively little work has been done
for early fault-tolerant quantum computers [47, 27, 41, 108] , which we expect to
be able to accomplish much more complicated tasks than current and near-term
devices, but still place significant limitations on the suitable algorithms. Refs. [103,
47] carried out careful resource cost estimation of performing QPE for the Hubbard
model using surface code to perform quantum error correction. These are to our
best knowledge the only works that addressed ground state energy estimation in the
context of early fault-tolerant quantum computers.

To be specific, we expect such early fault-tolerant quantum computers to have
the following characteristics: (1) The number of logical qubits are limited. (2) It is
undesirable to have a large number of controlled operations. (3) It is a priority to
reduce the circuit depth, e.g. it is better to run a circuit of depth O(D) for O(M)
times than to run a circuit of depth O(DM) for a constant number of times, even if
using the shorter circuit entails some additional poly-logarithmic factors in the total
runtime.
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In this context, the textbook version of QPE (see e.g. Refs. [62, 126]), which
uses multiple ancilla qubits to store the phase and relies on inverse quantum Fourier
transform (QFT), has features that are not desirable on early fault-tolerant quantum
computers. Some variants of QPE have been developed to achieve high confidence
level [105, 135, 124], which can be important in many applications. However, such
modifications require even more ancilla qubits to store multiple estimates of the
phase and an additional coherent circuit to take perform logical operations. Another
possible way to achieve high confidence level is to utilize a resource state ([26, Section
II B]) to implement a Kaiser window filter [145]. This approach requires the same
number of ancilla qubits as the textbook version of QPE.

Due to the above considerations, we focus on the variants of QPE that use only
very few ancilla qubits (in fact, all algorithms below use only one ancilla qubit).
Kitaev’s algorithm (see e.g. [102]) uses a simple quantum circuit with one control
qubit to determine each bit of the phase individually. However this method, together
with many other algorithms based on it [167, 170], are designed for phase estimation
with an eigenstate given exactly, which is different from our goal. The semi-classical
Fourier transform [89] can simulate QFT+measurement (meaning all qubits are mea-
sured in the end) with only one-qubit gates, classical control and post-processing,
thus trading the expensive quantum resource for inexpensive classical operations.
One can replace the inverse QFT with the semi-classical Fourier transform, and this
results in a phase estimation algorithm that uses only one ancilla qubit [95, 32].
This approach can be seen as a simulation of the multiple-ancilla qubit version of
QPE, and is therefore applicable to the case when ρ is not exactly the ground state.
Because of these attractive features this is the version of QPE used in Refs. [103, 47].
However, as we will explain below in section 3.1, this type of QPE requires running
coherent time evolution for time O(p−1

0 ϵ−1). This leads to large circuit depth when
p0 is small. Moreover, this approach cannot be used together with the resource state
discussed earlier because the resource state is not a product state.

In this work, the complexity is measured by the time for which we need to perform
time evolution with the target Hamiltonian H. We will use two metrics: (1) the
maximal evolution time, which is the maximum length of time for which we need
to perform (controlled) coherent time evolution, and (2) the total evolution time,
which is the sum of all the lengths of time we need to perform (controlled) coherent
time evolution. They describe respectively the circuit depth and the total runtime.
Moreover, we will be primarily concerned with how they depend on the initial overlap
p0 and the precision ϵ. The dependence on the system size n mainly comes indirectly
through p0 and the conversion between the total evolution time and runtime, which
we will discuss in more detail later. We present an algorithm that achieves the
following goals:
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(1) Achieves Heisenberg-limited precision scaling, i.e. the total time for which we

run time evolution is Õ(ϵ−1poly(p−1
0 ));

(2) Uses at most one ancilla qubit;

(3) The maximal evolution time is at most O(ϵ−1polylog(ϵ−1p−1
0 )).

To our best knowledge our algorithm is the first to satisfy all three requirements.
In our algorithm, we sample from a simple quantum circuit, and use the samples to
approximately reconstruct the cumulative distribution function (CDF) of the spec-
tral measure associated with the Hamiltonian. We then use classical post-processing
to estimate the ground state energy with high confidence. Besides the ground state
energy, our algorithm also produces the approximate CDF, which may be of indepen-
dent interest. In the discussion above we assumed the controlled time evolution can
be efficiently done. If controlled time evolution is costly to implement, then based
on ideas in Refs. [96, 142, 118, 127], we offer an alternative circuit in Appendix 3.11
which uses two ancilla qubits, with some additional assumptions.

The problem of ground state energy estimation is closely related to that of ground
state preparation, but there are important differences. First, having access to a good
initial state ρ (with large overlap with the ground state) does not make the energy
estimation a trivial task, as even if we have access to the exact ground state the
quantum resources required to perform phase estimation can still be significant.
Second, ground state energy estimation algorithms do not necessarily involve ground
state preparation. This is true for the algorithm in this work as well as in Refs. [81,
111]. Consequently, even though the ground state preparation algorithms generally
have a runtime that depends on the spectral gap between the two lowest eigenvalues
of the Hamiltonian, the cost of ground state energy estimation algorithms may not
necessarily depend on the spectral gap.

We remark that although we characterize the scaling as depending on the overlap
p0, in practice we need to know a lower bound of p0, which we denote by η. The
dependence on p0 should more accurately be replaced by a dependence on η. To
our best knowledge, in order to obtain rigorous guarantee of the performance, the
knowledge of η (and that η is not too small) is needed in all previous algorithms
related to QPE. This is because in QPE we need the knowledge of η to obtain a
stopping criterion. We will briefly explain this using a simple example. Suppose we
have a Hamiltonian H on n qubits with eigenvalues λk (arranged in ascending order),
and eigenstates |ψk⟩, and |ϕ0⟩ is an initial guess for the ground state. Furthermore
we assume p0 = | ⟨ϕ0|ψ0⟩ |2 = 0.01, p1 = | ⟨ϕ0|ψ1⟩ |2 = 0.5. We may idealize QPE as
exact energy measurement to simplify discussion. If we have no a priori knowledge
of p0, then performing QPE on the state |ϕ0⟩ will give us λ1 with probability 1/2. If
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we repeat this ≲ 100 times most likely all energies we get will be ≥ λ1. Only when
we measure ≳ 100 times can we reach the correct ground state energy λ0. Hence
if we do not know about a lower bound of p0, we can never know whether we have
stopped the algorithm prematurely.

The main idea of our algorithm is to use a binary search procedure to gradually
narrow down the interval in which the ground state energy is located. The key
component is a subroutine CERTIFY (Algorithm 3) that distinguishes whether the
ground state energy is approximately to the left or right of some given value. This,
however, can only be perform up to certain precision, and can fail with non-zero
probability. Therefore our search algorithm needs to account for this fuzzy outcome
to produce a final result that is correct with probability arbitrarily close to 1. In
the CERTIFY procedure, we use a stochastic method to evaluate the cumulative
distribution function associated with the spectral density, and this is the key to
achieving the Heisenberg scaling. This stochastic method is described in detail in
Section 3.3.

Related works

We first briefly analyze the cost of the textbook version of QPE using multiple
ancilla qubits. Although this method has features that are not desirable on early
fault-tolerant quantum computers, this analysis will nevertheless be helpful for un-
derstanding the cost of other variants of QPE. For simplicity we assume ρ = |ϕ⟩ ⟨ϕ| is
a pure state, and the ground state |ψ0⟩ is non-degenerate. Approximately, the QPE
performs a projective measurement in the eigenbasis of H. With probability p0, |ϕ⟩
will collapse to the ground state |ψ0⟩. If this happens the energy register will then
give the ground state energy λ0 to precision ϵ. Therefore we run phase estimation for
a total of O(p−1

0 ) times, and take the instance with the minimum value in the energy
register. With high probability this value will be close to λ0. Each single run takes
time O(ϵ−1). The total runtime cost is therefore O(p−1

0 ϵ−1). For simplicity here we
do not consider the runtime needed to prepare |ϕ⟩.

The above analysis, however, is overly optimistic. Since we need to repeat the
phase estimation procedure for a total of O(p−1

0 ) times, for an event that only has
O(p0) probability of happening in a single run, the probability of this event occurring
at least once in the total O(p−1

0 ) repetitions is now O(1) (which means we cannot
ensure that the error happens with sufficient low probability). In our setting, suppose
the maximal evolution time is T , then each time we measure the energy register there
is a O(T−1ϵ′−1) probability that the output will be smaller than λ0− ϵ′. If we choose
T = O(ϵ−1) as discussed above, and we let ϵ′ = ϵ/p0, then the probability of the
minimum of the O(p−1

0 ) energy register measurement outputs being smaller than
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Figure 3.1: Comparing the performance of the textbook version QPE (blue dashed-
dotted line) and the method in this work (red solid line) in ground state energy
estimation with a fixed maximal evolution time (300 steps of time evolution with H)
and decreasing initial overlap p0. The results are benchmarked against QPE with
maximal evolution time proportional to p−1

0 (green dashed line). To use QPE, either
with fixed or O(p−1

0 ) maximal evolution time, to estimate the ground state energy, we
run QPE for O(p−1

0 ) times and take the minimum in energy measurement outcomes
as the ground state energy estimate. The error is averaged over multiple runs, and
the failure rate is the percentage of runs that yield an estimate with error larger
than the tolerance 0.04. The Hamiltonian H is the Hubbard Hamiltonian defined in
Eq. (3.40) with U = 10, and the overlap p0 is artificially tuned.

λ0 − ϵ/p0 is only upper bounded by O(1), and we can no longer control over the
probability of the error being larger than ϵ. This means there might be a high
probability that the error of the ground state energy in the end will be of order
ϵ/p0 instead of ϵ. For a more formal analysis see [81, Appendix A]. We numerically
demonstrate that this is indeed the case in Figure 3.1, in which we show the error
increases as p0 decreases and there is a larger probability of the estimate deviating
beyond a prescribed tolerance if the maximal evolution time, or equivalently the
circuit depth, for QPE is fixed.

To avoid this, one can instead choose the maximal evolution time to be T =
O(p−1

0 ϵ−1). After repeatingO(p−1
0 ) times, the total runtime then becomesO(p−2

0 ϵ−1).
The increase in maximal evolution time can prevent the increase of error (see Fig-
ure 3.1). However, the extra p−1

0 factor increases the circuit depth and is undesirable.
There are several other algorithms based on phase estimation using a single an-

cilla qubit [167, 170, 128] that are designed for different settings from ours: they
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assume the availability of an exact eigenstate, or are designed for obtaining the en-
tire spectrum and thus only work for small systems. Ref. [148] proposes a method
for estimating the eigenvalues by first estimating Tr[ρe−itH ] and then performing a
classical Fourier transform, but no runtime scaling is provided. The semi-classical
Fourier transform [89] simulates the QFT in a classical manner, and the QPE us-
ing single ancilla qubit and semi-classical Fourier transform has the same scaling in
terms of the maximal evolution time and the total evolution time.

In order to improve the dependence on p0, we may use the high-confidence versions
of the phase estimation algorithm [105, 135, 124]. In this method, the maximal
evolution time required can be reduced toO(ϵ−1 log(p−1

0 )), through taking the median
of several copies of the energy register in a coherent manner. However, this requires
using multiple copies of the energy register, together with an additional quantum
circuit to compute the medians coherently that can be difficult to implement. Note
that semi-classical Fourier transform can only simulate the measurement outcome
and does not preserve coherence, and therefore to our knowledge, the high-confidence
version of phase estimation cannot be modified to use only a single qubit. In Ref. [81],
the authors used a method called minimum label finding to improve the runtime
to O(p−3/2

0 ϵ−1), but the implementation of the minimum label finding with limited
quantum resources is again difficult.

Besides these algorithms based on phase estimation, several other algorithms
have been developed to solve the ground state energy problem. Ref. [81] proposed a
method based on the linear combination of unitaries (LCU) technique that requires

running time evolution for duration Õ(p−1/2
0 ϵ−3/2) and preparing the initial state

Õ(p−1/2
0 ϵ−1/2) times.1 Assuming the Hamiltonian H is available in its block-encoding

[114, 49], Ref. [111] uses quantum signal processing [115, 86] with a binary search

procedure, which queries the block-encoding Õ(p−1/2
0 ϵ−1) times and prepares the

initial state Õ(p−1/2
0 log(ϵ−1)) times. To our knowledge, this is the best complexity

that has been achieved. However the block-encoding of a quantum Hamiltonian of
interest, LCU, and amplitude estimation techniques (used in [111]) are expensive in
terms of the number of ancilla qubits, controlled operations, and logical operations
needed.

A very different type of algorithms for ground state energy estimation is the vari-
ational quantum eigensolver (VQE) [133, 120, 129], which are near-term algorithms
and have been demonstrated on real quantum computers. The accuracy of VQE is
limited both by the representation power of the variational ansatz, and the capabil-
ities of classical optimization algorithms for the associated non-convex optimization

1In this paper we use the following asymptotic notations besides the usual O notation: we write
f = Ω(g) if g = O(f); f = Θ(g) if f = O(g) and g = O(f); f = Õ(g) if f = O(g polylog(g)).
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problem. Hence unlike aforementioned algorithms, there is no provable performance
guarantees for VQE-type methods. In fact some recent results show solving the non-
convex optimization problem can be NP-hard [38]. Furthermore, each evaluation of
the energy expectation value to precision ϵ requires O(ϵ−2) samples due to Monte
Carlo sampling. This can to some extent be remedied using the methods in [105,
167] at the expense of larger circuit depth requirement.

There are also a few options that can be viewed to be in-between VQE and QPE.
The quantum imaginary time evolution (QITE) algorithm [122] uses state tomog-
raphy turning an imaginary time evolution into a series of real time Hamiltonian
evolution problem. Inspired by the classical Krylov subspace method, Refs. [151,
132, 96] propose to solve the ground state energy problem by restricting the Hilbert
space to a low dimension space spanned by some eigenstates that are accessible with
time evolution. Similar to VQE, no provable complexity upper bound is known for
these algorithms, and all algorithms suffer from the ϵ−2 scaling due to the Monte
Carlo sampling. In fact, the stability of these algorithms remains unclear in the
presence of sampling errors.

A more ambitious goal than ground state energy estimation is to estimate the
distribution of all eigenvalues weighted by a given initial state ρ [73, 128, 149].
Using a quantum circuit similar to that in Kitaev’s algorithm as well as classical
post-processing, Ref. [149] proposed an algorithm to solve the quantum eigenvalue
estimation problem (QEEP). We henceforth refer to this algorithm as the quantum
eigenvalue estimation algorithm (QEEA). Suppose ∥H∥ ≤ 1/2, and the interval
[−π, π] is divided into M bins of equal size denoted by Bj = [−1/2 + j/M,−1/2 +
(j+1)/M ]. Then QEEA estimates the quantities qj =

∑
k:λk∈Bj

pk. Although QEEA
was not designed for ground state energy estimation, one can use this algorithm to
find the leftmost bin in which qj ≥ p0/2, and thereby locate the ground state energy
within a bin of size M−1. While the maximal evolution time required scales as
O(ϵ−1), the total evolution time of the original QEEA scales as O(ϵ−6). We analyze
the cost of QEEA in Appendix 3.9, and show that the total runtime can be reduced
to O(ϵ−4) for the ground state energy estimation in a straightforward way, yet this
is still costly if high precision is required.

To the extent of our knowledge, none of the existing algorithms achieves all three
goals listed on Page 46. Some can have better maximal evolution time or total
evolution time requirement, but the advantage always comes at the expense of some
other aspects. In Table 3.1 we list the quantum algorithms discussed in this work
and whether they satisfy each of the requirements.

In Table 3.2, we compare the maximal evolution time, the number of repetitions
(the number of times we need to run the quantum circuit), and the total evolution
time needed, using the three qubit-efficient methods that require only one ancilla
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Algorithms
Requirements

Other issues
(1) (2) (3)

QPE (textbook version) [62, 126] ✓ ✗ ✗

QPE (high-confidence) [105, 135,
124]

✓ ✗ ✓

QPE (semi-classical QFT) [95,
32]

✓ ✓ ✗

QPE (iterative) [102] ✓ ✓ ✓ Needs exact eigenstate (p0 = 1)

The LCU approach [81] ✗ ✗ ✗

The binary search approach [111] ✓ ✗ ✗

VQE [133, 120, 129] ✗ ✓ ? No precision guarantee

QITE [122] ✗ ✓ ? Requires state tomography

QEEA [149] ✗ ✓ ✓

Krylov subspace methods [151,
132, 96]

✗ ✓ ? No precision guarantee

This work ✓ ✓ ✓

Table 3.1: Quantum algorithms for estimating the ground state energy and whether
they satisfy each of the three requirements on Page 46. We recall that the re-
quirements are (1) achieving the Heisenberg-limited precision scaling, (2) using
at most one ancilla qubit, and (3) the maximal evolution time being at most
O(ϵ−1polylog(ϵ−1p−1

0 )).

qubit.
Finally, in a gate-based setting, the exact relations between the maximal evolution

time and the circuit depth, and between the total evolution time and the total
runtime, can be affected by the method we use to perform time evolution. Suppose
we have access to a unitary circuit that performs e−iτH exactly for some fixed τ . Then
in order to run coherent time evolution for time T we only need to use a circuit of
depth O(T ). Therefore the circuit depth scales linearly with respect to the maximal
evolution time. Similarly the total runtime scales linearly with respect to the total
evolution time.
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Max evolution time Repetitions Total evolution time

This work (Corol-
lary 15)

Õ(ϵ−1polylog(p−1
0 )) Õ(p−2

0 polylog(ϵ−1)) Õ(ϵ−1p−2
0 )

QPE with semi-
classical Fourier
transform

Õ(ϵ−1p−1
0 ) Õ(p−1

0 polylog(ϵ−1)) Õ(ϵ−1p−2
0 )

QEEA [149] Õ(ϵ−1polylog(p−1
0 )) Õ(ϵ−3p−2

0 ) Õ(ϵ−4p−2
0 )

Table 3.2: Comparison of the maximal evolution time, the number of repetitions
(the number of times we need to run the quantum circuit), and the total evolution
time needed for estimating the ground state energy to within error ϵ, using the three
methods that require only one ancilla qubit: the method in this work, QPE with
semi-classical Fourier transform that uses only one ancilla qubit, and the QEEA in
Ref. [149]. The overlap between the initial state and the ground state is assumed to
be p0. The number of repetitions is also the number of times we need to prepare the
initial state. An analysis of the QEEA in Ref. [149] can be found in Appendix 3.9.

However, if we can only perform time evolution through Hamiltonian simulation,
then these relations become more complicated. If advanced Hamiltonian simula-
tion methods [115, 114, 34] can be used, the additional cost would be asymptoti-
cally negligible, since to ensure an ϵ′ error for time evolution for time T the cost is
O(Tpolylog(Tϵ′−1)). Hence the cost is only worse than that in the ideal case by a
poly-logarithmic factor. However, for early fault-tolerant quantum computers, as dis-
cussed in Refs. [103, 47], Trotter formulas [157] are generally favored. Running time
evolution for time T with error at most ϵ′ would entail a runtime of O(T 1+1/pϵ′−1/p).
The additional cost will therefore prevent us from reaching the Heisenberg limit,
though high-order Trotter formulas (i.e. with a large p) can allow us to get arbitrar-
ily close to the Heisenberg limit. If one does not insist on having a Heisenberg-limited
scaling, then randomized algorithms [46, 36, 52] may lead to lower gate count when
only low precision is required.

In Appendix 3.10 we analyze the circuit depth and the total runtime of our algo-
rithm with time evolution performed using Trotter formulas. We also compare with
QPE based on Trotter formulas. We found that when using Trotter formulas, our
method has some additional advantage over QPE, achieving a polynomially better
dependence on p0 (i.e. η in Appendix 3.10) in the total runtime. The total runtime
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scales like ϵ−1−o(1) using our algorithm with Trotter formulas, and this only approxi-
mately reaches the Heisenberg limit ϵ−1 in terms of the total runtime. However, it is
worth noting that none of the other methods can strictly reach the Heisenberg limit
using Trotter formulas. Otherwise we can instead perform Hamiltonian simulation
with the exponentially accurate methods to go below the Heisenberg limit, which
is an impossible task. Despite the sub-optimal asymptotic scaling, with tight error
analysis [60, 163, 55, 177] Trotter formulae may outperform the advanced Hamilto-
nian simulation techniques discussed above in terms of the gate complexity, especially
when only moderate accuracy is needed.

Organization

The rest of the paper is organized as follows. In Section 3.2 we introduce the quan-
tum circuit we are going to use, and introduce the CDF which is going to play an
important role in our algorithm, and give an overview of the ground state energy
estimation algorithm. In Section 3.3 we discuss how to approximate the CDF. In
Section 3.4 we show that the ground state energy can be estimated by inverting the
CDF, and present the complexity of our algorithm (Corollary 15). In Section 3.5 we
present the details of our algorithm for post-processing the measurement data and
analyze the complexity.

3.2 Overview of the method

We want to keep the quantum circuit we use as simple as possible. In this work we
use the following circuit

|0⟩ H • W H

ρ e−ijτH

(3.1)

where H is the Hadamard gate. We choose W = I or W = S† where S is the phase
gate, depending on the quantity we want to estimate. The quantum circuit is simple
and uses only one ancilla qubit as required. The quantum circuit itself has been used
in previous methods [102, 149]. However, our algorithm uses a different strategy
for querying the circuit and for classical post-processing, and results in lower total
evolution time and/or maximal evolution time achieving the goals (1) and (3) listed
on Page 46.

This circuit requires controlled time evolution, which can be non-trivial to im-
plement. The idea of removing controlled operation in phase estimation has also
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been considered in [40]. Here we can use ideas from Refs. [96, 118, 142, 127] to
remove the need to perform controlled time evolution. But this type of approach
requires an eigenstate of H with known eigenvalue that is easy to prepare. In a
second-quantized setting we can simply use the vacuum state. We will discuss this
in detail in Appendix 3.11.

Using the circuit in (3.1), in order to estimate ReTr[ρe−ijτH ], where j is an
arbitrary integer and τ is a real number, we set W = I. We introduce a random
variable Xj and set it to be 1 when the measurement outcome is 0, and −1 when
the measurement outcome is 1. Then

E[Xj] = ReTr[ρe−ijτH ]. (3.2)

Similarly for ImTr[ρe−ijτH ], we set W = S†, and introduce a random variable Yj
that depends in the same way on the measurement outcome. We have

E[Yj] = ImTr[ρe−ijτH ]. (3.3)

The parameter τ is chosen to normalize the Hamiltonian. Specifically, we choose τ
so that τ∥H∥ < π/3. We remark that τ should be chosen to be O(∥H∥−1), and
to avoid unnecessary overheads we want its scaling to be as close to Θ(∥H∥−1) as
possible.

We can define a spectral measure of τH associated with ρ. The spectral measure
is

p(x) =
K−1∑

k=0

pkδ(x− τλk), x ∈ [−π, π]. (3.4)

Here K is the number of different eigenvalues, λk’s are the distinct eigenvalues ar-
ranged in ascending order, and each pk is the corresponding overlap, as defined in the
Introduction. We extend it to a 2π-periodic function by p(x+2π) = p(x) so that the
Fourier transform can be performed on the interval [0, 2π] instead of the whole real
line, which leads to a discrete Fourier spectrum. Note that because of the assumption
τ∥H∥ < π/3, within the interval [−π, π], p(x) is supported in (−π/3, π/3). Next we
consider the cumulative distribution function (CDF) associated with this measure.

We define the 2π-periodic Heaviside function by

H(x) =

{
1, x ∈ [2kπ, (2k + 1)π),

0, x ∈ [(2k − 1)π, 2kπ),
(3.5)

where k ∈ Z. The CDF is usually defined by C(x) =
∑

k:λk≤x pk. This is however not
a 2π-periodic function and thus will create technical difficulties in later discussions.
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Therefore instead of the usual definition, we define

C(x) = (H ∗ p)(x), (3.6)

where ∗ denotes convolution. There is ambiguity at the jump discontinuities, and we
define the values of C(x) at these points by requiring C(x) to be right-continuous.
We check that this definition agrees with the usual definition when x ∈ (−π/3, π/3),
which is the interval that contains all the eigenvalues of τH:

C(x) =

∫ π

−π
H(y)p(x− y)dy =

∫ π

0

p(x− y)dy

=

∫ x

x−π
p(y)dy =

∫ x

−π
p(y)dy =

∑

k:λk≤x

pk.

Consequently C(x) is a right-continuous non-decreasing function in (−π/3, π/3).
If we could evaluate the CDF then we would be able to locate the ground state

energy. This is because the CDF is a piecewise constant function. Each of its jumps
in the interval (−π/3, π/3) corresponds to an eigenvalue of τH. In order to find the
ground state energy we only need to find where C(x) jumps from zero to a non-zero
value. However, in practice we cannot evaluate the CDF exactly. We will see that
we are able to approximate, in a certain sense as will be made clear later, the CDF
using a function we call the approximate CDF (ACDF). To this end we first define
an approximate Heaviside function F (x) =

∑
|j|≤d F̂je

ijx such that

|F (x)−H(x)| ≤ ϵ, x ∈ [−π + δ,−δ] ∪ [δ, π − δ]. (3.7)

The construction of this function is provided in Lemma 18, where F̂j is written as

F̂d,δ,j. Here the parameters d and δ need to be chosen to control the accuracy of this
approximation, and their choices will be discussed later. We also omit the d and δ
dependence in the subscripts for simplicity. With this F (x) we define the ACDF by

C̃(x) = (F ∗ p)(x). (3.8)

In Section 3.3 we will discuss how to evaluate this ACDF using the circuit in (3.1).
The ACDF and CDF are related through the following inequalities

C(x− δ)− ϵ ≤ C̃(x) ≤ C(x+ δ) + ϵ (3.9)

for any |x| ≤ π/3, 0 < δ < π/6 and ϵ > 0. We prove these inequalities in Ap-

pendix 3.8. Given the statistical estimation of the ACDF C̃(x), these inequalities
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Figure 3.2: An illustration of the classical and quantum components of our algorithm:
(1) generate samples {Jk} from (3.11); (2) use {Jk} to generate {Zk} according to
(3.13); (3) compute Ḡ(x) through (3.16). The ground state energy estimate can be
obtained through post-processing as discussed in Section 3.4. Only Step (2) needs
to be performed on a quantum computer.

enable us to estimate where the jumps of the CDF occur, which leads to an estimate
of the ground state energy.

By approximately evaluating the ACDF C̃(x) for certain chosen x, and through
eq. (3.9), we can perform a binary search to locate the ground state energy in smaller
and smaller intervals. The algorithm to do this and the total computational cost
required to estimate the ground state energy to precision ϵ at a confidence level 1−ϑ
are discussed in Sections 3.4 and 3.5.

3.3 Evaluating the ACDF

In this section we discuss how to evaluate the ACDF C̃(x). We first expand it in the
following way:

C̃(x) =
∑

|j|≤d

F̂j

∫ π

−π
p(y)eij(x−y)dy

=
∑

|j|≤d

F̂je
ijxTr[ρe−ijτH ],

(3.10)
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where the spectral measure p(x) is defined in (3.4). In going from the first line to
the second line in the above equation we have used the fact that

∫ π

−π
p(y)e−ijydy =

K−1∑

k=0

Tr[ρΠk]e
−ijτλk = Tr[ρe−ijτH ].

One might want to evaluate each Tr[ρe−ijτH ] using Monte Carlo sampling since this
quantity is equal to E[Xj + iYj]. If we want to evaluate all Tr[ρe−ijτH ] to any
accuracy at all, we need to sample each Xj and Yj at least once. Then the total
evolution time is is at least τ

∑
|j|≤d |j| = Ω(τd2). Later we will see we need to

choose d = O(ϵ−1polylog(ϵ−1p−1
0 )) to ensure the ground state energy estimate has

an additive error smaller than ϵ. Hence this total evolution time would give rise to
a ϵ−2 dependence in the runtime.

In order to avoid this ϵ−2 dependence, instead of evaluating all the terms we
stochastically evaluate (3.10) as a whole. The idea we are going to describe is inspired
by the unbiased version of the multi-level Monte Carlo method [140, 141]. We define
a random variable J that is drawn from {−d,−d+ 1, . . . , d}, with probability

Pr[J = j] =
|F̂j|
F , (3.11)

where the normalization factor F =
∑

|j|≤d |F̂j|. We let θj be the argument of F̂j,

i.e. F̂j = |F̂j|eiθj . Then

E[(XJ + iYJ)e
i(θJ+Jx)] =

∑

|j|≤d

E[Xj + iYj]e
i(θj+jx) Pr[J = j]

=
1

F
∑

|j|≤d

Tr[ρe−ijτH ]eijxF̂j

=
C̃(x)

F ,

(3.12)

where we have used (3.2) and (3.3). For simplicity we writeXJ and YJ into a complex
random variable

Z = XJ + iYJ ∈ {±1± i}. (3.13)

Therefore we can use
G(x; J, Z) = FZei(θJ+Jx) (3.14)

as an unbiased estimate of C̃(x). The variance can be bounded by:

var[G(x)] ≤ F2E[|XJ |2 + |YJ |2] ≤ 2F2. (3.15)
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Here we have used the fact that |Xj|, |Yj| ≤ 1.
From the above analysis, we can generate Ns independent samples of (J, Z),

denoted by (Jk, Zk), k = 1, 2, . . . , Ns, and then take the average

Ḡ(x) =
1

Ns

Ns∑

k=1

G(x; Jk, Zk), (3.16)

which can be used to estimate C̃(x) in an unbiased manner. The variance is upper
bounded by 2F2/Ns. In order to make the variance upper bounded by a given σ2,
we need Ns = O(F2/σ2). The expected total evolution time is

NsτE[|J |] =
Fτ
σ2

∑

|j|≤d

|F̂j||j|.

Furthermore, by Lemma 18 (iii) we have |F̂j| ≤ C|j|−1 for some constant C. There-
fore

F = O(log(d)),
∑

|j|≤d

|F̂j||j| = O(d).

The number of samples and the expected total evolution time are therefore

Ns = O
(
log2(d)

σ2

)
, NsτE[|J |] = O

(
τd log(d)

σ2

)
, (3.17)

respectively. We can see that in this way we have avoided the d2 dependence, which
shows up in a term-by-term evaluation.

In Figure 3.3 we show the plot of the ACDF obtained through our method for
the Fermi-Hubbard model. The details on this numerical experiment can be found
in Appendix 3.12. We can estimate the ground state energy from the ACDF in a
heuristic manner: we let

x⋆ = inf{x : Ḡ(x) ≥ η/2},
and x⋆/τ is an estimate for the ground state energy λ0. Here η is chosen so that
p0 ≥ η. In Section 3.5 we describe a more elaborate method to achieve the prescribed
accuracy and confidence level. However, this heuristic method seems to work reason-
ably well in practice. In Figure 3.4 we show the scaling of the ground state energy
estimation error, the total evolution time, and the maximal evolution time, with re-
spect to δ = τϵ (δ here is the parameter needed to construct {F̂j} using Lemma 18),
where ϵ is the allowed error. Both the total evolution time and the maximal evolution
time are proportional to ϵ−1. The details on this numerical experiment can also be
found in Appendix 3.12.
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Figure 3.3: Ḡ(x) and the CDF C(x), for x ∈ [−π/3, π/3] (left) and the zoom in view
around τλ0 (right), the ground state energy for τH where H is the Hamiltonian for
the 8-site Hubbard model with U/t = 4 at half-filling. The dashed vertical line is
x = τλ0. The parameters are δ = 2 × 10−4, d = 2 × 104, τ = π/(4∥H∥). In total
3000 samples are used.

3.4 Estimating the ground state energy

In this section we discuss how to estimate the ground state energy with guaranteed
error bound and confidence level from the samples generated on classical and quan-
tum circuits discussed in Sections 3.2 and 3.3. First we note that the CDF C(x) = 0
for all −π/3 < x < τλ0, and C(x) > 0 for all τλ0 ≤ x < π/3. Therefore getting the
ground state energy out of the CDF can be seen as inverting the CDF: we only need
to find the smallest x such that C(x) > 0. One might consider performing a binary
search to find such a point, but we run into a problem immediately: we only have
access to estimates of C(x) with statistical noise, and we cannot tell if the estimate
is greater than zero is due to C(x) > 0 or is merely due to statistical noise. We
therefore need to make the search criterion more robust to noise.

Note that the CDF cannot take values between 0 and p0: C(x) ≥ p0 for τλ0 ≤ x <
π/3 and C(x) = 0 for −π/3 < x < τλ0. Now suppose we know p0 ≥ η, then for any
x, rather than distinguishing between C(x) = 0 and C(x) > 0, we instead distinguish
between C(x) = 0 and C(x) ≥ η/2 (here η/4 is chosen to be consistent with later
discussion and it can be any number between 0 and 1 times η). In this setting, if the
estimate of C(x) is larger than η/4 then we tend to believe that C(x) ≥ η/2, and if
the estimate is smaller than η/4 then we tend to believe that C(x) = 0. Thus we
can tolerate an error that is smaller than η/4.

It may appear that we can find the ground state energy by performing a binary
search for the point at which C(x) first becomes larger than η/2. However, we can
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Figure 3.4: The total evolution time (a), maximal evolution time (b), and the average
ground state energy estimation error (c), for 4-site and 8-site Hubbard model with
U/t = 4 at half-filling. The horizontal axis is the error threshold ϵ = δ/τ . In (a) and
(b) the grey dash lines have slope −1, and in (c) the grey dashed line (with slope 1)
shows the value of ϵ. For each δ, d is chosen to be d = 4/δ, with 1800 samples, and
τ = π/(4∥H∥). The maximal evolution time is τd = 4τ/δ.

only estimate the continuous function C̃(x), which cannot uniformly approximate
C(x). This is because C(x) has many jump discontinuities (each of which corresponds
to an eigenvalue). As a result, we cannot perform this binary search procedure
directly.

From the above discussion we need a search criterion that can be checked via
C̃(x). We consider the following criterion:

Problem 13 (Inverting the CDF). For 0 < δ < π/6, 0 < η < 1, find x⋆ ∈
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(−π/3, π/3) such that

C(x⋆ + δ) > η/2, C(x⋆ − δ) < η. (3.18)

Firstly we verify that this can be checked via C̃(x). In (3.9), if we choose x = x⋆,

ϵ = η/6, then C̃(x⋆) > (2/3)η implies C(x⋆) > η/2, and C̃(x⋆) < (5/6)η implies

C(x⋆) < η. Therefore we only need to find x⋆ satisfying (2/3)η < C̃(x⋆) < (5/6)η
to satisfy this criterion. Secondly we show that an x⋆ satisfying this criterion gives
us an estimate of the ground state energy to within additive error δ/τ . Suppose
we choose η > 0 so that p0 ≥ η. Then if we solve Problem 13 we will find an x⋆

such that C(x⋆ + δ) > η/2 > 0 and C(x⋆ − δ) < η ≤ p0. C(x
⋆ + δ) > 0 indicates

that x⋆ + δ ≥ τλ0. Since C(x) cannot take value between 0 and p0, C(x
⋆ − δ) < p0

indicates C(x⋆− δ) = 0 and thus x⋆− δ < τλ0. Hence we know |x⋆− τλ0| ≤ δ. If we

choose δ = τϵ and λ̃0 = x⋆/τ , then

|λ̃0 − λ0| ≤ ϵ.

Then λ̃0 is our desired estimate.
Note that (3.18) is a weaker requirement than η/2 < C(x⋆) < η, for which

due to the discontinuity of C(x) the required x⋆ may not exist. However an x⋆

satisfying (3.18) must exist. In fact, let a = sup{x ∈ (−π/3, π/3) : C(x) ≤ η/2}
and b = inf{x ∈ (−π/3, π/3) : C(x) ≥ η}. Then because C(x) is monotonously
increasing, a ≤ b, and any x⋆ ∈ [a− δ, b+ δ) satisfies (3.18).

Using the samples {Jk} and {Zk} generated on classical and quantum circuits
respectively, we are able to solve Problem 13.

Theorem 14 (Inverting the CDF). With samples {Jk}Mk=1 satisfying |Jk| ≤ d and
{Zk}Mk=1, generated according to (3.11) and (3.13) respectively, we can solve Prob-
lem 13 on a classical computer with probability at least 1−ϑ, for d = O(δ−1 log(δ−1η−1))
and M = O(η−2 log2(d)(log log(δ−1) + log(ϑ−1))). The classical post-processing cost
is

Õ(η−2 log3(δ−1) log(ϑ−1)). (3.19)

To generate the samples {Zk}Mk=1 on a quantum circuit, the expected total evolution
time and the maximal evolution time are

τME[|J |] = Õ(τδ−1η−2 log(ϑ−1)), (3.20)

and
τd = O

(
τδ−1 log(δ−1η−1)

)
. (3.21)

respectively.
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We will prove this theorem by constructing the algorithm for classical post-
processing in Section 3.5. Since solving Problem 13 enables us to estimate the ground
state energy as discussed above, from Theorem 14 we have the following corollary:

Corollary 15 (Ground state energy). With samples {Jk}Mk=1 satisfying |Jk| ≤ d and
{Zk}Mk=1, generated according to (3.11) and (3.13) respectively, we can estimate the
ground state energy λ0 to within additive error ϵ on a classical computer with prob-
ability at least 1 − ϑ, if p0 ≥ η for some known η, d = O(ϵ−1τ−1 log(ϵ−1τ−1η−1)),
and M = O(η−2 log2(d)(log log(ϵ−1τ−1) + log(ϑ−1))). The classical post-processing
cost is O(η−2polylog(ϵ−1τ−1η−1)). The expected total evolution time and the maxi-
mal evolution time are O(ϵ−1η−2polylog(ϵ−1τ−1η−1)) and O(ϵ−1polylog(ϵ−1τ−1η−1))
respectively.

Usually the Heisenberg limit is defined in terms of the root-mean-square error
(RMSE) of the estimate. In this paper we focus on ensuring the error of the ground
state energy to be below a threshold ϵ with probability at least 1− ϑ. From Corol-
lary 15, our algorithm only has a logarithmic dependence on ϑ−1, and the error can
be at most 2∥H∥, we can easily ensure the RMSE is O(ϵ) using the result by choosing
ϑ = O(ϵ2∥H∥−2). We can see the total evolution time scaling with respect to ϵ is

still Õ(ϵ−1).

Remark 16 (System size dependence). One might notice the absence of an explicit
system size dependence in the evolution time scaling in Theorem 14 and Corollary 15.
This is because, as mentioned before in the Introduction, the total evolution time
depends on the system size indirectly through two parameters τ and η. Moreover, if
we consider the dependence of the total runtime on the system size, we also need to
account for the overhead that comes from performing Hamiltonian simulation. This
overhead and the scaling of η with respect to the system size are highly problem-specific
and are independent from the tasks we are considering in this paper, and hence we
will not discuss them in more detail. Because the Hamiltonian norm can generally
be upper bounded by a polynomial of the system size, and the total evolution time
dependence on τ−1 is poly-logarithmic, τ contributes a poly-logarithmic overhead in
the system size dependence.

3.5 Inverting the CDF

In this section we prove Theorem 14 by constructing the classical post-processing
algorithm to solve Problem 13 using samples from a quantum circuit. Since we want
to search for an x⋆ satisfying the requirement (3.18), a natural idea is to use binary
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search. Our setting is somewhat different from the usual binary search setting, but
we will show that a similar approach still works. The current setting differs from the
setting of binary search mainly in two ways: first any x⋆ ∈ [τλ0− δ, τλ0 + δ] satisfies
the requirement (3.18) and can therefore be a target. When performing binary search
we want to be able to tell if the target is to the left or right of a given x, but here the
targets may be on both sides of x. When this happens there is some uncertainty as
to how the algorithm will proceed next. However in our algorithm we will show that
this does not present a problem. Also, because this algorithm is based on random
samples, there is some failure probability in each search step. We will use a majority
voting procedure to suppress the failure probability so that in the end the algorithm
will produce a correct answer with probability arbitrarily close to 1.

We suppose we are given independent samples of (J, Z) defined in (3.11) and
(3.13) generated from a quantum circuit. We denote these samples by {(Jk, Zk)}Mk=1.
We divide them into Nb batches of size Ns, where NsNb = M . This division is for
the majority voting procedure we mentioned above. The maximal evolution time
needed to generate these samples is proportional to maxk |Jk| ≤ d. The expected
total evolution time we will need is proportional to ME[|J |].

We first reduce Problem 13 into a decision problem. For any x ∈ (−π/3, π/3),
one of the following must be true:

C(x+ δ) > η/2, or C(x− δ) < η. (3.22)

If there is a subroutine that tells us which one of the two is correct, or randomly picks
one when both are correct, then we can use it to find x⋆. We assume such a subrou-
tine, which uses {(Jk, Zk)}Mk=1, exists and denote it by the name CERTIFY(x, δ, η, {(Jk, Zk)}).
The subroutine returns either 0 or 1: 0 for C(x + δ) > η/2 being true, and 1 for
C(x− δ) < η being true.

In Algorithm 2, with CERTIFY(x, δ, η, {(Jk, Zk)}), we describe the algorithm to
solve Problem 13. This algorithm we denote by INVERT CDF(δ, η, {(Jk, Zk)}). It
runs as follows: we start with x0,0 = −π/3 and x1,0 = π/3. They are chosen so
that C(x1,0) > η/2 and C(x0,0) < η. Let ℓ be the number of iterations we have
performed, and ℓ = 0 at the beginning. At each iteration, we let xℓ = (x0,ℓ+ x1,ℓ)/2,
and run CERTIFY(xℓ, (2/3)δ, η, {(Jk, Zk)}). This tells us either C(xℓ + (2/3)δ) > η/2
or C(xℓ − (2/3)δ) < η. If the former then we let x0,ℓ+1 = x0,ℓ, x1,ℓ+1 = xℓ + (2/3)δ,
and if the latter we let x0,ℓ+1 = xℓ + (2/3)δ, x1,ℓ+1 = x1,ℓ. This is done so that for
each ℓ we have

C(x0,ℓ) < η, C(x1,ℓ) > η/2. (3.23)

We then let ℓ ← ℓ + 1 and go to the next iteration. The algorithm stops once
x1,ℓ − x0,ℓ ≤ 2δ. We denote the total number of iterations by L. The output is
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xL = (x0,L + x1,L)/2. Because (3.23) holds for each iteration we have

C(xL − δ) ≤ C(x0,L) < η, C(xL + δ) ≥ C(x1,L) > η/2.

Thus we can see xL satisfies the requirements for x⋆ in Problem 13. The next question
is, how many iterations does it take to satisfy the stopping criterion? Regardless of
the outcome of the CERTIFY subroutine, we always have

x1,ℓ+1 − x0,ℓ+1 =
1

2
(x1,ℓ − x0,ℓ) +

2

3
δ.

From this we can see

x1,ℓ − x0,ℓ =
2π/3− (4/3)δ

2ℓ
+

4

3
δ.

Therefore it takes L = O(log(δ−1)) iterations for the algorithm to stop.

Algorithm 2 INVERT CDF

Require: δ, η, {(Jk, Zk)}
x0 ← −π/3, x1 ← π/3;
while x1 − x0 > 2δ do
x← (x0 + x1)/2;
u← CERTIFY(x, (2/3)δ, η, {(Jk, Zk)});
if u = 0 then
x1 ← x+ (2/3)δ;

else
x0 ← x− (2/3)δ;

end if
end while

Ensure: (x0 + x1)/2

Next we discuss how to construct the subroutine CERTIFY(x, δ, η, {(Jk, Zk)}).
While we cannot directly evaluate the CDF C(x) for any x, we can estimate the

ACDF C̃(x) using the data {Jk} and {Zk}. We can let ϵ = η/8 in (3.7) and
choose d = O(δ−1 log(δ−1η−1)) according to Lemma 18. Then by (3.9), we have

C(x − δ) ≤ C̃(x) + η/8 and C(x + δ) ≥ C̃(x) − η/8. One of the following must be
true:

C̃(x) > (5/8)η, or C̃(x) < (7/8)η, (3.24)

then the former implies C(x+ δ) > η/2 and the latter C(x− δ) < η. Therefore the
CERTIFY subroutine only needs to decide which one of the two is correct or to output
a random choice when both are correct.
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As discussed in Section 3.3, Ḡ(x) is an unbiased estimate of C̃(x). We use {Jk}
and {Zk} to get Nb samples for Ḡ(x), denoted by Ḡr(x), via

Ḡr(x) =
1

Ns

Ns∑

k=1

G(x; J(r−1)Ns+k, Z(r−1)Ns+k)

for r = 1, 2, . . . , Nb. Here G(x; J, Z) is defined in (3.14). For each r, we compare
Ḡr(x) with (3/4)η. If Ḡr(x) > (3/4)η for a majority of batches, then we tend to

believe C̃(x) > (5/8)η and output 0 for C(x+δ) > η/2. Otherwise, we tend to believe

C̃(x) < (7/8)η and output 1 for C(x− δ) < η. This is the majority voting procedure
we mentioned earlier. For the pseudocode for the subroutine see Algorithm 3.

Algorithm 3 CERTIFY

Require: x, δ, η, {(Jk, Zk)}
b← 0, c← 0;
for r = 1, 2, . . . , Nb do
Ḡr(x) ← (1/Ns)

∑Ns

k=1G(x; J(r−1)Ns+k, Z(r−1)Ns+k); {G(x; J, Z) defined in
(3.14)}
if Ḡr(x) > (3/4)η then
c← c+ 1;

end if
end for
if c ≤ B/2 then
b← 1;

end if
Ensure: b

In the CERTIFY subroutine, an error occurs when C̃(x) > (5/8)η yet a majority

of estimates Ḡr(x) are smaller than (3/4)η, or when C̃(x) < (7/8)η yet a majority
of estimates Ḡr(x) are larger than (3/4)η. We need to make the probability of this

kind of error occurring upper bounded by ν. First we assume C̃(x) > (5/8)η. Then
for each r, by Markov’s inequality, we have

Pr[Ḡr(x) < (3/4)η] ≤ 64 var[Ḡr(x)]

η2
.

We want to make this probability at most 1/4. Therefore we need var[Ḡr(x)] ≤
η2/256. To ensure this, by (3.17) in which we let σ2 = η2/256, we can choose

Ns = O
(
log2(d)

η2

)
. (3.25)
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Then by the Chernoff bound the probability of the majority of estimates Ḡr(x) being
smaller than (3/4)η is at most e−C

′Nb for some constant C ′. In order to make this
probability bounded by ν we only need to let Nb = O(log(ν−1)).

In the algorithm INVERT CDF, the subroutine CERTIFY is used L = O(log(δ−1))
times. If an error occurs in a single run of CERTIFY with probability at most ν then
in the total L times we use this subroutine the probability of an error occurring is
at most Lν. Therefore in order to ensure that an error occurs with probability at
most ϑ in INVERT CDF, we need to set ν = ϑ/L. Therefore Nb = O(log(Lϑ−1)) =
O(log log(δ−1) + log(ϑ−1)).

The above analysis shows that in order to solve Problem 13 the total evolution
time is ME[|J |] = NbNsE[|J |]. We evaluate NsE[|J |] by (3.17) in which we let
σ2 = η2/256 as discussed before when we estimate how large Ns needs to be in
(3.25). Multiplying this by Nb we have (3.20). Note here we do not need to multiply
by L because in each CERTIFY subroutine we can reuse the same {Jk}, {Zk}. The
maximal evolution time required is τd and this leads to (3.21). The main cost in
classical post-processing comes from evaluating Ḡr(x). This needs to be done LNb

times. Each evaluation involves O(Ns) = O(η−2 log2(d)) arithmetic operations. The
total runtime for classical post-processing is therefore LNbNs = LM , which leads to
(3.19). Thus we have obtained all the cost estimates in Theorem 14 and proved the
theorem.

3.6 Discussions

In this paper we presented an algorithm to estimate the ground state energy with
Heisenberg-limited precision scaling. The quantum circuit we used requires only one
ancilla qubit, and the maximal evolution time needed per run has a poly-logarithmic
dependence on the overlap p0. Such dependence on p0 is exponentially better than
that required by QPE using a similarly structured circuit using semi-classical Fourier
transform, as discussed in Section 3.1. Both rigorous analysis and numerical experi-
ments are done to validate the correctness and efficiency of our algorithm.

Although our algorithm has a near-optimal dependence on the precision, the
dependence on p0 (more precisely, on its lower bound η), which scales as p−2

0 in

Corollary 15, is far from optimal compared to the p
−1/2
0 scaling in Refs. [81, 111].

Whether one can achieve this p
−1/2
0 scaling without using a quantum circuit with

substantially larger maximal evolution time, and without using such techniques as
LCU or block-encoding, remains an open question.

The probabilistic choice of the simulation time according to eq. (3.11) plays an
important role in reducing the total evolution time. However, we may partially de-
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randomize the algorithm following the spirit of the multilevel Monte Carlo (MLMC)
method [82] in the classical setting. The method we developed for computing the
approximate CDF in Section 3.3 is in fact a quite general approach for evaluating
expectation values from matrix functions. This method can act as a substitute of the
LCU method in many cases, especially in a near-term setting. Using this method to
compute other properties of the spectrum, such as the spectral density, is a direction
for future work.

3.7 Constructing the approximate Heaviside

function

In this appendix we construct the approximate Heaviside function satisfying the
requirement in (3.7). We need to first construct a smeared Dirac function, which
we will use as a mollifier in constructing the approximate Heaviside function. To
our best knowledge this particular version of smeared Dirac function has not been
proposed in previous works.

Lemma 17. We define Md,δ(x) by

Md,δ(x) =
1

Nd,δ
Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
,

where Td(x) is the d-th Chebyshev polynomial of the first kind, and

Nd,δ =
∫ π

−π
Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
dx.

Then

(i) |Md,δ(x)| ≤ 1
Nd,δ

for all x ∈ [−π,−δ]∪ [δ, π], and Md,δ(x) ≥ − 1
Nd,δ

for all x ∈ R.

(ii)
∫ π
−πMd,δ(x)dx = 1, 1 ≤

∫ π
−π |Md,δ(x)|dx ≤ 1 + 4π

Nd,δ
.

(iii) When tan(δ/2) ≤ 1− 1/
√
2, we have

Nd,δ ≥ C1e
dδ/

√
2

√
δ

d
erf(C2

√
dδ)

for some constants C1 and C2 that do not depend on d or δ.
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Proof. We first note that, by the property of Chebyshev polynomials, when x ∈
[−π,−δ] ∪ [δ, π], i.e. cos(x) ≤ cos(δ), we have

∣∣∣Td
(
1 + 2 cos(x)−cos(δ)

1+cos(δ)

)∣∣∣ ≤ 1. This

proves the first inequality in (i). Note that when x ∈ [−δ, δ], Td
(
1 + 2 cos(x)−cos(δ)

1+cos(δ)

)
≥

−1. Combine this and the first inequality with the fact that Md,δ(x) is 2π-periodic
we prove the second inequality in (i).

The first part of (ii) is obvious because of the definition of Nd,δ. For the second
part, we have

∫ π
−π |Md,δ(x)|dx ≥

∫ π
−πMd,δ(x)dx = 1. Also

∫ π

−π
|Md,δ(x)|dx =

(∫ −δ

−π
+

∫ π

δ

)
|Md,δ(x)|dx+

∫ δ

−δ
Md,δ(x)dx

≤ 4π

Nd,δ
+

(∫ −δ

−π
+

∫ π

δ

)
Md,δ(x)dx+

∫ δ

−δ
Md,δ(x)dx

= 1 +
4π

Nd,δ
.

(3.26)

We now prove (iii). This requires lower bounding Td

(
1 + 2 cos(x)−cos(δ)

1+cos(δ)

)
when x ∈

[−δ, δ]. For δ small enough so that

max
x

2
cos(x)− cos(δ)

1 + cos(δ)
= 2 tan2(δ/2) ≤ 3−

√
2,

which is equivalent to tan(δ/2) ≤ 1− 1/
√
2, we can use [112, Lemma 13] to provide

a lower bound for the x ∈ [−δ, δ] case:

Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
≥ 1

2
exp

(
√
2d

√
cos(x)− cos(δ)

1 + cos(δ)

)
. (3.27)

By the elementary inequality | sin(x)| ≤ |x|, we have

√
cos(x)− cos(δ)

1 + cos(δ)
=

√
tan2

(
δ

2

)
− sin2(x/2)

cos2(δ/2)
= tan

(
δ

2

)√
1− sin2(x/2)

sin2(δ/2)

≥ tan

(
δ

2

)(
1− sin2(x/2)

sin2(δ/2)

)
≥ tan

(
δ

2

)(
1− x2

4 sin2(δ/2)

)
.

Substituting this into (3.27) we have

Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
≥ 1

2
e
√
2d tan(δ/2) exp

(
− dx2√

2 sin(δ)

)
.
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Figure 3.5: Illustration of Md,δ(x) for δ = 0.2, d = 20, 40.

Then

Nd,δ ≥
∫ δ

−δ
Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
dx− 2π

≥ 1

2
e
√
2d tan(δ/2)

√√
2π sin(δ)

d
erf

(√
d√

2 sin(δ)
δ

)
− 2π

≥ C1e
dδ/

√
2

√
δ

d
erf(C2

√
dδ),

for δ ∈ (0, π/2) and some constants C1, C2 > 0. This proves (iii).

A plot of Md,δ is shown in Figure 3.5. As we can see it roughly takes the shape of
a Dirac function. We then use it as a mollifier to approximate the Heaviside function
using the convolution of Md,δ and the Heaviside function.

Lemma 18. Let H(x) be the periodic Heaviside function defined in (3.5). For
any δ ∈ (0, π/2) such that tan(δ/2) ≤ 1 − 1/

√
2 and ϵ > 0, there exists d =

O(δ−1 log(δ−1ϵ−1)), and a 2π-periodic function Fd,δ(x) of the form

Fd,δ(x) =
1√
2π

d∑

k=−d

F̂d,δ,ke
ikx,

satisfying

(i) −ϵ/2 ≤ Fd,δ(x) ≤ 1 + ϵ for all x ∈ R;
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(ii) |Fd,δ(x)−H(x)| ≤ ϵ for all x ∈ [−π + δ,−δ] ∪ [δ, π − δ];

(iii) |F̂d,δ,k| ≤ 2(1 + ϵ)/(
√
2π|k|) for k ̸= 0.

Proof. We first construct the function Fd,δ(x). LetMd,δ(x) be the mollifier in Lemma 17.
Because of Lemma 17 (i) and (ii)Md,δ(x) can be used as to mollify non-smooth func-
tions. Also because Td(x) is a polynomial of degree d, the Fourier coefficients

M̂d,δ,k =
1√
2π

∫ π

−π
Md,δ(x)e

−ikxdx

are non-zero only for −d ≤ k ≤ d. Also

∣∣∣M̂d,δ,k

∣∣∣ ≤ 1√
2π

∫ π

−π
|Md,δ(x)|dx =

1 + ϵ√
2π
. (3.28)

We construct Fd,δ by mollifying the Heaviside function with Md,δ(x):

Fd,δ(x) = (Md,δ ∗H)(x) =

∫ π

−π
Md,δ(x

′)H(x− x′)dx′. (3.29)

We then show we can choose d = O(δ−1 log(δ−1ϵ−1)) to satisfy (ii). We have

|Fd,δ(x)−H(x)| =
∣∣∣∣
∫ π

−π
Md,δ(x

′)(H(x− x′)−H(x))dx′
∣∣∣∣

≤
∫ π

−π
Md,δ(x

′)|H(x− x′)−H(x)|dx′.

For any x such that |x| ∈ [δ, π − δ], first we consider the case where |x′| < δ. In this
case H(x− x′) = H(x) and therefore the integrand Md,δ(x

′)|H(x− x′)−H(x)| = 0.
Then we consider the case where |x′| ≥ δ. By Lemma 17 (i) we have Md,δ(x

′) ≤
2/Nd,δ, and as |H(x− x′)−H(x)| ≤ 1, Md,δ(x

′)|H(x− x′)−H(x)| ≤ 2/Nd,δ. Thus
for any x such that |x| ∈ [δ, π − δ],

|Fd,δ(x)−H(x)| ≤ 4π

Nd,δ
. (3.30)

If we want to keep the approximation error for x ∈ [−π + δ,−δ]∪ [δ, π− δ] to be
below ϵ, we will need, by Lemma 17 (i) and (3.30),

C1e
dδ/

√
2

√
δ

d
erf(C2

√
dδ) ≥ 4π

ϵ
.
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It can be checked that we can choose d = O(δ−1 log(ϵ−1δ−1)) to achieve this.
We then show this choice of d ensures (i) as well. From eq. (3.26)

Fd,δ(x) ≤
∫ π

−π
|Md,δ(y)|dy ≤ 1 +

4π

Nd,δ
≤ 1 + ϵ

and by the second inequality in Lemma 17 (i)

Fd,δ(x) ≥ −
1

Nd,δ

∫ π

−π
H(y)dy = − 2π

Nd,δ
≥ − ϵ

2
.

Finally we prove our construction satisfies (iii). Because Fd,δ(x) is defined through
a convolution, its Fourier coefficients can be obtained through

F̂d,δ,k =
√
2πM̂d,δ,kĤk,

where Ĥk’s are the Fourier coefficients of the rectangle function H(x). Therefore
F̂d,δ,k ̸= 0 only for −d ≤ k ≤ d. Because of (3.28), we have

|F̂d,δ,k| ≤ (1 + ϵ)|Ĥk|.
Since when k ̸= 0

Ĥk =
1√
2π

∫ π

−π
H(x)e−ikxdx

=

{
2

i
√
2πk

2 ∤ k
0 2 | k

we have (iii).

3.8 The relation between the CDF and the

approximate CDF

In this appendix we prove (3.9). Let 0 < δ < π/6. First we have a 2π-periodic
function F (x) from Lemma 18 that satisfies

|F (x)−H(x)| ≤ ϵ, x ∈ [−π + δ,−δ] ∪ [δ, π − δ],
and F (x) ∈ [0, 1] for all x ∈ R. We further define FL(x) = F (x − δ) and FR(x) =
F (x+ δ). They satisfy

|FL(x)−H(x)| ≤ ϵ, x ∈ [−π + 2δ, 0] ∪ [2δ, π],

|FR(x)−H(x)| ≤ ϵ, x ∈ [−π,−2δ] ∪ [0, π − 2δ].
(3.31)
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We define the some functions related to the ACDF as follows:

C̃L(x) = (FL ∗ p)(x), C̃R(x) = (FR ∗ p)(x). (3.32)

Then we have
C̃L(x) = C̃(x− δ), C̃R(x) = C̃(x+ δ). (3.33)

The functions C̃L(x) and C̃R(x) can be used to bound C(x). Because of (3.31), the
fact that p(x) is supported in (−π/3, π/3) in [−π, π], δ < π/6, and that H(y) and
FL(y) both take value in [0, 1], for x ∈ (−π/3, π/3) we have

|C̃L(x)− C(x)| ≤
∫ π

−π
p(x− y)|H(y)− FL(y)|dy

≤ ϵ+

∫ 2δ

0

p(x− y)dy

= ϵ+ C(x)− C(x− 2δ).

Therefore

C̃L(x) ≥ C(x)− [ϵ+ C(x)− C(x− 2δ)] = C(x− 2δ)− ϵ.

Similarly we have

C̃R(x) ≤ C(x) + [ϵ+ C(x+ 2δ)− C(x)] = C(x+ 2δ) + ϵ.

Combining these two inequalities with (3.33), we have

C(x− 2δ) ≤ C̃(x− δ) + ϵ, C(x+ 2δ) ≥ C̃(x+ δ)− ϵ.

This proves (3.9).

3.9 Obtaining the ground state energy by solving

the QEEP

Here we discuss how to obtain the ground state energy using algorithm in Ref. [149]
to solve the QEEP. The cost of solving the QEEP as analyzed in Ref. [149] scales as
ϵ−6. However, the cost can be much reduced for the problem of ground state energy
estimation. For simplicity we assume ∥H∥ < π/3 and τ is chosen to be 1.
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In order to find the interval of size 2ϵ containing the ground state energy , we
first divide the interval [−π/3, π/3] into M bins of equal size smaller than 2ϵ. We
then define the indicator function associated with an interval [a, b] to be

1[a,b](x) =

{
1, x ∈ [a, b],

0, x /∈ [a, b].

In QEEP the goal is to estimate Tr[ρ1[a,b](H)], where [a, b] is one of the M bins,
to within precision O(ϵ). However, in our setting, if we know p0 ≥ η, one can
estimate Tr[ρ1[a,b](H)] to within error O(η). If we get Tr[ρ1[a,b](H)] < η with high
confidence then we know the ground state energy λ0 is not in this interval. If know
Tr[ρ1[a,b](H)] > η/2 with high confidence then there is an eigenvalue in [a, b]. If the
above task can be done, then we choose the leftmost bin in which Tr[ρ1[a,b](H)] > η/2.
This will enable us to solve the ground state energy estimation problem.

To estimate Tr[ρ1[a,b](H)], Ref. [149] first approximated the indicator function
1[a,b](x) using a truncated Fourier series [149, Appendix A], similar to what we did in
section 3.7. The number of terms Nterm and the maximal evolution time T both scale
like ϵ−1. In Ref. [149] the author proposed estimating each Fourier mode Tr[ρe−ijH ]
to within error O(ϵ/Nterm). Because here the estimation precision is O(η) rather than
O(ϵ), we should instead estimate Tr[ρe−ijH ] to within error O(η/Nterm) = O(ηϵ). Be-
cause we are using Monte Carlo sampling this requires O(η−2ϵ−2) samples. We need
the same number of samples for each Tr[ρe−ijH ], and therefore the total time we need
to run time evolution is O(NtermTη

−2ϵ−2) = O(η−2ϵ−4). We omitted polylogarithmic
factors in the complexity.

However if the analysis is done more carefully the dependence on ϵ could be
improved. First one should notice that the error for each Tr[ρe−ijH ] is independent,
and the estimate is unbiased (if we do not consider the Fourier approximation error),
as is the case in our algorithm (Section 3.3). Therefore the total error for estimating
Tr[ρ1[a,b](H)] accumulates sublinearly. More precisely, let the error for estimating
Tr[ρe−ijH ] be εj with variance σ2

j , and let the coefficient for Tr[ρe−ijH ] be Aj. Then
the total error

∑
j Ajεj has variance

∑
j A

2
jσ

2
j . Therefore the total error is roughly√∑

j A
2
jσ

2
j instead of the linearly accumulated error

∑
j Ajσj. These two can have

different asymptotic scaling depending on the magnitude of Aj. Because of this one
can in fact choose to estimate Tr[ρe−ijH ] to within error O(η/√Nterm) = O(ηϵ−1/2).
This saves a ϵ−1 factor in the total runtime. Furthermore, one can choose to evaluate
the approximate indicator function in a stochastic way, like we did in Section 3.3.
By taking into account the decay of Fourier coefficients, similar to Lemma 18 (iii),
it is possible to further reduce the complexity.
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3.10 Complexity analysis for using Trotter

formulas

In this appendix, instead of using the maximal evolution time and the total evolution
time to quantify the complexity, we directly analyze the circuit depth and the total
runtime when the time evolution is simulated using Trotter formulas. We suppose
the Hamiltonian H can be decomposed as H =

∑
γ Hγ, where each of Hγ can be

efficiently exponentiated. A p-th order Trotter formula applied to e−iτH with r
Trotter steps gives us a unitary operator UHS with error

∥UHS − e−iτH∥ ≤ CTrotterτ
p+1r−p,

where CTrotter is a prefactor, for which the simplest bound is CTrotter = O((
∑

γ ∥H∥γ)p+1).
Tighter bounds in the form of a sum of commutators are proved in Refs. [60, 152].

The algorithm in this work

Our algorithm requires approximating Eq. (3.10) to precision η (as in Theorem 15 η
is a lower bound of p0/2) using Trotter formulas. Suppose we are using a p-th order
Trotter formula, then we want

∥∥∥
∑

j

F̂je
ijxTr[ρe−ijτH ]−

∑

j

F̂je
ijxTr[ρU j

HS]
∥∥∥ = O(η).

Since the left-hand side can be upper bounded by
∑

j

|F̂j||j|∥e−iτH − UHS∥ = O(d∥e−iτH − UHS∥)

by Lemma 18 (iii), we only need to choose r so that

CTrotterτ
p+1r−p = O(ηd−1).

Therefore we can choose

r = max{1, Õ(d1/pη−1/pC
1/p
Trotterτ

1+1/p)}

The maximal evolution time in Corollary 15 tells us how many times we need to use
the operator UHS (multiplied by a factor τ). Multiply this by r we have the maximal
circuit depth we need, which is

dr = Õ(max{τ−1ϵ−1, ϵ−1−1/pη−1/pC
1/p
Trotter}). (3.34)
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Similarly we have the total runtime

Õ(max{τ−1ϵ−1η−2, ϵ−1−1/pη−2−1/pC
1/p
Trotter}). (3.35)

If we fix H and let ϵ, η → 0, then we can see this gives us an extra ϵ−1/pη−1/p factor
in the circuit depth and total runtime, compared to the maximal evolution time and
the total evolution time respectively.

Quantum phase estimation

We then analyze the circuit depth and total runtime requirement for estimating the
ground state energy with QPE, where the time evolution is performed using Trotter
formulas. We analyze the multi-ancilla qubit version of QPE and the result is equally
valid for the single-ancilla qubit version using semi-classical Fourier transform.

In QPE, when we replace all exact time evolution with UHS, we would like to
ensure that the probability of obtaining an energy measurement close to the ground
state energy remains bounded away from 0 by Ω(η). Therefore the probability dis-
tribution of the final measurement outcome should be at most O(η) away from the
original distribution in terms of the total variation distance.

Because the only part of QPE that depends on the time evolution operator is the
multiply-controlled unitary

J−1∑

j=0

|j⟩ ⟨j| ⊗ e−ijτH ,

which is replaced by
J−1∑

j=0

|j⟩ ⟨j| ⊗ U j
HS

when we use Trotter formulas, we only need to ensure the difference between the two
operators to be upper bounded by O(η) in terms of operator norm. Therefore we
need

J∥e−ijτH − UHS∥ = O(η).
As discussed in Section 3.1, we need to choose J = O(τ−1ϵ−1η−1) (we need the τ−1

factor to account for rescaling H, and p0 in Section 3.1 is replaced by η). Following
the same analysis as in the previous section, we need to choose the number of Trotter
steps for approximating e−iτH to be

r = max{1,O(J1/pη−1/pC
1/p
Trotterτ

1+1/p)}



CHAPTER 3. QUANTUM ALGORITHMS FOR THE EARLY
FAULT-TOLERANT SETTING 77

Therefore the circuit depth needed is

Jr = O(max{τ−1ϵ−1η−1, ϵ−1−1/pη−1−2/pC
1/p
Trotter}), (3.36)

and the total runtime is

O(max{τ−1ϵ−1η−2, ϵ−1−1/pη−2−2/pC
1/p
Trotter}). (3.37)

Again, if we fix H and let ϵ, η → 0, then we can see this gives us an extra ϵ−1/pη−2/p

factor in the circuit depth and total runtime, compared to the maximal evolution
time and the total evolution time respectively. This is worse by a factor of η−1/p

than the cost using our algorithm.

3.11 The control-free setting

In this appendix we introduce, as an alternative to the quantum circuit in (3.1), a
circuit which does not require controlled time evolution. This construction is mainly
based on the ideas in Refs. [142, 118, 127]. We will introduce the construction of the
circuit and discuss how to use the measurement results from the circuit to construct
a random variable Z̃ satisfying

E[Z̃] = Tr[ρe−itH ] (3.38)

for any given t. Then choosing t = jτ , we will be able to replace Xj and Yj with Re Z̃

and Im Z̃ respectively, while satisfying (3.2) and (3.3). In order to remove the need
of performing controlled time evolution of H, we need some additional assumptions.

1. The initial state ρ is a pure state |ϕ0⟩, prepared using a unitary circuit UI .

2. We have a reference eigenstate |ψR⟩ of H corresponding to a known eigenvalue
λR. This eigenstate can be efficiently prepared using a unitary circuit UR.

3. ⟨ψR|ϕ0⟩ = 0.

The last assumption ⟨ψR|ϕ0⟩ = 0 implies ⟨ψR|e−itH |ϕ0⟩ = 0 for all t ∈ R because
|ψR⟩ is an eigenvector of e−itH . All of these are reasonable assumptions for a second-
quantized fermionic Hamiltonian: we choose |ψR⟩ to be the vacuum state, λR =
0, and |ϕ0⟩ to be the Hartree-Fock state, which can be efficiently prepared [104].
Naturally ⟨ψR|ϕ0⟩ = 0 because of the particle number conservation.

With these assumptions, we let

α = ⟨ϕ0|e−it(H−λR)|ϕ0⟩ .
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Also define

|Ψ0,±⟩ =
1√
2
(|ψR⟩ ± |ϕ0⟩), |Ψ1,±⟩ =

1√
2
(|ψR⟩ ± i |ϕ0⟩).

With these states, we can express α in terms of expectation values:

⟨Ψ0,+|e−itH |Ψ0,±⟩ =
1

2
e−iλRt(1± α),

⟨Ψ0,+|e−itH |Ψ1,±⟩ =
1

2
e−iλRt(1± iα).

In Refs. [118, 142] it is assumed that we have unitary circuits to prepare |Ψ0,±⟩ and
|Ψ1,±⟩. However it is not immediately clear how these circuits are constructed. Here
we will take a slightly different approach. The circuit diagram is as follows:

|0⟩ H K • H

|0⟩ H • H

|0n⟩ UI UR e−itH U †
I U †

R

(3.39)

In this circuit we choose K = I for the real part of α or the phase gate S for the
imaginary part of α. This circuit uses three registers, with the first two containing
one qubit each, and the third one containing n qubits.

We first analyze the probability of different measurement outcomes when K = I.
When we run the above circuit, and measure all the qubits, the probability of the
measurement outcomes of the first two qubits being (b1, b2), and the rest of the qubits
being all 0, is

p0,(b1,b2) =

{
| ⟨Ψ0,+|e−itH |Ψ0,+⟩ |2/4, b1 = b2

| ⟨Ψ0,+|e−itH |Ψ0,−⟩ |2/4, b1 ̸= b2

=
1

16
(1 + |α|2 + 2(−1)b1+b2 Reα).

Here we have used the fact that | ⟨Ψ0,+|e−itH |Ψ0,+⟩ | = | ⟨Ψ0,−|e−itH |Ψ0,−⟩ |.
Similarly, when K = S, the probability of the measurement outcomes of the first

two qubits being (b1, b2), and the rest of the qubits being all 0, is

p1,(b1,b2) =

{
| ⟨Ψ0,+|e−itH |Ψ1,+⟩ |2/4, b1 = b2

| ⟨Ψ0,+|e−itH |Ψ1,−⟩ |2/4, b1 ̸= b2

=
1

16
(1 + |α|2 − 2(−1)b1+b2 Imα).
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Based on the above analysis, we construct the random variable Z̃ in the following
way: we first run the circuit with K = I, and denote the measurement outcomes
of the first two qubits by (b1, b2). If the third register returns all 0 when measured,

then we let X̃ = (−1)b1+b2 . Otherwise we let X̃ = 0. Similarly we define a random

variable Ỹ for K = S. We have

E[X̃] = p0,(0,0) + p0,(1,1) − p0,(0,1) − p0,(1,0) =
1

2
Reα,

and

E[Ỹ ] = p1,(0,0) + p1,(1,1) − p1,(0,1) − p1,(1,0) = −
1

2
Imα.

Therefore we can define
Z̃ = 2e−iλRt(X̃ − iỸ ).

Then
E[Z̃] = e−iλRtα = Tr[ρe−itH ].

Thus we can see this new random variable Z̃ satisfies (3.38). Compared to the Z in
the main text this new random variable has a slightly larger variance:

var[Z̃] ≤ E[|Z̃|2] ≤ 8.

This however does not change the asymptotic complexity.

3.12 Details on the numerical experiments

In Figure 3.3, we apply the procedure described in Section 3.3 to approximate the
CDF of the Fermi-Hubbard model, described by the Hamiltonian

H = −t
∑

⟨j,j′⟩,σ

c†j,σcj′,σ + U
∑

j

(
nj,↑ −

1

2

)(
nj,↓ −

1

2

)
, (3.40)

where cj,σ (c†j,σ) denotes the fermionic annihilation (creation) operator on the site j

with spin σ ∈ {↑, ↓}. ⟨·, ·⟩ denotes sites that are adjacent to each other. nj,σ = c†j,σcj,σ
is the number operator. The sites are arranged into a one-dimensional chain, with
open boundary condition.

We first evaluate Ḡ(x) defined in (3.16), and the result is shown in Figure 3.3.
We use a classical computer to simulate the sampling from the quantum circuit. The
initial state ρ is chosen to be the Hartree-Fock solution, which has an overlap of
around 0.4 with the exact ground state. We can see that Ḡ(x) closely follows the
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CDF, and even though there is significant noise from Monte Carlo sampling, the
jump corresponding to the ground state energy is clearly resolved.

Then we consider estimating the ground state energy from Ḡ(x). In this numerical
experiment we use a heuristic approach, and the rigorous approach that comes with
provable error bound and confidence level is discussed in Sections 3.4 and 3.5. We
obtain the estimate by

x⋆ = inf{x : Ḡ(x) ≥ η/2},
and x⋆/τ is an estimate for the ground state energy λ0. We expect x⋆ ∈ [τλ0 −
δ, τλ0 + δ]. Here η is chosen so that p0 ≥ η.

The error of the estimated ground state energy, the total evolution time, and the
maximal evolution time are shown in Figure 3.4, in which we have chosen U/t = 4
for the Hubbard model. In the right panel of Figure 3.4 we can see the line for total
evolution time runs parallel to the line for the maximal evolution time. Because
the maximal evolution time scales linearly with respect to δ−1, and this plot uses
logarithmic scales for both axes, we can see the total evolution time has a δ−1 scaling,
and is therefore inversely proportional to the allowed error of ground state energy
estimation.
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3.13 Frequently used symbols

Symbol Meaning

H The Hamiltonian for which we want to estimate the ground state energy.

ρ The initial state from which we perform time evolution and measurement.

pk The overlap between ρ and the k-th lowest eigensubspace.

τ A renormalization factor satisfying τ∥H∥ ≤ π/4.

p(x) The spectral density associated with τH and ρ.

C(x) The cumulative distribution function defined in (3.6).

C̃(x) The approximate CDF defined in (3.8).

G(x) An unbiased estimate of the ACDF C̃(x) defined in (3.14).

Ḡ(x) The average of multiple samples of G(x), defined in (3.16).

Jk
An integer drawn from the distribution (3.11)

signifying the number of steps in the time evolution. |Jk| ≤ d.

Zk
A sample generated on a quantum circuit from two measurement outcomes.

Defined in (3.13). Can only take value ±1± i.
d The maximal possible value of |Jk|.

δ
In the context of Corollary 15 we choose δ = τϵ

where ϵ is the allowed error of the ground state energy.

ϑ The allowed failure probability.

Table 3.3: Frequently used symbols in this chapter.
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Chapter 4

Solving quantum linear systems

We present a quantum eigenstate filtering algorithm based on quantum signal pro-
cessing (QSP) and minimax polynomials. The algorithm allows us to efficiently
prepare a target eigenstate of a given Hamiltonian, if we have access to an initial
state with non-trivial overlap with the target eigenstate and have a reasonable lower
bound for the spectral gap. We apply this algorithm to the quantum linear system
problem (QLSP), and present two algorithms based on quantum adiabatic comput-
ing (AQC) and quantum Zeno effect respectively. Both algorithms prepare the final

solution as a pure state, and achieves the near optimal Õ(dκ log(1/ϵ)) query com-
plexity for a d-sparse matrix, where κ is the condition number, and ϵ is the desired
precision. Neither algorithm uses phase estimation or amplitude amplification.

4.1 Introduction

Eigenvalue problems have a wide range of applications in scientific and engineering
computing. Finding ground states and excited states of quantum many-body Hamil-
tonian operators, Google’s PageRank algorithm, and principle component analysis
are just a few prominent examples. Some problems that are not apparently eigen-
value problems may benefit from a reformulation into eigenvalue problems. One
noticeable example is the quantum linear systems problem (QLSP), which aims at
preparing a state that is proportional to the solution of a given linear system, i.e.
|x⟩ = A−1 |b⟩ /∥A−1 |b⟩∥ on a quantum computer (∥ · ∥ denotes the vector 2-norm).
Here A ∈ CN×N , and |b⟩ ∈ CN . We give a more detailed definition of the QLSP
in Section 4.4. All QLSP solvers share the desirable property that the complex-
ity with respect to the matrix dimension can be as low as O(polylog(N)), which
is exponentially faster compared to known classical solvers. Due to the wide ap-
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plications of linear systems, the efficient solution of QLSP has received significant
attention in recent years [93, 59, 86, 154, 15, 49, 172, 48, 176, 43]. By reformulating
QLSP into an eigenvalue problem, recent developments have yielded near-optimal
query-complexity with respect to κ (the condition number of A, defined as the ratio
between the largest and the smallest singular value of A, or κ = ∥A∥∥A−1∥) [154,
15], which is so far difficult to achieve using alternative methods.

Consider a Hermitian matrix H ∈ CN×N , which has a known interior eigenvalue
λ separated from the rest of the spectrum by a gap (or a lower bound of the gap)
denoted by ∆. Let Pλ be the spectral projector associated with the eigenvalue λ. The
goal of the quantum eigenstate filtering problem is to find a certain smooth function
f(·), so that ∥f(H −λI)−Pλ∥ is as small as possible, and there should be a unitary
quantum circuit U that efficiently implements f(H − λI). Then given an initial
state |x0⟩ so that ∥Pλ |x0⟩∥ = γ > 0, f(H−λI) |x0⟩ filters out the unwanted spectral
components in |x0⟩ and is approximately an eigenstate of H corresponding to λ. We
assume that H can be block-encoded into a unitary matrix UH [83], which is our
input model for H and requires a certain amount of ancilla qubits. The initial state
is prepared by an oracle Ux0 . In this paper when comparing the number of qubits
needed, we focus on the extra ancilla qubits introduced by the various methods used,
which exclude the ancilla qubits used in the block-encoding of H.

In this paper, we develop a polynomial-based filtering method, which chooses
f = Pℓ to be a ℓ-th degree polynomial. We prove that our choice yields the optimal
compression ratio among all polynomials. Assume that the information of H can be
accessed through its block-encoding. Then we demonstrate that the optimal eigen-
state filtering polynomial can be efficiently implemented using the recently developed
quantum signal processing (QSP) [86, 115], which allows us to implement a general
matrix polynomial with a minimal number of ancilla qubits. More specifically, the
query complexity of our method is Õ(1/(γ∆) log(1/ϵ)) for the block-encoding of the
Hamiltonian and O(1/γ) for initial state preparation, when using amplitude am-
plification. The number of extra ancilla qubits is merely 3 when using amplitude
amplification, and 2 when we do not (in this case the 1/γ factor in both query com-
plexities become 1/γ2). However in the application to QLSP we can always guarantee
γ = Ω(1), and thus not using amplitude amplification only changes the complexity
by a constant factor.

Using the quantum eigenstate filtering algorithm, we present two algorithms to
solve QLSP, both achieving a query complexity Õ(κ log(1/ϵ)), with constant success
probability (success is indicated by the outcome of measuring the ancilla qubits).
For any δ > 0, a quantum algorithm that is able to solve a generic QLSP with
cost O(κ1−δ) would imply BQP=PSPACE [93]. Therefore our algorithm is near-
optimal with respect to κ up to a logarithmic factor, and is optimal with respect
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to ϵ. The first algorithm (Theorem 26) combines quantum eigenstate filtering with
the time-optimal adiabatic quantum computing (AQC) approach [15]. We use the
time-optimal AQC to prepare an initial state |x0⟩, which achieves a nontrivial overlap
with the true solution as γ = |⟨x0|x⟩| ∼ Ω(1). Then we apply the eigenstate filtering
to |x0⟩ once, and the filtered state is ϵ-close to |x⟩ upon measurement. The second
algorithm (Theorem 29) combines quantum eigenstate filtering with the time-optimal
version of the approach based on the quantum Zeno effect (QZE) [39, 154]. Instead
of preparing one initial vector satisfying γ ∼ Ω(1), a sequence of quantum eigenstate
filtering algorithm are applied to obtain to the instantaneous eigenstate of interest
along an eigenpath. The final state is again ϵ-close to |x⟩ upon measurement. Neither
algorithm involves phase estimation or any form of amplitude amplification. The
first algorithm achieves slightly better dependence on κ than the second algorithm,
but this comes at the expense of using a time-dependent Hamiltonian simulation
procedure [116] resulting in this algorithm using more ancilla qubits than the second
QZE-based algorithm. For both algorithms, because the success is indicated by the
outcome of measuring the ancilla qubits, we can repeat the algorithms O(log(1/δ))
times to boost the final success probability from Ω(1) to 1− δ for arbitrarily small δ.

Related works:
A well-known quantum eigenstate filtering algorithm is phase estimation [101],

which relies on Hamiltonian simulation [113, 35, 116, 115, 114, 34] and the quantum
Fourier transform. We treat the Hamiltonian simulation e−iHτ with some fixed τ
as an oracle called Usim, where τ satisfies τ∥H∥ < π. Ref. [80, Appendix B] con-
tains a very detailed analysis of the complexities of using phase estimation together
with amplitude amplification. From the analysis in Ref. [80], this approach requires

Õ(1/(γ2∆ϵ)) times of queries for Usim, where ϵ is the target accuracy (the complex-
ity is the same up to logarithmic factors if we use the block-encoding UH instead
of its time-evolution as an oracle); the number of queries to the circuit Ux0 that

prepares the initial trial state is Õ(1/γ); and the number of extra ancilla qubits is
O(log(1/(ϵ∆)). This is non-optimal with respect to both γ and ϵ.

Several variants of phase estimation are developed to achieve better dependence
on the parameters γ and ϵ [134, 135, 80]. The filtering method developed by Poulin
and Wocjan [134] (for a task related to eigenstate filtering) improves the query com-

plexities of Usim and Ux0 with respect to γ from Õ(1/γ2) to Õ(1/γ). Ge et al. [80,
Appendix C] shows that the method by Poulin and Wocjan can be adapted to the
ground state preparation problem so that the query complexity of Usim becomes
Õ(1/(γ∆) log(1/ϵ)), while the complexity of Ux0 remains Õ(1/γ). The number of
extra ancilla qubits is O(log(1/(ϵ∆)). Similar logarithmic dependence on the accu-
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racy in the query complexity has also been achieved in Ref. [135].
Ge et al. [80] also proposed two eigenstate filtering algorithms using linear com-

bination of unitaries (LCU) [59, 34], which uses the Fourier basis and the Chebyshev
polynomial basis, respectively. For both methods, the query complexities for UH and
Ux0 are Õ(1/(γ∆) log(1/ϵ)) and Õ(1/γ) respectively, and the number of extra ancilla
qubits can be reduced to O(log log(1/ϵ) + log(1/∆)). The log log(1/ϵ) factor comes
from the use of LCU. We remark that these methods were developed for finding
the ground state, but can be adapted to compute interior eigenstates as well. Our
filtering method has the same query complexity up to polylogarithmic factors. The
number of extra ancilla qubits is significantly fewer and does not depend on either ϵ
or ∆, due to the use of QSP. Our method also uses the optimal filtering polynomial,
which solves a minimax problem as recorded in Lemma 20. There are several other
hybrid quantum-classical algorithms to compute ground state energy and to prepare
the ground state [151, 132], whose computational complexities are not yet analyzed
and therefore we do not make comparisons here.

For solving QLSP, the query complexity of the original Harrow, Hassidim, and
Lloyd (HHL) algorithm [93] scales as Õ(κ2/ϵ), where κ is the condition number of
A, and ϵ is the target accuracy. Despite the exponential speedup with respect to
the matrix dimension, the scaling with respect to κ and ϵ is significantly weaker
compared to that in classical methods. For instance, for positive definite matrices,
the complexity of steepest descent (SD) and conjugate gradient (CG) (with respect
to both κ and ϵ) are only O(κ log(1/ϵ)) and O(√κ log(1/ϵ)), respectively [143].

In the past few years, there have been significant progresses towards reducing the
pre-constants for quantum linear solvers. In particular, the linear combination of
unitary (LCU) [34, 59] and quantum signal processing (QSP) or quantum singular
value transformation (QSVT) [115, 86] techniques can reduce the query complexity to
O(κ2 polylog(κ/ϵ)). Therefore the algorithm is almost optimal with respect to ϵ, but
is still suboptimal with respect to κ. The scaling with respect to κ can be reduced by
the variable-time amplitude amplification (VTAA) [12] technique, and the resulting
query complexity for solving QLSP is O(κ polylog(κ/ϵ))) [59, 49]. However, VTAA
requires considerable modification of the LCU or QSP algorithm, and has significant
overhead itself. To the extent of our knowledge, the performance of VTAA for solving
QLSP has not been quantitatively reported in the literature.
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Algorithm Query complex-
ity

Remark

HHL [93] Õ(κ2/ϵ) w. VTAA, complexity becomes
Õ(κ/ϵ3) [11]

Linear combination of unitaries
(LCU) [59, 49]

Õ(κ2 polylog(1/ϵ)) w. VTAA, complexity becomes
Õ(κ polylog(1/ϵ))

Quantum singular value transfor-
mation (QSVT) [86]

Õ(κ2 log(1/ϵ))

Randomization method (RM)
[154]

Õ(κ/ϵ) w. repeated phase estima-
tion, complexity becomes
Õ(κ polylog(1/ϵ))

Time-optimal adiabatic quantum
computing (AQC(exp)) [15]

Õ(κ polylog(1/ϵ)) No need for any amplitude am-
plification. Use time-dependent
Hamiltonian simulation.

Eigenstate filtering+AQC (Theo-
rem 26)

Õ(κ log(1/ϵ)) No need for any amplitude ampli-
fication.

Eigenstate filtering+QZE (Theo-
rem 29)

Õ(κ log(1/ϵ)) No need for any amplitude am-
plification. Does not rely on any
complex subroutines.

Table 4.1: The number of queries to the block-encoding of the coefficient matrix A for
solving QLSP. Some algorithms were not originally formulated using block-encoding
as the input model, but can be converted to use the block-encoding model instead.
In the HHL algorithm it is assumed that we have access to time-evolution under the
Hermitian coefficient matrix as the Hamiltonian. This assumption can be met when
we have the block-encoding of A using Hamiltonian simulation technique that results
in small overhead [35, 116, 115, 114, 34]. The LCU method [59] and the gate-based
implementation of the RM method [154] both assume oracles to access elements of
A. However in both cases the oracles lead to a block-encoding A which can be used
in the algorithms. The same can be said of the sparse-access input model in Ref. [49].
Time complexities and gate complexities are converted to query complexities with
respect to the oracles in this paper. [85, Thereom 41] gives the implementation of
the pseudoinverse using QSVT. This can be used to solve the QLSP by applying this
pseudoinverse to the quantum state representing the right-hand side.
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The recently developed randomization method (RM) [154] is the first algorithm
that yields near-optimal scaling with respect to κ, without using techniques such as
VTAA. RM was inspired by adiabatic quantum computation (AQC) [79, 9, 97], but
relies on the quantum Zeno effect. Both RM and AQC reformulate QLSP into an
eigenvalue problem. The runtime complexity of RM is O(κ log(κ)/ϵ). The recently
developed time-optimal AQC(p) and AQC(exp) approaches [15] reduces the runtime
complexity to O(κ/ϵ) and O(κ polylog(κ/ϵ)), respectively. In particular, AQC(exp)
achieves the near-optimal complexity with respect to both κ and ϵ, without relying
on any amplification procedure. We also remark that numerical observation indi-
cate that the time complexity of the quantum approximate optimization algorithm
(QAOA) [78] can be as low as O(κ polylog(1/ϵ)) [15]. The direct analysis of the com-
plexity of QAOA without relying on the complexity of adiabatic computing (such
as AQC(exp)) remains an open question. We demonstrate that quantum eigenstate
filtering provides a more versatile approach to obtain the near optimal complexity for
solving QLSP. In particular, it can be used to reduce the complexity with respect to ϵ
for both adiabatic computing and quantum Zeno effect based methods. In Table 4.1
we compare these aforementioned algorithms in terms of the number of queries to the
block-encoding of A. We note that these algorithms rely on different input models
but they can all be slightly modified to use the block-encoding assumed in this work.

Recently quantum-inspired classical algorithms based on ℓ2-norm sampling as-
sumptions [160, 159] have been developed that are only up to polynomially slower
than the corresponding quantum algorithms. Similar techniques have been applied
to solve low-rank linear systems [53, 84], which achieve exponential speedup in the
dependence on the problem size compared to the traditional classical algorithms for
the same problem. However, it is unclear whether the classical ℓ2-norm sampling
can be done efficiently without access to a quantum computer in the setting of this
work. The quantum-inspired classical algorithms also suffer from many practical
issues making their application limited to highly specialized problems [22]. Most im-
portantly, the assumption of low-rankness is crucial in these algorithms. Our work
is based on the block-encoding model, which could be used to efficiently represent
low-rank as well as full-rank matrices on a quantum computer.

Notations: In this paper we use the following asymptotic notations besides the
usual O notation: we write f = Ω(g) if g = O(f); f = Θ(g) if f = O(g) and

g = O(f); f = Õ(g) if f = O(g polylog(g)).
We use ∥ · ∥ to denote vector or matrix 2-norm: when v is a vector we denote

by ∥v∥ its 2-norm, and when A is matrix we denote by ∥A∥ its operator norm. For
two quantum states |x⟩ and |y⟩, we sometimes write |x, y⟩ to denote |x⟩ |y⟩. We use
fidelity to measure how close to each other two quantum states are. Note there are



CHAPTER 4. SOLVING QUANTUM LINEAR SYSTEMS 88

two common definitions for the fidelity between two pure states |ϕ⟩ and |φ⟩: it is
either | ⟨ϕ|φ⟩ | or | ⟨ϕ|φ⟩ |2. Throughout the paper we use the former definition.

Organization: The rest of the paper is organized as follows. In Section 4.2 we
briefly review block-encoding and QSP, as well as using QSP to directly solve QLSP
with a non-optimal complexity. In Section 4.3 we introduce the minimax polynomial
we are using and our eigenstate filtering method based on it. In Section 4.4 we
combine eigenstate filtering with AQC to solve the QLSP. In Section 4.5 we present
another method to solve the QLSP using QZE and eigenstate filtering. In Section 4.6
we discuss some practical aspects of our algorithms and future work.

4.2 Block-encoding and quantum signal

processing

For simplicity we assume N = 2n. An (m+ n)-qubit unitary operator U is called an
(α,m, ϵ)-block-encoding of an n-qubit operator A, if

∥A− α(⟨0m| ⊗ I)U(|0m⟩ ⊗ I)∥ ≤ ϵ. (4.1)

Another way to express eq. (4.1) is

U =

(
Ã/α ∗
∗ ∗

)
,

where ∗ can be any block matrices of the correct size and ∥Ã−A∥ ≤ ϵ. For instance,

when m = 1, Ã/α is an n-qubit matrix at the upper-left diagonal block of the

(n + 1)-qubit unitary matrix U . Note that the fact Ã/α is the upper-left block of

a unitary matrix implies ∥Ã/α∥ ≤ ∥U∥ = 1. Therefore ∥Ã∥ ≤ α. Many matrices
used in practice can be efficiently block-encoded. For instance, if all entries of A
satisfies |Aij| ≤ 1, and A is Hermitian and d-sparse (i.e. each row / column of A
has no more than d nonzero entries), then A has a (d, n+ 2, 0)-encoding U . See [59,
Section 4.1] and [34, Lemma 10] for details, as well as [85, Lemma 48] for a more
general treatment of sparse matrices.

With a block-encoding available, QSP allows us to construct a block-encoding for
an arbitrary polynomial eigenvalue transformation of A.

Theorem 19. (Polynomial eigenvalue transformation via quantum signal
processing1 [86, Theorem 31]): Let U be an (α,m, ϵ)-block-encoding of a Her-

1Throughout the paper we use the term QSP to refer to this type of polynomial eigenvalue
transformation as well.
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mitian matrix A. Let P ∈ R[x] be a degree-ℓ real polynomial and |P (x)| ≤ 1/2 for

any x ∈ [−1, 1]. Then there exists a (1,m+ 2, 4ℓ
√
ϵ/α)-block-encoding Ũ of P (A/α)

using ℓ queries of U , U †, and O((m+ 1)ℓ) other primitive quantum gates.

We remark that Theorem 19 does not meet all our needs because of the constraint
|P (x)| ≤ 1/2. This requirement comes from decomposing the polynomial into the
sum of an even and an odd polynomial and then summing them up. When P (x)
naturally has a parity this requirement becomes redundant. This enables us to get
rid of 1 ancilla qubit. Also for simplicity we assume the block-encoding of A is exact.
Therefore we have the following theorem, which can be proved directly from [86,
Theorem 2 and Corollary 11].

Theorem 1’. (Polynomial eigenvalue transformation with definite par-
ity via quantum signal processing) Let U be an (α,m, 0)-block-encoding of a
Hermitian matrix A. Let P ∈ R[x] be a degree-ℓ even or odd real polynomial and

|P (x)| ≤ 1 for any x ∈ [−1, 1]. Then there exists a (1,m+ 1, 0)-block-encoding Ũ of
P (A/α) using ℓ queries of U , U †, and O((m+ 1)ℓ) other primitive quantum gates.

Compared to methods such as LCU, one distinct advantage of QSP is that the
number of extra ancilla qubits needed is only 1 as shown in Theorem 1’. Hence
QSP may be possibly carried out efficiently on intermediate-term devices. Fur-
thermore, a polynomial can be expanded into different basis functions as P (x) =∑ℓ

k=0 ckfk(x), where fk can be the monomial xk, the Chebyshev polynomial Tk(x),
or any other polynomial. The performance of LCU crucially depends on the 1-norm
∥c∥1 =

∑ℓ
k=0 |ck|, which can be very different depending on the expansion [59]. The

block encoding Ũ in QSP is independent of such a choice, and therefore provides a
more intrinsic representation of matrix function. We also remark that in QSP, the
construction of the block-encoding Ũ involves a sequence of parameters called phase
factors. For a given polynomial P (x), the computation of the phase factors can be
efficiently performed on classical computers [92, 85]. There are however difficulties in
computing such phase factors, which will be discussed in Section 4.6. For simplicity
we assume that the phase factors are given and computed without error.

As an example, we demonstrate how to use QSP to solve QLSP with a Hermitian
coefficient matrix A, given by its (α,m, 0)-block-encoding UA. We assume that A, b
are normalized as

∥A∥ = 1, ⟨b|b⟩ = 1.

We also assume A is Hermitian, and therefore all the eigenvalues of A are real.
General matrices can be treated using the standard matrix dilation method (see
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Appendix 4.10). Due to the normalization condition, the block-encoding factor sat-
isfies α ≥ ∥A∥ = 1. Furthermore, since κ = ∥A∥∥A−1∥ = ∥A−1∥, the smallest
singular value of A is 1/κ. Hence the eigenvalues of A/α are contained in the set
[−1/α,−1/(ακ)] ∪ [1/(ακ), 1/α] ⊆ D1/(ακ), where

Dδ := [−1,−δ] ∪ [δ, 1].

Later we will keep using this notation Dδ to denote sets of this type. We first find a
polynomial P (x) satisfying |P (x)| ≤ 1 for any x ∈ [−1, 1], and |P (x)−1/(cx)| ≤ ϵ′ on
D1/(ακ) for c = 4ακ/3. Note that ϵ′ is the accuracy of the polynomial approximation,
so that the unnormalized state P (A/α) |b⟩ would differ from the desired (α/c)A−1 |b⟩
by ϵ′. In order to obtain a normalized solution P (A/α) |b⟩ /∥P (A/α) |b⟩ ∥ that
is ϵ-close to the normalized solution |x⟩ = A−1 |b⟩ /∥A−1 |b⟩∥, we first note that
∥A−1 |b⟩∥ ≥ 1. So the normalization would amplify the error by a factor of approx-
imately c/(α∥A−1 |b⟩ ∥) ≤ 4κ/3. Therefore we may choose ϵ′ = 3ϵ/4κ. Then we
can find an odd polynomial of degree O(ακ log(κ/ϵ)), where ϵ is the desired preci-

sion, satisfying this by [85, Corollary 69]. Then by Theorem 1’ we have a circuit Ũ
satisfying

Ũ |0m+1⟩ |b⟩ = |0m+1⟩ (P (A/α) |b⟩) + |ϕ⟩
≈ |0m+1⟩

(α
c
A−1 |b⟩

)
+ |ϕ⟩ ,

where |ϕ⟩ is orthogonal to all states of the form |0m+1⟩ |ψ⟩. Measuring the ancilla
qubits, we obtain the a normalized quantum state P (A/α) |b⟩ /∥P (A/α) |b⟩ ∥ that is
ϵ-close to the normalized solution |x⟩ with probability Θ

((
α
c
∥A−1 |b⟩∥

)2)
.

As ∥A−1 |b⟩∥ ≥ 1, the probability of success is Ω(1/κ2). Using amplitude ampli-
fication [42], the number of repetitions needed for success can be improved to O(κ).
Furthermore, the query complexity of application of Ũ is O(ακ log(κ/ϵ)). Therefore
the overall query complexity is O(ακ2 log(κ/ϵ)).

We observe that the quadratic scaling with respect to κ is very much attached
to the procedure above: each application of QSP costs O(κ) queries of U,U †, and
the other from that QSP needs to be performed for O(κ) times. The same argument
applies to other techniques such as LCU. To reduce the κ complexity along this line,
one must modify the procedure substantially to avoid the multiplication of the two
κ factors, such as using the modified LCU based on VTAA [59].
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4.3 Eigenstate filtering using a minimax

polynomial

Now consider a Hermitian matrix H, with a known eigenvalue λ that is separated
from other eigenvalues by a gap ∆. H is assumed to have an (α,m, 0)-block-encoding
denoted by UH . We want to preserve the λ-eigenstate while filtering out all other
eigenstates. Let Pλ denote the projection operator into the λ-eigenspace of H. The
basic idea is, suppose we have a polynomial P such that P (0) = 1 and |P (x)| is
small for x ∈ D∆/(2α), where we use the notation Dδ = [−1,−δ] ∪ [δ, 1] that has
been introduced earlier, then P ((H − λI)/(α + |λ|)) ≈ Pλ. This is the essence of
the algorithm we are going to introduce below. The reason we need to introduce
the factors 2α and α+ |λ| is that the block-encoding of H − λI will involve a factor
α + |λ|, and this is explained in detail in Appendix 4.7. Since |λ| ≤ α by definition
of the operator norm, we have α+ |λ| ≤ 2α. Therefore when λ is separated from the
rest of the spectrum of H by a gap ∆, 0 is separated from the rest of the spectrum
of (H − λI)/(α + |λ|) by a gap ∆/(α + |λ|) ≥ ∆/(2α) = ∆̃.

We use the following 2ℓ-degree polynomial

Rℓ(x; ∆) =
Tℓ

(
−1 + 2x

2−∆2

1−∆2

)

Tℓ
(
−1 + 2 −∆2

1−∆2

) ,

where Tℓ(x) is the ℓ-th Chebysehv polynomial of the first kind. This polynomial is
inspired by the shifted and rescaled Chebyshev polynomial discussed in [143, Theo-
rem 6.25]. A plot of the polynomial is given in Fig. 4.1. Rℓ(x; ∆) has several nice
properties:

Lemma 20. (i) Rℓ(x; ∆) solves the minimax problem

minimize
p(x)∈P2ℓ[x],p(0)=1

max
x∈D∆

|p(x)|.

(ii) |Rℓ(x; ∆)| ≤ 2e−
√
2ℓ∆ for all x ∈ D∆ and 0 < ∆ ≤ 1/

√
12. Also Rℓ(0;∆) = 1.

(iii) |Rℓ(x; ∆)| ≤ 1 for all |x| ≤ 1.

A proof of the above lemma is provided in Appendix 4.11. If we apply this
polynomial to H − λI, Lemma 20 (i) states that Rℓ achieves the best compression
ratio of the unwanted components, among all polynomials of degrees up to 2ℓ. To
prepare a quantum circuit, we define H̃ = (H − λI)/(α + |λ|). Then we can also

construct a (1,m+1, 0)-block-encoding for H̃ (see Appendix 4.7). The gap separating

0 from other eigenvalues of H̃ is lower bounded by ∆̃ = ∆/2α, as explained at the
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Figure 4.1: The polynomial Rℓ(x,∆) for ℓ = 16 and 30, ∆ = 0.1.

beginning of this section. Together with the fact that ∥H̃∥ ≤ 1, we find that the

spectrum of H̃ is contained in D∆̃ ∪ {0}.
We then apply Lemma 20. Note that the requirement when ∆̃ > 1/

√
12 might

not be satisfied, we can always set ∆̃ = 1/
√
12 and this does not affect the asymptotic

complexity as ∆̃→ 0. Because of (ii) of Lemma 20, we have

∥Rℓ(H̃, ∆̃)− Pλ∥ ≤ 2e−
√
2ℓ∆̃.

Also because of (iii), and the fact that Rℓ(x; ∆̃) is even, we may apply Theorem 1’

to implement Rℓ(H̃; ∆̃) using QSP. This gives the following theorem:

Theorem 21. (Eigenstate filtering): Let H be a Hermitian matrix and UH is
an (α,m, 0)-block-encoding of H. If λ is an eigenvalue of H that is separated from
the rest of the spectrum by a gap ∆, then we can construct a (1,m + 2, ϵ)-block-
encoding of Pλ, by O((α/∆) log(1/ϵ)) applications of (controlled-) UH and U †

H , and
O((mα/∆) log(1/ϵ)) other primitive quantum gates.

Suppose we can prepare a state |ψ⟩ = γ |ψλ⟩ + |⊥⟩ using an oracle Oψ, where
|ψλ⟩ is a λ-eigenvector and ⟨ψλ| ⊥⟩ = 0, for some 0 < γ ≤ 1. Theorem 21 states
that we can get an ϵ-approximation to |ψλ⟩ with O((α/∆) log(1/(γϵ))) queries to
UH , with a successful application of the block-encoding of Pλ, denoted by UPλ

. The
fact we have 1/(γϵ) instead of 1/ϵ in the logarithm is due to the error amplification
going from an unnormalized state to a normalized state, similar to that discussed
in the application of QSP to QLSP in Section 4.2. The probability of applying this
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block-encoding successfully, i.e. getting all 0’s when measuring ancilla qubits, is
at least γ2. Therefore when |ψ⟩ can be repeatedly prepared by an oracle, we only
need to run UPλ

and the oracle on average O(1/γ2) times to obtain |ψλ⟩ successfully.
With amplitude amplification we can reduce this number to O(1/γ). However this
is not necessary when γ = Ω(1), when without using amplitude amplification we can
already obtain |ψλ⟩ by using the oracle for initial state and UPλ

O(1) times.
We remark that the eigenstate filtering procedure can also be implemented by

alternative methods such as LCU. The polynomial Rℓ(·, ∆̃) can be expanded exactly
into a linear combination of the first 2ℓ + 1 Chebyshev polynomials. The 1-norm
of the expansion coefficients is upper bounded by 2ℓ + 2 because |Rℓ(x, ∆̃)| ≤ 1.
However, this comes at the expense of additional O(log ℓ) qubits needed for the LCU
expansion [59].

Besides the projection operator, we can use this filtering procedure to implement
many other related operators. First we consider implementing the reflection operator
about the target λ-eigenstate (or λ-eigenspace if there is degeneracy), 2Pλ−I, which
is useful in the amplitude amplification procedure [90, 42]. This problem has been
considered in Ref. [61].

For a given Hamiltonian H, with the same assumptions as in Theorem 21, and
H̃ = (H − λI)/(α + |λ|) as constructed above, we define

Rλ = 2Pλ − I,

where Pλ is the projection operator into the λ-eigenspace of H. Using a polynomial
Sℓ(x; ∆) constructed from Rℓ(x; ∆) as introduced in Appendix 4.8, we can implement
the reflection operator Rλ through QSP. The cost is summarized as follows:

Theorem 22. Under the same assumption as Theorem 21, a (1,m + 2, ϵ)-block-
encoding of Rλ, the reflection operator about the λ-eigenspace of H, can be con-
structed using O((α/∆) log(1/ϵ)) applications of (controlled-) UH and U †

H , and O((mα/∆) log(1/ϵ))
other primitive quantum gates.

For the proof see Appendix 4.8. This reflection operator further enables us to
construct a block-encoding of the θ-reflection operator.

Pλ + eiθ(I − Pλ).

This operator is useful in fixed-point amplitude amplification [179, 91]. The cost is
summarized as follows:

Corollary 23. Under the same assumption as Theorem 21, a (1,m + 3, ϵ)-block-
encoding of Pλ+e

iθ(I−Pλ), where Pλ is the projection operator into the λ-eigenspace
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of H, can be constructed using O((α/∆) log(1/ϵ)) applications of (controlled-) UH
and U †

H , and O((mα/∆) log(1/ϵ)) other primitive quantum gates.

The proof can be found in Appendix 4.8.
In this paper we focus on obtaining the eigenstate corresponding to an eigenvalue

that is known exactly. If instead of a single known eigenvalue, we want keep all eigen-
values in a certain interval, and filter out the rest, we can use a linear combination
of polynomials used to approximate the sign function [86, Lemma 14], together with
constant shift. The filtering polynomial for this kind of task can also be obtained
numerically through Remez algorithm [139], followed by a optimization based pro-
cedure to efficiently identify the phase factors. For more details we refer readers to
Ref. [70].

Remark 24. In the special case where ∥H∥ = 1, the target eigenvalue is 1, and we
have access to a (1,m, 0)-block-encoding of H, then a quadratically improved depen-
dence on the gap can be achieved using polynomials such as [143, Eq. (6.113)]. This
is useful for obtaining the stationary distribution of an ergodic and reversible Markov
chain because the discriminant matrix [158, 19, 18] can be block-encoded efficiently
in a reflection operator, and its 1-eigenstate is

∑
j

√
πj |j⟩ where π = (πj) is the

stationary distribution.

4.4 Solving QLSP: eigenstate filtering with

adiabatic quantum computing

To define QLSP, we assume that a d-sparse matrix A can be accessed by oracles
OA,1, OA,2 as

OA,1|j, l⟩ = |j, ν(j, l)⟩, OA,2|j, k, z⟩ = |j, k, Ajk ⊕ z⟩, (4.2)

where j, k, l, z ∈ [N ], and ν(j, l) is the row index of the l-th nonzero element in the
j-th column. The right hand side vector |b⟩ can be prepared with an oracle OB as

OB |0⟩ = |b⟩ . (4.3)

This is the same as the assumption used in [59, 154]. The oracles can be used to
construct a (d, n+ 2, 0)-block-encoding of A [34, 59].

We assume the singular values of A are contained in [1/κ, 1] for some κ > 1.
Therefore κ here is an upper bound for the condition number, which is defined as
the ratio between the largest and the smallest singular values. It is thus guaranteed
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that when A is Hermitian its eigenvalues are contained inD1/κ = [−1,−1/κ]∪[1/κ, 1].
In Ref. [59] it is assumed that that ∥A∥ = 1 and the condition number is exactly
κ [59, Problem 1], which is slightly stronger than the assumption we are currently
using.

Remark 25. We can always assume without loss of generality that A is Hermitian.
Because when A is not Hermitian we can solve an extended linear system as described
in Appendix 4.10, where the coefficient matrix is

(
0 A
A† 0

)

This is a Hermitian matrix, and when A is d-sparse, this matrix is d-sparse as well.
If A has singular values {σk}, then the dilated Hermitian matrix has real eigenvalues
{±σk}. Therefore the two matrices have the same condition number, and when the
singular values of A are contained in [1/κ, 1] the spectrum of the above dilated matrix
is contained in [−1,−1/κ] ∪ [1/κ, 1].

We will then apply the method we developed in the last section to QLSP. To do
this we need to convert QLSP into an eigenvalue problem. For simplicity we assume
A is Hermitian positive-definite. The indefinite case is addressed in Appendix 4.10,
which uses different Hamiltonians but only requires minor modifications. We define

H1 =

(
0 AQb

QbA 0

)
= |0⟩ ⟨1| ⊗ AQb + |1⟩ ⟨0| ⊗QbA, (4.4)

where Qb = I − |b⟩ ⟨b|. This Hamiltonian has been used in Refs. [154, 15]. As
discussed in Appendix 4.7, we can construct a (d, n + 4, 0)-block-encoding of H1,
denoted by UH1 by applying OB, OA,1, OA,2 twice.

We may readily verify that the 0-eigenspace, i.e. the null space, of H1 is spanned
by |0⟩ |x⟩ = (x, 0)⊤, where |x⟩ is the solution, i.e. A |x⟩ ∝ |b⟩, and |1⟩ |b⟩ = (0, b)⊤,
by considering the null space of H2

1 . The rest of the spectrum is separated from
0 by a gap of 1/κ [15, 154]. Therefore to apply the eigenstate filtering method,
we only need an initial state2 with non-vanishing overlap with the target eigenstate
|0⟩ |x⟩ that can be efficiently prepared. We will prepare this initial state using the
time-optimal adiabatic quantum computing.

2We will later discuss how to use AQC and QZE to prepare this state. Therefore it is worth
pointing out that by initial state here we mean the state on which we apply the eigenstate filtering,
rather than the initial state of AQC or QZE.
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Choosing the eigenpath

To use adiabatic quantum computing we need to first specify the eigenpath we are
going to follow. We define

H0 =

(
0 Qb

Qb 0

)
= σx ⊗Qb. (4.5)

and
H(f) = (1− f)H0 + fH1,

where H1 is defined in Eq. (4.4).
We will then evolve the system following the 0-eigenstates of each H(f). These

eigenstates form an eigenpath linking the initial state to the solution to the linear
system. There are several important properties of the Hamiltonians H(f) and of
the eigenpath which we discuss below, though some of them we will only use in the
algorithm based on the quantum Zeno effect.

The null space of H(f) is two-dimensional, and we will pay special attention to
this fact in our analysis. The non-zero eigenvalues of H(f) appear in pairs. Let
λj(f), j = 1, 2, . . . , N − 1 be all the positive eigenvalues of H(f), and |zj(f)⟩ be the
corresponding eigenvectors, then we may readily check

H(f)(σz ⊗ I) |zj(f)⟩ = −λj(f)(σz ⊗ I) |zj(f)⟩ .

Therefore −λj(f) is also an eigenvalue of H(f) with corresponding eigenvector (σz⊗
I) |zj(f)⟩, for j = 1, 2, . . . , N−1. Thus we have obtained all the non-zero eigenvalues
and corresponding eigenvectors.

The form of the matrices in Eqs. (4.4) and (4.5) is important for achieving O(κ)
complexity in our algorithms because they ensure the gap between 0 and other eigen-
values for all f is lower bounded by

∆∗(f) = 1− f +
f

κ
. (4.6)

A proof can be found in [15].
Now we are ready to specify the eigenpath. For any f , we let |x(f)⟩ be some

vector such that
((1− f)I + fA) |x(f)⟩ ∝ |b⟩ . (4.7)

We can then see that the null space of H(f) is spanned by |x̄(f)⟩ = |0⟩ |x(f)⟩ and
|1⟩ |b⟩. This requirement pins down the choice for |x(f)⟩ up to a time-dependent
global phase. By requiring the phase to be geometric, i.e.

⟨x(f)|∂f |x(f)⟩ = 0, (4.8)
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the eigenpath {|x(f)⟩} becomes uniquely defined when we require |x(0)⟩ = |b⟩. Note
the above equation is slightly problematic in that we do not know beforehand that
|x(f)⟩ is differentiable. However this turns out not to be a problem because we can
establish the differentiability in Appendix 4.12. Furthermore, we have the estimate

∥∂f |x(f)⟩ ∥ ≤
2

∆∗(f)
. (4.9)

The derivation of the existence and uniqueness of the differentiable eigenpath, to-
gether with the estimate (4.9) are given in Appendix 4.12.

An important quantity we need to use in our analysis is the eigenpath length

L =

∫ 1

0

∥∂f |x(f)⟩ ∥df,

and by (4.9) we have

L ≤
∫ 1

0

2

∆∗(f)
df =

2 log(κ)

1− 1/κ
. (4.10)

We also define the eigenpath length L(a, b) between 0 < a < b < 1 and it is bounded
by

L(a, b) =

∫ b

a

∥∂f |x(f)⟩ ∥df ≤
2

1− 1/κ
log

(
1− (1− 1/κ)a

1− (1− 1/κ)b

)
=: L∗(a, b). (4.11)

Time-optimal adiabatic quantum computing

Here we briefly review the procedure of solving QLSP using the recently developed
time-optimal AQC [15] and the eigenpath described in the previous section that has
been used in [15, 154].

As noted before, the null space of H(f) is two-dimensional, which contains an
unwanted 0-eigenvector |1⟩ |b⟩ = (0, b)⊤. However this 0-eigenvector is not accessible
in the AQC time-evolution

1

T
i∂s |ψT (s)⟩ = H(f(s)) |ψT (s)⟩ , |ψT (0)⟩ = |0⟩ |b⟩ ,

for scheduling function f : [0, 1]→ [0, 1], which is a strictly increasing mapping with
f(0) = 0, f(1) = 1. We find that

(⟨1| ⟨b|) |ψT (s)⟩ = 0,
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for all s ∈ [0, 1]. This is due to

1

T
i∂s(⟨1| ⟨b|) |ψT (s)⟩ = (⟨1| ⟨b|)H(f(s)) |ψT (s)⟩ = 0,

and (⟨1| ⟨b|) |ψT (0)⟩ = 0. This fact gets rid of the problem.
The parameter T needed to reach a certain target accuracy ϵ is called the runtime

complexity (or simply the time complexity). The simplest choice for the scheduling
function is f(s) = s, which gives the “vanilla AQC”. Besides |0⟩ |x⟩, all other eigen-
states of H1 that can be connected to |0⟩ |b⟩ through an adiabatic evolution are
separated from |0⟩ |x⟩ by an energy gap of at least 1/κ [15, 154]. The time complex-
ity of vanilla AQC is at least T ∼ O(κ2/ϵ) [97, 15, 9, 72].

By properly choosing a scheduling function f(s), the time complexity of AQC can
be significantly improved. There are two time-optimal scheduling functions proposed
in [15]. The first method is called AQC(p). For 1 < p < 2, AQC(p) adopts the
schedule

f(s) =
κ

κ− 1

[
1−

(
1 + s(κp−1 − 1)

) 1
1−p

]
. (4.12)

This reduces the time complexity to O(κ/ϵ), which is optimal for κ, but the scaling
with respect to ϵ is the same. The second method is called AQC(exp), which uses a
different scheduling function to achieve time complexity O

(
κ log2(κ) log4

(
log κ
ϵ

))
.

All AQC methods are time-dependent Hamiltonian simulation problem, which
can be implemented using e.g. truncated Dyson series for simulating the time-
dependent Hamiltonian [116]. Although AQC(exp) scales near-optimally with re-
spect to κ and ϵ, numerical evidence indicates that the preconstant of AQC(exp) can
be higher than AQC(p). Hence when a low accuracy ϵ ∼ O(1) is needed, AQC(p)
can require a smaller runtime in practice. In the discussion below, we will consider
AQC(p).

The details of the time-dependent Hamiltonian simulation for AQC are discussed
in Appendix 4.9, and the query complexity for implementing AQC(p) on a gate-based

quantum computer is Õ(κ/ϵ).

Improved dependence on ϵ

We now use eigenstate filtering to accelerate AQC(p) and reduce the query complex-
ity to log(1/ϵ). As mentioned before, once we have access to H1 defined in (4.4),
through the block-encoding UH1 constructed in Appendix 4.7 we only need an ini-
tial state for eigenstate filtering (note that this is not the initial state of the AQC
time-evolution):

|x̃0⟩ = γ0 |0⟩ |x⟩+ γ1 |1⟩ |b⟩+ |⊥⟩ (4.13)
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with |γ0| = Ω(1) and |⊥⟩ orthogonal to the null space. The initial state |x̃0⟩ can
be prepared using the time-optimal AQC procedure. Again we first assume A is
Hermitian positive definite. To make |γ0| = Ω(1) we only need to run AQC(p)
to constant precision, and thus the linear dependence on precision is no longer a
problem. Therefore the time complexity of AQC(p) is O(κ). However we still need
to implement AQC(p) on a quantum circuit. To do this we use the time-dependent
Hamiltonian simulation introduced in [116], which gives a O(dκ log(dκ)/ log log(dκ))
query complexity to achieve O(1) precision, for a d-sparse matrix A. This procedure
also needs to be repeated O(1) times. It should be noted that γ1 in Eq. (4.13) comes
entirely from the error of the Hamiltonian simulation, since AQC should ensure that
the state is orthogonal to |1⟩ |b⟩ for all t. Details on performing this time-dependent
Hamiltonian simulation is given in Appendix 4.9.

Then we can run the eigenstate filtering algorithm described in Section 4.3 to
precision ϵ to obtain Rℓ(H1/d; 1/(dκ)) |x̃0⟩. The |⊥⟩ component will be filtered out,
while the |0⟩ |x⟩ and |1⟩ |b⟩ components remain. To further remove the |1⟩ |b⟩ com-
ponent, we measure the first qubit. Upon getting an outcome 0, the outcome state
will just be |0⟩ |x⟩+O(ϵ). The success probability of applying the eigenstate filtering
is lower bounded by |γ0|2 + |γ1|2, and the success probability of obtaining 0 in mea-
surement is |γ0|2/(|γ0|2 + |γ1|2) + O(ϵ). Thus the total success probability is Ω(1).
Each single application of eigenstate filtering applies UH1 , and therefore OA,1, OA,2,
and OB, for O(dκ log(1/ϵ)) times. It only needs to be repeated Ω(1) times so the
total query complexity of eigenstate filtering is still O(dκ log(1/ϵ)).

In eigenstate filtering we need O(ndκ log(1/ϵ)) additional primitive gates as men-
tioned in Theorem 21. In time-dependent Hamiltonian simulation the addition num-
ber of primitive gates needed is O(dκ(n+log(dκ)) log(dκ)

log log(dκ)
). Both procedures are re-

peatedO(1) times and therefore in total we needO
(
dκ
(
n log(1

ϵ
) + (n+ log(dκ)) log(dκ)

log log(dκ)

))

additional primitive gates.
The number of qubits needed in the eigenstate filtering procedure using QSP is

O(n) which mainly comes from the original size of the problem and block-encoding.
Extra ancilla qubits introduced as a result of eigenstate filtering is only O(1). In
the Hamiltonian simulation O(n + log(dκ)) qubits are needed (see Appendix 4.9).
Therefore the total number of qubits needed is O(n+ log(dκ)).

The procedure above can be generalized to Hermitian indefinite matrices, and
general matrices that are not necessarily Hermitian (see Appendix 4.10). As dis-
cussed in Remark 25, for general matrices we should assume the singular values
instead of eigenvalues of A are contained in [1/κ, 1]. Therefore our QLSP solver can
be summarized as
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Theorem 26. A is a d-sparse matrix whose singular values are in [1/κ, 1] and can
be queried through oracles OA,1 and OA,2 in (4.2), and |b⟩ is given by an oracle OB

in (4.3). Then |x⟩ ∝ A−1 |b⟩ can be obtained with fidelity 1 − ϵ, succeeding with
probability Ω(1) with ancilla qubits measurement outcome indicating success, using

1. O
(
dκ( log(dκ)

log log(dκ)
+ log(1

ϵ
))
)
queries to OA,1, OA,2, and OB,

2. O
(
dκ
(
n log(1

ϵ
) + (n+ log(dκ)) log(dκ)

log log(dκ)

))
other primitive gates,

3. O(n+ log(dκ)) qubits.

When the gate complexity of OA,1, OA,2, and OB are poly(n) the total gate com-

plexity, and therefore runtime, by the above theorem, will be Õ(poly(n)dκ log(1/ϵ)).

Remark 27. Although in total we need O(n+log(dκ)) ancilla qubits, only O(log(dκ))
comes sources other than the block-encoding of A. In other words, our method only
adds O(log(dκ)) ancilla qubits to those that are unavoidable as long as we use this
way of block-encoding of a sparse A. These extra ancilla qubits are mainly a result
of using time-dependent Hamiltonian simulation. Also, although in the theorem we
assumed A is a sparse matrix, we have only used this fact to build its block-encoding.
Given the block-encoding of a matrix A that is not necessarily sparse, the above
procedure can still be carried out directly. This is also true for Theorem 29 which we
are going to introduce later.

We present numerical results obtained on a classical computer in Fig. 4.2 to
validate the complexity estimate. In the numerical test, we solve the linear system
A |x⟩ ∝ |b⟩, where A is formed by adding a randomly generated symmetric positive
definite tridiagonal matrix B, whose smallest eigenvalue is very close to 0, to a scalar
multiple of the identity matrix. After properly rescaling, the eigenvalues of A lie in
[−1, 1]. This construction enables us to estimate condition number with reasonable
accuracy without computing eigenvalues. The off-diagonal elements of B are drawn
uniformly from [−1, 0] and the diagonal elements are the negative of sums of two
adjacent elements on the same row. The (0, 0) and (N − 1, N − 1) elements of
B are slightly larger so that B is positive definite. |b⟩ is drawn from the uniform
distribution on the unit sphere.

With A and |b⟩ chosen, we first run the AQC time evolution for time O(κ) as
described at the beginning of this section, and then apply eigenstate filtering using
the polynomial Rℓ(x; 1/dκ) with degree 2ℓ. Denoting the resulting quantum state
by |x̃⟩ we then compute the fidelity η = |⟨x|x̃⟩|. Fig. 4.2 shows the relation between
η, κ, and ℓ obtained in the numerical experiment.
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Figure 4.2: Left: fidelity η converges to 1 exponentially as ℓ in the eigenvalues
filtering algorithm increases, for different κ. Right: the smallest ℓ needed to achieve
fixed fidelity η grows linearly with respect to condition number κ. The initial state
in eigenstate filtering is prepared by running AQC(p) for T = 0.2κ, with p = 1.5,
which achieves an initial fidelity of about 0.6.

4.5 Solving QLSP: eigenstate filtering with

quantum Zeno effect

Quantum Zeno effect (QZE) is the phenomenon that frequent measurements hinders
a quantum system’s transition from its initial state to other states [121, 77, 76,
29, 45]. A variant of QZE [39, Lemma 1] can be viewed as a particular way for
implementing adiabatic quantum computing [136, 150, 109], and this is what we
mean by QZE throughout this work unless stated otherwise. The basic idea of this
variant of QZE is to follow an adiabatic path through repeated measurement, which
acts as projection operators to the instantaneous eigenstate along the adiabatic path.
This inspired the randomization method for performing computation based on QZE
[39, 154].

In the context of solving QLSP, again for simplicity we first assume A is Hermi-
tian positive definite. Instead of running time-dependent Hamiltonian simulation to
evolve from the 0-eigenstate of H0 to the 0-eigenstate of H1, we consider applying a
series of projections to traverse the eigenpath. Choosing 0 = f0 < f1 < . . . < fM = 1,
for each j = 0, 1, . . . ,M−1, we start from the 0-eigenstate |0⟩ |x(fj)⟩ of H(fj), where
|x(f)⟩ is defined in Eqs. (4.7) and (4.8), and project into the null space of H(fj+1).
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In the end we obtain the 0-eigenstate of H(1) = H1. This is essentially the same
as performing projective measurement for each j [57, 39, 154]. If the projective
measurements are done approximately using quantum phase estimation or phase
randomization, there will be a linear dependence on 1/ϵ in runtime, ϵ being the
desired precision.

In this section we combine eigenstate filtering with Zeno-based computation to
reduce the error dependence from O(1/ϵ) to O(log(1/ϵ)), thanks to the possibility
of performing approximate projections with high precision. However, several issues
demand our attention in the procedure outlined at the beginning of this section.
First, we need to specify the choice of {fj}, which plays an important role in the
lower bound of M needed to ensure at least constant success probability. Second,
the null space of each H(fj) is 2-dimensional. Therefore the eigenpath is not unique,
and we need to specify the eigenpath we are going to traverse, which has been done
in Sec. 4.4, and to ensure the undesired part of the null space does not interfere with
our computation.

The algorithm

As in Section 4.4, the goal is to produce a state close to the solution state |x⟩ of the
QLSP with fidelity at least 1−ϵ for some given 0 < ϵ < 1. In this section we describe
the procedure of the Quantum Zeno effect state preparation. We need to choose a
scheduling function

f(s) =
1− κ−s
1− κ−1

(4.14)

and define fj = f(sj) where sj = j/M . Without the scheduling we will end up with
an unfavorable square dependence on the minimum spectral gap along the eigenpath
[57]. This scheduling is chosen so that

L(fj, fj+1) ≤ L∗(fj, fj+1) =
2 log(κ)

M(1− 1/κ)
, (4.15)

which implies we are dividing the interval [0, 1] of f into M segments of equal L∗-
length.

Before we describe the algorithm we need to first introduce some notations and
block-encodings we need to use. From the block-encoding of H0 and H1 described in
Appendix 4.7, we can construct (1− f + fd, n+ 6, 0)-block-encoding for each H(f),
denoted by UH(f). This construction uses [86, Lemma 29], through

H(f) = (1− f + fd) (⟨c| ⊗ I) [|0⟩ ⟨0| ⊗H0 + |1⟩ ⟨1| ⊗ (H1/d)] (|c⟩ ⊗ I) ,
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where

|c⟩ = 1√
1− f + fd

(
√

1− f |0⟩+
√
fd |1⟩).

We need to use H1/d instead of H1 because there is a d factor involved in the block-
encoding of H1 (see Appendix 4.7) , and the above equation shows we get a 1−f+fd
factor in the block-encoding of H(f) because we need to normalize the coefficient
vector |c⟩. For a more detailed discussion see Appendix 4.7. Applying the eigenstate
filtering procedure in Section 4.3 to precision ϵP gives us an (1, n + 7, ϵP )-block-
encoding of

P̄0(f) = |0⟩ |x(f)⟩ ⟨0| ⟨x(f)|+ |1⟩ |b⟩ ⟨1| ⟨b| , (4.16)

which we denote by UP0(f). By Theorem 21 this uses UH(f) and its inverseO( d
∆∗(f)

log( 1
ϵP
))

times. Note that one ancilla qubit introduced in Theorem 21 is redundant because
we do not need to shift by a multiple of the identity matrix. By definition of block-
encoding we have

∥∥∥P̄0(f)− (⟨0n+7| ⊗ In+1)UP0(f)(|0n+7⟩ ⊗ In+1)
∥∥∥ ≤ ϵP .

Here for clarity we use Ir to denote the identity operator acting on r qubits. Note
that we need access to

P0(f) = |x(f)⟩ ⟨x(f)| , (4.17)

which is the projection operator onto |x(f)⟩, instead of P̄0(f), which is the projection
operator onto |0⟩ |x(f)⟩. We now consider how to approximate P0(f). Because of
the fact

P0(f) = (⟨0| ⊗ In)P̄0(f)(|0⟩ ⊗ In),
we denote

P̃0(f) = (⟨0n+7| ⟨0| ⊗ In)UP0(f)(|0n+7⟩ |0⟩ ⊗ In) (4.18)

and P̃0(f) approximates P0(f) by the following inequalities:

∥P̃0(f)− P0(f)∥ =
∥∥∥(⟨0| ⊗ In)

(
(⟨0n+7| ⊗ I1 ⊗ In)UP0(f)(|0n+7⟩ ⊗ I1 ⊗ In)− P̄0(f)

)
(|0⟩ ⊗ In)

∥∥∥

≤
∥∥∥(⟨0n+7| ⊗ I1 ⊗ In)UP0(f)(|0n+7⟩ ⊗ I1 ⊗ In)− P̄0(f)

∥∥∥
≤ ϵP .

Therefore UP0(f) is an (1, n+ 8, ϵP )-block-encoding of P0(f).
As discussed in Section 4.4, the eigenpath we want to follow is {|0⟩ |x(f)⟩}. How-

ever the approximate projection using eigenstate filtering only allows us to approxi-
mately follow this eigenpath. We denote the approximate states by |x̃(fj)⟩ ≈ |x(fj)⟩,
and will take into account the error of this approximation in our analysis.

With the block-encoding of P0(f) we can describe the algorithm is as follows:
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1. Given 0 < ϵ < 1 and κ > 1 as well as the oracles mentioned at the beginning

of Section 4.4. Set M = ⌈ 4 log2(κ)
(1−1/κ)2

⌉, ϵP = 1
162M2 .

2. Prepare |x̃(0)⟩ = |b⟩. Let j = 1.

3. Apply the (1, n + 8, ϵP )-block-encoding UP0(fj) of P0(fj), constructed using
eigenstate filtering with a polynomial of sufficiently high degree constructed in
Lemma 20, to |0n+8⟩ |x̃(fj−1)⟩ to get UP0(fj)(|0n+8⟩ |x̃(fj−1)⟩).

4. Measure the n+ 8 ancilla qubits.

(a) If not all outputs are 0 then abort and return to Step 2.

(b) If all outputs are 0, and further j < M − 1, then let |x̃(fj)⟩ be the state
in the main register that has not been measured, let j ← j +1, and go to
Step 3. If all outputs are 0 and j =M − 1 then go to next step.

5. Apply the (1, n+ 8, ϵ/4)-block-encoding UP0(1) of P0(1) to |0n+8⟩ |x̃(fM−1)⟩ to
get UP0(fj)(|0n+8⟩ |x̃(fM−1)⟩).

6. Measure the n+ 8 ancilla qubits.

(a) If not all outputs are 0 then abort and return to Step 2.

(b) If all outputs are 0, then output |x̃(1)⟩ in the main register.

Here |x̃(fj)⟩ are defined recursively in Steps 3 and 4 in the algorithm, starting
with |x̃(0)⟩ = |b⟩. We can write down the recursion more concisely:

|x̃(fj)⟩ =
P̃0(fj) |x̃(fj−1)⟩
∥P̃0(fj) |x̃(fj−1)⟩ ∥

. (4.19)

Going from |x̃(fj−1)⟩ to |x̃(fj)⟩ has a success probability ∥P̃0(fj) |x̃(fj−1)⟩ ∥2. We
will show in the next section as well as in Appendix 4.13 that the the final success
probability, which is the product of the success probabilities of these individual steps,
does not go to 0. We emphasize that {|x̃(f)⟩} is defined only for f = fj rather than
arbitrary f ∈ [0, 1]. We use this notation only to be consistent with the notation
|x(f)⟩.

Remark 28 (Choice of precision parameters). There are two precision parameters
involved in the above discussion: ϵ and ϵP . Here ϵ is the target accuracy specified as
part of our task, while ϵP is a parameter that is chosen by the algorithm according to
Step 1, and is used only to ensure that the success probability is lower bounded by a
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constant. Also note that in the last step with j =M (Steps 5 and 6), we set the target
accuracy to be ϵ/4 instead of ϵP in the previous steps. In fact, the errors of eigenstate
filtering for j = 1, 2, . . . ,M − 1 do not directly contribute to the final error. Rather,
they only directly affect the success probability. When the overlap | ⟨x̃(fM−1)|x(1)⟩ |
is lower bounded by a constant away from 0, as we will show in Lemma 33, the final
error is entirely controlled by the accuracy of the final eigenstate filtering for j =M ,
which is in turn controlled by the parameter ϵ/4. In this way we ensure, as will be
shown in the next section, that the output |x̃(1)⟩ satisfies

| ⟨x̃(1)|x⟩ | ≥ 1− ϵ.

Success probability, fidelity, and complexities

In this section we discuss the success probability of the algorithm described in the
previous section, prove the fidelity of the output state is lower bounded by 1− ϵ for
the given ϵ when ϵP and M are chosen as in Step 1 of the algorithm, and finally
estimate the query and gate complexities.

We first give a lower bound for success probability assuming for simplicity each
projection is done without error, i.e. ϵP = 0. This is done so that we do not need to
distinguish between eigenstates and approximate eigenstates produced using eigen-
state filtering, thus making the derivation less technical. A rigorous lower bound,
assuming a finite ϵP > 0, will be given in Appendix 4.13. Under this assumption we
have

Psucc =
M∏

j=1

∥P0(fj) |x(fj−1)⟩ ∥2 =
M∏

j=1

| ⟨x(fj)|x(fj−1)⟩ |2.

Since

| ⟨x(fj)|x(fj−1)⟩ | ≥ 1− 1

2
∥ |x(fj−1)⟩ − |x(fj)⟩ ∥2, (4.20)

∥ |x(fj−1)⟩ − |x(fj)⟩ ∥ ≤ L(fj−1, fj) ≤ L∗(fj−1, fj), (4.21)
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we have

Psucc ≥
(

M∏

j=1

(
1− 1

2
∥ |x(fj−1)⟩ − |x(fj)⟩ ∥2

))2

≥
(
1− 2 log2(κ)

M2(1− 1/κ)2

)2M

≥
(
1− 2 log2(κ)

M(1− 1/κ)2

)2

≥ 1

4
,

where the we have used Eq. (4.15). This inequality holds forM ≥ 4 log2(κ)
(1−1/κ)2

as required
in the previous section.

Therefore we have shown the success probability is lower bounded by 1/4. The
success probability when taking into account errors in each approximate projection,
or in other words when we choose ϵP = 1/162M2 according to our algorithm rather
than setting it to 0, is still lower bounded by a constant, which is proved in Ap-
pendix 4.13.

We then analyze the fidelity and complexities of our algorithm. Here we no longer
assume ϵP = 0, and the following discussion is therefore rigorous. In Appendix 4.13
it is shown that

| ⟨x̃(fj)|x(fj+1)⟩ | ≥ 1− 1

2M
− 4ϵP − 2

√
2ϵP ≥

1

2
, j = 0, 1, . . . ,M − 1,

for ϵP ≤ 1/128 and M≥ 4 log2(κ)
(1−1/κ)2

≥ 4. Therefore | ⟨x̃(fM−1)|x(fM)⟩ | ≥ 1/2, which
allows us to bound the error as,

| ⟨x|x̃(1)⟩ | = | ⟨x̃(fM)|x(fM)⟩ |

=
| ⟨x̃(fM−1)|P̃0(fM)|x(fM)⟩ |
∥P̃0(fM) |x̃(fM−1)⟩ ∥

≥ | ⟨x̃(fM−1)|P0(fM)|x(fM)⟩ | − ϵ/4
∥P0(fM) |x̃(fM−1)⟩ ∥+ ϵ/4

=
| ⟨x̃(fM−1)|x(fM)⟩ | − ϵ/4
| ⟨x̃(fM−1)|x(fM)⟩ |+ ϵ/4

≥ 1− ϵ/2

| ⟨x̃(fM−1)|x(fM)⟩ |
≥ 1− ϵ.

(4.22)
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The derivation is similar to that of Eq. (4.34), and we have used the fact that

∥P̃0(fM) − P0(fM)∥ ≤ ϵ/4 because in Step 5 our algorithm in the previous section
sets the eigenstate filtering accuracy to be ϵ/4 instead of ϵP . Therefore the state
|x̃(1)⟩ prepared in this way has a fidelity at least 1− ϵ.

We then estimate the computational costs. At each j we need to apply an (1, n+
8, ϵP )-block-encoding UP0(fj) of P0(fj) to |x̃(fj−1)⟩ obtained form the last step. From
the analysis in Appendix 4.13 we need ϵP ≤ 1/162M2. Therefore we need to apply

UH(fj) and its inverse O
(

1−fj+dfj
∆∗(fj)

log( 1
ϵP
)
)
times. In total for j = 1, 2, . . . ,M − 1

the number of queries to UH(f) is of the order

log

(
1

ϵP

)M−1∑

j=1

1− f(sj) + f(sj)d

1− f(sj) + f(sj)/κ
≤ log

(
1

ϵP

)
M

∫ 1

0

1− f(s) + f(s)d

1− f(s) + f(s)/κ
ds

= log

(
1

ϵP

)
M

(
dκ− 1

log(κ)
− d− 1

1− 1/κ

)
,

(4.23)

for a d-sparse matrix A and κ is the condition number of A. Then in the last step
for j = M , which is Step 5 in the algorithm in Section 4.5, we need to achieve
accuracy ϵ/4 for the eigenstate filtering. Therefore we need to apply the block-
encoding UP0(1) with O(dκ log(1

ϵ
)) queries to UH(1). As M = O(log2(κ)), adding

the query complexity of the last step to (4.23), and using the fact ϵP = O(1/M2),
gives us the total query complexity of a single run

O (dκ (log(κ) log log(κ) + log(1/ϵ))) . (4.24)

Because the success probability is Ω(1), the procedure needs to be run for an expected
O(1) times to be successful, and therefore the total complexity remains the same.
Since UH(f) queries OA,1, OA,2, and OB each O(1) times, Eq. (4.24) is also the query
complexity to these oracles.

Because the only thing we need to do in this method to solve QLSP is to repeat-
edly use QSP to do projection, no additional qubits are involved for time-dependent
Hamiltonian simulation as in the previous AQC-based method. The total number of
qubits is thereforeO(n). The number of additional primitive gates required can be es-
timated similarly to the number of queries, which scales asO

(
ndκ

(
log(κ) log log(κ) + log(1

ϵ
)
))
.

For the case when A is indefinite, we use a different pair of H0 and H1 as discussed
in Appendix 4.10. The generalization to non-Hermitian matrices is the same as for
Theorem 26, and it can be found in Appendix 4.10 as well. All other procedures are
almost exactly the same. We summarize the results in the following theorem:
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Theorem 29. A is a d-sparse matrix whose singular values are in [1/κ, 1] and can
be queried through oracles OA,1 and OA,2 in (4.2), and |b⟩ is given by an oracle OB.
Then |x⟩ ∝ A−1 |b⟩ can be obtained with fidelity 1 − ϵ, succeeding with probability
Ω(1) with ancilla qubits measurement outcome indicating success, using

1. O
(
dκ
(
log(κ) log log(κ) + log(1

ϵ
)
))

queries to OA,1, OA,2, and OB,
2. O

(
ndκ

(
log(κ) log log(κ) + log(1

ϵ
)
))

other primitive gates,
3. O(n) qubits.

The reason we put requirement on the singular values of A instead of its eigenval-
ues is stated in Remark 25. Just like in the case of AQC-based QLSP algorithm, here
if we have O(poly(n)) gate complexity for the oracles OA,1, OA,2, and OB, then the

total gate complexity will be Õ(poly(n)dκ log(1/ϵ)). Although we use O(n) qubits
in total, the extra ancilla qubits we introduce in this method is in fact only O(1).
This is a further improvement from the O(log(dκ)) ancilla qubits in the AQC-based
QLSP algorithm.

We remark that there is the possibility to further slightly improve by a log(κ)
factor (ignoring log log terms) the asymptotic complexity of our QZE-based QLSP
solver by using the fixed-point amplitude amplification to go from |x(fj)⟩ to |x(fj+1)⟩
for each j, as discussed in [171, Corollary 1]. The bounds in this paper for many
constant factors involved, particular those used in estimating the success probability
of the QZE-based QLSP solver, are rather loose. However this does not concern
us very much because we care mainly about the asymptotic complexity. Tighter
estimates can be helpful for the actual implementation of our methods.

4.6 Discussion

In this paper, we have developed a quantum eigenstate filtering algorithm based on
quantum signal processing (QSP). Our algorithm achieves the optimal query com-
plexity among all polynomial-based eigenstate filtering methods, and uses a minimal
amount of ancilla qubits. We demonstrate the usage of the eigenstate filtering method
to solve quantum linear system problems (QLSP) with near-optimal complexity with
respect to both the condition number κ and the accuracy ϵ. In the case when the
precise value of κ is not known a priori, the knowledge of an upper bound of κ would
suffice.

The problem of directly targeting at the solution A−1 |b⟩ is that a (β,m, ϵ) block-
encoding of A−1 requires at least β ≥ κ to make sure that ∥A−1/β∥ ≤ 1. Therefore
the probability of success in the worst case is already Ω(κ−2), and the number of
rounds of amplitude amplification needed is already O(κ). Therefore to achieve
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near-optimal complexity, this approach can only query the block-encoding of A for
O(polylog(κ)) times. To our best knowledge, there is no known method to achieve
this for general matrices. However this might be possible for matrices with special
structures and will be studied in future work.

Motivated by the success of AQC, our algorithm views QLSP as an eigenvalue
problem, which can be implemented via P |x̃0⟩, where P is an approximate projec-
tion operator, and P |x̃0⟩ encodes the solution |x⟩. The advantage of such a filtering
procedure is that P is a projector and ∥P∥ = 1. Hence its (β,m, ϵ) block-encoding
only requires β ∼ O(1). Therefore assuming O(1) overlap between |x̃0⟩ and the
solution vector, which can be satisfied by running the time-optimal AQC to constant
precision, the probability of success of the filtering procedure is already Ω(1) with-
out any amplitude amplification procedure. This accelerates the query complexity
of the recently developed time-optimal AQC from Õ(κ/ϵ) to Õ(κ log(1/ϵ)). The
efficient gate-based implementation of AQC still requires a time-dependent Hamil-
tonian simulation procedure (shown in Appendix 4.9). We then demonstrate that
the dependence on the time-dependent Hamiltonian simulation procedure can be re-
moved, using an algorithm based on the quantum Zeno effect, and the complexity is
Õ(κ log(1/ϵ)). Both algorithms have constant probability of success, and can prepare
the solution in terms of a pure state.

It is worth noting that the eigenstate filtering method developed in this paper
works only for the case when the eigenvalue corresponding to the desired eigenstate
is known exactly, which is satisfied in the eigenvalue formulation of QLSP. In order
to implement the QSP-based eigenstate filtering procedure, one still needs to find the
phase factors associated with the block encoding Ũ . For a given polynomial Rℓ(·,∆),
the phase factors are obtained on a classical computer in time that is polynomial in
the degree and the logarithm of precision [85, Theorems 3-5]. However, this procedure
requires solution of all roots of a high degree polynomial, which can be unstable for
the range of polynomials ℓ ∼ 100 considered here. The stability of such procedure
has recently been improved by Haah [92], though the number of bits of precision
needed still scales as O(ℓ log(ℓ/ϵ)). Significant progress has been achieved recently,
enabling robust computation of phase factors for polynomials of degrees ranging
from thousands to tens of thousands [51, 70]. We note that these phase factors in

the eigenvalue filtering procedure only depend on ∆̃ and ℓ, and therefore can be
reused for different matrices once they are obtained on a classical computer.
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4.7 Block-encoding

The technique of block-encoding has been recently discussed extensively [86, 114].
Here we discuss how to construct block-encoding for H − λI which is used in eigen-
state filtering, and Qb, H0, and H1 which are used in QLSP and in particular the
Hamiltonian simulation of AQC. We first introduce a simple technique we need to
use repeatedly.

Given UA, an (α,m, 0)-block-encoding of A where α > 0, we want to construct a
block encoding of A + cI for some c ∈ C. This is in fact a special case of the linear
combination of unitaries (LCU) technique introduced in [59]. Let

Q =
1√

α + |c|

( √
|c| −√α√
α

√
|c|

)

and |q⟩ = Q |0⟩. Since (⟨0m| ⊗ I)UA(|0m⟩ ⊗ I) = A/α, we have

(⟨q| ⟨0m| ⊗ I)(|0⟩ ⟨0| ⊗ eiθI + |1⟩ ⟨1| ⊗ UA)(|q⟩ |0m⟩ ⊗ I) =
1

α + |c|(A+ cI),

where θ = arg(c). Therefore Fig. 4.3 gives an (α + |c|,m + 1, 0)-block-encoding of
e−iθ(A+ cI).

|0〉 Q R−θ • Q†

|0m〉
UA|ψ〉

Figure 4.3: Quantum circuit for block-encoding of e−iθ(A + cI), where c = eiθ|c|.
R−θ= |0⟩ ⟨0|+ e−iθ |1⟩ ⟨1| is a phase shift gate. The three registers are the ancilla
qubit for Q and |q⟩, the ancilla register of UA, and the main register, respectively.

Therefore we may construct an (α + |λ|,m + 1, 0)-block-encoding of H − λI.
We remark that since λ ∈ R, we can replace the phase shift gate with a Pauli-
Z gate when λ > 0. This is at the same time a (1,m + 1, 0)-block-encoding of

H̃ = (H − λI)/(α + |λ|).
Now we construct a block-encoding of Qb = I − |b⟩ ⟨b| with |b⟩ = OB |0⟩. Let

S0 = I−2 |0n⟩ ⟨0n| be the reflection operator about the hyperplane orthogonal to |0n⟩.
Then Sb = OBS0O

†
B = I − 2 |b⟩ ⟨b| is the reflection about the hyperplane orthogonal
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to |b⟩. Note that Qb = (Sb + I)/2. Therefore we can use the technique illustrated in
Fig. 4.3 to construct a (1, 1, 0)-block-encoding of Qb. Here |q⟩ = |+⟩ = 1√

2
(|0⟩+ |1⟩).

Since H0 = σx⊗Qb, we naturally obtain a (1, 1, 0)-block-encoding of H0. We denote
the block-encoding as UH0 .

For the block-encoding of H1, first note that

H1 =

(
I 0
0 Qb

)(
0 A
A 0

)(
I 0
0 Qb

)
.

From the block-encoding of Qb, we can construct the block-encoding of controlled-Qb

by replacing all gates with their controlled counterparts. The block matrix in the
middle is σx ⊗ A. For a d-sparse matrix A, we have a (d, n + 2, 0)-block-encoding
of A, and therefore we obtain a (d, n+ 2, 0)-block-encoding of σx ⊗A. Then we can
use the result for the product of block-encoded matrix [86, Lemma 30] to obtain a
(d, n+ 4, 0)-block-encoding of H1, denoted by UH1 .

The block-encodings of H0 and H1 allow us to block-encode linear combinations
of them as well. We need access to H(f) = (1−f)H0+fH1 which is used extensively
in Section 4.5. This is done through [86, Lemma 29]. When applying the lemma we
need the state preparation pair (PL, PR) such that

PL |0⟩ = PR |0⟩ =
1√

1− f + fd
(
√

1− f |0⟩+
√
fd |1⟩).

The presence of the factor d is because H1 is subnormalized by a factor of d in its
block-encoding. By this lemma we obtain a (1− f + fd, n+ 6, 0)-block-encoding of
H(f). Here 1 − f + fd comes from the normalizing factor in the state preparation
pair, and n+6 is the sum of the numbers of ancilla qubits used in the block-encodings
of H0 and H1, plus one additional qubit used for the state preparation pair.

4.8 Implementing the reflection operator and

θ-reflection operator

In this appendix we prove Theorem 22 and Corollary 23 by constructing the quantum
circuits. In both the theorem and the corollary we assume, as in Theorem 21, that
H is a Hermitian matrix and UH is an (α,m, 0)-block-encoding of H. Also λ is an
eigenvalue of H that is separated from the rest of the spectrum by a gap ∆.

We first prove Theorem 22 by constructing the circuit for the reflection operator

Rλ = 2Pλ − I,



CHAPTER 4. SOLVING QUANTUM LINEAR SYSTEMS 112

where Pλ is the projection operator into the λ-eigenspace of H. To do this we use
the following polynomial

Sℓ(x; δ) =
2Rℓ(x; δ)− 1

maxy∈[−1,1] |2Rℓ(y; δ)− 1| .

The first thing we should notice about this polynomial is that it is even and therefore
can be implemented via QSP by Theorem 1’. The normalization is done so that we
have |Sℓ(x; δ)| ≤ 1 for all x ∈ [−1, 1]. Because −ϵ ≤ miny∈[−1,1]Rℓ(y; δ) < 0 and
maxy∈[−1,1]Rℓ(y; δ) = 1, we have

1 ≤ max
y∈[−1,1]

|2Rℓ(y; δ)− 1| ≤ 1 + 2ϵ.

Therefore

− 1− 2ϵ ≤ Sℓ(x; δ) ≤
−1 + 2ϵ

1 + 2ϵ
≤ −1 + 4ϵ, x ∈ Dδ, (4.25)

and

1− 2ϵ ≤ 1

1 + 2ϵ
≤ Sℓ(0; δ) ≤ 1. (4.26)

Now for H, we define H̃ = (H−λI)/(α+ |λ|) and ∆̃ = ∆/2α as done in the proof of

of Theorem 21. Then applying the polynomial Sℓ(x; ∆̃) to H̃, because all eigenvalues

of H̃ are contained in D∆̃ ∪ {0}, they are mapped to either close to 1 or close to −1.
Thus by Eqs. (4.25) and (4.26) we have

∥Sℓ(H̃; ∆̃)−Rλ∥ ≤ 4ϵ.

Since Sℓ(x; ∆̃) is a real even polynomial that takes value in [−1, 1] when x ∈ [−1, 1],
we can implement a (1,m + 2, 0)-block-encoding of Sℓ(H̃; ∆̃) through QSP by The-
orem 1’. We denote this block-encoding by UR. We have

∥(⟨0m+2| ⊗ I)UR(|0m+2⟩ ⊗ I)−Rλ∥ = ∥Sℓ(H̃; ∆̃)−Rλ∥ ≤ 4ϵ.

Therefore UR is an (1,m+ 2, 4ϵ)-block-encoding of Rλ. Thus we have proved Theo-
rem 22.

We then prove Corollary 23 by constructing a block-encoding of the θ-reflection
operator

Pλ + eiθ(I − Pλ).
One might be tempted to directly find a polynomial to approximate this matrix
function. However such a polynomial would have complex coefficients, and we would
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need to apply QSP to the real and imaginary parts separately. This in turn needs
an extra LCU step to add the two parts up, resulting in reduced success probability.
Therefore instead of using a new polynomial, we use the block-encoding UR we have
already constructed, and then apply a 1-bit phase estimation on it. This enables u
s to distinguish between the λ-eigenspace and its orthogonal complement, since all
the eigenvalues of Rλ are either 1 or −1. We then apply the phase factor eiθ only to
the correct subspace. Finally we uncompute the additional ancilla qubit. The circuit
takes the following form, as shown in Figure 4.4:

|0〉 H H R(θ) H H
∣∣0m+2

〉
UR U†

R|ψ〉

Figure 4.4: The quantum circuit for implementing the θ-reflection operator. H is the
Hadamard gate and R(θ) = |0⟩ ⟨0|+ eiθ |1⟩ ⟨1| is the phase-shift gate.

We introduced one additional ancilla qubit in the initial state |0⟩, and the second
register in the above circuit is for the ancilla qubits in Theorem 22. The last register
is the main register prepared in the state |ψ⟩ on which we want to apply the operator
Pλ + eiθ(I − Pλ). Thus we have proved Corollary 23.

4.9 Gate-based implementation of time-optimal

adiabatic quantum computing

In Theorem 26 we used an adiabatic time evolution to prepare an initial state for
eigenstate filtering. In this appendix we discuss how to implement this time evolution
on a gate-based quantum computer. Consider the adiabatic evolution

1

T
i∂s |ψT (s)⟩ = H(f(s)) |ψT (s)⟩ , |ψT (0)⟩ = |0⟩ |b⟩ ,

Where H(f) = (1 − f)H0 + fH1 for H0 and H1 defined in (4.5) and (4.4). It is
proved in [15, 154] that the gap between 0 and the rest of the eigenvalues of H(f) is
lower bounded by 1−f+f/κ. With this bound the scheduling (4.12) in the AQC(p)
scheme results in O(κ/ϵ) runtime complexity to solve QLSP. As mentioned before,
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the fact that the 0-eigenspace of H(f(s)) is two dimensional is not a problem because
|ψT (t)⟩ is orthogonal to |1⟩ |b⟩ for all t.

In order to carry out AQC efficiently using a gate-based implementation, we
use the recently developed time-dependent Hamiltonian simulation method based
on truncated Dyson series introduced in [116]. In Hamiltonian simulation, several
types of input models for the Hamiltonian are in use. Hamiltonians can be input as
a linear combination of unitaries [35], using its sparsity structure [5, 115], or using
its block-encoding [114, 116]. For a time-dependent Hamiltonian Low and Wiebe
designed an input model based on block-encoding named HAM-T [116, Definition
2], as a block-encoding of

∑
s |s⟩ ⟨s| ⊗ H(s) where s is a time step and H(s) is the

Hamiltonian at this time step.
In the gate-based implementation of the time-optimal AQC, we construct HAM-

T in Fig. 4.5. We need to use the block-encodings UH0 and UH1 introduced in
Appendix 4.7, which requires n0 = 1 and n1 = n+4 ancilla qubits, respectively. Our
construction of HAM-T satisfies

(⟨s| ⟨0l+1+n0 | ⊗ I ⊗ ⟨0n1+1|)HAM-T(|s⟩ |0l+1+n0⟩ ⊗ I ⊗ |0n1+1⟩) = H(f(s))/d, (4.27)

for any s ∈ S = {j/2l : j = 0, 1, . . . , 2l − 1}.

(1) |s〉
Uf U†

f
(2)

∣∣0l
〉

V1 V †
1

V2

(3) |0〉 •
(4) |0n0〉

UH0

(5) |φ〉
UH1

(6) |0n1〉

(7) |0〉 V2

Figure 4.5: Quantum circuit for HAM-T. The registers from top to bottom are: (1)
input register for s (2) register for storing f(s) (3) register for a control qubit (4)
ancilla register for UH0 (5) main register for input state |ϕ⟩ (6) ancilla register for
UH1 (7) register for changing normalizing factor from α(s) to d.

In this unitary HAM-T we also need the unitary

Uf |s⟩ |z⟩ = |s⟩ |z ⊕ f(s)⟩ (4.28)
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to compute the scheduling function needed in the time-optimal AQC, and the uni-
taries

V1 =
∑

s∈S

|s⟩ ⟨s| ⊗ 1√
1− s+ ds

( √
1− s −

√
ds√

ds
√
1− s

)

V2 =
∑

s∈S

|s⟩ ⟨s| ⊗




α(s)
d

−
√
1−

(
α(s)
d

)2
√
1−

(
α(s)
d

)2
α(s)
d


 ,

(4.29)

where α(s) = 1 − s + ds. Here V1 is used for preparing the linear combination
(1−f(s))UH0 +f(s)UH1 . Without V2 the circuit would be a (α(s), l+n0+n1+2, 0)-
block-encoding of

∑
s |s⟩ ⟨s| ⊗H(s), but with V2 it becomes a (d, l+ n0 + n1 + 2, 0)-

block-encoding, so that the normalizing factor is time-independent, as is required for
the input model in [116].

For the AQC with positive definite A we have n0 = 1 and n1 = n + 4. For the
Hermitian indefinite case we have n0 = 2 and n1 = n+ 4. The increase of n0 from 1
to 2 is due to the additional operation of linear combination of matrices. For H1 we
can perform one less matrix-matrix multiplication, and hence the value of n1 remains
unchanged (see Appendix 4.10).

Following [116, Corollary 4], we may analyze the different components of costs in
the Hamiltonian simulation of AQC. For time evolution from s = 0 to s = 1, HAM-T
is a (dT, l+n0+n1+2, 0)-block-encoding of

∑
s |s⟩ ⟨s|⊗TH(s). With the scheduling

function given in [15] we have ∥TH(s)∥ = O(Td) and ∥d(TH(s))
ds
∥ = O(dTκp−1). We

choose p = 1.5 and by [15, Theorem 1] we have T = O(κ). We only need to simulate
up to constant precision, and therefore we can set l = O(log(dκ)). The costs are
then

1. Queries to HAM-T: O
(
dκ log(dκ)

log log(dκ)

)
,

2. Primitive gates: O
(
dκ(n+ log(dκ)) log(dκ)

log log(dκ)

)
,

3. Qubits: O(n+ log(dκ)).

4.10 The matrix dilation method

In Theorem 26 and Theorem 29, in order to extend the time-optimal AQC method,
and the QZE-based method to Hermitian indefinite matrices, we follow [15, Theorem
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2], where H0 and H1, as constructed in Ref. [154] are given by

H0 = σ+ ⊗ [(σz ⊗ IN)Q+,b] + σ− ⊗ [Q+,b(σz ⊗ IN)],
H1 = σ+ ⊗ [(σx ⊗ A)Q+,b] + σ− ⊗ [Q+,b(σx ⊗ A)].

(4.30)

Here σ± = (σx ± iσy)/2 and Q+,b = I2N − |+⟩ |b⟩ ⟨+| ⟨b|. The dimension of the
dilated matrices H0, H1 is 4N . The lower bound for the gap of H(f) then becomes√

(1− f)2 + f 2/κ2 [154]. However in order to simplify our analysis we give a weaker
lower bound

∆∗(f) =
1√
2

(
1− f +

f

κ

)
,

which differs from the gap lower bound in (4.6) by a factor of
√
2. The initial state

is |0⟩ |−⟩ |b⟩, where |−⟩ = 1√
2
(|0⟩ − |1⟩), and the goal is to obtain |0⟩ |+⟩ |x⟩. In the

AQC-based QLSP solver, after running the AQC we can remove the second qubit
by measuring it with respect to the {|+⟩ , |−⟩} basis and accepting the result cor-
responding to |+⟩. The resulting query complexity remains unchanged. We remark
that the matrix dilation here is only needed for AQC. The eigenstate filtering pro-
cedure can still be applied to the original matrix of dimension 2N . The same is true
for the QZE-based method.

For a general matrix, we may first consider the extended linear system. Define
an extended QLSP A |x⟩ = |b⟩ in dimension 2N where

A = σ+ ⊗ A+ σ− ⊗ A† =

(
0 A
A† 0

)
, |b⟩ = |0, b⟩.

Here A is a Hermitian matrix of dimension 2N , with condition number κ and ∥A∥ =
1, and |x⟩ = |1, x⟩ solves the extended QLSP. Therefore the time-optimal AQC
and the QZE procedure can be applied to the Hermitian matrix A to prepare an
ϵ-approximation of x. The dimension of the corresponding H0, H1 matrices is 8N .
Again the matrix dilation method used in Eq. (4.30) is not needed for the eigenstate
filtering step.

4.11 Optimality of the Chebyshev filtering

polynomial

In this section we prove Lemma 20. We define

Qℓ(x; ∆) = Tℓ

(
−1 + 2

x2 −∆2

1−∆2

)
,
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then Rℓ(x; ∆) = Qℓ(x; ∆)/Qℓ(0;∆). Here Tℓ(x) is the ℓ-th Chebyshev polynomial of
the first kind and 0 < ∆ < 1. We need to use the following lemma, which is similar
to the well-known result discussed in [144, Proposition 2.4], [143, Theorem 6.25], and
[74, Theorem 7]:

Lemma 30. For any p(x) ∈ P2ℓ[x] satisfying |p(x)| ≤ 1 for all x ∈ D∆, where
D∆ = [−1,−∆] ∪ [∆, 1], |Qℓ(x; ∆)| ≥ |p(x)| for all x /∈ D∆.

Proof. We prove by contradiction. If there exists q(x) ∈ P2ℓ[x] such that |q(x)| ≤ 1
for all x ∈ D∆ and there exists y /∈ D∆ such that |q(y)| > |Qℓ(y; ∆)|, then letting

h(x) = Qℓ(x; ∆)−q(x)Qℓ(y;∆)
q(y)

, we want to show h(x) has at least 2ℓ+1 distinct zeros.

First note that there exist −1 = y1 < y2 < · · · < yℓ+1 = 1 such that |Tℓ(yj)| = 1,
and Tℓ(yj)Tℓ(yj+1) = −1. Therefore there exist ∆ = x1 < x2 < · · · < xℓ+1 = 1 such
that |Qℓ(±xj; ∆)| = 1, and Qℓ(xj; ∆)Qℓ(xj+1; ∆) = −1. In other words, Qℓ(·; ∆)
maps each (xj, xj+1) and (−xj+1,−xj) to (−1, 1), and the mapping is bijective for

each interval. Because |Qℓ(y;∆)
q(y)

| < 1, there exists zj, wj ∈ (xj, xj+1) for each j such

that h(zj) = h(−wj) = 0. Therefore {zj} and {−wj} give us 2ℓ distinct zeros.
Another zero can be found at y as h(y) = Qℓ(y) − Qℓ(y) = 0. Therefore there are
2ℓ+ 1 distinct zeros.

However h(x) is of degree at most 2ℓ. This shows h(x) ≡ 0. This is clearly

impossible since h(1) = Qℓ(1;∆)− q(1)Qℓ(y;∆)
q(y)

= 1− q(1)Qℓ(y;δ)
q(y)

> 0.

Lemma 30 shows that for any y /∈ D∆,

max
p(x)∈P2ℓ[x]

|p(x)|≤1,∀x∈D∆

|p(y)| = |Qℓ(y; ∆)|.

This is equivalent to

max
p(x)∈P2ℓ[x]

|p(y)|
maxx∈D∆

|p(x)| = |Qℓ(y; ∆)|,

which is in turn equivalent to

min
p(x)∈P2ℓ[x]

maxx∈D∆
|p(x)|

|p(y)| =
1

|Qℓ(y; ∆)| ,

and

min
p(x)∈P2ℓ[x]
|p(y)|≤1

max
x∈D∆

|p(x)| = 1

|Qℓ(y; ∆)| .
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This implies (i) of Lemma 20: we only need to set y = 0 and observe that

max
x∈D∆

|Rℓ(x; ∆)| = 1

|Qℓ(0;∆)| ,

since the Chebyshev polynomials take value between [−1, 1] on the interval [−1, 1].
From the above discussion we may derive a more general result, that Rℓ(x; ∆) solves
the following minimax problem:

minimize
p(x)∈P2ℓ[x]
p(y)=Rℓ(y;∆)

max
x∈D∆

|p(x)|.

To prove (ii) of Lemma 20, we need to use the following lemma, which directly follows
from [143, Eq. (6.112)]:

Lemma 31. Let Tℓ(x) be the ℓ-th Chebyshev polynomial, then

Tℓ(1 + δ) ≥ 1

2
eℓ

√
δ

for 0 ≤ δ ≤ 3− 2
√
2.

Proof. The Chebyshev polynomial can be rewritten as Tℓ(x) = 1
2
(zℓ + 1

zℓ
) for x =

1
2
(z + 1

z
). Let x = 1 + δ, then z = 1 + δ ±

√
2δ + δ2. The choice of ± does not

change the value of x, so we choose z = 1 + δ +
√
2δ + δ2 ≥ 1 +

√
2δ. Since

log(1 +
√
2δ) ≥

√
2δ − δ ≥

√
δ for 0 ≤ δ ≤ 3 − 2

√
2, we have zℓ ≥ eℓ

√
δ. Thus

Tℓ(x) ≥ 1
2
eℓ

√
δ.

We use this lemma to prove (ii). Since |Tℓ(−1 + 2 −∆2

1−∆2 )| ≥ Tℓ(1 + 2∆2), when

∆2 ≤ 1/12, we have 2∆2 ≤ 1/6 < 3 − 2
√
2. Thus by the above lemma we have

|Tℓ(−1 + 2 −∆2

1−∆2 )| ≥ 1
2
eℓ

√
2∆2

. Since |Tℓ(−1 + 2x
2−∆2

1−∆2 )| ≤ 1 for x ∈ D∆, we have the
inequality in (ii). (iii) follows straightforwardly from the monotonicity of Chebyshev
polynomials outside of [−1, 1].

4.12 Properties of the eigenpath

In this section we construct a smooth one-parameter family of normalized quantum
states {|x(f)⟩} satisfying Eqs. (4.7) and (4.8). {|0⟩ |x(f)⟩} then gives an eigenpath
of the one-parameter family of Hamiltonians {H(f)}. We also prove the inequality
(4.9).
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We define
|y(f)⟩ = ((1− f)I + fA)−1 |b⟩ .

Then ⟨y(f)|y(f)⟩ ≥ 1 because ∥(1−f)I+fA∥ ≤ 1. Also |y(f)⟩ is a smooth function
of f for f ∈ (0, 1) because (1 − f)I + fA is invertible in this interval, under the
assumption that A is Hermitian positive-definite with eigenvalues in [1/κ, 1]. We
construct |x(f)⟩ through

|x(f)⟩ = c(f) |y(f)⟩ ,
with c(f) solving the following ODE

c′(f) = −c(f)⟨y(f)|∂f |y(f)⟩⟨y(f)|y(f)⟩ , c(0) = 1. (4.31)

This is a linear ODE and the right-hand side depends smoothly on f . Therefore the
solution exists and is unique for f ∈ [0, 1]. It then follows that this construction of
|x(f)⟩ satisfies (4.7). Since

∂f |x(f)⟩ = c′(f) |y(f)⟩+ c(f)∂f |y(f)⟩ ,

we have

⟨x(f)| ∂f |x(f)⟩ = c∗(f)[c′(f) ⟨y(f)|y(f)⟩+ c(f) ⟨y(f)| ∂f |y(f)⟩] = 0.

Therefore Eq. (4.8) is satisfied, and this in turn ensures |x(f)⟩ is normalized. In this
way we have constructed {|x(f)⟩} that satisfies all the requirements in Section 4.4.
For H(f) = (1 − f)H0 + fH1, where H0 and H1 are defined in Eqs. (4.5) and
(4.4) respectively, we can see H(f) |x̄(f)⟩ = 0 where |x̄(f)⟩ = |0⟩ |x(f)⟩. Therefore
{|x̄(f)⟩} is a smooth eigenpath.

If there is another eigenpath {|0⟩ |w(f)⟩} satisfying ⟨w(f)|∂f |w(f)⟩ = 0, then it
follows that ((1 − f)I + fA) |w(f)⟩ ∝ |b⟩. Therefore |w(f)⟩ = eiθ(f) |x(f)⟩ for some
differentiable θ(f). By the geometric phase condition we can show eiθ(f) = 1 for
all f by also taking into account the initial condition |w(f)⟩ = |b⟩, and therefore
|w(f)⟩ = |x(f)⟩. This proves uniqueness.

Now we denote by εj(f) the eigenvalues of H(f). The corresponding eigenstates
are denoted by |wj(f)⟩. Because ((1−f)I+fA) |x(f)⟩ ∝ |b⟩, we have H(f) |x̄(f)⟩ =
0. Since |x(f)⟩, and as a result |x̄(f)⟩, is differentiable, taking derivative with respect
to f we have

H ′(f) |x̄(f)⟩+H(f)∂f |x̄(f)⟩ = 0.

Therefore
⟨wj(f)|H ′(f) |x̄(f)⟩+ ⟨wj(f)|H(f)∂f |x̄(f)⟩ = 0.
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And this leads to

⟨wj(f)| ∂f |x̄(f)⟩ = −
⟨wj(f)|H ′(f) |x̄(f)⟩

εj(f)

for any j such that εj(f) ̸= 0. The null space of H(f) is spanned by |1⟩ |b⟩ and |x̄(f)⟩.
We have (⟨1| ⟨b|) |x̄(f)⟩ = ⟨1|0⟩ ⟨b|x(f)⟩ = 0, and ⟨x̄(f)|∂f |x̄(f)⟩ = 0 because of the
geometric phase condition (4.8). Since all |wj(f)⟩ such that εj(f) ̸= 0, together with
|1⟩ |b⟩ and |x̄(f)⟩ form a basis of the Hilbert space, we have

∂f |x̄(f)⟩ = −
∑

j:εj(f )̸=0

|wj(f)⟩ ⟨wj(f)|H ′(f) |x̄(f)⟩
εj(f)

Therefore

∥∂f |x̄(f)⟩ ∥2 =
∑

j:εj(f )̸=0

| ⟨wj(f)|H ′(f) |x̄(f)⟩ |2
ε2j(f)

≤ 1

∆∗(f)2

∑

j:εj(f )̸=0

| ⟨wj(f)|H ′(f) |x̄(f)⟩ |2

≤ 1

∆∗(f)2
∥H ′(f) |x̄(f)⟩ ∥2

From the definition of H(f) it can be seen that ∥H ′(f)∥ ≤ 2. Therefore we have
proved the inequality (4.9).

4.13 Success probability of Quantum Zeno effect

QLSP algorithm

In this appendix we rigorously prove a constant success probability lower bound for
the QZE-based QLSP algorithm in Theorem 29. In Section 4.5 we gave a simpler but
non-rigorous proof of a constant success probability lower bound by assuming the
projection for each H(fj) is done without error, i.e. ϵP = 0. Here we do not make
such an assumption and show we can still find such a lower bound. We will need to
use the following elementary inequality, which can be easily proved using induction.

Lemma 32. If 0 < aj < 1, 0 < bj < 1, j = 0, 1, 2, . . . , R− 1, then

R−1∏

j=0

(aj − bj) ≥
R−1∏

j=0

aj −
R−1∑

j=0

bj.
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We first recall the definition of the sequence of quantum states {|x(fj)⟩}, with
each |x(fj)⟩ defined through (4.7) and (4.8), satisfying H(fj) |0⟩ |x(fj)⟩ = 0, and the
sequence of quantum states {|x̃(fj)⟩}, with each |x̃(fj)⟩ defined recursively by (4.19).
We need to use the following bound for the overlap between |x(fj)⟩ and |x(fj+1)⟩
derived from Eqs. (4.20) (4.21) and (4.15).

| ⟨x(fj)|x(fj+1)⟩ | ≥ 1− 1

2
∥ |x(fj+1)⟩ − |x(fj)⟩ ∥2 ≥ 1− 2 log2(κ)

M2(1− 1/κ)2
. (4.32)

With these tools we will first bound several overlaps in the following lemma

Lemma 33. When M ≥ 4 log2(κ)
(1−1/κ)2

and ϵP ≤ 1
128

, we have for j = 0, 1, . . . ,M − 1:

(i) | ⟨x(fj)|x(fj+1⟩)| ≥ 1− 1
2M

,
(ii) | ⟨x(fj)|x̃(fj)⟩ | ≥ 1− 4ϵP ,
(iii) | ⟨x̃(fj)|x(fj+1)⟩ | ≥ 1− 1

2M
− 4ϵP − 2

√
2ϵP .

Proof. (i) derives directly from (4.32). We then want to derive (ii) and (iii) induc-
tively. First we have

| ⟨x̃(fj)|x(fj+1)⟩ | = | ⟨x̃(fj)|P0(fj)|x(fj+1)⟩+ ⟨x̃(fj)|I − P0(fj)|x(fj+1)⟩ |
≥ | ⟨x(fj)|x(fj+1)⟩ | · | ⟨x(fj)|x̃(fj)⟩ | − ∥(I − P0(fj)) |x̃(fj)⟩ ∥.

Because
∥(I − P0(fj)) |x̃(fj)⟩ ∥2 = 1− | ⟨x(fj)|x̃(fj)⟩ |2,

we then have

| ⟨x̃(fj)|x(fj+1)⟩ | ≥ | ⟨x(fj)|x(fj+1)⟩ | · | ⟨x(fj)|x̃(fj)⟩ | −
√
1− | ⟨x(fj)|x̃(fj)⟩ |2.

We denote
| ⟨x(fj)|x̃(fj)⟩ | = 1− νj,

then

| ⟨x̃(fj)|x(fj+1)⟩ | ≥ (1− 1

2M
)(1− νj)−

√
1− (1− νj)2

≥ 1− 1

2M
− νj −

√
2νj.

(4.33)

We now bound νj+1 using | ⟨x̃(fj)|x(fj+1)⟩ |. First using the fact that ∥P̃0(fj) −
P0(fj)∥ ≤ ϵP where the approximate projection operator P̃0(fj) is defined in Eq. (4.18),
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we have

| ⟨x̃(fj+1)|x(fj+1)⟩ | =
| ⟨x̃(fj)|P̃0(fj+1)|x(fj+1)⟩ |
∥P̃0(fj+1) |x̃(fj)⟩ ∥

≥ | ⟨x̃(fj)|P0(fj+1)|x(fj+1)⟩ | − ϵP
∥P0(fj+1) |x̃(fj)⟩ ∥+ ϵP

=
| ⟨x̃(fj)|x(fj+1)⟩ | − ϵP
| ⟨x̃(fj)|x(fj+1)⟩ |+ ϵP

≥ 1− 2ϵP
| ⟨x̃(fj)|x(fj+1)⟩ |

.

(4.34)

This leads to

νj+1 ≤
2ϵP

| ⟨x̃(fj)|x(fj+1)⟩ |
≤ 2ϵP

1− 1
2M
− νj −

√
2νj

, (4.35)

which establishes a recurrence relation for νj. Because ν0 = 0, M≥ 4 log2(κ)
(1−1/κ)2

≥ 4 and

ϵP ≤ 1
128

, we can prove inductively that νj ≤ 1
32
. Taking this into (4.35) we have

νj+1 ≤ 4ϵP ,

which proves (ii). Taking this into (4.33) we have (iii).

An immediate corollary of (iii) in the above lemma is

| ⟨x̃(fj)|x(fj+1)⟩ | ≥ 1− 1

2M
− 4ϵP − 2

√
2ϵP ≥

1

2
, (4.36)

for j = 0, 1, . . . ,M − 1, M ≥ 4, and ϵP ≤ 1/128. With these tools we are now ready
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to estimate the success probability Psucc. We have

Psucc =
M−1∏

j=0

∥P̃0(fj+1) |x̃(fj)⟩ ∥2

≥
(
M−2∏

j=0

(∥P0(fj+1) |x̃(fj)⟩ ∥ − ϵP )
)2 (
∥P0(1) |x̃(fM−1)⟩ ∥ −

ϵ

4

)2

≥ 1

16

(
M−2∏

j=0

(∥P0(fj+1) |x̃(fj)⟩ ∥ − ϵP )
)2

≥ 1

16

(
M−1∏

j=0

(∥P0(fj+1) |x̃(fj)⟩ ∥ − ϵP )
)2

≥ 1

16

(
M−1∏

j=0

∥P0(fj+1) |x̃(fj)⟩ ∥ −MϵP

)2

.

(4.37)

In the last line we have used Lemma 32. In the second line the j = M − 1 case
is treated differently because in the last step we need to attain ϵ/4 precision for
eigenstate filtering. We bound the success probability of the last step using

(
∥P0(1) |x̃(fM−1)⟩ ∥ −

ϵ

4

)2
=
(
∥ ⟨x(fM)|x̃(fM−1)⟩ ∥ −

ϵ

4

)2
≥
(
1

2
− 1

4

)2

=
1

16
,

where we have used Eq. (4.36) for j = M − 1. This inequality motivates us to
bound

∏M−1
j=0 ∥P0(fj+1) |x̃(fj)⟩ ∥, for which, by Lemma 33, we have

M−1∏

j=0

∥P0(fj+1) |x̃(fj)⟩ ∥ =
M−1∏

j=0

| ⟨x̃(fj)|x(fj+1)⟩ |

≥
(
1− 1

2M
− 4ϵP − 2

√
2ϵP

)M

≥ 1

2
−M(4ϵP + 2

√
2ϵP ).

(4.38)

In Lemma 33 we have required that ϵP ≤ 1
128

and M ≥ 4 log2(κ)
(1−1/κ)2

≥ 4. Therefore when

we further require ϵP ≤ 1
162M2 we have

M−1∏

j=0

∥P0(fj+1) |x̃(fj)⟩ ∥ ≥
1

4
.
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Substituting this into (4.37) we have

Psucc ≥
1

16

(
1

4
−MϵP

)2

≥ 1

16

(
1

4
− 1

162M

)2

≥ 1

400
,

sinceM ≥ 4 > 1. We remark that because we mostly only care about the asymptotic
complexity we did not bound this probability very tightly, and this bound may be a
very loose one. The actual success probability can be much larger than this and can
be further increased by optimizing the choice of M and ϵP .
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