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1 Lecture I

We postulate that all economic agents act at all times under (or as if under) perfect com-

petition, in the sense that all agents take the various prices as given, and that no one agent

is able to influence any price through either transacting or refusing to transact on either

side of the market. In this first lecture, we will demonstrate the existence of a competitive

equilibrium, representing economic activities in terms of individual excess demand functions.

Let Xij(p1, .., pn) = the excess demand by agent j for commodity i when the prices of

the n commodities are p1, ..., pn. It is understood that this may be of either sign, positive

for excess demand, negative for excess supply, and that certain of the commodities may be

designated as various types of inputs (e.g., labor) without altering the above formulation.

Let p be the vector of prices (p1, ..., pn) and denote by the inner product of two vectors,

p ·q, the sum
∑n

i=1 pi ·qi. We may sum excess demands for each commodity over all economic

agents to obtain the market excess demand for each commodity, thus Xi(p) =
∑

j Xij(p) is

the market excess demand for the ith commodity given the vector of prices p. Similarly X(p)

is the vector of market excess demands (X1(p), X2(p), ..., Xn(p)).

We provisionally seek a price vector p such that X(p) = 0, which is an equilibrium

condition for all markets. This insures that the quantity supplied of each commodity equals

the quantity demanded, so that each commodity market individually is cleared, and hence

all are cleared. We are assigning the role of the equilibrating mechanism in these mar-

kets to the price vector p. We have a system of n equations (Xi(p) = 0 for i = 1, ..., n) and

n unknowns (p1, ..., pn) so that the possibility of a solution to the system is at least suggested.

If the excess demand functions are homogeneous of degree zero in prices, then we know

that all prices may be multiplied by some (positive) constant without disturbing the equi-

librium of the system. Therefore, we shall make the following assumption:

ASSUMPTION H: X(p) is positively homogeneous of degree zero.

Thus X(λp) = X(p) for λ > 0 and p ≥ 0.
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Note: We wish λ 6= 0 since if X(p1) 6= X(p2) then X(λp1) 6= X(λp2) by homogeneity. How-

ever, as λ → 0 , both sides of the above would approach the same value X(0) if it were

defined; these are two different limits and so X(p) is not defined at p = 0 and X(λp) is not

defined when λ = 0.

Notation: By p > 0 we mean

p ≥ 0

p 6= 0

, that is, at least one of the prices must be non-

zero.

By p� 0 we mean pi > 0 for all i.

Since we wish to maintain the symmetric role of each of the commodities with respect

to any other commodity, we will not select a numeraire; instead we will impose the further

restriction on any set of prices chosen so that
∑n

i=1 pi = 1. That is, for any price vector

p > 0 that we might choose, we can select a value λ such that
∑n

i=1 λpi = 1, and by the

homogeneity assumption, if p is an equilibrium price vector, then so is λp = (λp1, ..., λpn),

which we can designate as p∗1, ..., p
∗
n, where

∑
i p
∗
i = 1.

Notation: Define the set S = {p | p ≥ 0,
∑n

i=1 pi = 1} as the set of price vectors p which are

non-negative and whose elements sum to one.

We can thus restrict the search for a p̄ such that X(p̄) = 0 to the set of price vec-

tors p belonging to S.

We shall make a further assumption, an identity known as Walras’ Law:

ASSUMPTION W:
∑n

i=1 piXi(p) ≡ 0

From this, if n− 1 excess demands are known to be zero, then the nth is known to be zero;

in the same fashion, given the values of n− 1 prices, the nth is known since
∑n

i=1 pi = 1.

This procedure is analogous to the selection of a composite numeraire or market-basket.

We know that if we were to select a single commodity as numeraire, its price must be non-

zero; but we cannot tell in advance which commodities will have zero price at equilibrium.
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Notice also that if supply exceeds demand at zero price, there can be no equating of excess

demand to zero for this commodity, since the price must not be negative. This leads us to

the following definitions of competitive equilibrium.

Definition: COMPETITIVE EQUILIBRIUM

Formally, an equilibrium is a vector p̄ > 0 such that:

(1) Primary Definition: for each commodity i, either

(a) Xi(p̄) = 0, or

(b) Xi(p̄) < 0 and pi = 0.

(2) Secondary Definition (equivalent to (1) under Walras’ Law):

X(p̄) ≤ 0

THEOREM 1: Under assumption (W) above, definitions (1) and (2) of a competitive equi-

librium are equivalent.

Proof: If definition (1) holds, then (2) obviously holds. If (2) holds, then we know∑n
i=1 piXi(p̄) = 0

Xi(p̄) ≤ 0

pi ≥ 0

Consequently, piXi(p̄) ≤ 0

But if
∑n

i=1 piXi(p̄) = 0 and each of its terms must be less than or equal to zero, then each

item individually must be zero. Thus piXi(p̄) = 0 for all i, and so either

(a) Xi(p̄) = 0 or

(b) Xi(p̄) < 0 and pi = 0.

In the above, we have implicitly assumed that the excess demand functions Xi(p) were

single-valued. We shall retain this and add two further assumptions:

ASSUMPTION C: X(p) is continuous: limn→∞X(pn) = X(po) if pn → po.

We do not exclude infinite values so long as they are approached by every price sequence

pn → po; thus X(p̄) might be infinite.
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ASSUMPTION B: X(p) is bounded from below for excess demand (or above for excess

supply).

In a pure exchange commodity no individual can supply more than he has; hence B clearly

holds. In a production economy, at given prices, any firm may wish to supply indefinitely

large amounts of a good as its price increases, but this would require inputs to rise corre-

spondingly, and this cannot in fact happen since the supply of resources is finite.

We are considering the above system as a purely stationary economy, although an alterna-

tive consideration would be a one-period model with absolutely no carryover of commodities

or intangibles to future periods.

THEOREM 2: In a two-commodity model (n = 2), assumptions H, W, C, B imply the

existence of a competitive equilibrium.

Proof: we give first a graphic interpretation and then a general proof:

Graphic interpretation

Since p1 + p2 = 1, p1 ≥ 0, p2 ≥ 0, we may write X1(p1, 1− p1) for any 0 ≤ p1 ≤ 1.

Case (a) - Excess demand positive for some p1,
negative for other p1.

Case (b) - Excess demand negative for all p1
At (d) p1 = 0, p2 = 1,

and X2(p1, 1− p1) = 0.

Case (c) - Excess demand positive for all p1,
0 < p1 < 1.
Case (c) is the same as case (b) with the
role of the two commodities reversed.

Assumption C is of primary importance in the above; it insures that we cannot have an
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indeterminate case such as the following:

General Proof:

Either case (a): X1(p1, 1− p1) = 0 for some p1, 0 < p1 < 1,

or case (b): X1(p1, 1− p1) < 0 for all p1, 0 < p1 < 1,

or case (c): X1(p1, 1− p1) > 0 for all p1, 0 < p1 < 1.

By assumption C these three cases are mutually exclusive and exhaustive. By assump-

tion B, excess demand for either commodity may be infinite only at either end (p1 = 0

or p1 = 1) and not in between, since the excess demand for the other commodity if both

prices are positive would have to be −∞ by Walras’ Law (W), and this would contradict (B).

Case (a):

X1(p1, 1− p1) = 0 for some p1, 0 < p1 < 1

p1X1(p1, p2) + p2X2(p1, p2) = 0, p2 = 1− p1 > 0.

Since p1 > 0, then X2(p1, p2) must equal zero.

Case (b):

X(p1, 1− p1) < 0 for all p1, 0 < p1 < 1.

Let p1 → 0, then −∞ < X1(0, 1) ≤ 0 by (C) and (B). Also, X2(p1, 1−p1) = −p1
1−p1X1(p1, 1−

p1) > 0 for 0 < p1 < 1, and so, as p1 → 0, −p1
1−p1X1(p1, 1 − p1) → 0 and therefore

X2(p1, 1− p1)→ 0.

Therefore X2(0, 1) = 0 when p1 = 0. Therefore, p1 = 0, p2 = 1 satisfies the definition of

equilibrium.
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Case (c):

X1(p1, 1− p1) > 0 for all p1, 0 < p1 < 1.

Now by (W), p1X1(p1, 1−p1)+p2X2(p1, 1−p1) = 0, and p1 > 0, p2 > 0, X1(p1, 1−p1) > 0;

therefore X2(p1, 1− p1) < 0 for 0 < p1 < 1. Since 0 < p1 = 1− p2 < 1, X2(p2, 1− p2) < 0 for

all p2, 0 < p2 < 1. Therefore, case(c) reduces to case (b).

This concludes the proof of the existence of an equilibrium for the case n = 2.

THEOREM 3: Under assumptions H, W, C, B there exists a competitive equilibrium.

Heuristic Argument: A possible procedure to find an equilibrium would be to choose an

arbitrary price vector p (satisfying the requirement p ∈ S) and check the resulting excess

demands; where an excess demand was positive, we would be tempted to raise the corre-

sponding commodity price, and where an excess demand was negative, to lower its price. As

a first approximation, we might raise or lower all prices by some constant portion, β, of the

excess demand, thus

pi → pi + βXi(p).

However, this rule might tell us to set some prices at a negative value, so we add the further

modification

pi →Max[0, pi + βXi(p)]

to insure that the new prices are still all non-negative. But we wish
∑n

i=1 pi = 1 for both

the initial set and the new prices obtained from the application of the above rule. Therefore,

the final transformation is as follows:

for p ∈ S, let θ(p) = 1∑n
i=1Max[0, pi+βXi(p)]

and then pi → θ(p) ·Max[0, pi + βXi(p)] = Ti(p) is the transformation of the ith price. In

vector form, p→ T (p) is the transformation we will use.

Further,
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∑n
i=1 Ti(p) = 1, Ti(p) ≥ 0, and T (p) ∈ S,

the unit simplex.

Consider again for the moment the case n = 2. Here we know 0 ≤ T1(p1, 1 − p1) ≤ 1.

Therefore,

T1(p1, 1− p1)− p1

≥ 0 if p1 = 0

≤ 0 if p1 = 1.

Graphically:

Here T1(p1, 1−p1) = p1; since T1(p1, p2)+T2(p1, p2) = 1 = p1+p2, T2(p1, 1−p1) = 1−p1 = p2.

Thus at some point (at least one point) the price vector is transformed into itself — it is a

fixed point, and this fixed point, as we shall see, is the equilibrium price vector.

Then to prove the existence of a competitive equilibrium we need to demonstrate that a

fixed point exists in the n-dimensional transformation T (p).

BROUWER FIXED-POINT THEOREM:

If T (p) is a continuous transformation of a simplex into itself, then it has at least one

fixed point T (p) = p.

More generally, the theorem is valid for a transformation of any closed, bounded convex set

into itself. For proofs, see S. Lefschetz, Introduction to Topology; E. Burger, Einführung in die

Spieltheorie.

To show that T (p) is continuous requires us to show:

(a) Max[0, pi + βXi(p)] is a continuous function.

(b) θ(p) is continuous, which requires for θ(p) = 1
f(p)
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that f(p) > 0 and continuous.

(c) For f and g two continuous functions, f · g = h is a continuous function which is well

known.

Now, Max[0, pi + βXi(p)] is continuous if pi + βXi(p) is continuous. By assumption C,

Xi(p) is continuous, β is a positive constant, and pi is a continuous variable. Therefore,

Max[0, pi + βXi(p)] is continuous.

Lemma 1: If X(p) satisfies assumption W for p ∈ S, then for each p ∈ S, pi + βXi(p) > 0

for some i.

Proof:

Suppose it is false for some p ∈ S. Then

(1) pi + βXi(p) ≤ 0 for all i. Since p ≥ 0, Xi(p) ≤ 0 for all i. Thus p is an equilibrium price

factor.

(2) From the definition of equilibrium, we have pi = 0 for those i for which Xi(p) < 0,

while, from (1), pi ≤ 0 if Xi(p) = 0. Then pi ≤ 0 for all i, which is impossible since p > 0.

From Lemma 1, Max[0, pi + βXi(p)] > 0 for some i. Thus
∑n

i=1 Max[0, pi + βXi(p)] =

1
θ(p)

> 0 for all p ∈ S. Therefore θ(p) > 0 for all p ∈ S, and is continuous since it is the re-

ciprocal of a non-zero continuous function. This information is summed up by the following

lemma.

Lemma 2: T (p) is a continuous transformation.

We are now assured by the Brouwer Fixed-Point Theorem that a fixed point exists, and

to complete the proof of equilibrium, we need only show that the fixed point is indeed a

competitive equilibrium.

[1] p̄ = T (p̄)

pi = Ti(p̄) = θ(p̄)Max[0, pi + βXi(p̄)].

[2] Let A = {i | pi + βXi(p̄) > 0}.

[3] Let B = {i | pi + βXi(p̄) ≤ 0}. Thus Max[0, pi + βXi(p̄)] = 0
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for i ∈ B.

The division of indices into two subsets, A and B, amounts to the separation of free from

non-free goods. We wish to show that for the free goods (i ∈ B), Xi(p̄) ≤ 0 and pi = 0, and

for the non-free goods (i ∈ A) that Xi(p̄) = 0.

[4] pi = 0 for i ∈ B by [1], [3].

[5] Xi(p̄) ≤ 0 for i ∈ B, and we know by assumption (W) that

0 =
∑

i∈A piXi(p̄) +
∑

i∈B piXi(p̄)

From [5] and assumption (B), we know that Xi(p̄) is finite for i ∈ B.

From [4], piXi(p̄) = 0 for i ∈ B.

[6] Thus
∑

i∈A piXi(p̄) = 0.

Also Max[0, pi + βXi(p̄)] = pi + βXi(p̄) for i ∈ A

From [1] pi = θ(p̄)[pi + βXi(p̄)] for i ∈ A

[7] Then [1− θ(p̄)]pi = θ(p̄)βXi(p̄) for i ∈ A.

Multiply both sides of [7] by Xi(p̄) to obtain

[1− θ(p̄)]piXi(p̄) = θ(p̄)β[Xi(p̄)]
2 for i ∈ A.

Then sum over i ∈ A

[8] [1− θ(p̄)]
∑

i∈A piXi(p̄) = θ(p̄)β
∑

i∈A[Xi(p̄)]
2 for i ∈ A.

But
∑

i∈A piXi(p̄) = 0 for i ∈ A by [6]; θ(p̄) > 0, β > 0.

Therefore,
∑

i∈A[Xi(p̄)]
2 = 0, which implies

[9] Xi(p̄) = 0 for i ∈ A.

Thus, for i ∈ B, pi = 0 and Xi(p̄) ≤ 0 from [4], [5] and, for i ∈ A, Xi(p̄) = 0 from [9].

The purpose of steps [5] through [8] is to set up a mathematical situation in which a

zero on the left hand side of an equation guarantees that Xi(p̄) can only be zero for i ∈ A

on the right hand side.

This concludes the proof of the existence of a competitive equilibrium.
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2 Lecture II

In this second and in subsequent lectures, we will go behind the model outlined in Lecture

I to explain the behavior of economic agents in more detail. We will do away with single-

valued supply functions.

We shall begin with a brief outline of historical developments, beginning with the model

of G. Cassel (The Theory of Social Economy, 1903).

Cassel model:

aij = the fixed coefficient of amount of input i required to produce

a unit of final good j,

m final goods v = vector of fixed factor supply

n factors x = vector of final goods

r = vector of factor prices

p = vector of final goods prices

We have three groups of equations:

(1) Production vi =
∑

j aijxj (n equations)

(2) Zero profit
∑

i aijri = pj (m equations)

(3) Closed system x = d(p, r · v) (m equations)

(demand)

Notation: here j indexes commodities (1, ..., j, ...,m)

and i indexes factors (1, ..., i, ..., n).

We have (2m + n) equations and (2m + n) unknowns, thus the possibility of an equi-

librium solution is suggested.

Some thirty years later, Hans Neisser pointed out that nothing in the above model guar-

anteed that all pi and ri were non-negative. Von Stackelberg indicated that for m < n, in
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(1) there are n equations in m unknowns while in (2) there are m equations in n unknowns,

and so a solution seems unlikely.

He drew the inference that fixed coefficients are unacceptable, but this actually doesn’t fol-

low. Schlesinger in his introduction to the Wald paper pointed out that, following Zeuthen’s

approach, ”free goods” could be handled through inequalities rather than strict equations.

The introduction of inequalities leads to the following revision:

(1) vi ≥
∑

j aijxj and ri = 0 if vi >
∑

j aijxj

(2)
∑

i aijri ≥ pj, with no production (xj = 0) if
∑

i aijri > pj.

The following diagrams provide illustrations of the concepts of ”supply” and ”demand.”

First example:

Price = price of output
price of input

= p
r

Choose a p1 such that p1 · q = 0.

Demand for final goods = r·v
p

= v
(p/r)

, which is a rectangular hyperbola [cf. eq.(3)]

Second example:
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Third example:

Fourth example:

Here, demand curve D1 does not lead to an equilibrium solution.

The first example illustrates production carried out under one process having an abso-

lutely fixed coefficient aij whose magnitude is given by the slope of 0q. Supply is multi-valued

at p = p1. In the second example, we have two processes, one of which is more efficient but

can only be operated up to a limit (q1); beyond that point the less efficient must be used.

Beyond the point q1, the price required to call forth the additional supply rises from p1 to

p2. In the third example we have a fixed coefficient process up to a limit q1, and beyond this

a gradual, continuous falling off of efficiency; i.e., constant returns up to q1 and diminishing

returns thereafter. The market price must rise by greater and greater amounts to call forth

the additional supply. In the fourth example we have increasing returns up to q1, and di-

minishing returns thereafter. We have a discontinuous supply set, since for any quantity less

than q1, a producer must use relatively more input per unit output than to produce at q1.

This is the result of a non-convex production-possibility set. Usually, we have free disposal,

so that we have a production possibility set (the hatched area).
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If any point on q is available then so is any
point vertically below it.

Definition: A set is convex if, when y1 and y2 belong to it so does λy1 + (1 − λ)y2 for

0 ≤ λ ≤ 1.

λy1 + (1− λ)y2 traces out all points on

the straight line segment connecting y1

and y2 as λ varies from 0 to 1 .

Notation: We will have occasion to refer to sequences (of vectors), say pn, and to con-

sider what happens as n increases (the sequence takes on further terms); we will designate

terms of a sequence, p1, p2, ..., pn, ... approaching a limit po as n increases by pn → po (equiv-

alently, limn→∞ p
n = po). The superscript zero designates the limiting value in such cases.

Definition: A correspondence from a set A to a set B is a function with domain in A

and range in the set of all subsets of B (a set-valued function).

Definition: Upper semi-continuity of a correspondence. A correspondence φ(p) defined

on the set of all p ∈ P is upper semi-continuous when, if pn → po, xn ∈ φ(pn) and xn → xo,

then xo ∈ φ(po).

Let us now specify the general model:

(1) Production is organized in firms; i.e., in production-possibility sets Y j where the j in-

dexes firms. [Note: change of notation here from that of Cassel model.]
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Production Assumptions:

P.I Y j is convex for each j.

P.II 0 ∈ Y j.

P.III Y j is closed.

Definition: A set is closed if and only if yn ∈ Y and yn → yo together imply yo ∈ Y .

P.IV Y j is bounded. (P.IV will later be dropped.)

Definition: A set is bounded if, for some N ,

|y| ≤ N for all y ∈ Y .

Definition: A vector sum Y =
∑

j Y
j is the set,

{y | y =
∑

j y
j for some yj ∈ Y j}.

The social production-possibility set is Y =
∑

j Y
j.

The replacement for P.IV is

P.IV′: (a) if y ∈ Y and y 6= 0, then yk < 0 for some k. This is

the “no free lunch” postulate.

(b) if y ∈ Y and y 6= 0, then −y /∈ Y . This is the irrev-

ersibility postulate — there exists no way to re-transform

an output back to the original quantities of all inputs.

Now, taking p as given, for each j the firm ”chooses” yj such that p · yj = Max p · yj

for all yj ∈ Y j which may not yield a unique solution.

Let Y j(p) = {y∗ | y∗ ∈ Y j, p·y∗ ≥ p·yj for all yj ∈ Y j} be the excess supply correspondence

of the firm.

Lemma 3: Y j(p) is non-null (from P.III and P.IV).
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Lemma 4: Y j(p) is convex.

Proof: Let y1 ∈ Y j(p) and y2 ∈ Y j(p).

For fixed p, p · y1 = p · y2 ≥ p · yj for all yj ∈ Y j.

For 0 ≤ λ ≤ 1, consider p[λy1+(1−λ)y2] = λp·y2+(1−λ)p·y2 = p·y1 = p·y2 ≥ p·yj

for all yj ∈ Y j.

But any λy1 + (1− λ)y2 ∈ Y j by P.I.

We also wish to prove that:

(1) the correspondence Y j(p) is upper semi-continuous and

(2) for any fixed p, the set Y j(p) is closed. These two are not equivalent, and we require both.

To prove (1), we assume pn → po, yn ∈ Y j(pn) and yn → yo , and wish to show yo ∈ Y j(po)

Proof: pn · yn ≥ pn · y for y ∈ Y j, and yo ∈ Y j since yn ∈ Y j for all n and Y j is closed

(P.III).

If n approaches infinity, we have po·yo ≥ po·y for all yo ∈ Y j(p) and yo is profit maximizing.

(2) We must show yn ∈ Y j(p) and yn → yo imply yo ∈ Y j(p).

From P. III, we know yo ∈ Y .

By the definition of Y j(p)

p · yn ≥ p · y for y ∈ Y j

limn→∞ p · yn = p · yo ≥ p · y for y ∈ Y j,

so yo ∈ Y j(p) and Y j(p) is closed.

We sum up the above as the following theorem:

THEOREM 4: Under P.I - IV, for each p, Y j(p) is non-null, convex, closed, and bounded,

and Y j(p) is a bounded upper semi-continuous correspondence.
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Definition: Profit Function

Let πj(p) = maxy∈Y j(p · y) be the profit function.

We wish now to show that πj(p) is continuous in p. Since 0 ∈ Y j by P.II, then πj(p) ≥ p·0 = 0.

Let pn → po; choose yn ∈ Y j(pn) for yn ∈ Y j. The sequence {yn} is bounded because Y j is

bounded (P.III). By the Bolzano-Weierstrass Theorem, every bounded infinite sequence of

this kind has a subsequence that converges to a limit. That is, from the sequence {yn}, one

may select certain elements from the sequence to form a new (sub-)sequence that converges

to a limit. Without loss of generality, then, assume that {yn} is itself convergent. Then

yn → yo and yo ∈ Y j(po) by Theorem 4.

Then (pn − po) · yn → 0 as pn → po, and

pn · yo − (pn − po) · yn → po · yo as pn → po, yn → yo.

Since yo maximizes po · yj for yj ∈ Y j and yn maximizes pn · yj for yj ∈ Y j,

po · yo ≥ po · yn = pn · yn − (pn − po) · yn ≥ pn · yo − (pn − po) · yn,

or, po · yo + (pn − po) · yn ≥ pn · yn ≥ pn · yo.

As n approaches infinity, pn · yo → po · yo, hence

limn→∞p
n · yn = po · yo, or

limn→∞πj(p
n) = πj(p

o).

Again, to sum up:

THEOREM 5: Under P.I -IV, πj(p) is a continuous, non-negative function of p.

Definition: Market Excess Supply Correspondence

Let Y (p) =
∑

j Y
j(p) be the market excess supply correspondence.

We now wish to show that Y , the social production possibility set, has all the properties

of Y j; that it satisfies all of P.I - P.IV. This is obvious for all but P.III. We wish then to

show that Y is closed; for this purpose, P.IV [Y j is bounded] is essential. We have to prove
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that yn ∈ Y and yn → yo imply that yo ∈ Y .

Let yn =
∑

j y
nj for ynj ∈ Y j. As in the proof of Theorem 5, for each sequence {yn1},

{yn2}, ... there exists a convergent subsequence, since each is bounded. Without loss of

generality assume it is {ynj}. Then since {ynj} is bounded for each j, assume ynj → yoj;

summing over j, yn =
∑

j y
nj →

∑
j y

oj = yo, and since yoj ∈ Y j, then yo ∈ Y , as was to be

shown.

Thus,

THEOREM 6: If P.I-IV hold for each Y j, they hold for Y .

Definition: Y ∗(p), for any p, is the output which maximizes the value of total production.

Y ∗(p) = {y∗ | y∗ ∈ Y, p · y∗ ≥ p · y for y ∈ Y }.

We will show that Y ∗(p) = Y (p). Let y∗ ∈ Y ∗(p), y∗ =
∑

j y
∗j, y∗j ∈ Y j.

Let y =
∑

j 6=k y
∗j + yk for some yk ∈ Y k.

Now y ∈ Y and p · y∗ ≥ p · y by definition of Y ∗(p); therefore

p · (
∑

j 6=k y
∗j + y∗k) ≥ p · (

∑
j 6=k y

∗j + yk).

Therefore p · y∗k ≥ p · yk for all yk ∈ Y k. But y∗k ∈ Y k and so y∗k ∈ Y k(p). Thus if

y∗ ∈ Y ∗(p), y∗ ∈ Y (p).

We will also show that if y∗ ∈ Y (p), then y∗ ∈ Y ∗(p). Assume y∗ ∈ Y (p), y∗ =
∑

j y
∗j,

y∗j ∈ Y j(p), and p · y∗j ≥ p · yj for all yj ∈ Y j.

Summing over j, p · y∗ ≥ p · y for all y ∈ Y and so y∗ ∈ Y ∗(p).

THEOREM 7: Under P.I - IV, for each p, Y (p) is non-null, convex, closed, and bounded,

and Y (p) is a bounded upper semi-continuous correspondence.

Proof: Follows from Theorems 4, 6, 7.
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3 Lecture III

The firm excess supply correspondence Y j(p) is that set which maximizes profits. Because

of the boundedness assumption, there must exist at least one profit-maximizing point for

each firm. We sum over the firms to obtain the market excess supply correspondence Y (p),

which, for each p, is closed, convex, bounded, and non-null, and is a bounded upper semi-

continuous correspondence Note that P.IV′ applies to Y (p), the aggregate relation. This is

a stronger postulate than if defined over individual firms. That (a version of) P.IV′ holds

for each individual firm does not insure that it holds for society. We are about to drop P.IV

and replace it with P. IV′.

Let ξ be the vector of total initial resources or endowments. Because of P.IV′ (a), there

can never be an infinite production (since ξ is finite).

Definition: y is attainable in Y if: y + ξ ≥ 0 for y ∈ Y .

The set of attainable vectors y is bounded, and it is among these that an equilibrium vector

is to be found (if it exists).

THEOREM 9: Under P.I, P.II, P.III, P.IV′, the set of attainable vectors in Y is bounded.

Proof: Suppose it is not; then there is a sequence of vectors {yn} such that:

(1) |yn| → +∞ as n becomes large

(2) yn ∈ Y

(3) yn + ξ ≥ 0

We shall show that these imply a contradiction.

Let ỹn = yn

|yn| ; since limn→∞ |yn| = +∞, we know |yn| ≥ 1 for n large. Note that

ỹn = 1
|yn|y

n + (1− 1
|yn|)0.

Under P.II, 0 ∈ Y and under P.I, ỹn ∈ Y , since the above is a convex linear combina-

19



tion of yn and 0, both in Y , when |yn| ≥ 1.

Thus, we can make |ỹn| = 1; that is, we can project the yn sequence back to the unit

circle:

Since {ỹn} is bounded, we can, without loss of generality, let ỹn → ỹ and |ỹ| = 1. From

P.III, ỹ ∈ Y and from (3) above

yn

|yn| + ξ
|yn| ≥ 0. or ỹn + ξ

|yn| ≥ 0.

Now, by (1) above, limn→∞( ξ
|yn|) = 0; therefore limn→∞(ỹn+ ξ

|yn|) ≥ 0, or ỹ ≥ 0, while ỹ 6= 0,

since |ỹ| = 1, which contradicts P.IV′(a).

Any particular individual firm vector might not satisfy y + ξ ≥ 0. Thus we say that yj is

attainable in Y j if there exists a yk for each of the k 6= j firms such that
∑m

i=1 y
i is attainable

for all i = 1, 2, ...,m firms. We wish to show that this implies boundedness for the firms’

production possibilities.

THEOREM 10: Under P.I, P.II, P.III, P.IV′ the set of attainable vectors in Y j is bounded.

Proof: Suppose it is not. Then there exists a sequence {ynj} such that:

(1) |ynj| → +∞

(2) ynj ∈ Y j

(3) yn = ynj +
∑

k 6=j y
nk is attainable and thus bounded.

We show that this contradicts P.IV′(b).

Let ỹnj = ynj

|ynj | and y∗nj =
∑
k 6=j y

nk

|ynj | . Also, ynj = ynj +
∑

k 6=j 0 is contained in Y , and∑
k 6=j y

nk = 0 +
∑

k 6=j y
nk is contained in Y .

For n large, ỹnj ∈ Y and y∗nj ∈ Y .
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yn

|ynj | = ỹnj + y∗nj from (3) above.

{ỹnj} is a bounded sequence, so, by an argument used previously, we can assume without

loss of generality that it is convergent, thus ỹnj → ỹj.

Then y∗nj = yn

|ynj |− ỹ
nj and limn→∞( yn

|ynj |) = 0, so that limn→∞(y∗nj) = −ỹj. Since ỹj ∈ Y ,

|ỹj| = 1 and ỹj 6= 0 [Note: if |ỹj| = 1, ỹj certainly cannot be zero], then limn→∞(y∗nj) ∈ Y

which contradicts P.IV′(b), since ỹj and −ỹj cannot both be in Y .

If we find the maximum of a certain set, then apply a restriction to the set (as with attain-

ability) we may find that maximizing subject to the constraint yields a different maximum

vector than the unconstrained maximum. We have to show that if the constraint of attain-

ability is removed, we still have the same profit maximizing vector. Since the firm doesn’t

“recognize” our mathematical attainability restriction, we must show that the presence of

the restriction does not affect the equilibrium the firm chooses given the prices.

THEOREM 11: Assume P.I, P.II, P.III, P.IV′. Choose c such that |yj| < c for all at-

tainable vectors in yj. Let Ỹ j = Y j ∩ {yj | |yj| ≤ c}.

Graphically:

Let Ỹ j(p) = {y∗j | p · y∗j ≥ p · yj for all yj ∈ Ỹ j, y∗j ∈ Ỹ j}. Then:

(a) Ỹ j(p) for each p is closed, convex, bounded, and non-null, and Ỹ j(p) is a bounded upper

semi-continuous correspondence;

(b) if yj is attainable and yj ∈ Ỹ j(p), then yj ∈ Y j(p)

Proof: For part (a), it is evident that P.I-P.IV are satisfied for Ỹ j, since the intersection

of two closed, convex sets is closed and convex; 0 belongs to both Y j and {yj | |yj| ≤ c},

and the intersection of two sets, one of which is bounded, must be bounded. Thus Ỹ j(p)
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satisfies Theorem 8.

For part (b), suppose yj attainable and yj ∈ Ỹ j(P ) but yj /∈ Y j(p). Then p · yj > p · yj

for some yj ∈ Y j and also p · [αyj + (1− α)yj] > p · yj for any α, 0 < α ≤ 1.

Furthermore, αyj + (1− α)yj ∈ Y j.

Now |yj| < c, so we can choose some α > 0 so that |αyj + (1 − α)yj| ≤ c for this α.

But then αyj + (1− α)yj ∈ Ỹ j, so yj /∈ Ỹ j(p), as was assumed.

This completes the analysis of firms, and we turn next to the analysis of households.

In the theory of households to be presented below, we will choose to consider leisure as a

good to be consumed rather than as a factor (a certain type of labor) to be supplied, so that

the choice set is non-negative. Let there be r types of labor offered, `1, ..., `r, and define the

standard unit as one “day.” Then define r “leisures” x1, ..., xr as the difference between a

standard unit of each type of labor and the amount of each type of labor actually supplied.

Thus:

x1 = 1− `1

x2 = 1− `2

...

xr = 1− `r,

where `i ≥ 0 for all i,
∑r

i=1 `i ≤ 1. Therefore, xi ≥ 0 for all i, and
∑r

i=1 xi = r −
∑r

i=1 `i ≤

r − 1 (which insures no one works more than 24 hours per day). Now 0 /∈ X i so that the

consumer chooses from a set bounded from below rather than from the entire non-negative

orthant. The above is subsumed in the statement that the set of consumption vectors is

convex and bounded from below.

We also assume a utility function U i(X i) for each individual. [For a discussion of condi-

tions leading to the existence of U i(X i) see Debreu, Theory of Value, ch. 4, and Debreu, ch.

XI in Thrall, Coombs, Davis, Decision Processes.].
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We shall specify during the analysis of households some or all of the following consump-

tions assumptions.

C.I: X i is convex and closed.

C.II: U i(X i) is continuous and semi-strictly quasi-concave.

Note: That is, {xi | U i(xi) ≥ u} is a convex set for each u:

“quasi-concave” –– may have flat regions
“semi-strictly” –– if xi is strictly preferred to x2,
i.e., the indifference curves have no thickness.

Thus if ui(x1i) > ui(x2i) then ui[αx1i + (1− α)x2i] > ui(x2i) for 0 < α ≤ 1.

C.III: Mi(p) = p · ξi + µi(p): for each individual,

income = initial endowment value + share of profits received, where 0 ≤ µi(p) is

continuous, homogeneous of degree one and
∑

i µi(p) =
∑

j π
j(p). [We do not specify the

method of distribution.]

C.IV: ξi � ωi for some ωi ∈ X i.

C.IV′: There exists an ωi ∈ X i such that ξik > ωik for ξik > 0, and ξik ≥ ωik ≥ 0 otherwise.

We will use C.IV at this time. It states that each individual can supply a strictly positive

amount of each kind of labor and possesses a strictly positive amount of each non-labor

asset. C.IV′, on the contrary, is not an assumption but a restatement of the convention

by which leisure is introduced as a commodity. Suppose an individual can supply r types

of labor, say 1, ..., r. We can write ξik = 1 (k = 1, ..., r), while X i satisfies the constraint,∑r
k=1 x

i
k ≥ r − 1. Then we can certainly choose ωik (k = 1, ..., r) so that

∑r
k=1 ω

i
k ≥ r − 1,

ωik < ξik (e.g., ωik = r−1
r

). If we choose ωik = 0 for k > r, where k may present a type of labor

not supplied by the individual or a non-labor asset, we see that C.IV′ is satisfied.

C.V: X i is bounded.
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Note: This will also be dropped later –– it implies that no one can consume more than a

given (finite) amount of any commodity.

This replacement for C.V will be

C.V′: xi ≥ 0 for xi ∈ X i and U i(xi) has no maximum in X i (i.e., no satiation).

Note: This insures that there can be no real hoarding –– no one can have an income greater

than his expenditure. Note that this contradicts C.V.

Let X i(p) be {xi | xi maximizes U i(xi) subject to p · xi ≤Mi(p), xi ∈ X i}.

THEOREM 12: Under C.I, C.II, C.III and C.V, X i(p) is non-null, closed, convex, and

bounded.

Let Ci(p) = {xi | p · xi ≤ Mi(p), x
i ∈ X i}. Since ξi ∈ X i, and p · ξi ≤ Mi(p) by C.III,

Ci(p) is the intersection of this set with the closed convex set, X i, and so is closed and

convex. Since Ci(p) is bounded, closed, and non-null, the continuous function U i(xi) attains

a maximum on it. Hence X i(p) is non-null. It is clearly closed, and, as a subset of Ci(p),

bounded.

Finally, let x1 and x2 be two elements of X i(p), x a convex combination of them. Since

U i(xi) attains its maximum at both x1 and x2, U i(x1) = U i(x2). From the quasi-concavity

of U i(xi), U i(x) ≥ U i(x1) = U i(x2). But x ∈ Ci(p), since the latter is convex. Then

U i(x) ≥ maxxi∈Ci(p)U
i(xi) = U i(x1); hence, x ∈ X i(p).

THEOREM 13: Under C.I, C.II, C.III and C.V,X i(p) is bounded and upper semi-continuous

at any po for which Mi(p
o) > po · ωi for some ωi ∈ X i.

This restricts consideration to the set of prices for which an individual’s income is more

than enough the buy the cheapest bundle permissible.
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Proof: Suppose (1) pn → po

(2) xn → xo

(3) xn ∈ X i(pn).

We show that this implies xo ∈ X i(po). Now xn ∈ Ci(pn) and pn · xn ≤ Mi(p
n). As

n→∞, po · xo ≤Mi(p
o) because Mi(p) is continuous by C.III.

Now xo ∈ X i, therefore

(4) xo ∈ Ci(po).

Let x1 ∈ Ci(po) and distinguish between the following two cases: po · x1 < Mi(p
o) and

po · x1 = Mi(p
o).

Case (a): po · x1 < Mi(p
o).

Then pn · x1 < Mi(p
n) for n large (by continuity) and thus x1 ∈ Ci(pn); but xn was

optimal from (3) above. Thus ui(xn) ≥ ui(x1) and in the limit as n→∞, ui(xo) ≥ ui(x1).

Case (b): po · x1 = Mi(p
o).

(5) Mi(p
o) > po · ωi, by hypothesis

(6) pn · x1 → po · x1 = Mi(p
o) > po · ωi

(as n→∞).

Now as pn changes x1 may or may not be in Ci(pn); however, pn ·ωi < Mi(p
n) for n large.

We want to find a λn such that

λnp
n · x1 + (1− λn)pn · ωi ≤Mi(p

n);

let λn = min[Mi(p
n)−pn·ωi

pn·x1−pn·ωi , 1].

Therefore, 0 < λn ≤ 1 for n sufficiently large, and then pn · [λnx1 + (1− λn)ωi] ≤Mi(p
n).
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For xn optimal,

U i(xn) ≥ U i[λnx
1 + (1− λn)ωi].

Now Mi(p
n)→Mi(p

o) and pn ·x1 → po; x1 = Mi(p
o) as n→∞; therefore λn → 1 as n→∞,

and so U i(xo) ≥ U i(x1). Hence, U i(xo) ≥ U i(x1) for all x1 ∈ Ci(po), so that xo ∈ X i(po).
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4 Lecture IV

Case(a) compares xo and x1 where x1 does not lie on the budget line and is not excluded

as prices change:

here the utilities of xo and
x1 may be compared directly.

In case (b), however, x1 is excluded, and the construction of λn serves to pull it back to

within the consumption set as prices change.

Also notice that (in a two-commodity case, for simplicity) where only one commodity is held,

as the price of that commodity falls to zero we may have a discontinuous jump to a point of

satiation.

For p1 > 0, xi(p1) < ξ1 but

for p1 = 0, xi(p1) may be unbounded

(when C.V does not hold).

Corollary 13.1: Under C.I, C.II, C.III, C.IV, C.V, X i(p) is non-null, closed, convex, and

bounded, for each p, and X i(p) is a bounded upper semi-continuous correspondence in p.

Proof: Under C.IV, Mi(p
o) ≥ po · ξi > po · ωi for all po > 0, since ξi � ωi.

Definition: X(p) =
∑

iX
i(p) (household excess demand correspondence).
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Corollary 13.2: Under C.I, C.II, C.III, C.IV, C.V, X(p) has the same properties as X i(p) in

Corollary 13.1.

Now xi is attainable in X i if 0 ≤ xi ≤ y + ξ for some y ∈ Y , xi ∈ X i. This implies free

disposal for the market, as firms can produce a little more than consumers desire; therefore

there must be a costless way to dispose of the surplus.

THEOREM 14: The set of attainable xi ∈ X i is bounded. (since 0 ≤ xi ≤ y + ξ and

y, ξ are bounded).

THEOREM 15: Assume C.I, C.II, C.III, C.IV, C.V′; choose a c such that |xi| < c for

xi attainable. Let X̃ i = X i ∩ {xi | |xi| ≤ c} and let C̃i(p) = {xi | p · xi ≤ Mi(p), x
i ∈ X̃ i}

and let X̃ i(p) = {xi | xi maximize U i(xi) in C̃i(p)}.

Then (a) for each p, X̃ i(p) is bounded, closed, convex, and non-null, and X̃ i(p) is an upper

semi-continuous correspondence (this analogous to Theorem 11); and (b) if xi is attainable

and xi ∈ X̃ i(p) then xi ∈ X i(p) –– (this is analogous to Theorem 11, using semi-strictly

quasi-concavity here as linearity of profit function was used in Theorem 11).

Definition: X̃(p) =
∑

i X̃
i(p).

Corollary 15.1: X̃(p) is closed, convex, bounded, and non-null, and, for each p, X̃(p) is

an upper semi-continuous correspondence.

Proof: Assumptions of Corollary 13.1 hold here.

THEOREM 16: Under C.I, C.II, C.III, C.IV, C.V′,

p · xi = Mi(p) for all xi ∈ X i(p).

Proof: By C.V′, there exists xi ∈ X i such that

U i(xi) > U i(xi).
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Suppose p · xi < Mi(p). Choose α > 0 so that

p · [αxi + (1− α)xi] ≤Mi(p).

Since X i is convex, αxi + (1− α)xi ∈ X i and hence to Ci(p).

From semi-strict quasi-concavity, U i[αxi + (1 − α)xi] > U i(xi), which contradicts the fact

that xi ∈ X i(p).

Corollary 16.1: (a) if xoi ∈ X i(p) and U i(x1i) > U i(xoi) then p ·x1i > p ·xoi; (b) if xoi ∈ X i(p)

and U i(x1i) ≥ U i(xoi) then p · x1i ≥ p · xoi.

A consumer may be both price- and utility-indifferent in the same way that firms may be

profit-indifferent.

Definition: p̄ is a competitive equilibrium if x ≤ y+ ξ for some x ∈ X(p̄) and some y ∈ Y (p̄),

p̄ > 0.

Let Z(p) = X(p)−Y (p)−ξ (a vector sum) be the market excess demand correspondence;

then p̄ is an equilibrium price if z̄ ≤ 0 for z̄ ∈ Z(p̄).

THEOREM 17: Under P.I, P.II, P.III, P.IV and C.I, C.II, C.III, C.IV, C.V,

(a) Z(p) is non-null, closed, convex and bounded, and for each p, Z(p) is a bounded upper

semi-continuous correspondence;

(b) p · z ≤ 0 for all z ∈ Z(p).

Proof of (b): For xi ∈ X i(p), p · xi ≤ p · ξi + µi(p). Therefore, p · x ≤ p · ξ +
∑

i µi(p) =

p · ξ+
∑

j π
j(p) = p · ξ+p ·y for y ∈ Y (p). Thus p · (x− ξ−y) ≤ 0 when x ∈ X(p), y ∈ Y (p),

or p · z ≤ 0.

[Note: when C.V′ holds rather than C.V, p · z = 0.]

THEOREM 18: Market Equilibrium
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If Z(p) is non-null, closed, convex, and bounded; if, for each p, Z(p) is a bounded upper

semi-continuous correspondence; and if p · z ≤ 0 for each z ∈ Z(p), then there exists a

competitive equilibrium.

Proof: To prove this, we will use two mappings –– prices into excess demands, and excess

demands into prices –– and show that a fixed point of these transformations exists and rep-

resents an equilibrium.

First, choose an M such that |z| ≤ M for any z ∈ Z(p) for all p. For p in the simplex S

(S = {p | p ≥ 0,
∑

i pi = 1}). Let P (z) = {p∗ | p∗ maximizes p·z for p ∈ S}. We have the two

mappings, p→ Z(p) and z → P (z). Thus we have the set Q

p
z

 =

{p∗
z∗

∣∣∣∣ p∗ ∈ P (z)

z∗ ∈ Z(p)

}
for |z| ≤M and p ∈ S.

KAKUTANI FIXED-POINT THEOREM:

If T is closed, convex, and bounded, and φ(x) is an upper semi-continuous correspondence

from T to subsets of T , and if φ(x) is non-null, closed, convex for each x, then there exists

an x̄ ∈ T such that x̄ ∈ φ(x̄).

Now Q satisfies all of the above conditions, thusp̄
z̄

 ∈ Q

p̄
z̄

 or

(1) p̄ ∈ P (z̄)

(2) z̄ ∈ Z(p̄).

Then (1), (2), together with p · z ≤ 0 for each z ∈ Z(p) is sufficient for a competitive

equilibrium. From (1),

(a) p̄ · z̄ ≥ p · z̄ for p ∈ S; from (2) and hypothesis,

(b) p̄ · z̄ ≤ 0 and, from (a), p · z̄ ≤ 0 for any p ∈ S.

To hold for any p ∈ S, we must have z̄ ≤ 0 which satisfies the conditions for a compet-

itive equilibrium.
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Note: (1) If there is at least one market in which quantity supplied equals quantity demanded,

such that zk = 0 for some k, p · z̄ = 0 for some p ∈ S, then p̄ · z̄ = 0 from (a), (b) and

assumption W .

(2) Suppose z̄k ≤ 0 for all k. Then there exists a p̄ > 0 for which p̄ · z̄ < 0 and this

violates assumption W .

THEOREM 19: Under P.I, P.II, P.III, P.IV and C.I, C.II, C.III, C.IV, C.V, there exists

a competitive equilibrium.

Proof: Merely a restatement of Theorems 17, 18.

We now wish to drop the boundedness assumptions P.IV and C.V, and replace them by

P.IV′ and C.V′. Define

Z̃(p) = X̃(p)− Ỹ (p)− ξ.

By Theorems 11 and 15, the hypotheses of Theorem 18 hold for Z̃(p).

There exists a p̄, z̄ such that p̄ > 0, z̄ ∈ Z̃(p), z̄ ≤ 0.

Also z̄ = x̄ − ȳ − ξ for x̄ ∈ X̃(p), ȳ ∈ Ỹ (p). Thus ȳ + ξ = x̄ − z̄ ≥ x̄ =
∑

i x
i ≥ 0 for

xi ∈ X̃ i(p̄) for each i, by C.V′.

Hence ȳ is attainable and ȳ =
∑

i y
j for yj ∈ Ỹ j(p̄) for each j. Thus yj is attainable, and

yj ∈ Y j(p̄) by Theorem 11. Similarly, xi ∈ X i(p̄) by Theorem 15.

THEOREM 20: Under P.I, P.II, P.III, P.IV′ and C.I, C.II, C.III, C.IV, C.V′, there ex-

ists a competitive equilibrium with p̄ · z̄ = 0.

Now we wish to relax assumption C.IV′ regarding the assets held by individuals.

Let X
i
(p) =

X
i(p) if Mi(p) > p · ωi for some ωi ∈ X i

{xi | xi minimizes p · xi for xi ∈ X i} otherwise.
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This definition implies if pk = 0 for all the assets held by the individual, then X
i
(p) is the

set of all commodity bundles involving those assets and any other free goods in any quantities.

By Theorem 13, X i(p) is upper semi-continuous at any p for which Mi(p) > minxi∈Xi p·xi.

Now let Mi(p
o) = minxi∈Xi po · xi. Let pn → po, xn ∈ X i

(pn) and xn → xo; we shall prove

that xo ∈ X i
(po).

Note that xn ∈ Ci(pn).

Now minxi∈Xi pn · xi ≤ pn · xn ≤Mi(p
n)→Mi(p

o) = minxi∈Xi po · xi.

Take the limit of the above as n→∞; then

po · xo = minxi∈Xi po · xi. Hence xo ∈ X i
(po).

Lemma 6: Under C.I, C.II, C.III, and C.V, X
i
(p) is non-null, closed, convex, and bounded,

and, for each p, X
i
(p) is an upper semi-continuous correspondence.

Lemma 7: Under C.I, C.II, C.III, C.V′ and P.I, P.II, P.III, P.IV′, there exist p̄, xi, ȳ such

that
∑

i x
i ≤ ȳ + ξ, p̄ > 0, for xi ∈ X i

(p̄), ȳ ∈ Y (p̄).

Proof: If we replace C.V′ and P.IV′ by C.V and P.IV, this follows from Lemma 6 and

Theorem 18. The extension to C.V′ and P.IV′ is the same as the proof of Theorem 20.

Corollary to Lemma 7: Under the hypotheses of Lemma 7, if Mi(p̄) > minxi∈Xi p̄ · xi for all

i, then p̄ is a competitive equilibrium.

Proof: Lemma 7, definition of X
i
(p).

Definition: A feasible distribution is a set (xi, yj) for which∑
i x

i ≤
∑

j y
j + ξ, for xi ∈ X i, yj ∈ Y j.

Definition: Consumer a is said to be (directly) productively related to consumer b if, given

any feasible distribution (xoi, yoj), there exists a ξ̄ > 0 with ξ̄k = 0 for all k for which ξak = 0;

and x1i ∈ X i for all i, y1 ∈ Y , such that
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(1)
∑

i x
1i ≤ y1 + ξ + ξ̄

and (2) ui(x1i) ≥ ui(xoi) for all i 6= b

and (3) ub(x1b) > ub(xob)

that is, if only one person (a) receives an additional endowment (ξ̄) containing only goods

he already has in some positive amount, and the additional endowment can be used (in

production and/or distribution) in at least one way such that the utility levels of all persons

except b are at least as great as before and individual b is made better off, then individual

a is directly productively related to individual b.

Definition: Individual a is indirectly productively related to individual b if there exist indi-

viduals i0, i1, ..., ip (with individual i0 = a and ip = b) with individual is directly productively

related to is+1 for s = 0, 1, ..., p− 1. 1

Assumption K: Connectivity

Every individual is indirectly productively related to every other individual.

Then as replacements for C.IV, we shall substitute assumption K and the following

postulate P.V.

P.V.: There exists a y∗ ∈ Y such that y∗k > 0 for all k for which ξk = 0.

This simply says that if we are not endowed with a particular good, there exists a way to

produce it from the endowments –– a“good” is a good only if it exists in nature or can be

produced.

1Editors’ interpretation: original was “s = 0, 1, ..., p = 1”, we recommend to read as “s = 0, 1, ..., p − 1”. We thank Prof.

Alexis Akira Toda for helping with this passage.
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5 Lecture V

Lemma 8: Under P.I, P.II, P.V there exists a ¯̄y such that ¯̄y + ξ � 0.

Proof: Take y∗ as in P.V; consider the primary components of y∗, i.e., those for which

ξk > 0. They are negative in general. We can choose a λ > 0 such that ξk + λy∗k > 0 for all

k for which ξk > 0. Also λy∗k > 0 for all k for which ξk = 0; thus ξk + λy∗k > 0 for all k for

which ξk ≥ 0 by P.V. Now simply let ¯̄yk = λy∗k.

Lemma 9: Under C.III and C.IV′, Mi(p) = minxi∈Xi p · xi if and only if Mi(p) = 0.

(a) If Mi(p) = 0, then 0 = Mi(p) ≥ p · ξi ≥ 0. Thus p · ξi = 0 and

p · ξi ≥ minxi∈Xi p · xi ≥ 0.

(b) Suppose minxi∈Xi p · xi = Mi(p) ≥ p · ξi ≥ p · ωi ≥ minxi∈Xi p · xi, where ωi is chosen as

in C.IV′.

Mi(p) = p · ξi = p · ωi

or p · (ξi − ωi) = 0.

Then pk = 0 if ξik > ωik and thus pk = 0 if ξik > 0 since if ξik > 0, then ξik > ωik by C.IV′.

Thus p · ξi = 0 and Mi(p) = p · ξi = 0.

We wish now to show that at least one person has a positive income at the price vector

p̄ in Lemma 7.

To prove Mi(p̄) > 0 for some i, suppose Mi(p̄) = 0 for all i. Under Lemma 7, we have

profit maximization but zero incomes and consumers can ”buy” only free goods. We now

show that zero incomes for consumers are inconsistent with profit maximization.

Now p̄ · ξi = 0 and summing over i, p̄ · ξ = 0 and also µi(p̄) = 0. Thus there are no

dividends or income. Then there must be no profit.

0 =
∑

i µi(p̄) =
∑

j π
j(p̄) = p̄ · ȳ.
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Now p̄ · y ≤ p̄ · ȳ for all y ∈ Y , by definition of Y (p). In particular, let y = ¯̄y, as defined

in Lemma 8.

0 < p̄ · (¯̄y + ξ) = p̄ · ¯̄y + p̄ · ξ ≤ p̄ · ȳ + p̄ · ξ = 0.

But 0 < 0 is a contradiction; therefore someone must have a positive income.

Consider now someone directly productively related to the individual who has a positive

income; there must be at least one such related person by Assumption K. We show that if

individual a is productively related to individual b who has a positive income, then a also

has a positive income.

By the definition of productive relatedness, we can find x1i, y1, ξ̄ such that

(1) U i(x1i) ≥ U i(xi) for all i,

(2) U b(x1b) > U b(xb),

(3)
∑

i x
1i ≤ y1 + ξ + ξ̄, y1 ∈ Y ,

(4) ξk = 0 if ξak = 0.

By Corollary 16.1, it follows from (1) and (2) that

(5) p̄ · x1i ≥ p̄ · xi for all i for which Mi(p̄) > 0,

(6) p̄ · x1b > p̄ · xb.

(5) also holds obviously if Mi(p̄) = 0

p̄ ·
∑

i x
1i > p̄ ·

∑
i x

i =
∑

iMi(p̄) = p̄ · (ȳ + ξ).

Suppose Ma(p̄) = 0; this implies p̄ · ξa = 0 and pk = 0 if ξk > 0.

Then pk = 0 if ξk > 0 by construction (Assumption K and definition of being productively

related), so p̄ · ξ̄ = 0. Then

p̄ · (y1 + ξ) = p̄ · (y1 + ξ + ξ̄) since p̄ · ξ̄ = 0.

or p̄ · (y1 + ξ + ξ̄) ≥ p̄ · (
∑

i x
1i) > p̄ · (ȳ + ξ),

or p̄ · y1 > p̄ · ȳ,

which is a contradiction, since ȳ maximizes profits at prices p̄.

Therefore Ma(p̄) > 0; individual a’s assets cannot have zero value if he is productively

related to individual b who has a positive income.
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Thus, since each individual is indirectly productively related to all other individuals by

assumption K, the chain of direct relationships implies that each individual must have a

positive income.

THEOREM 21: Under P.I, P.II, P.III, P.IV′, P.V, C.I, C.II, C.III, C.IV′, C.V′, Postulate K,

there exists a competitive equilibrium.
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6 Lecture VI

In the preceding five lectures we have been concerned with the existence of a competitive

equilibrium; in this final lecture we shall cover uniqueness and stability.

For the discussions of uniqueness and stability, we return to the model of the first lecture

which employs single-valued excess demand and production functions. We will present two

alternative conditions, either of which is sufficient for both uniqueness and stability. We know

that under assumptions (W), (H), (B), and (C) together with the assumption of single-valued

excess demand functions, we obtain a solution similar to that in the following diagram:2

(1) The first of the sufficient conditions for uniqueness and stability is that consumers

collectively act as if there were only one consumer in the market; that is, the market (house-

hold) excess demand function satisfies the Samuelson weak axiom of revealed preference. we

restate this axiom as the following assumption:

Assumption (RP): If po · x(po) ≥ po · x(p1) and po is not a positive multiple of p1, then

p1 · x(po) > p1 · x(p1),

where x(pi) is the excess demand vector given price vector pi.

THEOREM 22: (Wald) –– If po is not a positive multiple of p1, and (W), (H), (B), (C), and

(RP) hold, then both po and p1 cannot be equilibrium price vectors.

Proof: Suppose both po and p1 are equilibrium vectors, with {po, xo, yo} one equilibrium

set and {p1, x1, y1} the other.

2Illegible in original. Editors’ interpolation:“we obtain a solution similar to that in the following diagram:”
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Now, xo ≤ y1 + ξ, 3 so

(a) po · x1 ≤ po · (y1 + ξ) ≤ po · (yo + ξ) = po · xo at equilibrium; however, by symmetry,

(b) p1 · xo ≤ p1 · (yo + ξ) ≤ p1 · (y1 + ξ) = p1 · x1 at equilibrium.

However, both (a) and (b) cannot hold simultaneously under (RP).

(2) The alternative assumption to (1) is that of gross substitutability borrowed from interna-

tional trade theory [ see e.g., Mosak, J. L., General Equilibrium Theory in International Trade,

Bloomington, Ind., 1944 (p.45f.) ]. This is a statement about aggregate excess demands, both

for households and firms.

Assumption (S): zk(p) is a strictly increasing function of p` for k 6= `.

Note: By homogeneity, zk(λp) = zk(p) for λ > 0. Suppose pk = 0 and increase the value of

λ so that other prices increase; then, by (S), the excess demand for commodity k must be a

strictly increasing function of λ – but the right-hand side indicates that it is not. The only

way by which this can be resolved under gross substitutability is for zk(p) = +∞ if pk = 0;

but for po to be an equilibrium price vector, z(po) ≤ 0. Therefore po � 0 is an implication

of the assumption of gross substitutability.

Lemma 10: (a) If z(p) satisfies assumptions (W), (H), (B), (C), and (S), then

limpk→0 zk(p) = +∞ and z(po) = 0 together imply po � 0;

(b) if p1 � 0 and p2 � 0 and p1m
p2m

= maxk
p1k
p2k

then zm(p1) < zm(p2) unless p1 is a positive

multiple of p2;

(c) if p1 � 0 and p2 � 0 and p1m
p2m

= mink
p1k
p2k

then zm(p1) > zm(p2) unless p1 is a positive

multiple of p2.

Proof: (b) Let λ = p1m
p2m

; then
p1k
p2k
≤ λ for all k. Thus p1

k ≤ λp2
k for all k, and p1

m = λp2
m;

therefore p1
k > p2

k for some k 6= m. Thus zm(λp2) ≥ zm(p1) and by assumption (H),

zm(λp2) = zm(p2); therefore zm(p2) > zm(p1) unless p1 is a positive multiple of p2.4

3Editors’ interpretation: we recommend to read “xo ≤ y1 + ξ” as “xo ≤ yo + ξ and x1 ≤ y1 + ξ”
4Illegible in original. Editors’ interpolation:“Thus zm(λp2) ≥ zm(p1) and by assumption (H), zm(λp2) = zm(p2); therefore
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(c) For part (c), reverse the inequalities and proceed in analogous fashion to the proof of

part (b).5

THEOREM 23: If (W), (H), (B), (C), and (S) hold, then competitive equilibrium is unique

up to a positive multiple of p.

Proof: Suppose both p1 and p2 are equilibrium price vectors with p1 6= λp2 for λ > 0;

then

0 = zk(p
1)

0 = zk(p
2).

, which are equilibrium conditions.

Let p1m
p2m

= maxk
p1k
p2k

. By lemma 10, zm(p1) < zm(p2), which is a contradiction (0 < 0).

Remark: Assumption (RP) implies that excess demand is downward sloping in the neigh-

borhood of a crossing (equilibrium point), as income effects cancel out at equilibrium. It

does not imply downward sloping excess demand everywhere.

We now wish to show that either (RP) or (S) is sufficient for stability of the equilibrium

as well as for uniqueness. Let the mechanism of adjustment of prices to excess demands be

of the form dpk
dt

= ckzk(p), where ck is a coefficient of adjustment speed. By appropriate

choice of units, we may make ck = 1 for each k, which does not affect either (RP) or (S),

each of which is independent of changes in the units.

Then dpk
dt

= zk(p) is a set of differential equations; a solution to this set, p(t|p(0)), is a

price vector which is a function of time and which passes through a certain given point at

an arbitrary time t = 0. We assume that there is only one such time path for each starting

point; it follows that the path is not dependent on the location of the origin ––

p(t|p(to)) = p(t+ to|p(0)).

We assume further that p(t|p(0)) is a continuous function of p(0).

By local stability we mean that if p(0) is close to an equilibrium price vector p̄, then

zm(p2) > zm(p1) unless p1 is a positive multiple of p2”
5Illegible in original. Editors’ interpolation:“(c) For part (c), reverse the inequalities and proceed in analogous fashion to

the proof of part (b)”
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p(t|p(0)) converges to p̄.

By global stability we mean that p(t|p(0)) converges to the equilibrium price vector p̄

from any arbitrary p(0).

If it is required that prices be non-negative, the adjustment process has to be modified in

the case of a negative excess demand at a zero price. we assume

dpk
dt

=

zk(p) if pk > 0 or if zk(p) > 0

0 if pk = 0 and zk(p) ≤ 0.

The above represents a non-normalized system, one in which there is no numeraire. If we

choose a numeraire then we must distinguish the numeraire commodity (say, the nth) as

follows:

Normalized system

for k 6= n, dpk
dt

=

zk(p) if pk > 0 or if zk(p) > 0

0 if pk = 0 and zk(p) ≤ 0.

for k = n, pn(t) ≡ 1.

Assumption N: zn(p) > 0 if pn = 0.

Lemma 11: If (N) holds, then for some number M ,

zn(p) > 0 for pn = 1, all |p| ≥M .

Proof: Suppose not. Then, for every M , there is a price vector p such that |p| ≥ M ,

pn = 1, zn(p) ≤ 0. We can in particular choose a sequence {pν}, such that |pν | → ∞, pνn = 1,

zn(pνn) ≤ 0. Let

pν = pν

|pν |

Then

pνn = 1
|pν | → 0,

|pν | = 1.
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By (H), zn(pν) = zn(pν) ≤ 0.

Since {pν} is bounded, some sub-sequence converges to p̄, with |p̄| = 1. Then, by (C),

zn(p̄) ≤ 0,

pn = 0,

which contradicts (N).

Consider in the non-normalized system

d
dt

(
∑n

k=1 p
2
k) = 2

∑n
k=1 pk

dpk
dt

.

If pk > 0 or zk > 0, dpk
dt

= zk, so that pk
dpk
dt

= pkzk. If pk = 0 and zk ≤ 0, then

dpk
dt

= 0 = pkzk. Hence,

d
dt

(
∑n

k=1 p
2
k) = 2

∑n
k=1 pkzk = 0 by (W).

That is, under Walras’ Law, the sum of squares of prices is a constant, and price adjust-

ments at any moment are such that they lie upon a (hyper)-sphere of given radius – i.e., the

non-normalized price system is bounded.

For the numeraire system,

d
dt

(
∑n

k=1 p
2
k) = 2

∑n−1
k=1 pk

dpk
dt

= 2
∑n−1

k=1 pk · zk = −2 pn · zn < 0

for |p| ≥M

under Walras’ Law, assumption N, and lemma 11. Again, the system is bounded. Thus:

THEOREM 24: The non-normalized system is always bounded; the normalized system is

bounded if assumption (N) holds.

Definition: Global Stability

An equilibrium set S is globally stable if and only if, starting from any p(0), p(t|p(0))

converges to some element p ∈ S. (Starting from any initial position, the system moves to

an equilibrium.)
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In the above diagram, points (a) are points of stable equilibria; points (b) are unstable

equilibria. Also, since p1 and p2 are bounded, as p1
p2
→ ∞, p2 → 0 necessarily, yielding a

further equilibrium point (stable, in the above diagram).

THEOREM 25: With two commodities, we always have global stability.

Lemma 12: If (RP) holds for x(p) it holds for z(p).

Proof: Suppose po · z(po) ≥ po · z(p1),

z(po) = x(po)− y(po)− ξ

z(p1) = x(p1)− y(p1)− ξ.

Then po · [x(po)− y(po)] ≥ po · [x(p1)− y(p1)] and

po · x(po) ≥ po · x(p1) + po · [y(po)− y(p1)];

under profit maximization, the last term is non-negative, therefore

po · x(po) ≥ po · x(p1).

Thus by (RP),

p1 · x(po) > p1 · x(p1) ≥ p1 · x(p1) + p1 · [y(po)− y(p1)], where the last term is non-positive

by profit maximization. Thus

p1 · [x(po)− y(po)− ξ] > p1 · [x(p1)− y(p1)− ξ],

or p1 · zo > p1 · z1.

To demonstrate global stability, we will use a method of proof due to Lyapunov: the so-

called second method of Lyapunov [Problème Générale de la Stabilité du Mouvement, A.M.S.

17, Princeton, 1949]
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Let V =
∑n

k=1(pk − pk)2 and let S = {k | dpk
dt

= zk}.

Then dV
dt

= 2
∑n

k=1(pk − pk)dpkdt = 2
∑

k∈S(pk − pk) · zk.

For k /∈ S, pk = 0 and zk ≤ 0. By (B), zk is bounded from below, so that pkzk = 0 for k /∈ S.

Hence ∑
k∈S pkzk =

∑n
k=1 pkzk −

∑
k/∈S pkzk =

∑n
k=1 pkzk = 0 by (W).

dV
dt

= 2
∑n

k=1(pk − pk) · zk = −2
∑n

k/∈S pk · z ≤ −2
∑n

k=1 pk · zk,

since if k /∈ S, zk ≤ 0, pk · zk ≤ 0, and −2
∑

k/∈S pk · zk ≥ 0

Now, in (RP), let po = p(t) and p1 = p̄. For z(p̄) ≤ 0, p · z(p̄) ≤ 0 = p · z(p) by (W); then

by (RP), p̄ · z(p̄) < p̄ · z(p) and therefore dV
dt
< 0. One can always buy the equilibrium excess

demands at any set of prices so the equilibrium excess demands are revealed preferred to the

ordinary excess demands for any price vector – that is, p̄ · z(p) > p̄ · z(p̄) = 0. Since dV
dt
< 0,

if p is non-equilibria, we can get arbitrarily close to the equilibrium point.

THEOREM 26: (RP) is sufficient for (global) stability.

Before discussing stability under gross substitutability (S), consider the derivatives of the

maximum (or minimum) of n functions of one variable f(x) = maxifi(x).

At the point where f1(x) = f2(x), f(x) is
obviously not differentiable, but it does have
right- and left-hand derivatives.

Clearly also, f+(x), the right-hand derivative, is the larger of f1(x) and f ′2(x) and f−(x)

the smaller.6 In general, at any point, let S be the set {i | fi(x) = f(x)}, so that fi(x) = fj(x)

if i and j belong to S, fi(x) > fj(x) if i ∈ S, j /∈ S. Then f+(x) = maxi∈Sf
′
i(x),

f−(x) = mini∈Sf
′
i(x).

Let dpk
dt

= zk (since zk = +∞ if pk = 0, under (S), the non-negativity condition becomes

superfluous),

6Editors’ Interpretation: we recommend to read “f1(x)” as “f ′1(x)”. We find the concluding sentence difficult to interpret.
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V = maxk
pk(t)
p̄k

V = mink
pk(t)
p̄k

and let M(t) = {k| pk(t)
pk

= V }.

Now zk(p) < zk(p̄) for k ∈M(t) by lemma 10.

dV
+

dt
= maxk∈M(t)

d
dt

(pk(t))

pk
= maxk∈M(t)

zk
pk
< 0,

dV
−

dt
= mink∈M(t)

d
dt

(pk(t))

pk
= mink∈M(t)

zk
pk
< 0

since zk(p) < zk(p̄) for k ∈ M(t), where the +, − identify respectively right-hand and

left-hand derivatives. Thus V (t) is strictly decreasing; conversely, by lemma 10, V (t) is

strictly increasing, and thus

V (0) ≥ V (t) ≥ pk(t)
pk
≥ V (t) ≥ V (0).

Thus by a standard argument on the convergence of monotone sequences,

limt→∞ V (t) = limt→∞ V (t) = V (∞) = 1

so that

pk(t)
pk
→ 1, or pk(t)→ pk as t→∞.

Thus assumption (S) is sufficient for global stability.

Remark: Future prices. Let pp refer to present prices and pf refer to expected future prices:

dppk
dt

= zpk(p
p, pf ) for k = 1, ..., n.

Assume adaptive expectations

dpfk
dt

= βk(p
p
k − p

f
k) for βk > 0.

Assuming there exists a stationary equilibrium p̄(t) ≡ p̄ for which

z
f (p̄, p̄) = 0

zp(p̄, p̄) = 0
and

assumption (S) holds among all present and future commodities, then this system is always

stable.
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Editors’ Notes

During the mid-1960s at Stanford University, the offices for economic theory and economet-

rics were at Serra House, a former retirement residence of the university president. There

the typescript of the “Lectures on the Theory of Competitive Equilibrium” was available.

The duplication format was particularly informal, known as “ditto,” in coarse blue typeface

on slick paper.

For editor Starr, the duplicated notes were a favorite guide to general equilibrium theory.

More idiomatic and direct than the Arrow and Debreu (1954) article, than Debreu’s Theory

of Value, and Arrow and Hahn’s General Competitive Analysis (1971). It helped guide the

exposition in portions of Starr’s General Equilibrium Theory: An Introduction (1997).

For editor Ying, it was such a fortune to engage in this project as an undergraduate. Un-

derstanding and transforming the General Equilibrium Theory content from Arrow was a

joyful experience. Hope this could help to build a more thorough understanding to Arrow’s

and Starr’s other works.

Editing of the Arrow lectures has focused on updating the mathematical notation from

mid 1960s typewriter usage to 2020s style. Notably many forward slashes, /, in the original

are replaced by vertical bars, |. There have been two other efforts: consistency with the orig-

inal and correction of typographical errors. For example, “(YP90” was restated as “Y(p)”.

Some incompletely consistent notation has been retained from the original. For example,

superior bar distinguishing equilibrium values, and then additional values of other variables

also distinguished by superior bar. Every effort has been made for accuracy and reader

accessibility. In some instances where mathematical consistency has not been clear, editors’

footnotes appear noting the issue. Remaining errors are nevertheless our responsibility.
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