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Abstract

Mitigating Renewable Variability through Control and Optimization Techniques

by

Anand Subramanian

Doctor of Philosophy in Engineering - Mechanical Engineering
and the Designated Emphasis

in
Computational Science and Engineering

University of California, Berkeley

Professor Kameshwar Poolla, Chair

Motivated by environmental and energy security concerns, many states and countries have
enacted legislation calling for increased renewable adoption in the electricity sector. Unlike
conventional fossil fuel-based electricity sources, renewable resources such as wind and solar
power are characterized by intermittent, uncertain, and non-dispatchable output. Success-
fully addressing this variability in renewable generation is a prerequisite for deep renewable
penetration. The prevailing paradigm in most power systems, exemplified by programs
such as the Participant Intermittent Renewable Program (PIRP) in California, is one where
the system operator accepts all renewable generation and absorbs the attendant variability
through operating reserves. This approach works today at modest renewable generation lev-
els but will result in untenable increases in reserve requirements tomorrow when renewables
serve a sizeable fraction of total electric load. Hence, meeting ambitious renewable penetra-
tion targets will require the implementation of a number of variability mitigation strategies
across the entire spectrum of power system operations. In this dissertation, we identify and
explore areas in which control and optimization techniques can help provide some of these
solutions.

One such mitigation strategy is the coordinated aggregation of deferrable loads and stor-
age, in which load is tailored to match variable supply. We investigate methods of exploiting
these demand-side capabilities by developing and evaluating algorithms for the real-time
scheduling of these flexible resources. We find that the benefits of coordinated aggregation
can be achieved at modest levels of both deferrable load participation and flexibility. We
also provide an analytical framework for understanding how these resources influence the
costs of meeting load requirements incurred in wholesale electricity markets. Specifically, we
explore the interplay between deferrable load scheduling and cost-minimizing procurements
of bulk power and reserve capacity made in the day-ahead forward market.
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Another solution we consider, specific to wind power, involves curtailing generator output
in certain situations. We explore how a wind power producer – subject to financial penalties
for imbalances from contracted amounts – might leverage power curtailment capability to
mitigate financial risk arising from price and production uncertainty. In particular, we
analytically quantify the economic benefit derived from curtailment as an explicit function
of expected prices, and compute empirical estimates of this curtailment benefit using price
data from the various power system operators.
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Chapter 1

Introduction

1.1 Climate Change

Man-made climate change, also known as global warming, is a real and serious threat to
mankind’s long-term survival. The explanation for this phenomenon is simple - greenhouse
gas emissions resulting from human activity raise the average temperatures of the world’s
oceans, surface, and atmosphere. These changes in global temperature have the potential to
disrupt all aspects of human life.

There is clear and conclusive evidence that the average temperature of the earth’s surface,
oceans, and atmosphere is rising. Figure 1.1a, which shows time-series data of the annual
temperature average, indicates a 0.7◦C increase in average global temperature over the past
century. Moreover, these increases in mean global temperature have been accompanied by
increases in temperature variance (Figure 1.1b). This increased temperature variation over
the past two decades is concerning, as it suggests increased frequency of extreme weather
events such as heat waves and droughts. In short, these are disconcerting temperature trends
- trends that will likely cause a host of problems such as disruption in supply of food [101]
and fresh water [76], coastal habitat inundation [74, 100], increased malnutrition, and other
negative health consequences [89, 75].

There is broad scientific consensus that these changes in global temperature are caused
by consistent increases in CO2 emissions [10, 98]. As Figure 1.2 illustrates, the past 50 years
have witnessed an increase in atmospheric CO2 concentration of 25% or 90 parts per million
(ppm). This is a staggering increase compared to the past 800,000 years of atmospheric
CO2 concentration variation in two aspects [82]. The pace of this increase is unparalleled
- comparable changes in atmospheric CO2 concentration have occurred over time-scales of
thousands of years. The magnitude of this increase (90 ppm) is also alarming - before this
recent increase, atmospheric CO2 concentration had stayed within a 110 ppm range (170-290
ppm) for 800,000 years.

This increase in greenhouse gas emissions is largely attributed to anthropogenic (man-
made) activity. Specifically, this increase was caused by the burning of fossil fuels, such as
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Figure 1.1: Figures outlining increases in both mean and variance of global temperature

http://data.giss.nasa.gov/gistemp/graphs_v3/
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Figure 1.2: Atmospheric CO2 concentration measured at Mauna Loa observatory over time.
The black line shows monthly averages while the red line shows the monthly average cor-
rection for seasonal CO2 variation. (Data from NOAA Earth System Research Laboratory:
http://www.esrl.noaa.gov/gmd/ccgg/trends/)

coal, oil, and natural gas, since the industrial revolution. Today, the majority of energy
needs are still met using fossil fuels. For instance, fossil fuel energy sources supplied 80% of
U.S energy consumption in 2012 [11]. As the electricity sector makes up 40 % of total U.S.
energy consumption (Figure 1.4), any attempt at tackling anthropogenic climate change will
require replacing fossil fuel-based sources of electricity with carbon-neutral alternatives.

1.2 Renewable Integration

Increased adoption of renewable resources in the electricity sector is a key component of an
overall strategy to curb greenhouse gas emissions. In order to incentivize the installation
of renewable generation capacity, many countries have set renewable energy targets. These
targets are legislative requirements on electricity grid operators to serve a specified propor-
tion of load solely with renewable energy. Examples of these targets for electric sectors
include Australia and Germany, which aim to have renewable energy penetrations of 20% by
2020 [45] and 50% by 2030 [56] respectively. These ambitious renewable energy targets are
typically coupled with other forms of support such as tax credits, feed-in tariffs, guaranteed
grid access, and other extra-market mechanisms. Such government subsidies to encourage
renewable penetration are necessary to help cover the significant capital outlays associated
with installing new generation capacity.

http://www.esrl.noaa.gov/gmd/ccgg/trends/
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The United States has no such national target but individual U.S. states have created
their own targets as part of legislative mandates called renewable portfolio standards (RPS).
For instance, California’s RPS calls for 33% renewable energy penetration by 2020 [32]. As
of 2012, the three largest investor-owned utilities in California collectively served only 19.8%
of electricity needs with renewables [32]. Clearly, the RPS calls for a significant increase from
current levels.

Figure 1.4 illustrates that the total proportion of electricity needs supplied by renewable
energy in the U.S. is around 12%. Additionally, the majority of this energy is derived from
hydroelectric power sources. Since 1880, these energy sources have long been an integral
component of the overall U.S. energy portfolio [49]. Hydroelectric power offers competitive
rates of return, particularly in developing countries such as China [59]. However, the con-
struction of new generating facilities is severely constrained by geographic considerations -
hydroelectric power stations must be built on sites where a large river flows over a sudden el-
evation decrease. Moreover, recent awareness of the environmental impacts on water supply
and river ecology has actually resulted in the decommissioning of numerous dams within the
U.S. [47, 125]. Therefore, while hydroelectric power may displace fossil fuels in developing
countries such as China and Brazil, it is unlikely to help meet renewable energy targets in
the U.S and Western Europe.

If not hydroelectric power, which type of renewable resource will enable governments to
meet their RPS targets? Geothermal power involves extracting heat from deep within the
earth’s crust to power conventional steam turbines. As these types of power plants must
be located at sites where energy can be procured with minimal drilling, the installation
of new geothermal energy capacity, like hydroelectric power, is constrained by geography.
Consequently, wind and solar energy are emerging as the main modalities with which the RPS
targets of the developed world will be met. These resources are plentiful and, crucially, do
not suffer from the type of geographical constraints that limit hydroelectric and geothermal
generation. Indeed, there has been significant growth over the past few years in wind and
solar energy production [34]. However, wind and solar power still only make up a tiny fraction
(< 2%) of the overall U.S. energy portfolio (Figure 1.4). Deep penetration of wind and solar
power can only be achieved by overcoming a number of technological and market hurdles
that limit their adoption.

Variability: There are three crucial ways in which wind and solar power are different from
energy produced by conventional sources such as coal or natural gas.

1. Intermittency: Sudden fluctuations in power output occurring at short time-scales.

2. Uncertainty: Inability to accurately predict or anticipate fluctuations in power output
in advance of the delivery interval.

3. Non-dispatchability: Inability to increase or decrease generation dispatch as re-
quired.
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(a) Typical daily power profiles of aggregate solar production from 30 solar photovoltaic (PV) installations across
California. Output normalized with respect to maximum generating capacity.
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Figure 2 í Daily wind power profile example. 
 
In this example, the difference between daily maximum power and daily minimum power is over 2,100 
MW. Starting at about 3,000 MW at midnight, it took about 13 hours for the wind power to decrease to 
around 1,100 MW. The wind power increased to about 3,300 MW four hours later. However, the long 
decline to daily minimum and the relatively short climb to daily maximum were not monotonic. There are 
smaller up and down movements with durations ranging from minutes to hours interspersed in between 
that create local peaks and valleys. This example points to the difficulty of objectively identifying wind 
power ramping events. Depending on the defining criteria of a ramp event, the starting and ending point 
and duration of a ramp can change substantially. 
 
For the electric system to operate reliably, generation must match load all the time. With wind power in 
the system, generation is usually managed to match the net load. In actual operations, the system must 
always maintain a generating capacity that is larger than the expected load to guard against the sudden 
loss of any generating unit. Different methods are used to balance the generation and load for different 
time frames. For longer time frames of days to weeks, operators will plan and commit different generating 
units to match the forecasted daily load profiles of weekdays and weekend. Daily load profiles can vary 
significantly between peak and minimum, and load profiles of weekdays and weekends can also differ 
substantially. Longer time is therefore needed to plan and manage the generating plants needed for load 
because certain generating plants need longer time from start-up to synchronizing with the load. During 
the day, operators routinely adjust schedules of generating units to follow the load based on system 
economics and updated information (e.g., weather conditions). Time frames for these operations range 
from hours to minutes. For still shorter time frames, the random fluctuations of load, which affect system 
frequency and interchange schedules, but are beyond the operators’ ability to manage, are met by 
automatic generation control (AGC) of the generating plants and each generating units’ governor 
response. Working together, AGC and governor response rapidly changes the output of generating units 
to match load in real time. 
 
It is clear that the variability of wind power affects the system operations. This analysis will concentrate 
on the large wind-power ramping events that could affect system operations in the sub-hourly and hourly 
time frames. The original 1-minute wind power time-series data are processed into 10-minute average 
power time-series data and hourly average power time-series data. The 10-minute and hourly time-series 
data are used to investigate wind power ramping events. 

(b) Daily power profile of aggregate wind gener-
ation across ERCOT footprint. (Figure Source:
[97])

Figure 1.4: Figures displaying wind and solar intermittency issues.

(a) Typical daily power profiles of aggregate solar
production from 30 solar photovoltaic (PV) in-
stallations across California. Output normalized
with respect to maximum generating capacity.

3 

Figure 2 í Daily wind power profile example. 
 
In this example, the difference between daily maximum power and daily minimum power is over 2,100 
MW. Starting at about 3,000 MW at midnight, it took about 13 hours for the wind power to decrease to 
around 1,100 MW. The wind power increased to about 3,300 MW four hours later. However, the long 
decline to daily minimum and the relatively short climb to daily maximum were not monotonic. There are 
smaller up and down movements with durations ranging from minutes to hours interspersed in between 
that create local peaks and valleys. This example points to the difficulty of objectively identifying wind 
power ramping events. Depending on the defining criteria of a ramp event, the starting and ending point 
and duration of a ramp can change substantially. 
 
For the electric system to operate reliably, generation must match load all the time. With wind power in 
the system, generation is usually managed to match the net load. In actual operations, the system must 
always maintain a generating capacity that is larger than the expected load to guard against the sudden 
loss of any generating unit. Different methods are used to balance the generation and load for different 
time frames. For longer time frames of days to weeks, operators will plan and commit different generating 
units to match the forecasted daily load profiles of weekdays and weekend. Daily load profiles can vary 
significantly between peak and minimum, and load profiles of weekdays and weekends can also differ 
substantially. Longer time is therefore needed to plan and manage the generating plants needed for load 
because certain generating plants need longer time from start-up to synchronizing with the load. During 
the day, operators routinely adjust schedules of generating units to follow the load based on system 
economics and updated information (e.g., weather conditions). Time frames for these operations range 
from hours to minutes. For still shorter time frames, the random fluctuations of load, which affect system 
frequency and interchange schedules, but are beyond the operators’ ability to manage, are met by 
automatic generation control (AGC) of the generating plants and each generating units’ governor 
response. Working together, AGC and governor response rapidly changes the output of generating units 
to match load in real time. 
 
It is clear that the variability of wind power affects the system operations. This analysis will concentrate 
on the large wind-power ramping events that could affect system operations in the sub-hourly and hourly 
time frames. The original 1-minute wind power time-series data are processed into 10-minute average 
power time-series data and hourly average power time-series data. The 10-minute and hourly time-series 
data are used to investigate wind power ramping events. 

(b) Power profile of aggregate wind generation
across ERCOT (Energy Reliability Council of
Texas) footprint for a day in 2011. (Figure
Source: [124])

Figure 1.3: Figures displaying solar and wind intermittency issues.

We will use the term variability as an umbrella term for these fundamental characteristics
of renewable generation.

Intermittency in both solar and wind power stems from variations in weather conditions.
Overcast conditions prevent solar installations from achieving their rated capacities. More-
over, as Figure 1.3a illustrates, solar power profiles exhibit significant fluctuations due to
passing cloud cover. In the case of wind power, atmospheric conditions that dictate power
output levels are subject to rapid, random changes. Of particular concern to system op-
erators are wind ramps - large, sudden changes in output occurring over short (sub-hour)
time-scales. This intermittent behavior is evident even in aggregate wind profiles over large
regions (Figure 1.3b). These wind ramps can create unanticipated power imbalances within
the grid, thereby compromising overall grid stability [124]. Accounting for these variations
requires forecasting these ramps over multi-hour or day-long prediction windows. This is a
difficult problem [31].

Grid operators, who are accustomed to dispatchable sources of generation, must modify
their operating practices to accommodate generation with intrinsically uncontrollable output.
We view variability as the greatest obstacle to the large-scale integration of wind and solar
generation required to meet renewable energy targets.

Levelized Cost: Currently, wind and solar generation are more expensive than their fossil-
fuel counterparts. The U.S Energy Information Agency estimates the levelized system cost
for onshore wind and solar photovoltaic (PV) power plants entering service to be $87 and $144
per MWhr, respectively, in 2008 [4]. The levelized system cost reflects all costs associated
with operating a generating facility, including capital and operating costs, additional trans-
mission infrastructure investment, and estimates of capacity factors. While these costs have
decreased significantly over the past few years (corresponding estimates two years ago were
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$97 and $211 per MWhr, respectively [3]), they still exceed similar figures for conventional
combined cycle natural gas ($67/MWhr) and conventional coal ($100/MWhr). Increased
adoption of wind and solar power is contingent on addressing these economic realities, espe-
cially in view of the recent glut of natural gas production within the U.S., which will continue
to depress natural gas operating costs [116]. Hence, large-scale renewable integration will re-
quire various forms of government subsidies in the short-term, and technological innovation
that reduces the cost of renewables in the long-term.

Distributed Generation: A significant proportion of new renewable capacity may be
in the form of small, distribution-level assets such as rooftop solar PVs and small-scale
wind power plants. These are examples of distributed energy resources (DERs), which are
discussed in detail in Section 1.3. These resources are referred to as distributed generation
(DG) and certain states have called for specific DG penetration targets. For instance, Arizona
has mandated that distributed renewable generation must serve 4.5% of total electricity load
by 2025 [12].

The installation of sizeable DG capacity poses operational challenges for medium- and
low-voltage distribution networks. Distribution networks are traditionally operated as radial
networks linking the substation, the point of connection with the high-voltage transmission
network, to individual residential, commercial, and industrial loads. Utilities, which oper-
ate and maintain distribution networks, work under the assumption of unidirectional power
transfer within this network from the source node to the leaves. However, with the adop-
tion of DG at different points within this radial network, this assumption is no longer valid.
Therefore, increased adoption of distributed renewables requires changes in the operating
protocols for distribution networks [84]. Additionally, grid operators, who are typically ac-
customed to dealing with large-scale generation facilities, must be cognizant of distributed
generation capabilities when operating the bulk transmission network.

The three challenges outlined here are, in our estimation, the main obstacles to renewable
integration. In this work, we will not address the cost concerns associated with wind and
solar power. Instead, we choose to focus on ways to mitigate the variability in renewable
output while simultaneously respecting the distributed nature of such generation resources.

1.3 DER Proliferation

The emergence of distributed generation is part of a broader deployment of distributed energy
resources (DERs). DERs refer to small energy devices that are placed within the distribution,
rather than bulk transmission, network. Apart from renewables, this also includes flexible
loads such as plug-in electric vehicles and thermostatically controlled loads, microgeneration
in the form of small-scale natural gas and diesel generators, small-scale storage devices, and
advanced power electronics. As with renewable generation, the interest in DERs is spurred
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by consistent government policies identifying DER adoption and integration as a key policy
goal [8].

The widespread deployment of DERs offers opportunities for greenhouse gas mitigation.
This is evident with the increased adoption of plug-in electric vehicles (EVs). By displac-
ing petroleum, these vehicles can greatly reduce greenhouse gas emissions. This impact is
heightened if EV energy needs are met with carbon-free renewables.

DERs also offer substantial benefits to power system operations. While these resources
are small, they offer, in aggregate, a range of capabilities for power system operation including
but not limited to relieving transmission and distribution network congestion, improving
system reliability, and reducing the need for additional generation to meet increasing load
requirements [48, 1]. Because of their small size, DERs are often quicker and easier to deploy
than traditional utility-scale resources, making them the method of choice to address various
grid needs.

In terms of aiding renewable penetration, flexible loads and storage can absorb some
of the variability associated with renewable generation by adjusting their power delivery
profiles. Consider the case of increased EV penetration. As typical power demand for
an individual EV ranges from 2-17 kW [81], charging high numbers of EVs would require
capacity upgrades in distribution networks. However, mechanisms and schemes to schedule
or incentivize charging at particular times can obviate the need for costly retrofits. In fact,
coordinating EV charging with renewable generation availability can help address the key
issue of variability in renewable generation. Clearly, exploiting the operational flexibility
offered by DERs requires their efficient integration into power system operations.

The electric grid is currently configured to transmit power produced by utility-scale
generation resources to static, inflexible loads. Current operating protocols – from coordi-
nated generation dispatch to maintaining system reliability – have been designed with this
paradigm in mind. Specifically, the distribution network is managed purely as a conduit
for power from the bulk transmission network to individual loads. Effective DER integra-
tion demands more nuanced distribution network management than this traditional model
can offer. Managing DERs to achieve desirable power system objectives will require differ-
ent communication, monitoring, and control infrastructures than existing ones. However,
truly realizing the potential of DERs requires fundamental changes in distribution network
operating principles.

1.4 The Scourge of Variability

As mentioned earlier, wind and solar generation exhibit significant variability in their out-
put. Currently, renewable power producers (RPPs) currently benefit from many forms of
government support aimed at increasing the share of electricity generation. California’s Par-
ticipating Intermittent Resource Program (PIRP) is an example of legislation offering such
subsidies [67]. A central component of PIRP, and many similar policies, is priority dispatch.
Priority dispatch creates an operating paradigm in which the grid operator is obliged to
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accept all renewable power production subject to certain contractual constraints. Conse-
quently, RPPs do not have to participate in traditional electricity markets in which they
would have to directly compete with other generation sources for grid access. In most cases,
RPPs are also exempt from typical penalties for generation imbalances that grid operators
typically levy on conventional power producers. Under PIRP for instance, RPPs only pay
penalties for the net monthly deviations from hourly generation forecasts [87].

Such extra-market support is problematic as grid operators must continuously balance
load and generation. Typically, power imbalances resulting from variability in loads or gen-
eration are counterbalanced with reserve generation purchased in dedicated ancillary service
(AS) markets [55]. The costs associated with reserve procurement are allocated among the
load-serving entities (i.e. utilities) based on their relative share of energy demands. The
load-serving entities, then pass these costs on to consumers as a component of retail electric-
ity rates. In the past, fluctuations and uncertainty in loads represented the primary source
of variability in power system operations. Generation was dispatchable and, with the excep-
tion of rare contingency events such as outages, exhibited minimal uncertainty. Hence, the
practice of socializing reserve costs among consumers made for fair policy.

However, this method of reserve cost allocation is no longer justified when a significant
proportion of the load requirements is met with intermittent renewables. Recall that the
grid operator must accept all renewable generation, effectively treating it as a negative load.
Maintaining power balance in the face of the persistent variability in generation requires sub-
stantial increases in reserve requirements. For instance, recent studies in California project
that, in order to meet the state’s target of 33% renewable penetration, the maximum load-
following down reserve requirement, used when generation exceeds load, will increase from
3,247 MW to 5,579 MW for the fall season [68]. These studies also forecast similar increases
for various other reserve metrics [30, 68]. As the majority of reserve generation is typically
provided by fast-ramping natural gas turbines, greenhouse gas emissions resulting from pro-
viding these additional reserves defeat the environmental benefit of renewables. Moreover,
the practice of socializing these additional reserve costs among consumers – effectively an
implicit subsidy for renewable generation – is untenable. Indeed, there have been signif-
icant policy discussions about the appropriate allocation of these costs at high renewable
penetrations [121, 120].

As the current modus operandi is unsustainable, what changes to grid operations are
necessary to successfully mitigate renewable variability? In the near-term, one solution
is to discontinue the preferential, extra-market treatment of RPPs, instead forcing such
generators to participate in typical wholesale electricity markets. This is already occurring
in various countries. In the United Kingdom, large wind power producers (WPPs) must
now participate in conventional two-settlement electricity markets. In particular, they must
provide bids in the form of supply functions in forward markets, and they are subject to ex-
post financial penalties for deviations from contracted positions agreed upon ex-ante [2]. In
the United States, PJM, the operator of the majority of the Eastern grid, and the New York
ISO (NYISO) have instituted similar deviation penalties [55]. Additionally, the Midwest ISO
(MISO) modified its market rules in 2011, allowing WPPs to offer power in real-time markets
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and respond voluntarily to ISO dispatch signals [109].
Faced with imbalance penalties, WPPs will have to devise strategies for market partic-

ipation to manage the quantity risk emanating from their power output. In this setting,
the ability to curtail generation, a property of many recently built wind turbines, offers
a promising method of avoiding certain financial penalties. Cost-minimizing strategies for
WPPs bidding into electricity markets must take into account the benefits offered by cur-
tailment capability.

In the long-term, renewable participation in electricity markets has implications for the
markets themselves. The current market structure, like many power system operations, was
designed with large dispatchable generation in mind. This typically consists of one forward
market, typically cleared a day ahead of the delivery window, and an additional market
for imbalance settlement cleared closer to the delivery window. As forecast uncertainty
in renewable generation grows with the prediction horizon, the introduction of additional
intra-day markets could help leverage better forecasts over shorter horizons.

These strategies will help address variability concerns for large WPPs that directly par-
ticipate in electricity markets. However, different mechanisms are required to combat the
variability introduced by smaller, distributed renewables. Integrating these small-scale re-
sources can be achieved by leveraging the capabilities present in DERs [33]. We envision
a system in which the variability in such generation is handled through intelligent control
of local assets such as flexible loads and storage. This vision requires the development of
algorithms for distribution network operation that tailor load to match variable generation.
Moreover, implementing such schemes at the distribution network level will localize the ef-
fects of variability, thereby demanding less of the bulk transmission network. Eliciting load
participation to help mitigate renewable variability will require new models for adequately
compensating DERs for their services. Quantifying the impact of coordinated load aggrega-
tion on reserve requirements is a key step in developing any such pricing or other incentive
schemes.

1.5 Dissertation Organization

Effective mitigation of renewable variability calls for a number of solutions across the en-
tire spectrum of power system operation. In this dissertation, we identify three particular
areas where techniques from control and operation can play a role in enabling large-scale
renewable integration. First, we develop and benchmark real-time scheduling algorithms
(inspired by receding horizon control and processor scheduling) for exploiting the flexibility
offered by load and storage to manage variability in distributed renewables. Second, we use
optimization techniques to quantify the impact of load deferrability on ex-ante power and
capacity procurements. Third, we formulate and solve a profit maximization problem to un-
derstand how a wind power producer with curtailment capability might optimally participate
in electricity markets.
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In Chapter 2, we offer a brief description of aspects of power system operation pertinent to
this dissertation. Specifically, we introduce the reader to the structure of wholesale electricity
markets employed by many grid operators. We also detail the various types of reserves
(procured on different time-scales) that ensure reliable grid operation.

In Chapter 3, we develop and analyze algorithms for the real-time scheduling of a re-
source cluster - a diverse collection of distributed energy resources. We focus on the impact
coordinated aggregation of such DERs can have on reducing operating reserve costs. We first
show that an optimal causal scheduling policy does not exist. As a result, we focus on var-
ious causal but necessarily sub-optimal scheduling heuristics. We develop four such causal
algorithms drawing on ideas from the processor time allocation literature. We then develop a
receding horizon control-based scheduling strategy explicitly configured to minimize reserve
costs. We evaluate algorithm performance both in the metrics of reserve energy and capacity
via simulation. We find that the majority of the operational benefits of DER scheduling can
be realized at low levels of deferrable load participation and flexibility.

In Chapter 4, we study the impact of load deferrability on forward market operations.
We find cost-minimizing ex-ante procurement policies in the cases of loads with and without
deferrability. In order to obtain analytical characterizations of these policies, we assume the
net load is normally distributed. First, we focus on the scenario where loads are inflexible.
We find that, assuming no reserve capacity procurement, the optimal bulk power purchase
is a quantile on procurement prices. Assuming a single, symmetric capacity for both up
and down reserves, we can express this optimal ex-ante procurement policy on a partition of
forward market and operating reserve prices. We then investigate the case with deferrable
loads. Using an aggregate model for load deferrability, we derive a threshold policy for
real-time reserve scheduling through dynamic programming. We follow with heuristics for
load scheduling expressly aimed at minimizing reserve capacity requirements. Crucially, we
offer a mathematical framework to link the effect of load scheduling decisions made within
the delivery window, to forward market decisions made ex-ante. Finally, we quantify the
reductions in ex-ante procurements offered by deferrability via simulation studies.

In Chapter 5, we quantify the operational benefits afforded to a wind power producer
(WPP) by curtailment capability. We work within a stylized two-settlement electricity mar-
ket framework in which the WPP is subject to imbalance penalties for deviations from a
contracted position agreed upon in a day-ahead market. In this context, curtailment is a
voluntary action of a profit-maximizing WPP. Working within this framework, we find opti-
mal curtailment and contract offer policies. Specifically, we analytically express the optimal
contract offer on a partition of expected imbalance prices. We then explicitly quantify the
financial benefit of curtailment capability, and show that curtailment always increases the
expected profit. We conclude with empirical calculations, using wind and time series price
data, of this curtailment benefit at various locations within the NYISO and MISO footprints.
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Figure 1.4: Sankey diagram showing breakdown of U.S. energy consumption by both energy
source and demand sector. 1 quad is the equivalent of 2.93 × 1010 kWh or 1.055 × 1018 J.
(Image Source: Lawrence Livermore National Laboratory, 2012)
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Chapter 2

Background: Power Systems
Operations

2.1 Electricity Markets

2.1.1 Introduction

The creation of wholesale electricity markets was a direct consequence of the deregulation
of the power industry in the 1990s. Prior to this, the electricity industry was made up of
highly regulated, vertically-integrated utilities that generated, transmitted, and distributed
electricity to ratepayers. This regulated monopoly structure was replaced by one in which
independent entities supply and consume electricity, the rationale being that the competition
fostered in a deregulated environment reduces ratepayer prices [22]. Hence, wholesale elec-
tricity markets were created to facilitate the sale of electricity between interested suppliers
and consumers.

Every market must be designed with reference to defining characteristics of the exchanged
commodity. This is particularly true for electricity. Electrons are instantaneously delivered
from power supplier to consumer with flow over a network governed by certain physical laws
(Kirchoff’s Voltage Law, AC Power Balance). There are also no cost-effective solutions for
utility-scale energy storage. As consumers expect uninterrupted power on demand, electric-
ity markets must be designed to help maintain near instantaneous power balance between
electricity supply and demand.

The majority of electricity markets are mediated by a grid operator, also known as an
independent system operator (ISO), charged with ensuring reliable power system operation
over a geographic territory called a control area. These responsibilities include secure opera-
tion of the transmission network and instantaneous load balance at all times. To ensure that
electricity transactions are made with these network and delivery constraints in mind, the
ISO operates energy markets either in the form of power exchanges or bilateral markets. To
ensure grid reliability requirements are met, the ISO also operates a set of ancillary service
(AS) markets to procure various forms of reserve capacity.
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While specific energy market rules and regulations vary across control areas, most consist
of a series of forward markets enacted at different times leading upto the delivery window,
and a market immediately preceding the delivery window for clearing energy imbalances [27,
28, 37]. Specifically, almost all ISOs operate a day-ahead (DA) market for scheduling electric-
ity production and consumption over hour-long intervals, and a real-time (RT) market for
reconciling imbalances between the procured DA schedules and actual loads while satisfying
all applicable reliability criteria.

2.1.2 Day-Ahead (DA) Market

If an ISO operates the DA market as a centralized power exchange, it typically takes the
form of a uniform price auction. We first outline the basic operating principles used in this
type of market. We follow with some of the other main aspects of DA market operation.

Market Clearing: The market begins with the ISO soliciting individual offers to produce
electricity from suppliers (generators), and bids to buy from consumers (load-serving entities)
for each hour of the delivery date. These offers and bids are in the form of price-quantity
functions relating the market clearing price to the quantity a supplier is willing to sell or
consumer is willing to buy. The ISO receives offers and bids until a specified deadline in
the late morning or early afternoon on the day before the intended power delivery. After
this deadline, the ISO constructs aggregate supply and demand curves and clears the market
at the intersection of these curves. Suppliers that offer to sell at prices below the clearing
price are selected (unit commitment) and are given financially binding production schedules
(economic dispatch). Consumers who have indicated, through their bids, a willingness to
pay more than the clearing price, also receive binding schedules for electricity consumption.
Under assumptions of limited market participant power, clearing the market in this manner
results in prices and quantities with a number of desirable economic properties [19].

However, there is no guarantee that power flows resulting from the most economically
optimal dispatch of generation and loads will satisfy line constraints. Hence, transmission
network and reliability considerations demand departures from the previously outlined oper-
ating procedure. To enforce these constraints, the ISO uses a full network model to compute
power flows and consequently evaluate bids and offers. A number of considerations go into
determining the most economical bids and offers. First, the ISO removes from consideration
offers that wield unfair market power as a result of their relative position in the network.
The ISO then solves a series of constrained non-linear optimization problems to find the
most economical allotment of bids and offers that satisfy network constraints and reliabil-
ity constraints associated with pre-specified contingencies such as generator of line outages.
This process is known as security constrained economic dispatch (SCED). The computed
power schedules are then relayed to suppliers and consumers, who are now aware of their
hourly generation and consumption commitments on the delivery date.
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Bilateral Contracts: This market structure also accommodates suppliers and consumers
who would rather engage directly with one another. In particular, market participants can
engage in bilateral contracts where they independently negotiate a transaction quantity and
price for power delivery between two bus locations within the network. As transmission
capacity is constrained, the transacting parties must inform the ISO of the physical aspects
of these contracts (transaction quantity, bus locations, etc.). The ISO can then factor these
transactions into the SCED process and approve contracts that satisfy network, reliability,
and security constraints. This mechanism can be used to create long-term power contracts
agreed to months or even years ahead of the delivery date [66]. Bilateral contracting offers
both suppliers and consumers flexibility in setting prices and volumes and the ability to
manage exposure to uncertain prices. A bilateral market is one that attempts to match
all load and generation solely with these types of contracts. Further details on bilateral
contracts and markets can be found in [66].

Nodal Pricing: ISOs use nodal (or in some cases zonal) pricing to generate efficient prices
that accurately reflect transmission constraints. Under nodal pricing, the ISO computes a
distinct price, called the locational marginal price (LMP), at each bus within the network.
Specifically, the LMP at a bus is the incremental system cost of meeting an additional MW
of demand at that bus. The system cost is comprised of both the marginal energy costs of
generation as well as transmission congestion charges. These LMPs can be interpreted as
the Lagrange multipliers associated with nodal power constraints in the economic dispatch
optimization. In practice, the ISO finds LMPs as a by-product of solving optimization
problems as part of SCED. Market participants are subject to LMPs at their respective
nodes in both DA and RT markets.

As power constraints directly affect LMPs, variations in network power flow patterns can
cause significant price volatility. For instance, a small change in power flows that result in a
previously uncongested line reaching its rated limit can trigger large perturbations in prices.
Moreover, prices at disparate nodes in the network are linked with one another making
price forecasting a difficult proposition [20]. To hedge against the financial risks created by
LMPs, market participants typically procure instruments called financial transmission rights
(FTR). By purchasing a FTR, the market participant effectively insures against rapid rises
in congestion costs. There are auctions dedicated to the sale and purchase of FTRs [7].

Capacity Products: In addition to quantifying demand through consumer bids, the ISO
also employs forecasts of total demand in DA operations. Based on these load forecasts, ISOs
procure additional generation capacity to meet any remaining demand unaccounted for in
consumer bid-based market clearing. This process has different names that vary across
control areas – for instance, it is called residual unit commitment in the CAISO markets
[29]. Under CAISO rules, generators that commit to providing capacity as part of residual
unit commitment must participate in the subsequent real-time (RT) market.
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The demand forecast is also used to determine the capacity requirements for reserves
over varying time-scales. This is done in ancillary service (AS) markets where ISOs procure
capacities of different reserve products such as load-following, regulation, and contingency
reserves. Section 2.2 contains detailed descriptions of these reserve products. In AS markets
reserve capacities are sold as call options – suppliers receive an ex-ante payment for making
generation available for dispatch. These generators receive an additional payment if reserves
are dispatched during the delivery window. The rules outlining reserve capacity require-
ments, which are set by federal and regional regulatory authorities, are often expressed as
percentages of load forecasts [95].

2.1.3 Real-Time (RT) Market

As the delivery window approaches, the ISO may operate additional forward markets (e.g.
an hour-ahead market) to take advantage of more reliable load and generation forecasts.
Regardless of the number of forward markets, the ISO will operate a real-time (RT), or spot
market to reconcile differences between electricity generation and consumption schedules
agreed to ex-ante and actual system conditions. At this stage, the ISO also determines the
reserve dispatch necessary to maintain instantaneous load balance. Typically, the RT market
is cleared separately for each 5 minute delivery window.

Market participants use the RT market to modify their ex-ante contracted positions to
account for output deviations caused by demand uncertainty, and unplanned generation or
transmission outages. Similar to the DA market, the ISO generates nodal prices that re-
flect both generation and congestion costs. The market participants settle output deviations
with respect to DA schedules at these RT market prices. Prices in RT markets are typi-
cally more volatile than those seen in DA markets [37]. This is a direct consequence of the
smaller volumes transacted in RT markets as compared to DA markets. With these limited
volumes, there is an increased chance of an imbalance between supply and demand caus-
ing dramatic LMP price spikes and troughs. As mentioned earlier, market participants can
insulate themselves from sudden price variations using FTRs.

2.2 Reserves

Many key components of power system operation, such as load requirements, generator out-
put, and transmission network, are subject to rapid and unpredictable changes. In the face
of such variability, wholesale energy markets alone are not sufficient to maintain reliable
system operation. System operators, who are ultimately responsible for maintaining reli-
ability, must procure additional capacity that can assist in balancing load and generation
when requested. Reserves, or ancillary services, refer to these additional generation and
demand-side resources procured to counteract power imbalances on various time-scales. In
this section, we only discuss reserves required to counteract real power imbalances and do
not discuss other ancillary services, such as reactive power supply for voltage support.
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Reserve requirements are set by federal and regional regulatory bodies such the North
American Electric Reliability Corporation (NERC) and the Western Electricity Coordination
Council (WECC). These reliability criteria outline distinct procurement targets for various
types of reserves. In determining these targets, reserves are classified in many ways. Indeed,
the definitions used to distinguish between different reserve products vary across control
areas. To differentiate between the various forms of reserve, we will focus on three properties
of the power imbalance underlying the need for reserves.

1. Imbalance direction: Do power imbalances correspond to system over- or under-
generation conditions?

2. Time-scale: What response speed and duration can reserves exhibit to adequately
counteract imbalances?

3. Imbalance cause: What is the primary cause of the power imbalance? Specifically,
are they caused by events that occur periodically in the course of normal operation, or
are they the result of a rare contingency?

2.2.1 Imbalance Direction

Based on the imbalance direction, all reserves can be classified into one of two categories:
up and down reserves. Up reserves refer to additional generation used to meet load re-
quirements when scheduled generation alone is insufficient. In addition to generators that
can increase output on demand, loads that can momentarily reduce consumption can also
provide up reserves. In contrast, down reserves refer to those procured in situations where
scheduled generation exceeds load. This service can be provided either by generators able
to curtail output, or loads that can increase consumption. Historically, there has always
been a greater need for up reserves as outages or disconnections of generators represented
the primary source of large-scale power imbalances [51]. Sudden disconnection of large loads
occur far less often. However, increased adoption of renewables promises to alter the relative
importance of up and down reserves.

2.2.2 Time-Scale

Reliability requirements typically characterize different types of reserves based on their re-
sponse speed and duration. Figure 2.1 shows the various types of reserves deployed to meet
real power imbalances at different time-scales. Clearly, effective load balancing requires re-
serve scheduling on a variety of time frames. This ranges from addressing random load
variations on the order of seconds, to counteracting more protracted under-generation situ-
ations caused by transmission or generator outages. Moreover, temporal characteristics of a
given power imbalance limit the choice of resource that can provide relief via reserves. For
instance, a natural gas-fired peaking plant, with fast ramping capabilities, is better suited
to providing quick responses to load fluctuations than a coal-fired power plant.
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Frequency Responsive Reserves: This refers to fast reserve capability which responds
to imbalances on time-scales of a few seconds. In typical power systems, synchronous gen-
erators are the primary source of this type of reserve. As the name ‘frequency response’
suggests, these generators use local measurements of system frequency to address real power
imbalances. This type of reserve is also known as governor control or primary reserves.

The relationship between frequency and real power is best illustrated with an exam-
ple. Consider a synchronous generator in an under-generation (i.e. load exceeds generation)
scenario. Serving the additional load reduces the kinetic energy present in the generator’s
rotating machinery. This causes rotor speed or frequency to fall below nominal levels. Con-
versely, an over-generation scenario causes frequency to exceed the nominal system frequency.
Generators providing frequency response reserves sense these deviations and correct them by
adjusting their actuator setpoints (i.e. opening steam valves to increase generator output).
To relate deviation measurements to actuator inputs, generators typically use a proportional
controller with a small (0.010-0.040Hz) deadband around the nominal system frequency [123].
This deadband prevents unnecessary control actions in response to very small frequency de-
viations – control actions that would otherwise reduce the operating life of the generator.
Due to these deadbands, frequency response is often used only to counteract sudden, large
contingency events rather than normally occurring variations. However, this is not true in
certain isolated power networks like those in large islands (e.g.: UK and Ireland), where this
type of reserve is used to balance small, chronic load fluctuations [51].

Automatic Generation Control (AGC): This refers to a fast form of reserve capability
which counteracts imbalances on the order of seconds to 5 minutes. In large interconnected
systems, these reserves are provided by generators that automatically receive output set-
points every few seconds from an operator balancing load requirements within that unit’s
control area. These dispatch instructions are based on a metric known as the Area Con-
trol Error (ACE) which reflects both the overall control area power imbalance as well as
deviations in system frequency from nominal levels. This centralized response results in
a coordinated response that effectively maintains grid reliability. The automated nature
of reserve dispatch distinguishes these reserves from frequency response reserves, in which
generators respond to imbalances autonomously. Clearly, resources providing regulation
capability must be outfitted with appropriate communication channels to receive dispatch
signals.

Spinning Reserves: This refers to reserves that are synchronized to grid frequency (i.e.
on-line) and capable of increasing its output within 10 minutes of a dispatch instruction
[37]. Generators providing spinning reserves operate below their rated limits and are thus
capable of increasing their output upon request. While regulation and frequency response
reserves are also provided by synchronous generators and therefore are technically ‘spinning
reserves’, the term spinning reserves usually refers to other synchronous generators that can
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respond on time-scales of a few minutes. Due to the absence of start-up constraints, various
energy resource modalities can provide spinning reserves.

Spinning reserves are necessary to continuously meet loads in the event of sudden outages
of load fluctuations on the order of minutes. Moreover, these reserves assume additional
importance in the context of renewable variability where sudden ramps in power output
threaten to create lasting power imbalances. In this context, having generators ready to
modify their output on command without any start-up delays is a foolproof way to ensure
reliable grid operation. Indeed, reliability criteria in many regions make specific mention of
spinning reserves. Examples include the WECC, which calls for spinning reserve to account
for at least 50% of the total operating reserve requirement [95], and the mid-Atlantic region
of PJM, where spinning reserves capacity must equal 75% to 100% of the largest on-line
generator’s output [85]. Spinning reserve can also be provided by responsive loads willing to
curtail or increase load and providing metering information to audit their actions.

Non-Spinning Reserves: This refers to reserves that are initially off-line but able and
available to come on-line and generate its rated capacity within 10 minutes of a dispatch
instruction [37]. Moreover, these units must be able to maintain that desired output for at
least two hours. Unlike spinning reserves, which can be provided by a variety of energy
resources, non-spinning reserves can only be offered by generators which can ramp up from
off-line to full production mode within a few minutes. As a result, hydro-electric, natural
gas, and diesel power plants are the main types of generators capable of providing non-
spinning reserve capability [105]. Demand response from responsive loads can also provide
these reserves.

As they operate on similar time-scales to spinning reserves, both non-spinning and spin-
ning reserves can respond to similar situations. Indeed, they are sometimes jointly referred
to as secondary reserves. However, due to the start-up costs associated with bringing non-
spinning reserves online, system operators prefer to exhaust all avenues of correcting imbal-
ances using spinning reserves first. As a result, non-spinning reserves are intended for use
primarily when there is a sustained power imbalance [51].

Supplemental Reserves: This refers to reserves that need to provide generation within 30
minutes of receiving a dispatch command. In that time, generators providing supplemental
reserves must be synchronized with system frequency and be able to provide an agreed upon
amount of generation. Supplemental reserves relieve non-spinning and spinning reserves of
their duties thereby enabling those reserve generators to return to their original positions.
This ensures reserve response capability for a subsequent reliability event. These reserves
are also referred to as tertiary reserves.
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Figure 2.1: Figure showing relative time-frames on which different types of reserve are de-
ployed. (Version of Figure 3 in [51])

2.2.3 Imbalance Cause

We classify power imbalances into two broad categories, with each reflecting its underlying
cause: customary and abnormal imbalances. Customary imbalances are those that occur
frequently and continuously in the course of normal power system operation. This includes
load deviations from forecasted values used in forward markets, which require response on
the order of minutes to hours, to small fluctuations on the order of seconds caused by load
variability. Such power imbalances are common, and system operators typically address
them on most days. Abnormal imbalances correspond to severe events that occur rarely
under normal operating conditions. Examples of severe events include single or multiple-
phase transmission line faults and generator outages. Unlike customary imbalances, system
operators seldom observe these phenomena. These delineations, detailed extensively in [51],
help elucidate key reserve concepts in the context of renewable integration.

Customary Imbalances

Reserve characteristics differ depending on the time-scale on which customary imbalances
occur. There are two classes of reserves that address customary imbalances: regulation
and load-following reserves. Regulation reserves tackle near-instantaneous load balancing
needs while load-following reserves address the needs of more slowly developing customary
imbalances.
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Regulation Reserves: These reserves primarily address small variations in load and gen-
eration occurring on time-scales under 5 minutes – phenomena which occur too quickly for
market-based recourse. Due to the need for rapid response, regulation reserves are provided
by generators providing AGC and frequency responsive reserves [37]. For most large systems
consisting of interconnected control areas, system operators prefer AGC-based regulation
reserves over autonomous governor control because AGC offers better control of power flows
between control areas. Moreover, frequency deviations resulting from minor imbalances in
such large systems are too small for effective employment of frequency responsive reserves.
As these are not major considerations for smaller, isolated power systems, regulation reserves
in those systems are often provided by frequency responsive generation. Notice that reserves
on other time-scales, like non-spinning and supplemental reserves, are not quick enough to
deal with these rapid imbalances.

Regulation reserves are used to address the variable nature of renewables. This is partic-
ularly true for distributed solar PVs, which can exhibit intermittent output when affected
by random weather fluctuations occurring on rapid time-scales such as passing cloud cover.
Errors in short-term (under 5 minutes) forecasts of renewable generation also create a need
for regulation reserves. These forecasts are used when dispatching generation in the RT
market. Hence, forecast errors can cause inaccurate generation setpoints resulting in power
imbalances.

Load-Following Reserves: These reserves help balance load and generation on longer
time-scales than regulation reserve. Typically, these imbalances represent deviations from
conditions used to dispatch resources in the forward market, and are larger than those
addressed via regulation reserves. If the system operator expects such imbalances, it dis-
patches load-following reserves directly or as part of the RT market clearing process [51].
Load-following reserves are typically provided by a combination of spinning and non-spinning
reserves. For protracted imbalances, supplemental reserves may also be called to perform
load-following.

Renewable variability significantly increases the need for load-following reserves. These
reserves are the primary mechanism to deal with intra-hour fluctuations in renewable output
that can only be forecast after forward market clearing. As these fluctuations are sizeable,
this greatly increases the amount of load-following reserve necessary to maintain reliability.
Moreover, uncertainty in the hourly wind and solar forecasts used in forward markets also
result in imbalances that must ultimately be addressed with this type of reserve. In addition
to increased reserve capacity requirements, resources providing reserve capacity will have to
modify their operating setpoints more frequently to battle the consistent intermittency in
renewable output. This places additional strain on the resources providing load-following
reserves.
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Abnormal Imbalances

As with customary imbalances, reserves required to counteract abnormal imbalances can
be classified into two groups based on their response speed. Contingency reserves address
sudden, instantaneous abnormal imbalances while ramping reserves deal with abnormal im-
balances occurring on slower time-frames.

Contingency Reserves: These reserves respond to instantaneous, critical system events
that can compromise overall grid reliability. Canonical examples of these abnormal events
are sudden losses of large amounts of generation due to line or generator outages. Such
events require a concerted response from many reserves on various time-scales. Initially, the
resulting power imbalance triggers frequency responsive reserves. This is typically followed
by the deployment of spinning and non-spinning reserves to make up for the generation
shortfall. Finally, the system operator may call on supplemental reserves to replace the
other forms of reserve. Particulars of the response time required for each of these steps vary
between control areas [51].

Renewable variability only has a limited impact on contingency reserves [55]. Certainly,
momentary disconnection of large-scale solar thermal or wind facilities would classify as a
contingency in the same way it does for any other form of generation. Recently, there has
been also some discussion of using contingency reserves in response to wind ramps [51].

Ramping Reserves: These reserves respond to rare, large-scale changes in power balance
that are not instantaneous. For instance, ramps (sudden, sizeable changes in load or re-
newable output) occur on the order of a few minutes to hours and can, in certain cases, be
forecast in advance. Resources responding to such events must be able to respond quickly
to events.

The concept of ramping reserves is relatively new. Indeed, most system operators, with
the exception of those in California (CAISO) and the Midwest (MISO), have not broached the
subject of specific ramping reserves [55]. They instead use load-following reserves to attend to
such behavior. Creating a dedicated ramping reserve product will explicitly reward resources
for their ability to change output quickly. These reserves assume added importance in the
context of renewable variability. Indeed, MISO envisions ramping reserves as an ancillary
service targeted at addressing the reliability concerns posed by wind ramps [55].
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Chapter 3

Real-time Scheduling of DERs

3.1 Motivation

Increasingly, renewable energy sources deployed at the distribution level such as rooftop
solar photovoltaics (PVs) or small-scale wind farms make up a sizeable fraction of newly
installed renewable generation capacity [53, 78]. This represents a paradigm shift for grid
operators generally accustomed to dealing with large, conventional sources of generation
enjoying direct power connections to the bulk transmission network.

Grid operations must address the inherent variability associated with such distributed
generation. As discussed in Section 1.3, distribution level assets offer the potential of ab-
sorbing some of this variability. Fully realizing the operational benefits afforded by these
resources requires coordinated aggregation of their capabilities. Coordinated aggregation
refers to the intelligent control of resources such as deferrable loads and available storage to
match variable generation. By directly accounting for and managing generation variability,
it promises to effectively mitigate the increased reserve costs of deep renewable penetration.

Coordinated aggregation schemes broadly fall into two classes:

1. Indirect load control (ILC): DERs respond, in real-time, to price or appropriate
proxy signals that induce desired resource behavior. In this scenario, the price signals
would indicate generation conditions.

2. Direct load control (DLC): DERs cede physical control of devices to operators who
determine and execute appropriate actions based on knowledge of operational system
conditions.

In both cases, the central problem is management of a resource cluster. This is a di-
verse collection of networked resources at the distribution level including renewable and
micro-generation, deferrable and non-deferrable loads, and electricity storage. In DLC, each
resource cluster is managed by a dedicated Cluster Manager (CM) which coordinates oper-
ation of the various distribution level assets. Under this paradigm, the CM:
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1. participates in ex-ante markets to procure generation to meet the cluster’s load re-
quirements,

2. performs real-time resource scheduling and reserve procurement, and

3. aggregates the cluster’s capabilities and presents them to the system operator (SO) as
a dispatchable resource.

This hierarchical architecture of CM-based coordinated aggregation is necessary as central-
ized, system-wide aggregation of DERs involves prohibitive computational costs [60], and
falls outside the scope of existing SO business models. We focus on the CM’s real-time
scheduling function and analyze its impact on operating reserves. In this context, operating
reserves refers to load-following reserves, procured in real-time energy markets, and regu-
lation reserves on time scales of a few minutes. In particular, this does not include any
contingency reserves dispatched in response to rare and severe events.

Our contributions are as follows. We develop four resource scheduling algorithms in-
spired by well-known scheduling heuristics in the context of processor time allocation –
earliest deadline first (EDF), least laxity first (LLF), deadline prioritized adjusted schedul-
ing (DPAS), and laxity prioritized adjusted scheduling (LPAS). We also formulate a receding
horizon control (RHC) scheduling algorithm that explicitly accounts for operating reserve
costs. We then present simulation studies to assess the performance of these resource schedul-
ing policies in the metrics of reserve energy and capacity costs. Through these simulations,
we also quantify the marginal benefits of deferrable load penetration and of load scheduling
flexibility. We conclude that resource scheduling under any algorithm offers compelling re-
serve energy cost reductions while only RHC-based scheduling consistently offers significant
reserve capacity cost reductions. We conclude that, while reserve cost reductions offered by
coordinated aggregation depend on the statistical nature of the renewable generation process,
the majority of these benefits can be realized at modest levels of deferrable load penetration
and load deferrability.

The development and analysis of coordinated aggregation, and more generally demand
response (DR) [5] schemes is an active research area. Numerous recent studies have delved
into aspects of DR, such as its impact on electricity markets [23, 117] and DR program
implementation analysis [42, 43]. A detailed treatment of all DR research directions is beyond
the scope of this study. Instead, we focus on the sub-area of coordinated aggregation,
where studies can be broadly classified based on the mode of load control. Recent research
in ILC has focused on modeling [79] and developing algorithms [38, 44, 40] for consumer
response to electricity price signals. There have also been studies focused on the economic
efficiency [21, 115] and stability of price signals [111], as well as the practical issues associated
with implementing ILC programs [14]. Current research in DLC focuses on developing and
analyzing tractable algorithms for coordinated aggregation [77, 70, 90]. A wide variety of
algorithms have been explored in the literature. Gan et al. [61] develop a distributed
scheduling protocol for electric vehicle charging. Papasiviliou and Oren [99] use approximate
dynamic programming to couple wind generation with deferrable loads. Closer in spirit to
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our work are the following studies. In [35], the authors develop laxity-based heuristics for
accepting and completing electric vehicle charging requests in a parking garage. In [36], the
authors determine electricity consumption schedules for a residential consumer’s deferrable
loads in the face of price uncertainty and constraints on deferrable load energy delivery. We
also note that a number of recent studies [83, 71, 60, 86] have suggested the use of RHC
approaches for resource scheduling. Our contribution is not in suggesting the usage of RHC
control strategies, but rather in the development of specific cost functions which explicitly
minimize operating reserve costs.

The remainder of this chapter is organized as follows. In Section 3.2, we outline the
problem formulation in which we describe generation and load models, introduce necessary
terminology, and outline a scheduling policy optimization problem. In Section 3.3, we develop
and describe various algorithms for resource scheduling and reserve procurement algorithms.
Section 3.4 contains results from simulations studies comparing the different algorithms and
quantifying the marginal benefit of deferrability. We conclude and outline future research
directions in Section 3.5.

3.2 Problem Formulation

We focus on the problem of meeting a resource cluster’s load requirements over an operating
window. Without loss of generality, let this operating window be [0, T ]. We assume load
balancing occurs N times within this window at times indexed k ∈ {1, 2, . . . , N}. These

balancing times k occur periodically within the operating window every ∆t =
T

N
hours.

At each time k, the CM performs two functions. First, the CM allocates generation to
the various deferrable and non-deferrable loads. This is called resource scheduling. Second,
the CM determines the amount of reserves (rk) required to meet load requirements. As we
ignore the impact of rare and severe events, all energy imbalances are managed solely with
operating reserves. This amount of operating reserves is determined at each time k and is
constant for the following ∆t time interval, until the next opportunity to balance load and
generation. This is called reserve scheduling.

3.2.1 Generation Modeling

A CM, tasked with meeting load requirements of a resource cluster, will have access to a
wide variety of generation resources. In our analysis, there are three categories of genera-
tion resources chosen based on generation variability, and CM operational considerations.
Specifically, the CM can procure generation from:

1. Renewable generation

2. Bulk power

3. Operating reserves
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Renewable generation

Renewable generation refers to all power generated from within the CM’s resource cluster.
The CM must accept all such generation to meet load requirements. This includes rooftop
solar PVs, small-scale wind farms, and residential natural gas or diesel generators. Let

w = {wk}Nk=1 (3.1)

denote the sequence of renewable generation realizations during the operating window. We
assume this generation is free (zero marginal cost) from the CM’s perspective but exhibits
significant variability. The CM must absorb this variability through either resource schedul-
ing or scheduling operating reserves.

Bulk power

Bulk power refers to generation procured from the bulk transmission system through previ-
ously agreed-upon contracts in forward markets. We assume there is no uncertainty associ-
ated with bulk power delivery. In reality, bulk power delivery is fairly certain and deviations
from bulk power schedules are only caused by generator failures or transmission line outages.
Let

b = {bk}Nk=1 (3.2)

denote the sequence of bulk power deliveries at different points within the operating window.
In line with typical power system operations [27, 41] [28, pg. 7-6], we model b as constant
over hour-long blocks. The CM purchases separate amounts of bulk power for each hour
within the operating window.

Operating Reserves

Operating reserves refer to generation dispatched to ensure load requirements are met at
each balancing time k. This refers to generation procured in real-time energy and ancillary
service markets cleared every δt hours. This generation ensures that load requirements are
met exactly at each balancing time k. Let

r = {rk}Nk=1 (3.3)

denote the sequence of operating reserves dispatched during the operating interval. We
assume the amount of operating reserves dispatched is constant over intervals of length ∆t.
We do not model additional operating reserves for load-balancing at finer time-scales. In
reality, these minor energy imbalances are dealt with via additional ancillary services such
as frequency regulation [27]. Notice that both up (rk > 0) or down (rk < 0) reserves can be
modeled within this framework.

These are two costs associated with operating reserves: (1) energy and (2) capacity.
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1. The CM pays a price pr ($/MWhr) for each unit of reserves dispatched for load-
balancing. We assume energy costs are symmetric - the same price applies to both up
and down reserves.

2. The CM pays the same price pC($/MW) for the maximum instantaneous reserve dis-
patch (up or down) required for each unit of reserve capacity needed for adequate
load-balancing. We assume capacity costs are symmetric.

While we not consider the case of asymmetric reserve energy and capacity costs, the
results and algorithms developed here can be readily extended to handle asymmetric prices.

3.2.2 Resource Modeling

A resource cluster consists of a wide variety of heteregenous loads. These may include: (1)
loads that offer no scheduling flexibility, (2) loads whose energy consumption can be deferred
such as thermostatically controlled loads (TCLs) and plug-in electric vehicles (EVs), and (3)
residential-scale energy storage. Detailed load models can be constructed to various degrees
of fidelity and load modeling of deferrable loads is, in its own right, an active research area.
Various types of TCL models have been developed for demand response such as hybrid linear
systems [88], non-linear systems [39], and circuit-equivalent models [97]. There has also been
work focusing on EV battery modeling [107]. For our purposes, it suffices to categorize loads
as either:

1. Static loads

2. Deferrable loads

3. Storage

Static loads

Static loads require a specified power at each time and thus have no flexibility associated
with their power demands. Let the power profile

lS =
{
lSk
}N
k=1

(3.4)

be the aggregate power requirement of all such loads within the operating window. The CM
must ensure that adequate generation is present to satisfy this requirement at each balancing
time k.

Deferrable loads

Deferrable loads only require delivery of an certain amount of energy over a specified time
interval. The energy needs of these loads are modeled as tasks.
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Definition 3.1. A task Ti is fully characterized by an energy requirement (Ei) that must
be delivered over a service interval {ai, . . . , di}(ai ⊆ {1, . . . , N}, di ⊆ {2, . . . , N + 1}) while
respecting a maximum power transfer rate limit (mi).

Let pik be the power delivered to Task Ti at time k. We can express this tasks’ require-
ments as

di−1∑

k=ai

pik ∆t = Ei, 0 ≤ pik ≤ mi ∀k ∈ {ai, . . . , di − 1}. (3.5)

With this model (3.5), we have made the following assumptions regarding tasks:

A1 Tasks are pre-emptive, that is task servicing can be interrupted at any time within the
service interval.

A2 The power delivered to a task admits values on the continuous interval [0,mi].

The ability to continuously modulate power delivery (Assumption A2) is uncommon in
traditional distribution networks where discrete power delivery levels are more prevalent.
However, this is a reasonable approximation in determining power allocations. Crucially, it
enables the computation of power allocation schedules using convex optimization methods.
For practical implementations of these algorithms, we suggest rounding pik to the nearest
discretized power level.

Thus, the degree of deferrability of each task Ti is succinctly parametrized by (Ei,mi, ai, di).
For an EV, Ei corresponds to a user-specified state-of-charge increase over a charging inter-
val [ai, di]. The rate limit mi corresponds to constraints imposed by the charging equipment
or power delivery infrastructure. For a TCL, we can construct a simple duty cycle model
where a certain amount of energy Ei is required every W hours. This energy requirement
Ei depends on exogenous variables such as ambient temperature, and user comfort. In this
case, the service interval can be expressed as [nW, (n+ 1)W ] where n is an integer. The rate
limit mi is, once again, determined by the power delivery infrastructure.

We now define some key quantities which will be used in this chapter.

Definition 3.2. The energy state of a task Ti, parametrized by (Ei,mi, ai, di), at time k
is:

eik = Ei −
k−1∑

n=ai

pin∆t ∀k ∈ {ai + 1, . . . , di}, (3.6)

where pik is the power delivered task Ti at time k. Let eiai = Ei.

The energy state is the remaining energy requirement at the start of the kth time-step.

Definition 3.3. A task Ti is active at time k if ai ≤ k < di, and eik > 0. Let T = {Ti}MT
i=1

denote the collection of all tasks within this operating window. We define Ak(⊆ T) as the
set of active tasks at time k.
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An active task is one that can and needs to be serviced at a given time.
Let the power profile

lD = {lDk } (3.7)

be the total power delivered to deferrable loads over the operating window. Clearly, the
power delivered to deferrable load at time k is characterized solely by power allocations to
active tasks.

lDk =
∑

i∈Ak

pik (3.8)

where pik is the power delivered to Task Ti at time k.
A special case of this profile is the nominal deferrable load profile.

Definition 3.4. The nominal rate of a task Ti, parametrized by (Ei,mi, ai, di), is:

qi =
Ei

di − ai
(3.9)

Servicing a task at this nominal rate over the entire service interval guarantees task
completion.

Definition 3.5. The nominal deferrable load profile lD = {lDk } is the deferrable load
profile resulting from servicing each task at its nominal rate. For a set of tasks T, this
quantity can be readily computed:

lDk =
∑

i∈Ak

Ei
di − ai

∀k ∈ {1, . . . , N} (3.10)

The nominal deferrable load profile is used extensively in our analysis. Apart from its
role in the development of two real-time scheduling algorithms, it serves as a baseline for
computing the reserve reductions possible through resource scheduling.

Storage

We model electricity storage as devices.

Definition 3.6. A device is characterized by maximum (E+
j ) and minimum (E−j ) energy

capacities, and maximum charging (m+
j ) and discharging (m−j ) rate limits. Let pjk be the

power delivered to Device Dj at time k. Device requirements can then be expressed as:

E−j ≤
k∑

n=1

pjn ∆t ≤ E+
j , −m−j ≤ pjk ≤ m+

j ∀k ∈ {1, . . . , N}. (3.11)
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Each device Dj can be characterized by (E+
j , E

−
j ,m

−
j ,m

−
j ). For a storage device with

energy capacity E and an initial state of charge E0, the maximum and minimum energy
capacities can be easily computed (E+

j = E −E0, E
−
j = −E0). Let D = {Dj}MD

j=1 denote the
collection of all devices within this operating window. As the service interval for a device is
the entire operating window, devices are always active.

Clearly, tasks and devices differ in their energy requirements. For a task, the energy
requirement is a single equality constraint in the space of power allocations. For a device,
the corresponding requirement is a set of 2N linear inequality constraints on the space of
power allocations.

3.2.3 Scheduling Policies

The CM must satisfy all load requirements over the entire operating window. Before any
resource or reserve scheduling, the CM attempts to meet static load requirements with
renewable generation and bulk power. The remaining generation, used to satisfy deferrable
load requirements, is called available generation.

Definition 3.7. Available generation at time k is the renewable and bulk power remaining
after satisfying static load requirements. Let

g = {gk}Nk=1, gk = wk + bk − lSk (3.12)

denote the available generation profile over the operating window.

Scheduling policies dictate the allocations of available generation to tasks and devices.
They also determine the reserve generation necessary to fulfill all load requirements.

Definition 3.8. A scheduling policy σ is an algorithm that computes reserves, and alloca-
tions of available generation and reserves to complete all task requirements over the operating
window. Specifically, the scheduling policy is a function of an available generation profile g,
and collections of tasks T and devices D.

σ(g,T,D) = (r, {pk}Nk=1), (3.13)

where pk is the set of power allocations at time k to all active tasks {pik}i∈Ak
, and devices

{pjk}j∈D. As this policy must ensure that generation and load are balanced within the oper-
ating window, it must satisfy:

gk + rk =
∑

i∈Ak

pik +
∑

j∈D

pjk ∀k ∈ {1, . . . , N}. (3.14)

Certain available generation profiles can be scheduled to meet all task requirements with-
out the need for any reserves. This property is referred to as feasibility.



CHAPTER 3. REAL-TIME SCHEDULING OF DERS 30

Definition 3.9. An available generation profile g is feasible with respect to a set of tasks
T if there exists some scheduling policy σ that completes all tasks without dispatching any
reserve generation. Specifically, for this policy

σ(g,T,D) = (0, {pk}Nk=1), (3.15)

where pk ensures that all task requirements are met

eidi = 0 ∀Ti ∈ T. (3.16)

A scheduling policy σ is causal if its allocations at time k depends only on the information
state Ik at time k.

Definition 3.10. The information state Ik at time k consists of:

1. Task parameters of tasks active at time k: (Ei,mi, ai, di) ∀Ti ∈ Ak,

2. Device parameters of all devices:
(
E−j , E

+
j ,m

−
j ,m

+
j

)
∀Dj ∈ D,

3. Energy states of tasks active at time k: eik ∀Ti ∈ Ak,

4. Realized values of available generation: {gn}kn=1.

3.2.4 Cost Metric

The performance of different scheduling policies is assessed by comparing the cost of procur-
ing reserve generation. As mentioned previously, there are two components to this cost:

J(r) = pr

N∑

k=1

|rk|∆t + pC max
k
|rk| (3.17)

The first term is an energy cost; it penalizes the total amount of reserve generation
procured to meet load requirements. The second term is a capacity cost; it captures the non-
energy costs associated with making generators that provide reserve generation available. In
practice, such reserve capacity is procured either through bilateral contracts, where the CM
enters into long-term agreements with select generating facilities, or through the clearing of
ex-ante capacity markets [26]. This capacity cost also discourages undesirable peaks in power
delivery that may place stress on distribution networks. As our primary focus is to quantify
the impact of real-time scheduling on reserve costs, we do not incorporate the procurement
costs associated with bulk power.
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3.2.5 Policy Optimization

Our objective is to develop scheduling policies that reduce reserve costs as captured by the
metric (3.17). This is a functional optimization problem (3.18) over the function space of
scheduling policies.

min
σ

J(r) (3.18)

subject to: ({pk}Nk=1, r) = σ(g,T,D), ∀k ∈ {1, . . . , N} (a)

∀k, gk + rk =
∑

i∈Ak

pik +
∑

j∈D

pjk, (b)

∀Ti ∈ T,

di−1∑

k=ai

pik∆t = Ei,

0 ≤ pik ≤ mi ∀k ∈ {ai, . . . , di − 1},
(c)

∀Dj ∈ D, E
−
j ≤

k∑

n=1

pjn∆t ≤ E+
j ,

−m−j ≤ pjk ≤ m+
j ∀k ∈ {1, . . . , N}.

(d)

Constraints

1. Scheduling Policy: (3.18-a) defines the power allocations to tasks and devices and
reserve generation for a candidate scheduling policy.

2. Balancing: (3.18-b) ensures that generation and load are balanced at all times within
the operating interval.

3. Tasks and Devices: (3.18-c) and (3.18-d) ensures the scheduling policy meets all
task and device requirements respectively.

Causality

As the CM can make decisions solely based on current information, we seek causal scheduling
policies. Unfortunately, an optimal causal scheduling policy does not exist. We show this
using an adversarial argument.

Theorem 3.1. The optimal scheduling policy with respect to (3.18) is not causal.

Proof. By counterexample. Consider an operating interval with two tasks and no devices:

Task T1: E1 = 2 kWh, m1 = 2 kW, a1 = 0, d1 = 2,

Task T2: E2 = 2 kWh, m2 = 1 kW, a2 = 0, d2 = 4.
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Consider the two available generation profiles gA and gB shown in Figure 3.1. Both gA and
gB are feasible. Figure 3.2 shows the power allocations of these profiles that completes tasks
T1 and T2 without any need for reserves. We first argue that these power allocations are
unique.

For profile gA, completion of task T2 requires 2 kWh with a rate limit of 1 kW. Since
gAk > 0 only when k = {0, 1}, we must service task T2 at its rate limit. The remaining power
must be allocated entirely to task T1.

For profile gB, completion of task T1 requires 2 kWh with a rate limit of 2 kW. This
task must be serviced on the interval [0, 2). Since gB1 = 0, task T1 must be serviced at its
rate limit at time k = 0. The remaining power, containing 2 kWh of energy, must be fully
allocated to task T2.

Notice that the two available generation profiles gA,gB are identical on t ∈ [0, 1). There-
fore, any causal policy σ must offer identical allocations under either power profile at time
k = 0. If σ is optimal, it must complete both tasks without any need for reserves under gA

and gB. But completion of both tasks solely with the feasible available generation profiles
requires different allocations at time k = 0.
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Figure 3.1: Available generation profiles gA and gB described in proof of Theorem 3.1

This result forces us to be content with causal heuristics for resource scheduling that are
sub-optimal with respect to the policy optimization (3.18).

3.3 Scheduling Algorithms

In this section, we describe four causal scheduling heuristics for resource scheduling. We also
develop a policy (zero-laxity) for procuring and allocating reserve generation based on one of
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Figure 3.2: Power allocations to tasks that show feasibility of profiles gA and gB

these heuristics. We conclude by formulating a receding horizon control (RHC) for resource
and reserve scheduling inspired by the policy optimization problem (3.18). We specifically
concentrate on the following scheduling problem: available generation at time k (gk) must
be allocated to active tasks Ak and devices D.

3.3.1 Earliest Deadline First (EDF)

Policy

The EDF scheduling policy allocates available generation gk to the task TI with the most
imminent deadline (with ties broken arbitrarily).

I = argmin
i∈Ak

di (3.19)

Available generation in excess of the rate limit for task TI (mI), is allocated to the active
task with the next most imminent deadline. This process continues until either all generation
gk is expended or all active tasks are serviced at their rate limits.

Device scheduling under EDF is as follows. If all generation is expended, active tasks not
serviced at their rate limits receive power from devices. This process continues either until
all active tasks are serviced at their rate limits or until device constraints (discharge rate
(m−j ) or minimum energy level (E−j )) limit any further power service. If all active tasks are
being serviced at their rate limits, excess available generation is allocated to devices D. This
process continues either until all available generation is expended or until device constraints
(charging rate (m+

j ) or maximum energy capacity (E+
j )) limit any further service.
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Discussion

EDF is a well-known scheduling algorithm for processor time allocation (PTA). The objective
in PTA is to schedule a collection of computational tasks, on single or multiple processors,
in a way that completes all task requirements. Tasks, in this context, are characterized by a
processing time requirement, an arrival, and a deadline.

There is extensive work analyzing the performance of EDF for PTA applications. In the
case of single processors, it is known that EDF is an optimal scheduling policy for a single
processor in the following sense: if some scheduling policy can meet all deadlines of a set of
pre-emptive tasks, scheduling those tasks under EDF will also meet all deadlines [16]. We
call scheduling policies that satisfy this property optimal at preserving feasibility. Liu
and Layland, in a seminal paper [80], showed that the EDF scheduling policy is optimal at
preserving feasibility for periodic tasks on a single processor. Dertouzos and Mok showed
that this result does not apply to the multiprocessor setting [46]. Liu and Layland also
derived necessary and sufficient conditions for ascertaining scheduling feasibility - whether
or not a set of periodic tasks scheduled under EDF are completed - in the single processor
case [80]. More recent work has centered around developing similar conditions that guarantee
task completion under EDF in the multiprocessor setting [63, 13].

The resource scheduling problem described in this chapter is analogous to PTA with
available generation playing the part of available processing time. However, there are three
primary differences between resource scheduling and PTA:

1. Total available processing time is constant for a given processor while it’s analog in
resource scheduling, available generation is not constant and indeed highly variable,
over an operating window.

2. Tasks in resource scheduling have explicit rate limits that must be respected during
scheduling. As task requirements in PTA are defined solely in terms of processing time,
there are no comparable scheduling constraints on PTA.

3. At any given time, available processing capacity is fully devoted to a single task.
In contrast, multiple tasks can be concurrently scheduled and serviced in resource
scheduling.

Owing to these differences, many of the performance guarantees derived for EDF in the PTA
literature, such as optimality, do not apply to resource scheduling. At best, we can show
that given a feasible available generation profile, the allocation under EDF will meet all task
requirements without any need for reserves only in the absence of rate constraints.

Theorem 3.2. Ignoring task rate limits, EDF is optimal at preserving feasibility.

Proof. Let g be a feasible generation profile with respect to a set of tasks T. Extensions to
cases with devices Let σ correspond to the associated scheduling policy that completes all
task requirements and σEDF correspond to the EDF scheduling policy. The proof technique
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closely mirrors that used in [16] except we focus on scheduling available generation rather
than processing time. We perturb the power allocations defined by σ to show σEDF also
completes all task requirements.

If σ and σEDF are identical, the claim follows trivially. If σ and σEDF are distinct, let
k be the first instance when the allocations under the two policies differ. Over the interval
[k1∆t, (k1 + 1)∆t], assume σ assigns energy ∆E to task T1 while σEDF assigns ∆E to task
T2.

Since σ completes all tasks, it must complete task T2. Hence, there exists some time
interval [k2∆t, (k2 + 1)∆t] before the deadline for T2 over which σ assigns ∆E to task T2.
Define a new scheduling policy σ̂ that schedules T2 over [k1∆t, (k1 + 1)∆t] and T1 over
[k2∆t, (k2 + 1)∆t]. Clearly, σ̂ completes all task requirements as k2 ≤ d2 ≤ d1. The last
inequality reflects the choice of σEDF over the interval [k1∆t, (k1 + 1)∆t]. This procedure is
repeated iteratively, with σ̂ replacing σ on each iteration. The resulting policy at the end of
this process is σEDF thus proving the claim.

3.3.2 Least Laxity First (LLF)

The EDF policy allocates available generation solely on the basis of task deadlines. A more
nuanced algorithm would also consider remaining energy requirements allocating power. LLF
is one such scheduling algorithm that explicitly takes task energy states into account. In lieu
of deadlines, this algorithm makes decisions based on laxity.

Definition 3.11. The laxity of task Ti at time k is:

φik = (di − k)− eik
mi

∀k ∈ {ai, . . . , di}, (3.20)

Laxity is the difference between the time remaining to service a task (di − k) and the

minimum time required to complete task requirements

(
eik
mi

)
. This measure succinctly

captures the degree of deferrability present in scheduling a task. Tasks with larger laxities
offer greater scheduling flexibility.

Policy

The LLF scheduling policy allocates available generation gk to the task TI with the
smallest laxity (with ties broken arbitrarily).

I = argmin
i∈Ak

φik (3.21)

Available generation in excess of the rate limit for task TI (mI), is allocated to the active task
with the next smallest laxity. This process continues until either all generation gk is expended
or all active tasks are serviced at their rate limits. The device scheduling component under
LLF is identical to that under EDF.



CHAPTER 3. REAL-TIME SCHEDULING OF DERS 36

Discussion

LLF is also a well analyzed dynamic scheduling algorithm in the context of PTA [46, 69].
Mok [92] showed that the LLF policy, like EDF, is optimal at preserving feasibility when
scheduling pre-emptive tasks on a single processor. Certain studies have explored the use
of an LLF-based scheduling policy for resource scheduling. In the case of a parking garage,
Chen et al. analyzed the performance of LLF-based scheduling of EV charging tasks [35].
They specifically investigate the case where the scheduler has the option to admit or reject
task requests. In the case of residential load management, Barker et al. consider the ability
of ‘least slack first’, another term for LLF, scheduling at managing peak demand [15].

3.3.3 Deadline Prioritized Adjusted Scheduling (DPAS)

The DPAS policy, like EDF, also makes scheduling decisions based on task deadlines. How-
ever, instead of allocating all available generation to tasks, as EDF does, DPAS only allocates
deviations of available generation (g) from the nominal deferrable load profile (lD).

Policy

Let
xk = gk − lDk (3.22)

be the residual available generation – generation available if all active tasks were served at
constant rates.

If additional generation is available (xk > 0), the DPAS policy first commits to meeting
the nominal deferrable load profile. Specifically, all active tasks Ti are serviced at their
nominal rates. The policy then begins allocating the residual available generation xk to the
task with most imminent deadline TI where I is defined by (3.19). If task TI is serviced at its
rate limit, excess generation is allocated to the task with the next most imminent deadline.
This process continues until all residual available generation (xk) is expended or all active
tasks are serviced at their rate limits, whichever comes first.

If available generation fails to meet the nominal load profile (xk < 0), the DPAS policy
cannot meet the nominal deferrable load profile. The policy then prioritizes the active tasks
according to their deadlines, servicing as many tasks at their nominal rates as possible.
Specifically, the policy allocates available generation to the task with the most imminent
deadline TI where I is defined by (3.19). Any available generation in excess of the nominal
rate qI of task TI is allocated to the task with the next most imminent deadline. This process
continues until all available generation is expended.

Device scheduling under DPAS is similar to that under EDF with the only difference
being the following. If available generation fails to meet the nominal load profile, active
tasks not serviced at their nominal rates receive power from devices. Power allocation from
devices is also prioritized by deadline and continues until all either all active tasks are serviced
at their nominal limits or until device constraints (discharge rate (m−j ) or minimum energy
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level (E−j )) limit any further power service. After enforcing this rule, the device scheduling
component for DPAS is identical to that under EDF.

3.3.4 Laxity Prioritized Adjusted Scheduling (LPAS)

The LPAS scheduling policy is identical to DPAS with laxity, rather than deadlines, forming
the basis for all task allocation decisions. We state this algorithm fully for completeness.

Policy

Define the residual available generation xk according to (3.22). If additional generation is
available (xk > 0), the LPAS policy first commits to meeting the nominal deferrable load
profile. Specifically, all active tasks Ti are serviced at their nominal rates. The policy then
begins allocating the residual available generation xk to the task with least TI where I is
defined by (3.21). If task TI is serviced at its rate limit, excess generation is allocated to
the task with the next smallest laxity. This process continues until all residual available
generation (xk) is expended or all active tasks are serviced at their rate limits, whichever
comes first.

If available generation fails to meet the nominal load profile (xk < 0), the LPAS policy
cannot meet the nominal deferrable load profile. The policy then prioritizes the active
tasks according to their laxities, servicing as many tasks at their nominal rates as possible.
Specifically, the policy allocates available generation to the task with the smallest laxity TI
where I is defined by (3.21). Any available generation in excess of the nominal rate qI of
task TI is allocated to the task with the next smallest laxity. This process continues until
all available generation is expended.

Device scheduling under LPAS is similar to that under LLF with the only difference
being the following. If available generation fails to meet the nominal load profile, active
tasks not serviced at their nominal rates receive power from devices. Power allocation from
devices is also prioritized by laxity and continues until all either all active tasks are serviced
at their nominal limits or until device constraints (discharge rate (m−j ) or minimum energy
level (E−j )) limit any further power service. After enforcing this rule, the device scheduling
component for LPAS is identical to that under LLF.

3.3.5 Zero-Laxity (ZL)

The scheduling algorithms described so far (EDF, LLF, DPAS, and LPAS) determine allo-
cations of available generation to tasks and devices. A resource scheduling policy must also
determine reserve generation procurement decisions and allocate this additional generation
to various tasks during the operating window. We use task laxities to develop a causal reserve
scheduling heuristic. This policy paired with any of the described algorithms for allocating
available generation constitutes an complete resource scheduling policy.
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Policy

The first component of the policy ensures that static load requirements are satisfied. If static
load exceeds the sum of bulk power and renewable generation (gk < 0), the CM procures
sufficient reserves to account for this deficit (rk = −gk).

The second component of the policy focuses on meeting task requirements. A task cannot
be completed if the minimum time required to satisfy its energy requirement exceeds the
time until deadline. The zero-laxity policy ensures that no task laxities become negative.
Specifically, a task Ti is infeasible at time k in and only if φik < 0. The CM procures reserve
generation to service active tasks with laxities within a threshold ε > 0. For each such task
Ti, the CM procures adequate reserve generation to ensure the total power allocated to this
task is mi.

There is no device scheduling component to the zero-laxity heuristic.

3.3.6 Receding Horizon Control (RHC)

Receding horizon control (RHC), also known as model predictive control (MPC), is a widely-
used and effective strategy for state and input constrained control problems [62]. RHC in-
volves solving finite horizon optimization problems successively at each time-step to deter-
mine appropriate control actions.

Policy

In the context of resource scheduling, an optimization problem is solved at each time-step
k to yield cost-minimizing allocations of available and reserve generation over some time
horizon {k, . . . , k + H}. These decisions are based on renewable generation and static load
forecasts and information from all active tasks and devices. Tasks are then scheduled based
only on computed allocation decisions for the first time-step k. This process is repeated at
the next time-step k+1 with an updated set of active tasks, devices, and generation forecasts
on a different horizon {k + 1, k + 1 + H}. Determining power allocations in this iterative
fashion enables the incorporation of updated task information and more precise generation
forecasts.

Consider the optimization problem solved for RHC scheduling at each time-step k. With-
out loss of generality, we state the RHC optimization problem when k = 1. Let MT and MD

be the number of active tasks and devices respectively. We define the following quantities
to help with our exposition:

Definition 3.12. The horizon length H is the the number of ∆t time-steps between k and
the largest deadline in the set of active tasks.

H = max
i∈Ak

di. (3.23)
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Definition 3.13. The generation forecast ĝ refers to forecasted values of available gen-
eration through the horizon.

ĝ = {ĝ1, ĝ2, . . . , ĝH}. (3.24)

Each optimization problem attempts to meet all tasks requirements by allocating only
forecasted generation. We now describe the decision variables and objective function of the
RHC optimization problem.

Decision Variables

1. G ∈ RMT×H
+ : Git is the amount of available generation assigned to task Ti at time t,

2. R ∈ RMT×H
+ : Rit is the amount of reserve generation assigned to task Ti at time t,

3. S ∈ RMD×H : Sjt is the amount of power assigned to device Dj at time t.

Objective Function

C(G,R, S) = αE

H∑

t=1

( MT∑

i=1

Rit

)
+
(
ĝt −

MT∑

i=1

Git −
MD∑

j=1

Sjt

)

+ αC

(
max
t

MT∑

i=1

Rit + max
t

(
ĝt −

MT∑

i=1

Git −
MD∑

j=1

Sjt

))

+
H∑

t=1

∑

i∈At

(N − φit)2 (3.25)

The first and second terms capture up and down reserve energy costs respectively while the
third and fourth terms capture up and down reserve capacity costs respectively. The fifth
term maximizes task laxities at subsequent time-steps within the horizon H. Effectively,
this incentivizes earlier allocations of available generation to help maintain adequate task
flexibility for all tasks throughout the time horizon. The parameters αE, and αC negotiate
the relative importance of the objective function components.

Optimization Problem At each time k, we solve the following optimization problem
(3.26).
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min
G≥0,R≥0,S

C(G,R, S) (3.26)

subject to: ∀ t,
MT∑

i=1

Git +

MD∑

j=1

Sjt ≤ ĝt, (a)

∀Ti,
di∑

t=1

Git +Rit = Ei, (b)

∀Ti,
{

0 ≤ Git +Rit ≤ mi∆t, ∀ t : t < di
Git = 0, Rit = 0, ∀ t : t ≥ di

(c)

∀Dj, t, E
−
j ≤

t∑

n=1

Sjn ≤ E+
j , (d)

∀Dj, t, −m−j ≤ Sjt ≤ m+
j , (e)

∀Ti, t, φit = di − t−
eit
mi

, eit = Ei −
t∑

n=1

Gin +Rin. (f)

Constraints

1. Generation: (3.26-a) ensures that the sum of all power allocated to tasks and devices
cannot exceed available generation forecast (ĝt) at any time t. Additionally, when
satisfying tasks using energy stored in devices, (3.26-a) guarantees total power delivered
to tasks does not exceed total energy discharged from devices.

2. Task: Total Energy Requirement: (3.26-b) ensures each task’s energy requirement
(Ei) is met through allocation of available and reserve generation.

3. Task: Rate Limits: (3.26-c) ensures power is only allocated to active tasks. More-
over, the allocation for a task is non-negative and bounded by the task rate limit
(mi).

4. Device: Capacity: (3.26-d) enforces maximum (E+
j ) and minimum (E−j ) energy

levels on the device energy state at all times within the horizon.

5. Device: Rate Limits: (3.26-e) enforces discharge (−m−i ) and charging (m+
i ) rate

limits on allocations to and from devices.

6. Laxity: (3.26-f) is used to compute task laxities φik which are present in the objective
function.
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Discussion

We remark that this optimization problem is a quadratic program (QP) - quadratic cost
and linear equality and inequality constraints - which must be solved at each time-step k.
As such, the computational requirements associated with RHC scheduling are substantial
when compared to those under any of the other policies described in Section 3.3. However,
our simulation studies reveal that RHC scheduling offers significant reductions in reserve
capacity costs.

RHC, unlike the other scheduling algorithms described in Section 3.3, can explicitly
incorporate forecasts of available generation. As a result, this is a non-causal scheduling
policy with respect to the information state Ik. We showed earlier in this chapter (Theorem
3.1) that the optimal scheduling policy with respect to our functional optimization problem
(3.18) is not causal. A similar argument can be used to show that RHC, based only on active
task information, is not that optimal non-causal policy.

Theorem 3.3. A RHC scheduling policy is not optimal with respect to (3.18).

Proof. We use an adversarial argument. Specifically, we consider an available generation
profile that is feasible with respect to two sets of tasks. We will show that the RHC scheduling
policy, even armed with perfect forecasts of this profile, fails to complete both sets of tasks
without any need for reserves.

Consider the following tasks over the operating interval [0, 4]:

Task T1: E1 = 2 kWh, m1 = 2 kW, a1 = 0, d1 = 2,

Task T2: E2 = 2 kWh, m2 = 1 kW, a2 = 0, d2 = 4,

Task T3: E3 = 2 kWh, m3 = 10 kW, a3 = 1, d3 = 2,

Task T4: E4 = 2 kWh, m4 = 10 kW, a4 = 2, d4 = 4.

Consider the available generation profile gC shown in Figure 3.3. Figure 3.4 demonstrates
that this is a feasible profile with respect to the sets of tasks (T1, T2, T3) and (T1, T2, T4).

These power allocations are unique. We first focus on the set of tasks (T1, T2, T3). Com-
pletion of task T3 requires 2 kWh over the interval [1, 2). The remaining power available
over the interval [1, 2), totaling 2 kWh, must be allocated entirely to task T1. As a result,
task T2 must be serviced on the interval [2, 4) and completion of this task requires all power
available over this interval.

For the set of tasks (T1, T2, T4), completion of task T4 requires all available generation on
the interval [2, 4). As remaining power is available only on the interval [0, 2), task T2 must
be serviced at its rate limit (m2 = 1 kW) over this interval. The remaining power available,
totaling 2 kWh, must be allocated to task T1.

For both sets of tasks, RHC-based scheduling over [0, 1) is done knowing the tasks pa-
rameters of tasks T1 and T2, and forecasts of the profile gC . As a result, the RHC scheduling
policy must offer identical allocations for either set of tasks over [0, 1). However, completing
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each set of tasks requires different allocations over [0, 1) depending on the nature of task
arriving after this interval. An optimal scheduling policy must complete both sets of tasks
without any need for reserves. Clearly, an RHC scheduling policy, even armed with perfect
generation forecasts, cannot do so.
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Figure 3.3: Available generation profile gC described in proof of Theorem 3.3
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Figure 3.4: Power allocations to each set of tasks that show feasibility of profile gC

The use of RHC approaches to resource scheduling is an active research area. Hug-
Glanzmann uses an RHC approach to coordinate the operation of storage devices, intermit-
tent generation, and load [71], while Galus et al. [60] focus on balancing wind generation by
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modifying EV charging schedules. Recent work has also focused on creating decentralized
RHC strategies, which are more computationally tractable, for charging large numbers of
deferrable loads [86, 83]. Our contribution to this literature is not in the use of RHC control
strategies, but rather in the development of specific cost functions inspired by PTA methods
which explicitly minimize reserve costs.

3.4 Simulation Results

In this section, we demonstrate the value of resource scheduling at reducing reserve generation
costs. We create synthetic test cases where a CM manages a resource cluster with significant
solar PV and EV penetration. In each test case, the CM attempts to mitigate the added
variability associated with renewables by judiciously determining EV charging schedules. We
apply the scheduling algorithms described in Section 3.3 to meet load requirements at (∆t)
10 minute intervals over a 24 hour operating window. We quantify performance of these
algorithms in two cost metrics: (1) reserve energy and (2) reserve capacity. All reported
results are averaged over 50 test cases.

3.4.1 Test Case Description

Load

The resource cluster consists of two types of loads: static and deferrable. In order to create
static load profiles that are representative of typical power usage statistics, we use time-series
data of the total power demand of the California ISO balancing area. This data, sampled
at 10 minute intervals, is normalized to a peak load of 2 MW to create realistic profiles
mimicking the power requirements of the resource cluster. We generate load profiles by
randomly selecting one day from 8 days of June 2012 data. Let the power profile l = {lk}Nk=1

correspond to this load profile normalized to 2 MW.
We assume that a specified fraction of the total load energy requirement, α, is deferrable.

For a given value of α, the static load profile lS can be readily computed by scaling the power
profile l appropriately:

lS = (1− α)l. (3.27)

Deferrable loads are modeled as tasks. We ensure that the total energy requirement for
such loads reflects the choice of α by enforcing constraint (3.28) when generating task energy
needs.

MT∑

i=1

Ei = α
N∑

k=1

lk∆t. (3.28)

In this test case, we focus exclusively on EVs. Accordingly, task parameters (arrivals,
deadlines, and energy needs) are randomly generated based on typical EV charging charac-
teristics [94]. These parameters are chosen to ensure initial task feasibility (Ei ≤ (di−ai)mi).
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We use a constant rate limit mi for all tasks consistent with the SAE J1772 AC Level 1 EV
charging standard [113]. This is a reasonable assumption as EV battery characteristics and
distribution network constraints are similar across tasks.

For this collection of tasks, we compute the nominal deferrable load profile lD as defined
by (3.10). This is used in bulk power procurement decisions and serves as a baseline for
computing reserve cost reductions.

Generation

We use time-series data of solar PV generation output to create renewable generation profiles.
This data, obtained from the PV integrator SolarCity, represents the aggregate real-power
output, sampled at 1 minute intervals, from 30 different but proximate PV installations in
California. We normalize this time-series data to a peak output of 750 kW. We generate
renewable generation profiles by randomly selecting one day from 40 days of February and
March 2012 data. We choose this time period as PV generation exhibits more variability in
spring rather than summer.

As the CM determines load allocations every 10 minutes, scheduling decisions are made
with a sub-sampled version of the renewable generation process. Effectively, we assume,
when determining allocations, that the amount of renewable generation at each balancing
time is constant over the following 10 minute interval. However, reserve requirements for
load balancing are computed using the actual renewable generation profile sampled every
minute.

DA Market Clearing

In this analysis, we assume the CM has one opportunity to purchase power ex-ante. We
simulate this bulk power purchase based on hourly forecasts of load and renewable generation
data. We create these forecasts according to the following procedures.

1. Static Loads: We use day-ahead load forecasts, corresponding to load time-series
data, from the California ISO. These are hourly forecasts of the aggregate demand
used by the California ISO in their day-ahead market operations. We normalized these

forecasts according to the same procedure (3.27) used to generate lS. Let l̃Sk refer to
the forecasted static load at time k.

2. Deferrable Loads: We create forecasts of the nominal deferrable load profile lD by
adding zero-mean Gaussian noise to hourly averages of lD. We assume this noise
process has a standard deviation of 3% of the hourly average of the nominal deferrable

load. Let l̃Dk refer to the forecasted static load at time k. Concretely, this computation
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can be expressed as (3.29).

l̃Dk =
1

|H|
∑

t∈H

lDt + εk, ∀k ∈ {1, 2, . . . , N}

εk ∼ N


0,

(
0.03

|H|
∑

t∈H

lDt

)2



(3.29)

where H is the set of balancing time indices corresponding to the hour containing time
k.

3. Renewable Generation: We create hourly forecasts of renewable generation by aver-
aging data corresponding to past days. For each hour of within the operating window,
we calculate the average over the past 5 days of the mean generation for that hour-long
interval. Let w̃k correspond to the DA renewable generation forecast at time k.

Based on these forecasts, the bulk power procured for each time-step k is:

Bk = l̃Sk + l̃Dk − w̃k (3.30)

We remark that, by construction, the bulk power purchase Bk is constant over hour-long
intervals.

RHC Forecasts

We create synthetic renewable generation forecasts for RHC scheduling by adding Gaussian
noise to the renewable generation profiles. Specifically, the renewable generation forecast at
time t (ŵt) made at time k is described by (3.31).

ŵt = wk +
t∑

n=k+1

εn, ∀t ∈ {k + 1, . . . , k +H}

εn ∼ N
(
0, σ2

n

)
(3.31)

where H is the horizon length at time k over which the RHC scheduling policy determines
allocations. We ensure the noise variance σ2

n increases linearly with the prediction window
length.

Finally, we assume that this rule only applies to all t corresponding to times between
06:00 and 20:00 in the day. Outside this interval, we assume there is no renewable generation
(ŵt = 0). This is an entirely reasonable assumption as solar PV is the only source of
renewable generation in these test cases.
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3.4.2 Comparison of Scheduling Algorithms

Figure 3.5 illustrates the performance of the five scheduling algorithms in reducing operating
reserve requirements for a test case. In this test case, the load requirement slightly exceeds
the amount of generation available. Each sub-figure compares the load profiles achieved by
one of these resource scheduling algorithms to the baseline load and generation profiles. The
generation profile shown in each of these sub-figures is the sum of bulk and renewable power.
Clearly, these plots demonstrate that the CM, through resource scheduling, can modify loads
profiles to more closely match generation and thereby, reduce the need for reserves. This is
true for any of the resource scheduling algorithms described in Section 3.3.

Qualitatively, the load profiles under the various scheduling policies vary significantly
towards the end of the operating interval (16:00-24:00 hours). Specifically, scheduling under
any of the non-RHC algorithms results in greater up reserve requirements during this pe-
riod than those under RHC scheduling. In fact, RHC is characterized by balanced reserve
procurement over the entire operating window (Figure 3.5e). This is a direct consequence
of explicit reserve capacity minimization in the RHC scheduling algorithm - the RHC policy
schedules tasks with reserve generation earlier in the operating window to offset possible
increases in reserve capacity later in the window. The other algorithms, which schedule
reserves only as a last resort under the zero-laxity heuristic, do not exhibit this behavior.

Figures 3.5b and 3.5d, which correspond to the LLF or LPAS scheduling algorithms
respectively, also indicate an initial spike in reserve procurement. This is an artifact of using
a zero-laxity reserve policy in conjunction with a laxity-based resource scheduling policy. In
these cases, the CM procures reserves only when task laxities near 0. As the laxities of all
tasks are identical under LLF, serving a particular task with reserve generation implies all
active tasks must be served with reserves.

This behavior is evident only in cases of overall generation deficit (total load requirement
exceeds the amount of generation) and depends on the size of the deficit. Figure 3.6, which
shows load profiles in a test case with severe generation deficit, illustrates the impact of
generation deficit size on the magnitude of the initial reserve procurement spike. Clearly,
larger generation deficits accentuate this characteristic of LLF and LPAS scheduling. We
remark that RHC-based scheduling again exhibits balanced reserve procurement resulting
in a load profile that tracks changes in the generation profile. (Figure 3.6c). Indeed, the
advantages of RHC over the other scheduling algorithms are more apparent in such test
cases.

Table 3.1 shows average percentage decreases in four cost metrics (up reserve energy, down
reserve energy, up reserve capacity, and down reserve capacity) for each of the five algorithms
described in Section 3.3. Clearly, resource scheduling under any of the considered algorithms
reduces reserve energy costs. Moreover, the choice of algorithm only has a limited impact
on energy cost reductions. In contrast, the scheduling algorithms offer significantly different
performance in the metric of reserve capacity. RHC is a more potent algorithm at mitigating
capacity costs, particularly those associated with down reserve. This agrees with intuition,
as reserve capacity is explicitly penalized in the RHC objective function. It is also apparent
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Scheduling Algorithms

EDF LLF DPAS LPAS RHC

Energy
Up Reserves 38.0 39.6 41.0 41.2 40.7

Down Reserves 29.2 28.9 30.0 29.0 32.9

Capacity
Up Reserves 22.6 17.3 22.6 17.8 27.8

Down Reserves 3.1 -2.3 2.8 -2.0 11.8

Table 3.1: Comparison of scheduling algorithms showing percentage reductions in 4 reserve
cost metrics (compared to the base case of no coordination)

that the deadline-based algorithms (EDF and DPAS) offer better performance than their
laxity-based counterparts (LLF and LPAS). We attribute the limited up reserve capacity
reductions achieved by LLF and LPAS (17.3% and 17.8%) to the large instantaneous reserve
procurements resulting from using the zero-laxity heuristic on tasks with identical laxities.

3.4.3 Impact of Deferrable Load Penetration

We now investigate the marginal benefit of scheduling additional deferrable loads. Let α be
the proportion of total load (in terms of energy) that is deferrable. We vary this proportion
and compute the reserve cost reductions enabled by RHC-based scheduling.

Figure 3.7 shows percentage reductions in up and down reserve metrics achieved by em-
ploying the RHC scheduling policy. It is apparent that additional amounts of deferrable
load enable greater reductions in reserve energy metrics. Moreover, the marginal benefit of
having additional deferrable loads clearly decreases with increasing deferrable load penetra-
tion. This phenomenon, while more visible with up reserves (Figure 3.7a), suggests that the
primary impact of resource scheduling on reserve generation is evident even at low levels of
deferrable load penetration. In fact, most of these deferrability benefits can be achieved even
when only 10% of loads are deferrable (α = 0.1).

At high deferrable load penetrations, energy reserve costs stem from surpluses or shortfalls
in total energy procured to meet load over the entire operating window. These imbalances
are caused by errors in mean values of the load and generation forecasts employed in ex-ante
markets. Resource scheduling can only address the reserve costs stemming from genera-
tion intermittency and has limited impact at mitigating the costs associated with overall
procurement imbalances.

Figure 3.7 exhibits no clear pattern with respect to capacity cost reductions. We remark
that reserve capacity computations are very sensitive to high frequency fluctuations of re-
newable generation. Resource scheduling decisions, made every 10 minutes, do not account
for fluctuations in renewable generation at shorter time-scales. However, reserve capacity is
computed based on actual generation data sampled at these shorter time scales. Accordingly,
achieving large reserve capacity cost reductions requires increases in the frequency at which
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Figure 3.5: Load profiles comparing the impact of load scheduling under EDF, LLF, DPAS,
LPAS, and RHC to no scheduling base case for a typical test case
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Figure 3.6: Load profiles comparing the impact of load scheduling under LLF, LPAS, and
RHC to no scheduling base case for a test case involving severe generation deficit. These
profiles highlight characteristics of reserve procurement under LLF and LPAS.
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Figure 3.7: Percentage reductions in up (a) and down (b) reserve costs achieved by RHC-
based scheduling at various levels of deferrable load penetration (α).

resource scheduling decisions are made.

3.4.4 Impact of Load Deferrability

Next, we investigate the impact of load deferrability, as captured by task laxity, on reserve
requirements. In these simulations, all tasks have the same laxity (φ) upon arrival. For a
fixed deferrable load proportion (α = 0.2), we vary task laxity (φ) and compute the reserve
energy and capacity cost reductions achieved through RHC-based scheduling.

Figure 3.8 shows percentage decreases in up, and down, reserve energy and capacity
costs at various degrees of scheduling flexibility. Clearly, greater load deferrability has a
compelling impact on reserve energy requirements. Specifically, energy costs for both up
and down reserves can be reduced by a further 20% through additional scheduling flexibility.
However, the concave nature of the energy curves of Figure 3.8 once again suggests that the
marginal benefit of deferrability decreases with additional scheduling flexibility.

In contrast, increased flexibility only enables modest improvements in up reserve capacity
and has an indeterminate impact on down reserve capacity (Figure 3.8a). We believe this
is an artifact of the methodology used to compute capacity reductions in this study. Cer-
tainly, performing resource scheduling at finer time-scales can help address these issues. In
short, these simulations demonstrate the value of additional scheduling flexibility in reducing
reserve energy, and to a lesser extent, reserve capacity cost reductions.
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Figure 3.8: Percentage reductions in up (a) and down (b) reserve costs achieved by RHC-
based scheduling at various levels of task deferrability (φ) at α = 0.2.

3.4.5 Practical Considerations

Finally, we examine two practical aspects of implementing such coordinated scheduling al-
gorithms: computational requirements and the impact of switching on EVs.

Table 3.2 shows the average time taken by each scheduling algorithm to compute de-
ferrable load schedules. These values are computed for different levels of deferrable load
penetration (α). We performed all simulations using Matlab on a Dell XPS Studio 8100
machine with a processing speed of 2.93 GHz and 12.0 GB of RAM. In order to solve the
quadratic programs associated with RHC scheduling, we use the Gurobi optimization solver.

As expected, the computational cost increases with the number of deferrable loads. More-
over, coordinated scheduling under RHC is far more computationally intensive than under
any other scheduling algorithm. This is expected as the RHC algorithm determines sched-
ules by solving a sequence of QPs – a far more time-intensive process than the sorting of
task deadlines or laxities performed in the other four algorithms. We also observe that
our implementations of the non-RHC scheduling algorithms exhibit linear, or better, time
complexity.

We highlight the following with regard to RHC scheduling. Recall that there are 144
balancing times within the operating window. While the total computation time over the
entire operating interval (24 hours) for RHC is high (692s for α = 0.4), the amount of
computation done at each balancing time is much shorter. Indeed, RHC-based scheduling is
computationally tractable for problems of the size described in this chapter.

Coordinated scheduling algorithms may cause increased on-off switching of deferrable
loads. Frequent switching of EV batteries is undesirable as it could adversely impact battery
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α EDF LLF DPAS LPAS RHC
0.1 0.06 0.05 0.05 0.05 41
0.2 0.11 0.10 0.09 0.08 126
0.3 0.16 0.15 0.12 0.13 388
0.4 0.20 0.20 0.16 0.16 692

Table 3.2: Comparison of scheduling algorithms showing average computation time (s) re-
quired for coordinated scheduling at different levels of deferrable load penetration (α)
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Figure 3.9: Cumulative distribution function on the maximum number of on-off switches
under three scheduling algorithms: EDF, LLF, and RHC.

life and long-term operation [127]. Figure 3.9 shows a cumulative distribution function on the
maximum number of on-off switches under RHC-based scheduling empirically computed over
the 100 simulation test cases. One can see that most tasks (50%) are operated continuously
once scheduled, and a small number (10%) are switched more than four times. Results for
EDF- and LLF-based scheduling are qualitatively similar to those for RHC-based scheduling.
We remark that compared to RHC, EDF exhibits less switching while LLF exhibits more.

Sporadic battery charging may have negative effects on battery health, though less so
than frequent charging and discharging. If the state of health impacts can be quantified, it
would be straightforward to extend the RHC framework to penalize frequent cycling in the
objective function. Future work will involve addressing these issues.
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3.5 Conclusions & Possible Extensions

In this chapter, we have introduced the notion of coordination aggregation of two classes of
DERs: deferrable loads and storage. In particular, we have quantified the ability of schedul-
ing algorithms for coordinated aggregation to mitigate operating reserve costs stemming from
renewable variability. First, we modeled deferrable loads as tasks, and storage as devices.
We then developed four algorithms (EDF, LLF, DPAS, and LPAS) for resource scheduling,
and a laxity-based heuristic for reserve scheduling. We also developed an RHC algorithm for
coordination aggregation with a novel cost metric that explicitly handles operating reserve
costs. Through simulation studies, we showed that scheduling under any of these algorithms
reduces reserve energy costs, while RHC-based scheduling also consistently reduces reserve
capacity costs. Most importantly, we conclude that the benefits of coordination aggregation
can be realized at modest levels of deferrable load penetration and flexibility.

Realizing the benefits of coordination aggregation requires technology infrastructure to
exploit the capabilities of DERs. This requires research into the underlying communication
and control framework for resource aggregation. How much bandwidth, latency, and reliabil-
ity is required in these communication channels? What type of control architectures enable
maximum leveraging of DER capabilities? These technological aspects demand exploration.
Moreover, we are also developing aggregate deferrability metrics that succinctly capture the
flexibility associated with a collection of tasks. For the SO, such metrics can convert the
capabilities of a collection of deferrable loads into a consolidated dispatchable resource.

Realizing the benefits of coordination aggregation also requires mobilization of DERs
capable of providing services to the power system. This motivates research on mechanisms
that elicit and reward resource participation. Who pays for storage? How should loads
be compensated for their flexibility? What are fair pricing mechanisms for flexibility? Are
incentive mechanisms like lotteries, which exploit consumer biases, applicable in this setting?
These economic aspects deserve detailed study.
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Chapter 4

Impact of Deferrability on Ex-Ante
Operations

4.1 Motivation

As demonstrated in Chapter 3, coordinated aggregation can facilitate the large-scale adoption
of distributed renewable generation. By directly scheduling deferrable load and storage power
profiles in direct response to variations in renewable generation, coordinated aggregation
reduces the need to dispatch load-following reserves. Moreover, coordinated aggregation
improves the forecastability of renewable generation in forward markets, enabling reductions
in ex-ante reserve capacity and bulk power commitments. In these grid operating cost
reductions lies the true value of coordinated aggregation.

Grid-level coordinated aggregation, which is performed by the system operator, is im-
practical for two reasons. First, there are steep communication infrastructure development
and computational costs associated with centralized control of distribution side resources
[60]. Second, direct control of resources falls outside the purview and business models of sys-
tem operators. In fact, recent Federal Energy Regulatory Commission (FERC) rulings have
highlighted some possible conflicts of interests arising from system operator-based control of
resources [57]. Accordingly, we consider the case where coordinated aggregation is performed
on resource clusters. A resource cluster is a diverse collection of networked distribution-side
resources including renewable and micro-generation, deferrable loads, and electricity stor-
age. Each cluster is managed by a Cluster Manager (CM). The CM ensures the cluster’s
load demands are met, aggregates the cluster’s capabilities, and presents them to the system
operator as a dispatchable resource.

In this chapter, we focus on policies for ex-ante operation that ensure a resource cluster’s
load requirements are met. Specifically, we attempt to quantify the maximum benefit in
grid operating cost reductions afforded by CM-based coordinated aggregation of deferrable
loads. Assuming a stylized two-stage market model, we compute cost-minimizing ex-ante
procurement policies for bulk power and reserve capacity in the cases of loads having, and
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not having, deferrable components. In this analysis, we use an aggregate deferrable load
model consisting of a single energy need. We also characterize the optimal scheduling policy
for this aggregate deferrable load component in the face of uncertainty in generation as
a threshold policy via dynamic programming. In particular, we relate the optimal forward
market decisions to real-time load scheduling decisions. We note that, owing to our aggregate
deferrable load model, the computed reduction in operational costs is an upper bound on the
value of coordinated aggregation in scheduling loads with arbitrary levels of flexibility.

The study of the practical aspects of implementing coordinated aggregation is an active
research area. There has been considerable work in developing, and analyzing the perfor-
mance of, scheduling algorithms for controlling deferrable loads in response to renewable
generation [35, 118, 71]. Scheduling policies have also been formulated, via dynamic pro-
gramming, for deferrable loads in the face of uncertain prices [112], and for energy storage
[119]. In [99], the authors use approximate dynamic programming to couple load coordina-
tion with wind power. Other studies explore the appropriate communication and control
architecture required to conduct coordinated aggregation [6, 73].

Additionally, there is well-developed literature detailing optimal ex-ante market policies
for a variety of power system participants. Both [103] and [18] show that the optimal ex-
ante contract for a wind power producer is a quantile on prices. In [122] and [108], the
authors propose the introduction of numerous ex-ante markets to leverage better renewable
generation forecasts, and find resulting optimal procurement policies. In [72], the authors
find coordinated aggregation policies and day-ahead bulk power purchases that maximize
social welfare. The contribution of this chapter to this field is the calculation of optimal
ex-ante procurement decisions (bulk power and reserve capacity) with respect to the costs
of grid operations, with and without coordinated aggregation.

The remainder of this chapter is organized as follows. Section 4.2 contains the problem
formulation, where we describe generation procurement, model loads, and quantify grid op-
eration costs. In Section 4.3, we present the optimal reserve scheduling policy under our
aggregate deferrable load model. In Section 4.4, we present a series of analytical character-
izations of the optimal forward market procurement policies when there are no deferrable
loads. This is followed by Section 4.5, where we tackle the case with deferrability. Specif-
ically, we offer intuition for forward market acquisition policies. In Section 4.6, we employ
the theory developed in this chapter to numerically compute the benefit of deferrability to
ex-ante operations in a set of test cases. We conclude and outline future work in Section 4.7.

4.2 Problem Formulation

We focus on the problem of procuring adequate generation to meet a resource cluster’s
load requirements over an operating window. Without loss of generality, let this operating
window be [0, T ]. As this chapter, like Chapter 3, focuses on meeting the load requirements
of a resource cluster’s, this problem formulation shares many common elements with that of
Chapter 3.
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Generation procurement occurs through a set of forward markets cleared in advance
of this operating window, and the particular rules and regulations governing procurement
vary across different balancing areas [27, 9, 28, 41]. We first describe the market structure
considered in this chapter.

4.2.1 Market Structure

We assume the CM participates in a two-stage market system. This system consists of an
ex-ante forward market and a real-time (RT) market for instantaneous balancing of supply
and demand. Figure 4.1 illustrates the various stages within this market system at which a
CM makes procurement decisions.

In the forward market, the CM acquires the following quantities through forward con-
tracts: (1) bulk power (B), a constant amount of generation made available over the op-
erating window, and (2) capacities for reserve generation (C+, C−). In the RT market,
the ISO supplies the CM with operating reserves to balance demand and supply. We as-
sume load balancing occurs at N equally spaced times within the operating window. Let
k ∈ {1, . . . , N} denote these balancing times. The amount of operating reserves dispatched

to the CM changes at each balancing time k and is constant over a time interval ∆t =
T

N
.

Crucially, this reserve dispatch is constrained by the amount of reserve capacity procured
ex-ante.

Forward''
Market'
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Figure 4.1: Timeline illustrating different stages at which the CM procures various generation
components.
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4.2.2 Generation Modeling

A CM can acquire generation from a number of sources to meet load requirements. In this
chapter, we classify these sources into 3 categories, according to their variability and time of
procurement.

1. Renewable generation

2. Bulk power

3. Operating reserves

Renewable generation

Renewable generation refers to all power generated within the CM’s resource cluster. This
refers to generation from many sources, such as rooftop solar PVs, small-scale wind farms,
and residential natural gas or diesel generators. The CM must accept all such generation,
and account for their inherent variability, in servicing load requirements.

To accommodate the variable nature of renewable generation, we model renewable gen-
eration as a discrete-time stochastic process. Let

w = {wk}Nk=1 (4.1)

denote the sequence of renewable generation realizations during the operating window. Note
that wk admits values on the open interval [0,∞]. For fixed k ∈ {1, . . . , N}, wk is a ran-
dom variable with probability density function fwk

(w) and cumulative distribution function
Fwk

(w).
We assume the CM pays a price pw ($/MWhr) for all renewable generation from its

resource cluster.

Bulk power

Bulk power refers to generation procured from the bulk transmission system through con-
tracts agreed to ex-ante in the forward market. The CM agrees, and is contractually obliged,
to accept this amount of power over the operating window. We assume this quantity, pur-
chased in the forward market, is constant over the entire operating window. Working within
this framework, let B refer to the constant amount of bulk power procured over the operating
window [0, T ].

The cost of bulk power procurement explicitly depends on the forward market clearing
price. We assume the CM, behaving as a price-taker in this market, pays a price pB ($/MW)
for every unit of bulk power.



CHAPTER 4. IMPACT OF DEFERRABILITY ON EX-ANTE OPERATIONS 58

Operating reserves

Operating reserves refer to any additional generation dispatched to maintain instantaneous
load balancing during normal, non-contingency conditions. This includes non-event reserves
such as load-following and regulation. This does not include balancing and ramping reserves
specifically procured in response to system contingencies. In this chapter, we restrict our-
selves to reserves required to balance load requirements on time scales equal to, or less than,
∆T . Minor load imbalances on finer time-scales are dealt with via frequency-responsive
generation and additional ancillary services [27].

Let
r = {rk}Nk=1 (4.2)

refer to amounts of operating reserves dispatched throughout the operating window. Note
that these dispatches can correspond to up (rk > 0) or down (rk < 0) reserves. This dispatch
is constrained by reserve capacity procured ex-ante in the forward market. The CM procures
separate capacities for up (C+) and down (C−) reserves.

There are two components to the cost of operating reserves:

1. Energy: Costs incurred within the operating interval on every unit of operating re-
serves dispatched. We assume the CM pays prices p+r , and p−r ($/MWhr) on up, and
down reserves respectively.

2. Capacity: Costs incurred in the forward market for reserve capacity procurement. We
assume the CM pays prices p+C , and p−C ($/MW) on up, and down reserve capacities
respectively. We assume that these reserve capacity prices are positive.

p+C > 0, p−C > 0 (4.3)

At certain points within this chapter, we will simplify our analysis by assuming either sym-
metric capacities (4.4),

C+ = C− = C,

p+C = p−C = pC ,
(4.4)

or symmetric reserve costs (4.5),
C+ = C− = C,

p+C = p−C = pC ,

p+r = p−r = pr.

(4.5)

We will also consider a modified formulation where there is no reserve capacity. Specif-
ically, the CM only procures bulk power in the forward market, and has no constraints on
operating reserve dispatch within the operating window.
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4.2.3 Load Modeling

As discussed in Section 3.2.2, load modeling in resource clusters is, in its own right, an active
research area. In this chapter, our primary focus is quantifying the benefit of deferrability.
Accordingly, we decompose load requirements into two categories:

1. Static loads

2. Deferrable loads

Static loads

Static loads are characterized by their complete lack of flexibility in power consumption. We
model their load requirements as a power profile:

s = {sk}Nk=1 , (4.6)

that must be satisfied at each time k. Due to inherent randomness present in such loads
owing to consumer behavior, we model the static load profile s as a scalar-valued discrete
time stochastic process. In particular, we assume sk is a random variable with time-varying
probability density function fsk(x) and cumulative distribution function Fsk(x).

Deferrable loads

Deferrable loads admit a range of admissible power profiles. We assume an aggregate model
of all deferrable loads characterized by a total energy need L that needs to be satisfied over the
operating window. We also impose a servicing rate limit m on the maximum instantaneous
power that can be supplied.

Let
d = {dk}Nk=1 , (4.7)

refer to the deferrable load profile. This profile must satisfy the following constraints:

N∑

k=1

dk ∆t = L, 0 ≤ dk ≤ m ∀k ∈ {1, 2, . . . , N}. (4.8)

The remaining energy need at any point within the operating window is called the energy
state.

Definition 4.1. The energy state of deferrable loads at time k is the remaining energy
requirement at the start of the kth time-step.

ek = L−
k−1∑

τ=1

dτ∆t ∀k ∈ {1, 2, . . . , N + 1} (4.9)
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Clearly, the terminal constraint eN+1 = 0 denotes satisfying the deferrable load require-
ment.

We admit that modeling deferrable loads in this fashion fails to capture individual power
delivery constraints of the various constituent loads. Explicitly incorporating such con-
straints prevents an analytical characterization of the benefit of deferrability. Our calcula-
tions, using an aggregate deferrable load model, represent an upper bound on the benefit
afforded by load flexibility.

Net load

Meeting load requirements at each time k creates the following constraint:

B + rk + wk = sk + dk, ∀k ∈ {1, 2, . . . , N} (4.10)

Notice that the renewable generation and static load processes are the only random com-
ponents in this analysis. In fact, the difference between static load and renewable generation
fully captures the underlying randomness in the model.

Definition 4.2. The net load process n is the difference between static load and renewable
generation

n = {sk − wk}Nk=1 (4.11)

This is a stochastic process. For each time k, the net load nk has probability density function
fk(x) and cumulative distribution function Fk(x). We remark that these functions have
support R.

For each operating window, we define the time-averaged cumulative distribution function
(CDF) F (x) according to:

F (x) =

∑N
k=1 Fk(x)

N
(4.12)

In addition, we define the quantile function F−1 : [0, 1] → R corresponding to the time-
averaged CDF:

F−1(y) = inf {x ∈ R : F (x) ≥ y} (4.13)

As one might expect, the net load process plays a crucial role in our results.

4.2.4 Cost Metrics

Working under the described model, the cost of meeting load requirements over the operating
window is given by:
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Π
(
B,C+, C−, r,w

)
= pBB + p+CC

+ + p−CC
−

+ p+r ∆t
N∑

k=1

[rk]
+ + p−r ∆t

N∑

k=1

[−rk]+

+ pw∆t
N∑

k=1

wk.

(4.14)

where [x]+ = max(x, 0). The first three terms in (4.14) correspond to forward market pur-
chases. The fourth and fifth terms represent the cost of operating reserves in generation
deficit (up reserve) and surplus (down reserve) scenarios respectively. The last term repre-
sents payments to renewable resources. We exclude this term in the following analysis as it
is unaffected by coordinated aggregation decisions.

Due to the random nature of renewables and static loads, we are concerned with the
expected cost where expectation is taken with respect to the net load process n:

J
(
B,C+, C−, r

)
= pBB + p+CC

+ + p−CC
−

+ E

[
p+r ∆t

N∑

k=1

[rk]
+ + p−r ∆t

N∑

k=1

[−rk]+
]
.

(4.15)

Throughout the course of this chapter, we will analyze simplified versions of this cost
function. First, consider the symmetric capacity case described by (4.4). The corresponding
expected cost is:

JBC (B,C, r) = pBB + pCC + E

[
p+r ∆t

N∑

k=1

[rk]
+ + p−r ∆t

N∑

k=1

[−rk]+
]
. (4.16)

Second, consider the no reserve capacity case described in Section 4.2.2. The expected
cost under this scenario is:

JB (B, r) = pBB + E

[
p+r ∆t

N∑

k=1

[rk]
+ + p−r ∆t

N∑

k=1

[−rk]+
]
. (4.17)

4.2.5 Optimization Problem

We seek policies for bulk power (B), operating reserve capacity (C+, C−), and reserve
dispatch (r) that minimize the expected cost (4.15). As these quantities are decided upon
at different stages within the procurement timeline, we formulate a two-stage optimization
problem where the decision variables follow a causal information structure. Specifically, bulk
power and reserve capacity decisions are made in the forward market (Stage I), in advance of
the operating window throughout which reserve dispatch decisions are made (Stage II). Let
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II and III be the information states representing all knowledge about the net load process
at Stage I and during Stage II respectively. The expected costs at each stage can then be
expressed as:

JI
(
B,C+, C−

)
= pBB + p+CC

+ + p−CC
−

+E

[
p+r ∆t

N∑

k=1

[rk
∗]+ + p−r ∆t

N∑

k=1

[−rk∗]+
∣∣∣∣ II
]
, (4.18)

JII (r) = E

[
p+r ∆t

N∑

k=1

[rk]
+ + p−r ∆t

N∑

k=1

[−rk]+
∣∣∣∣ III

]
, (4.19)

where r∗ in (4.18) is the optimal reserve dispatch policy with respect to (4.19). Having defined
these cost functions, we can formulate the two-stage optimization problem by introducing
appropriate load constraints. Load requirements are met if and only if C− ≤ rk ≤ C+ at
each balancing time k.

Stage I: Forward Market

We express load constraints as loss of load probabilities. Assuming the load must be satisfied
with probability η, we can formulate the chance-constrained optimization problem (4.20) to
find the cost minimizing ex-ante procurement policy:

(
B∗, C+∗, C−

∗)
= argmin

B,C+,C−
JI(B,C

+, C−)

subject to: P
{
rk
∗ ∈

[
C−, C+

]}
≥ η,∀k

C+ ≥ 0, C− ≥ 0

(4.20)

where r corresponds to the optimal reserve dispatch policy.

Stage II: Operating Window

We compute the optimal reserve scheduling policy by solving:

r∗
(
B,C+, C−

)
= argmin

r
JII (r)

subject to: C− ≤ rk ≤ C+, ∀k ∈ {1, 2, . . . , N}
0 ≤ B − nk + rk ≤ m, ∀k ∈ {1, 2, . . . , N}
ek+1 = ek − (B − nk + rk)∆t, ∀k ∈ {1, 2, . . . , N + 1}
e1 = L, eN+1 = 0

(4.21)

We remark that the optimal reserve dispatch policy is a function of the bulk power and
reserve capacity contracted ex-ante (B,C+, C−).
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4.3 Optimal Reserve Dispatch

4.3.1 Without Deferrability

Recall the constraint (4.10) that ensures load requirements are met through the operat-
ing interval. According to this constraint, the optimal reserve dispatch, in the absence of
deferrable loads, must be:

rk
∗ = nk −B, ∀k ∈ {1, 2, . . . , N} (4.22)

4.3.2 With Deferrability

Assuming the deferrable load model presented in Section 4.2.3, we find the optimal reserve
dispatch policy over the operating window (Stage II) by solving the optimization problem
(4.21). We do this via dynamic programming (DP).

Let nk represent all values of the net load process (n) from time k to the end of the
operating window N . Similarly, let rk refer to the corresponding sub-sequence for operating
reserves (r).

nk = {ni}Ni=k
rk = {ri}Ni=k

To simplify exposition, we assume, without loss of generality, that ∆t = 1. As we are
concerned with developing a DP solution, we need to define a value function for this problem.
Let Vk(ek) denote this value function.

Vk(ek) = min
nk

Enk+1

[
p+r

N∑

i=k

[ri]
+ + p−r

N∑

i=k

[−ri]+
]

subject to: C− ≤ ri ≤ C+, ∀i ∈ {k, k + 1, . . . , N}
0 ≤ B − ni + ri ≤ m,

ei+1 = ei − (B − ni + ri),

eN+1 = 0

(4.23)

Theorem 4.1 (Optimal reserve dispatch policy). Assuming an uncorrelated net load process
n, the optimal operating reserve dispatch decision at time k constitute a threshold policy.
Specifically, rk

∗ = r∗+ − r∗− where:

r∗+ =





0 if z̃+ ≥ ek
ek − z̃+ if z̃+ ∈ (ek − C, ek)
C if z̃+ ≤ ek − C

(4.24)

r∗− =





C if z̃− ≥ ek + C
−ek + z̃− if z̃− ∈ (ek, ek + C)
0 if z̃− ≤ ek,

(4.25)
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z̃+ and z̃− are unconstrained minima of optimization problems (4.26) and (4.27) respectively:

z̃+ = argmin
y+

−p+r y+ + Vk+1

(
y+ −B + nk

)
(4.26)

z̃− = argmin
y−

p−r y− + Vk+1

(
y− −B + nk

)
, (4.27)

C and C are thresholds computed at each time k:

C = min
(
C+,m−B + nk

)
(4.28)

C = min
(
−C−, B − nk

)
. (4.29)

Proof. By induction. Using the Bellman principle of optimality, we obtain a recursive relation
between value functions at successive time-steps Vk(ek) and Vk+1(ek+1):

Vk
(
ek
)

= min
−C≤rk≤C

p+r [rk]
+ + p−r [−rk]+ + Vk+1

(
ek − (B − nk + rk)

)
. (4.30)

Expressing rk as the difference between two positive numbers, r+ and r− (rk = r+ − r−), we
rewrite (4.30) as the lesser minimum of two separate optimization problems in r+ and r−.

Vk
(
ek
)

= min





min
r+∈[0,C]

p+r r+ + Vk+1

(
ek −B + nk − r+

)

min
r−∈[0,C]

p−r r− + Vk+1

(
ek −B + nk + r−

) (4.31)

Performing a change of variables (y+ = ek − r+, y− = ek + r−) on (4.31) gives us:

Vk(ek) = min





p+r ek + min
y+≤ek

y+≥ek−C

− p+r y+ + Vk+1

(
y+ −B + nk

)

−p−r ek + min
y−≥ek

y−≤ek+C

p−r y− + Vk+1

(
y− −B + nk

) (4.32)

The threshold policies (4.24) and (4.25) of the claim reflect the solutions to these opti-
mization problems.

Finally, we examine the base case. Due to the terminal constraint (eN+1 = 0), the
solution rN

∗ to the value function (4.23) at time N must be:

max(min(eN −B + nN , C),−C). (4.33)

Notice that at time N , the solutions to (4.26) and (4.27) are the same (z̃+ = z̃− = B − nN).
Hence, the dispatch decision outlined by the threshold policy is identical to (4.33). This
completes the proof by induction.

Remark 4.1. While the reserve dispatch policy described by (4.24) and (4.25) assumes
constant operating reserve prices p+r and p−r , this formulation readily admits time-varying
prices for operating reserves. To incorporate deterministic, time-varying prices, we merely
find the policy according to Theorem 4.1 while allowing the reserve prices p+r and p−r to vary
as functions of k.
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4.4 Optimal Procurement Without Deferrability

In this section, we focus on optimal policies for forward market procurement assuming no
deferrability. The policies presented here will serve as base cases with which we can compute
the benefit of deferrability. Moreover, they help develop intuition regarding the interplay
between forward market decisions and grid operating costs - intuition that will aid our
analysis in the case with coordinated aggregation.

Throughout this section, we develop this intuition by solving variants of the forward
market optimization problem (4.20). We first focus on the no capacity case.

4.4.1 No Capacity Case

The key simplifications made in the no capacity case are:

1. No reserve capacity procurement in forward market,

2. Unconstrained reserve dispatch within the operating window.

In this scenario, the only decision to be made in the forward market is the bulk power
purchase B. Fortunately, ignoring reserve capacity considerations makes finding the optimal
forward market policies, unlike (4.20), an unconstrained optimization problem. Assuming
the reserve dispatch policy when there are no deferrable loads (4.22), we can find the optimal
bulk power procurement by solving the following optimization problem.

B∗ = argmin
B

pBB + E

[
p+r ∆t

N∑

k=1

[nk −B]+ + p−r ∆t
N∑

k=1

[B − nk]+
]

(4.34)

We remark that this cost function is linear in B. The solution to this optimization problem
is a quantile on prices.

Theorem 4.2. (Optimal Bulk Power Procurement: No reserve capacity) The optimal bulk
power (B∗) procurement policy for meeting load requirements on an operating window of
length T is the following quantile of the time-averaged net load CDF.

B∗ = F−1
(
p+r T − pB

(p+r + p−r )T

)
(4.35)

Moreover, this optimal bulk power purchase minimizes costs if and only if: p+r + p−r ≥ 0.

Proof. Notice that the cost function of (4.34) JB(B) can be rewritten as:

JB (B) = pBB + E

[
p+r ∆t

N∑

k=1

[nk −B]+ + p−r ∆t
N∑

k=1

[B − nk]+
]

= pBB + p+r ∆t
N∑

k=1

∫ ∞

B

(n−B)fk(n)dn + p−r ∆t
N∑

k=1

∫ B

−∞
(B − n)fk(n)dn
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Clearly, JB (B) is continuous in B on R. With the technical assumption of continuous net
load distributions fk(n), it follows that JB (B) is differentiable in B. By applying Leibniz
integral rule, we obtain the first and second derivatives of JB (B).

∂JB(B)

∂B
= pB + p+r T

∑N
k=1 Fk(B)

N
− p+r T + p−r T

∑N
k=1 Fk(B)

N
(4.36)

∂2JB(B)

∂B2
=
(
p+r + p−r

)
T

∑N
k=1 fk(B)

N
(4.37)

where we have expressed the time-step ∆t in terms of the operating window length T and
the number of balancing times N .

Examining the second derivative of JB(B), we see that the condition p+r + p−r > 0 guar-
antees convexity of the cost function. Under this condition, the cost-minimizing bulk power
procurement must satisfy the first-order stationarity condition:

B∗ =

{
B ∈ R :

∂JB(B)

∂B
= 0

}
(4.38)

Through straightforward manipulation of the first derivative of JB(B), we recover the claim.

Remark 4.2. (Inventory Control) The nature of this solution - a quantile on prices - is
reminiscent of well-known classical results in inventory control from the fields of economics
and operations research [104, 102]. This is unsurprising. In essence, a CM performs a very
similar task to the decision makers in those classical problems; it procures a product for which
there is random demand ahead of time, while trying to balance costs stemming from under-
and over-procurement. As we shall see in Chapter 5, similar results [103, 18] have been
shown for power bids in electricity markets for wind energy. In those studies, the decision
maker must commit ahead of time to selling fixed quantities of an inherently variable resource
with penalties for deviating from those ex-ante commitments.

Remark 4.3. (Symmetric Reserve Prices) In the case of positive symmetric reserve prices,
that is p+r = p−r = pr > 0, the optimal bulk power purchase can be expressed succinctly as:

B∗ = F−1
(

1

2
− pB

2prT

)
(4.39)

This expression has a simple, intuitive interpretation. The optimal bulk power purchase
is expressed as a deviation from the median of the time-averaged net load process. The
magnitude of this deviation depends on the ratio of prices for bulk power price pB and reserves
pr. Figure 4.2 graphically illustrates this relationship. If the cost of procuring bulk power is
significant compared to that of reserve energy, less bulk power is purchased. In effect, the
CM is willing to tolerate increased reserve costs to avoid the heightened cost of acquiring bulk
power. Conversely, if the reserve energy price far exceeds that of bulk power (i.e.: pr >> pB),
the appropriate bulk power purchase is the median of the time-averaged net load process.
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B∗ F−1(0.5)
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Figure 4.2: Graphical illustration of the optimal bulk power procurement policy in the cases
of no reserve capacity and symmetric reserve energy costs

We remark that the bulk power procurement policy (4.39) minimizes cost if and only if
pr > 0. This is readily apparent from observing the structure of the second derivative of
JB(B) (4.37), which for a convex function must be positive on R.

4.4.2 Symmetric Capacities Case

Having characterized the optimal forward market procurement policy in the no reserve ca-
pacity case, we now focus on the symmetric capacities case. In this scenario, both up and
down reserve capacities are identical (C+ = C− = C), as are their corresponding prices
(p+C + p−C = pC). As a result, there are only two decisions made in the forward market: (1)
bulk power B, and (2) a single reserve capacity C. Assuming the optimal reserve dispatch
policy in the absence of deferrable loads (4.22), we can find the forward market procurement
policies by the chance-constrained optimization problem (4.40)

(B∗, C∗) = argmin
B,C

pBB + pCC + E

[
p+r ∆t

N∑

k=1

[nk −B]+ + p−r ∆t
N∑

k=1

[B − nk]+
]

subject to: P {|nk −B| ≤ C} ≥ η,∀k
C ≥ 0,

(4.40)
This is a convex optimization problem if the underlying stochastic process, the net load

process n, has log-concave probability distributions [106]. We focus on solving this optimiza-
tion problem assuming the net load process is normally distributed. Solving this particular
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case, rather than one applicable for a broad class of log-concave probability distributions,
offers intuition into the interplay between reserve dispatch and forward market decisions.

Lemma 4.1. Assume the net load process n is a sequence of normally distributed random
variables with time-varying means mk and variances σk

2. The linear inequality constraints
(4.41), (4.42), and (4.43) are a sufficient characterization of the constraint set of (4.40).

B + C ≥ γ1k (4.41)

B − C ≤ γ2k (4.42)

C ≥ 0 (4.43)

where:

γ1k = mk + φ−1
(

1

2
+
η

2

)
σk (4.44)

γ2k = mk − φ−1
(

1

2
+
η

2

)
σk (4.45)

and φ−1(y) is the quantile function of a zero-mean, unit-variance normal distribution.

Proof. Define three events A1, A2, and A3:

A1: {nk ≤ B − C}

A2: {nk ∈ (B − C,B + C]}

A3: {nk > B + C}

Clearly, P(A2) ≥ η is equivalent to P (A1 ∪ A3) < 1 − η. Using the union bound and the
fact that A1 and A3 are disjoint events, we express P (A1 ∪ A3) as P (A1) +P (A3). Sufficient
conditions to guarantee P (A2) ≥ η are:

P (A1) ≤
1

2
− η

2
⇒ P{nk ≤ B − C} ≤ 1

2
− η

2
, (4.46)

P (A3) <
1

2
− η

2
⇒ P{nk ≤ B + C} ≥ 1

2
+
η

2
. (4.47)

We remark that (4.46), and (4.47), are sufficient, and not necessary, conditions to guarantee
P (A2) ≥ η. These constraints can be converted, using quantile functions, into the linear
inequality constraints (4.41) and (4.42).

This characterization of loss of load chance constraints enables an analytical solution of
(4.40). Namely, the optimal bulk power and reserve capacity procurement policies can be
expressed on a partition of prices

(
pB, pC , p

+
r T, p

−
r T
)
∈ R4 given by P1 ∪ P2 ∪ P3 = R4,

where:



CHAPTER 4. IMPACT OF DEFERRABILITY ON EX-ANTE OPERATIONS 69

P1 ={ (x, y, z1, z2) |g(x, z1, z2, α) ≤ −y }
P2 ={ (x, y, z1, z2) | |g(x, z1, z2, α)| ≤ y }
P3 ={ (x, y, z1, z2) |g(x, z1, z2, α) ≥ y },

and α, β, and g(x, z, B) are:

α =
maxk γ

1
k + mink γ

2
k

2
(4.48)

β =
maxk γ

1
k − mink γ

2
k

2
(4.49)

g(x, z1, z2, B) = x+ (z1 + z2)F (B)− z1 (4.50)

Theorem 4.3 (Optimal forward market procurement policies). Assume the net load process
n is a sequence of normally distributed random variables, the optimal forward market bulk
power (B∗) and reserve capacity (C∗) procurement policies can be expressed as a function of
the energy procurement prices ρ ∈ R4:

B∗ =





inf{B : g(pB, p
+
r T, p

−
r T,B) ≥ −pC}, if ρ ∈ P1

α, if ρ ∈ P2

sup{B : g(pB, p
+
r T, p

−
r T,B) ≤ pC}, if ρ ∈ P3

(4.51)

C∗ =





−min
k

γ2k +B∗, if ρ ∈ P1

β, if ρ ∈ P2

max
k

γ1k −B∗, if ρ ∈ P3

(4.52)

Moreover, this procurement policy minimizes costs if and only if: p+r + p−r ≥ 0.

Proof. The feasible set X for problem (4.40) on the space of decision variables x = (B,C) ∈
R2 is the intersection of constraints (4.41), (4.42), and (4.43). Figure 4.3 is a graphical
illustration of these constraints and the resulting set X . Clearly, X is fully characterized by
two inequality constraints:

1. B + C ≥ max
k
γ1k

2. B − C ≤ min
k
γ2k

The lines defining these constraints intersect at the point (α, β).
Let JBC(B,C) refer to the cost function for this optimization problem. With the as-

sumption of a normally distributed net load process n, JBC(B,C) is differentiable in B and
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X

(α, β)
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1

Figure 4.3: Illustration of the feasible set of DA procurement policies X

C. By applying Leibniz integral rule, we obtain the first derivatives of JBC(B,C):

∂JBC
∂B

= pB +
(
p+r T + p−r T

) ∑N
k=1 Fk(B)

N
− p+r T (4.53)

∂JBC
∂C

= pC (4.54)

Notice that
∂JBC(B)

∂B
is a non-decreasing function of B as long as p+r + p−r ≥ 0. In

fact, simple analysis of the Hessian of JBC(B,C) confirms that this condition guarantees
convexity of the cost function.

The optimal procurement policy x∗ = (B∗, C∗) must satisfy:

∇JBC(x∗)T (x− x∗) ≥ 0, ∀x ∈ X (4.55)

Clearly, as pC ≥ 0 (4.3), x∗ must belong to the boundary of the feasible set, bn(X ). bn(X )
can be decomposed into:

1. (α, β)

2. {(B,max
k
γ1k −B), ∀B < α}
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3. {(B,B −min
k
γ2k), ∀B > α}

We first examine (α, β). In this case, the optimality condition (4.55) can be expressed as∣∣∣∣
∂JBC(α)

∂B

∣∣∣∣ ≤
∂JBC
∂C

. Comparing this condition to the price partition defined in (4.48), it is

clear that this particular optimality condition condition is equivalent to
(
pB, pC , p

+
r T, p

−
r T
)
∈

P2. Moreover, notice that:

• ∂JBC(α)

∂B
≤ −∂JBC

∂C
is equivalent to

(
pB, pC , p

+
r T, p

−
r T
)
∈ P1, and

• ∂JBC(α)

∂B
≥ ∂JBC

∂C
is equivalent to

(
pB, pC , p

+
r T, p

−
r T
)
∈ P3.

If
(
pB, pC , p

+
r T, p

−
r T
)
∈ P1, the optimal policy belongs to the set {(B,B−min

k
γ2k), ∀B >

α} as
∂JBC(B)

∂B
is a non-decreasing function of B. On this set, the optimality condition

(4.55) reduces to
∂JBC(B)

∂B
= −pC . It follows that the optimal procurement policy is

(
B∗, B∗ −min

k
γ2k

)
where B∗ is the smallest power purchase satisfying the optimality condi-

tion

(
inf

{
B :

∂JBC(B)

∂B
≥ −pC

})
.

Alternatively, in the case when
(
pB, pC , p

+
r T, p

−
r T
)
∈ M3, the minimum is in the set

{(B,max
k
γ1k − B), ∀B < α}. In this case, the optimality condition (4.55) reduces to

∂JBC(B)

∂B
= pC . Accordingly, the optimal procurement policy is

(
B∗,max

k
γ1k −B∗

)
where

B∗ is the largest power purchase that satisfies the optimality condition

(
sup

{
B :

∂JBC(B)

∂B
≤ pC

})
.

As x∗ ∈ bn(X ), the choice of B∗ completely characterizes C∗.

Remark 4.4. (IID Net Load Process) If the net load process n is a sequence of independent
and identically-distributed (IID) normal random variables, the optimal DA procurement pol-
icy has a simple, intuitive interpretation. Let m be the mean and σ2 the variance of this IID
process. If the procurement prices satisfy:

∣∣∣∣pB +
(p−r − p+r )T

2

∣∣∣∣ ≤ pC , (4.56)

the optimal DA procurement policy, using (4.51) and (4.52), is:

B∗ = m (4.57)

C∗ = φ−1
(

1

2
+
η

2

)
σ (4.58)
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where η, as in (4.40), describes the probability load is satisfied.
Clearly, the optimal bulk power purchase B∗ is equal to the expected net load. This is

identical to existing DA practices employed by many system operators faced with scheduling
generation to meet system load requirements [27, 41].

The optimal policy for reserve capacity (4.58) suggests procuring an amount proportional
to the standard deviation of net load. Crucially, this proportionality constant is directly
dependent on the loss of load probability η the CM can tolerate. Currently employed reserve
capacity procurement levels, determined by federal and other regulatory mandates, do not
explicitly depend on such metrics of renewable generation and load variability [95]. For in-
stance, the operating reserve capacity requirement for system operators in the Western US
is 5-7% of total load [95]. System operators employing (4.58) can explicitly incorporate load
and renewable uncertainty estimates in their capacity procurement procedures. Moreover,
this policy enables reserve capacity cost reductions for delivery intervals with low forecast
uncertainty.

Remark 4.5. (Degenerate Procurement Price Conditions) Theorem 4.3 shows that the op-
timal procurement policy can be found for a given combination of procurement prices and
statistics of the net load process. However, it is apparent that for certain combinations of
prices, (4.51) and (4.52) suggest a degenerate policy of infinite bulk power or reserve capacity
procurement.

According to (4.51), infinite forward market procurements can only occur on the price
partitions P1 and P3. To examine price conditions that result in degenerate procurements,
we observe the following properties of g(pB, p

+
r T, p

−
r T,B). For compactness of notation, we

refer to this function as ĝ(B).

max
B

ĝ(B) = pB + p−r T (4.59)

min
B
ĝ(B) = pB − p+r T (4.60)

Consider the price partition P1. Clearly, (4.51) suggests an infinite optimal procurement
(B∗, C∗) = (∞,∞) if max

B
ĝ(B) < −pC. This condition can be expressed as:

− pC − p−r T > pB. (4.61)

In effect, the cost of procuring bulk power is less than the reward possible by selling down
reserves. Hence, the optimal policy amounts to one of arbitrage - procure bulk power ex-ante
and supply said power back to the SO as down reserves during the operating interval.

Now, consider the price partition P3. In this case, a degenerate optimal procurement
(B∗, C∗) = (−∞,∞) occurs if min

B
ĝ(B) > pC. This condition is equivalent to:

pB > pC + p+r T. (4.62)

In this case, the cost of reserving and dispatching up reserves is less than the price of bulk
power. Therefore, the CM can engage in a different form of arbitrage - sell bulk power in the
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forward market and meet these commitments using up reserves dispatched by the SO during
the operating interval.

These special cases illustrate energy arbitrage opportunities for a CM participating in this
type of two-stage market system. Importantly, they can help SOs design pricing structures
for similar market systems that prevent such behavior. However, it is important to note
that these degenerate cases also allude to the limitations of our modeling framework. In this
analysis, we have assumed that the CM behaves as a price-taker in the forward market for
bulk power. This assumption only holds if the CM’s bulk power purchase is small relative
to the total generation cleared through the market. In situations where the optimal policy
amounts to one of infinite bulk power purchase, the price-taker assumption is no longer
valid.

4.4.3 Asymmetric Capacities Case

Finally, we tackle the general case with separate reserve capacities for up (C+) and down
(C−) reserves. In this case, the optimal procurement policy can be found by solving the
optimization problem (4.20) with the optimal reserve scheduling policy r∗ described by (4.22).

(
B∗, C+∗, C−

∗)
= argmin

B,C+,C−
JI(B,C

+, C−)

subject to: P
{

(nk −B) ∈
[
C−, C+

]}
≥ η,∀k

C+ ≥ 0, C− ≥ 0

(4.63)

where the cost function JI(B,C
+, C−) is described by:

JI(B,C
+, C−) = pBB + p+CC

+ + p−CC
−

+ E

[
p+r ∆t

N∑

k=1

[nk −B]+ + p−r ∆t
N∑

k=1

[B − nk]+
]

(4.64)

As with the symmetric capacity case, this is a chance-constrained optimization problem
that is convex if the net load process (n) has log-concave probability distributions. Again,
we focus on the case where the net load is normally distributed. Using the same technique
described in Lemma 4.1, the constraints of this optimization problem can, with the same
technique as , be sufficient characterized by a series of linear inequality constraints (4.65).

argmin
B,C+,C−

JI(B,C
+, C−)

subject to: B + C+ ≥ γ1k, ∀k
B − C− ≤ γ2k, ∀k
C+ ≥ 0, C− ≥ 0

(4.65)

where the quantities γ1k and γ2k were defined by (4.44) and (4.45) respectively.
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In this case, a precise analytical characterization of the optimal policy is not possible.
We can however present the Karush-Kuhn-Tucker conditions for this problem. The KKT
conditions, when paired with a suitable regularity condition, provide necessary first-order
conditions for optimality [25].

Remark 4.6. (KKT Optimality Conditions) A set of ex-ante procurements x∗ ∈ R×R+×R+

is optimal with respect to (4.65) if there exists a corresponding set of dual variables λ∗ ∈ R4

such that the pair (x∗, λ∗) satisfies the following conditions:

First-Order Stationarity
g(B∗) = λ1

∗ − λ2∗,
p+C = λ1

∗ + λ3
∗,

p−C = λ2
∗ + λ4

∗,

(4.66)

Dual Feasibility
λi
∗ ≥ 0, ∀i ∈ {1, 2, 3, 4}, (4.67)

Primal Feasibility
C+∗ ≥ 0, B∗ + C+∗ ≥ γ1,

C−
∗ ≥ 0, B∗ − C−∗ ≤ γ2,

(4.68)

Complementary Slackness

λ3
∗C+∗ = 0, λ1

∗ (B∗ + C+∗ − γ1
)

= 0,

λ4
∗C−

∗
= 0, λ2

∗ (B∗ − C−∗ − γ2
)

= 0,
(4.69)

where
g(B) = pB +

(
p+r T + p−r T

)
F (B)− p+r T, (4.70)

γ1 = max
k
γ1k , γ2 = min

k
γ2k ; (4.71)

and the problem is convex, which is the case if and only if: p+r + p−r ≥ 0.

Proof. We begin by observing that the feasible set for problem (4.65), on the space of decision
variables x = (B,C+, C−) ∈ R3, can be fully characterized by the 4 inequality constraints
presented in (4.68). With this description of the feasible set, the conditions (4.66-4.69)
are simple applications of the standard KKT conditions [25, Section 5.5.3]. These conditions
signify optimality if the problem: (1) is convex, and (2) satisfies some constraint qualification
condition.

First, we tackle convexity. Notice that the feasible set for this problem, defined by linear
inequality constraints, is a convex set. Moreover, we observe that all second-order derivatives
of JI(B,C

+, C−) are 0 except for:

∂2JI
∂B2

=
(
p+r T + p−r T

) ∑N
k=1 fk(B)

N
(4.72)
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The condition p+r + p−r ≥ 0, by ensuring JI(B,C
+, C−) has a positive semi-definite Hessian,

is a necessary and sufficient condition for convexity.
Second, we show that this problem satisfies Slater’s condition, a well-known constraint

qualification condition. For an optimization problem, Slater’s condition holds if there is a
strictly feasible point within its set of decision variables. For problem (4.65), this condition
holds if there exists some point that satisfies the inequality constraints described by (4.68)
with strict inequality. We submit that for some small ε > 0, the point

B =
γ1 + γ2

2
, C+ = C− =

γ1 − γ2
2

+ ε, (4.73)

is one such feasible point that strictly satisfies all inequality constraints. As Slater’s con-
dition holds for this convex problem, the KKT conditions described are indeed optimality
conditions.

4.5 Optimal Procurement With Deferrability

In this section, we consider optimal procurement policies in the presence of deferrable loads.
We will work within the framework of the symmetric capacities case. While we can apply
many aspects of this analysis to the asymmetric capacities case, the critical arguments and
observations that relay intuition about the benefit of deferrability are not as apparent as in
the symmetric capacities case.

Consider the threshold policy for reserve dispatch outlined in Theorem 4.1. Clearly, this
policy determines power delivery schedules to deferrable loads within the operating window.
Notice that this policy is the optimal reserve dispatch policy with access to the operating
interval information state (III). We seek optimal forward market policies assuming this
policy for reserve, and in turn deferrable load, scheduling. This is a difficult problem. To the
best of our knowledge, this threshold policy for reserve dispatch prevents a simple analytical
characterization of the optimal forward market policy (B∗, C∗).

We instead approximate the solution to the two-stage optimization problem by introduc-
ing additional decision variables, representing reserve scheduling in the presence of deferrable
loads, when finding the optimal forward market procurement. Thus, we find the optimal
forward market and load scheduling policies (B∗, C∗,d∗) by solving the following modified
version of the optimization problem (4.20).

argmin
B,C,d

JI (B,C,d)

subject to: P {|dk + nk −B| ≤ C} ≥ η,∀k
C ≥ 0,

N∑

k=1

dk ∆t = L, 0 ≤ dk ≤ m ∀k.

(4.74)
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where the cost function JI(B,C,d) is described by:

JI (B,C,d) = pBB + pCC

+ E

[
p+r ∆t

N∑

k=1

[dk + nk −B]+ + p−r ∆t
N∑

k=1

[B − dk − nk]+
]

(4.75)

In effect, solving this relaxed problem (4.74) yields the optimal reserve dispatch policy
with access to the forward market (III), rather than the real-time (III), information state.
While this approach yields sub-optimal forward market procurement policies with respect
to the original two-stage problem formulation, this approach offers insight into the impact
of reserve scheduling on forward market decisions.

As described in Section 4.4.2, this problem is convex if the net load process n has log-
concave probability distributions. Employing the same technique described in Lemma 4.1,
we observe the following.

Lemma 4.2. Assuming the net load process n is a sequence of normally distributed random
variables with time varying means mk and variances σk

2, the chance constraints in (4.74)
can be sufficiently characterized by the following linear inequalities.

B + C ≥ γ3k + dk (4.76)

B − C ≤ γ4k + dk (4.77)

where:

γ3k = mk + φ−1
(

1

2
+
η

2

)
σk (4.78)

γ4k = mk − φ−1
(

1

2
+
η

2

)
σk (4.79)

and φ−1(y) is the quantile function of a zero-mean, unit-variance normal distribution.

Proof. The proof is identical to that for Lemma 4.1 with γ3k + dk playing the role of γ1k and
γ4k + dk playing the role of γ2k.

Therefore, the optimization problem (4.74) only has linear inequality or equality con-
straints.

Remark 4.7. (Constraints Comparison with No Deferrability Case) Clearly, the constraints
modeling loss of load probabilities in the case with deferrable loads, (4.76) and (4.77), differ
from their counterparts in the no deferrability case, (4.41) and (4.42), only through choice
of dk. Specifically, these constraints are equivalent if:

γ1k =γ3k + dk, (4.80)

γ2k =γ4k + dk. (4.81)
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In the absence of deferrable loads, these constraints are fixed and determined solely by the
statistics of the net load process. In the presence of deferrable loads, judicious allocations
to such loads, parametrized by dk, enables the modulation of these constraints. The cost
reductions on ex-ante procurements (B,C) afforded by this ability to modulate constraints is
an estimate of the financial benefit afforded by deferrability.

We now analyze the impact of deferrable load scheduling decisions (d) on the optimal
forward market procurement policy (B∗.C∗). Specifically, we show that, similar to the no
deferrability case, the optimal procurement policies as functions of the deferrable load alloca-
tions (B∗(d), C∗(d)) can be expressed on a partition of procurement prices

(
pB, pC , p

+
r T, p

−
r T
)
∈

R4 given by D1 ∪ D2 ∪ D3 = R4. Crucially, this partition depends on the load scheduling
decisions d.

D1 ={ (x, y, z1, z2) |gd(x, z1, z2, α) ≤ −y }
D2 ={ (x, y, z1, z2) | |gd(x, z1, z2, α)| ≤ y }
D3 ={ (x, y, z1, z2) |gd(x, z1, z2, α) ≥ y },

and α, β, and g(x, z, B) are:

α =
maxk (γ3k + dk) + mink (γ4k + dk)

2
(4.82)

β =
maxk (γ3k + dk) − mink (γ4k + dk)

2
(4.83)

gd(x, z1, z2, B) = x+ (z1 + z2)

∑N
k=1 F̄k(B)

N
− z1 (4.84)

where F̄k(x) is the CDF of a normal distribution with mean dk +mk and variance σk
2.

Theorem 4.4. (Optimal forward market procurement policy with deferrable loads) Assume
the net load process n is sequence of normal random variables. The optimal forward market
bulk power and reserve capacity procurement policies, as functions of the deferrable load
allocations d, can be expressed on a partition (P1,P2,P3) of the space of procurement prices(
pB, pC , p

+
r T, p

−
r T
)
∈ R4.

B∗(d) =





inf{B : gd(pB, p
+
r T, p

−
r T,B) ≥ −pC}, if ρ ∈ D1

α, if ρ ∈ D2

sup{B : gd(pB, p
+
r T, p

−
r T,B) ≤ pC}, if ρ ∈ D3

(4.85)

C∗(d) =





−min
k

(
γ4k + dk

)
+B∗, if ρ ∈ D1

β, if ρ ∈ D2

max
k

(
γ3k + dk

)
−B∗, if ρ ∈ D3

(4.86)

Moreover, this procurement policy minimizes costs if and only if: p+r + p−r ≥ 0.



CHAPTER 4. IMPACT OF DEFERRABILITY ON EX-ANTE OPERATIONS 78

Proof. The proof technique is identical to that of Theorem 4.3.

Remark 4.8. (Load-Scheduling Heuristic) Given a particular choice of feasible deferrable
load allocation d, the optimal forward market procurement policy (B∗, C∗) has the same form
(Theorem 4.4) as that in the no deferrability case (Theorem 4.3). Notably, the choice of d
only affects the optimal procurement policy in two ways:

1. The chance constraints described by (4.76) and (4.77) and,

2. The rule for bulk power procurement through the function gd(pB, p
+
r T, p

−
r T,B) as de-

fined by (4.84).

Armed with this characterization of bulk power and reserve capacity, we could formulate
and numerically solve a stochastic optimization problem to determine the optimal deferrable
load allocation d. However, we eschew this approach in favor of a simple load scheduling
heuristic motivated by the structure of the optimal forward market policy.

Consider the quantities α (4.82) and β (4.83). Clearly, decreased values of α and β result
in a feasible set for the optimization problem that accomodates reduced procurements of bulk
power and reserve capacity. Minimal values of α and β are obtained by simultaneously:

1. minimizing max
k
γ3k + dk while,

2. maximizing min
k
γ4 + dk.

Intuitively, the choice of deferrable load allocations d that reduces the difference between
these two quantities will minimize ex-ante procurement costs. Accordingly, a load-scheduling
heuristic can be found by solving (4.87).

d∗ = argmin
d

max
i

(
γ3i + di

)
+ max

j

(
−γ4j − dj

)

subject to: 0 ≤ dk ≤ m, ∀k
N∑

k=1

dk∆t = L

(4.87)

4.6 Simulation Test Cases

In this section, we illustrate key aspects of the theory developed in this chapter through
simulations. Specifically, we calculate the reductions in ex-ante procurements offered by
deferrability. First, we demonstrate the concepts developed in this chapter on a synthetic
example. We then apply this analysis framework to a more realistic test case based on load
and solar generation data.
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4.6.1 Synthetic Example

Parameters

For this example, we work under the assumption of symmetric capacities as described by
(4.4). Hence, the CM procures two quantities, B and C, for each hour-long operating
window. There are 4 balancing times within this operating window. At each balancing time
k, the net load is normally distributed with the means (µk) and standard deviations (σk)
listed in Table 4.1.

k µk (kW) σk (kW)
1 525 50
2 550 50
3 475 50
4 450 50

Table 4.1: Net load statistics for the synthetic test case

We choose a loss of load probability η = 0.997. This makes the load constraint a ‘three-
σ’ rule - generation procurement must account for net load deviations within 3 standard
deviations of the mean.

To facilitate analysis, we assume the procurement prices (pB, pC , p
+
r T, p

−
r T ) always belong

to the set D2 in the partition of procurement prices described in Theorem 4.4, or the set P2

in the partition defined in Theorem 4.3. This ensures that the optimal procurement policy
is described by the vertex (α, β) of the feasible set X (Figure 4.3).

To understand the value of deferrable loads, we vary both the energy need of the deferrable
load component (L) as well as the servicing rate limit (m). The energy need is varied on
the interval [0, 75] (kWh). As the total load requirement over this operating window is 500
kWh, this corresponds to deferrable load penetrations of upto 15%. The servicing rate limit

is varied from
L

4∆t
(constant, inflexible deferrable load profile) to

L

∆t
(no rate limits). For

each of these deferrable load characterizations, we compute the ex-ante procurements based
on the load-scheduling heuristic described in (4.87).

Results

Figure 4.4 compares the feasible sets for ex-ante procurements for cases with and without
deferrability. The values γ1 and γ2 characterize this set when load is purely static. With
deferrable loads, employing the load-scheduling heuristic (4.87) yields a set of feasible pro-
curements described by γ∗1 and γ∗2 . Clearly, the load-scheduling heuristic reduces ex-ante
procurement needs by modulating constraints on these decision variables. In this case, the
optimal reserve capacity procurement decreases from 200 to 160 kW.

Figure 4.5 shows the improvements in reserve capacity procurements possible at various
levels of deferrable energy need (L) and rate limit (m). It is apparent that greater reserve
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Figure 4.4: Illustration of how deferrable loads reduce optimal ex-ante procurements using
this framework. The blue and black circles correspond to the optimal procurements with and
without deferrability respectively. This particular case assumes deferrable load parameters:
L = 40 kWh and m = 80 kW.

capacity reductions are possible with: (1) higher deferrable load penetrations, and (2) less
stringent servicing rate limits. However, these results also suggest that there is an upper
bound on the marginal benefit of additional deferrable loads. This occurs because there is a
fundamental limit to the benefit resulting from modulating constraints. Further reductions
in ex-ante procurements can only be realized through other means such as, for instance,
improved forecasting of net load.

4.6.2 Solar Penetration Test Case

Parameters

This test case is based on solar generation data from the PV integrator Solar City and
aggregate load data from the California ISO. These time series data are the same as those
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Figure 4.5: Optimal reserve capacity procurement as a function of total deferrable load
energy need (L) and servicing rate limit (m). The total load requirement is 500 kWh.

used for analysis of real-time scheduling algorithms in Section 3.4.
As in the case with the synthetic example, we make the following assumptions in our

analysis:

A1 Symmetric Capacities for up and down reserves as described by (4.4).

A2 Loss of load probability η = 0.997 in line with the ‘three-σ’ loss of load rule.

A3 Procurement prices (pB, pC , p
+
r T, p

−
r T ) always belong to the set D2 in the partition

of procurement prices described in Theorem 4.4, thereby ensuring that the optimal
procurement policy is described by the vertex (α, β) of the feasible set X (Figure 4.3).

We compute ex-ante procurements separately for each hour of the day. There are 6
balancing times within each hour-long operating window (N = 6, ∆t = 10 mins). We study
the impact of deferrable load size on procurements by varying the proportion, α, of the
total load energy requirement that is deferrable. Let l be the DA forecast of total load
over an operating window. For a given value of α, we compute the deferrable load size and
consequently, the static load profile s = {sk} according to (4.88) and (4.89).

L = α
N∑

k=1

lk∆t (4.88)

sk = lk −
L

N∆t
, ∀k ∈ {1, . . . , N} (4.89)
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For each balancing time k, we compute day-ahead forecasts of net load based on this
data. To do this, we use variants of the methods outlined in Section 3.4.

1. Static Loads: We use day-ahead load forecasts, corresponding to the load time-series
data, from the California ISO. These hourly demand forecasts are normalized. Let s̃
refer to the forecasted static load for a given hour.

2. Renewable Generation: For each hour of the operating window, we calculate the
average generation over the past 5 days. Let w̃ refer to the forecasted renewable
generation for a given hour.

Let ñ refer to the net load forecast for this hour. Clearly, we have ñ = s̃− w̃ .
For each balancing time k, we compute a mean scaling factor to model typical sub-hourly

trends present in the data. These factors, denoted {fk}Nk=1, are computed independently for
each hour of the day using the net load profile.

Consider a particular hour of the day. Let njk refer to net load at balancing time k within
this hour on day j. Moreover, let Nd be the total number of days present in the data set
and n̄j be the average net load across all balancing times for this hour on day j. The factors
can be computed according to (4.90).

fk =

∑Nd

j=1

njk − n̄j
n̄j

Nd

(4.90)

Given these factors, the mean net load forecast at each balancing time k is given by:

µk = (1 + fk) ñ (4.91)

where ñ is the net load forecast for the hour under consideration.
For each hour, we assume constant net load variance σ2 across all balancing times. We

use the mean squared error in the net load forecasts as an estimate of this variance. For a
particular hour, let ñj be the net load forecast and n̄j be the hourly net load average on day
j respectively. The net load variance is given by:

σ2 =
1

Nd

Nd∑

j=1

(
ñj − n̄j

)2
(4.92)

To investigate the marginal benefit of deferrability under this framework, we vary both
the proportion by energy of the deferrable load component (α) as well as the servicing rate
limit (m). The deferrable load proportion is varied on the interval [0, 0.1]. The servicing rate

limit is varied from
L

6∆t
(constant, inflexible deferrable load profile) to

L

∆t
(no rate limits).

For each of these deferrable load characterizations, we compute the ex-ante procurements
based on the load-scheduling heuristic described in (4.87).
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Results

Figure 4.6 shows ex-ante procurements for a typical day with and without deferrable loads.
Two trends are immediately evident. First, the bulk power purchase is lowest at midday
(10:00-14:00) and highest in the evening (17:00-21:00). Second, the capacity procurement is
highest during the late morning and early afternoon hours. Both these trends agree with
typical solar power output and load patterns. Solar generation is highest during the mid-day
hours, which explains both the reduced bulk power requirements as well as the increased
capacity requirements. While peak load requirements typically occur in the afternoon, peak
net load only occurs later in the evening once solar power is no longer available.

Figure 4.7 shows the reductions possible in reserve capacity procurements possible at
various levels of deferrable load penetration (α) and rate limit (m). These results suggest
that higher deferrable load proportions and less stringent rate limits offer reserve capacity
reductions. Moreover, the vast majority of these reductions can even be achieved at low
levels of deferrable load penetration. In fact, we observe that, similar to the synthetic test
case, there is a bound on the capacity reductions possible through addition load scheduling.

Both figures 4.6 and 4.7 suggest that deferrable loads only offer small reductions (< 5%)
in capacity requirements. These relatively modest benefits are explained by the deferrable
load model used in this analysis. Note that we performed independent analyses for each
hour-long operating window. As a result, we effectively limit our analysis to deferrable loads
that have fixed hourly energy needs and do not model loads with deferrability windows
longer than an hour. A modeling framework that can accommodate deferrable loads over
longer windows, or involves multiple ex-ante procurements for intervals within the operating
window, would indicate greater benefits of deferrability to ex-ante operations. However,
such a formulation may not be amenable to simple analytical characterizations like those
presented in this chapter. More precise quantification of the benefit of deferrability would
require detailed deferrable load models.

4.7 Conclusions & Possible Extensions

In this chapter, we have investigated the effect of coordinated deferrable load scheduling
on ex-ante forward market decisions. We first performed this analysis in the case of a
fully static load under various sets of working assumptions. Assuming no reserve capacity
procurement, we expressed the optimal bulk power procurement as a quantile on prices.
Assuming symmetric reserve capacities, we analytically characterized the optimal bulk power
and reserve capacity decisions on a partition of their forward market prices and the energy
price of operating reserves. Using an aggregate model for deferrable loads, we derived a
threshold policy for optimal reserve scheduling in the face of uncertain supply. We also
offered a mathematical framework to analyze the effect of load scheduling on forward market
decisions, and subsequently quantified the operational cost reductions offered by deferrability
over a series of synthetic test cases.
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Figure 4.6: Variation in ex-ante procurements over a typical day with (B ±C) and without
(B∗ ± C∗) deferrable loads.
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Figure 4.7: Optimal reserve capacity procurement as a function of deferrable load proportion
(α) and servicing rate limit (m). All reserve capacities C∗ are expressed as fractions of the
initial reserve capacity requirement C. Results are averaged over 50 days.
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There are several practical aspects of integrating deferrable loads that require further ex-
ploration. In this study, we work exclusively with an aggregate deferrability model assuming
a single deferrable load. Extensions of these formulations to situations with multiple loads
having varying degrees of flexibility will enable more accurate estimates of grid operation
costs. Moreover, the optimal reserve scheduling policy computed in this chapter assumes an
uncorrelated renewable generation process. This is a strong assumption and future work will
center around finding appropriate optimal policies for a correlated process.

In this chapter, we do not address various power network constraints that affect gener-
ation procurement. Incorporating network considerations in our formulations will further
improve the accuracy of our operating cost estimates. Finally, we also want to develop fair
compensation mechanisms for flexible loads that are cognizant of the value they offer grid
operations.
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Chapter 5

The Benefit of Wind Curtailment

In Chapters 3 and 4, we demonstated the reserve cost reductions achievable by exploiting the
flexibility present in loads to better match renewable generation. In this chapter, we explore
another approach to facilitating renewable integration focused on the sources of variability
– the renewable power producers. Specifically, we investigate mechanisms that allow wind
power producers (WPPs) to better manage variability in their output. Curtailing WPP
output depending on system conditions is a key component of such schemes. To this end,
we study individual WPP decision-making in response to market signals.

5.1 Motivation

Wind power will play a central role in achieving renewable penetration targets in many
countries. In fact, certain countries have set specific targets for wind generation alone. The
US Department of Energy (DOE) has set a goal of reaching 20% wind penetration by 2030
[52], while Denmark has set a more ambitious target of wind power generation accounting for
50% of national energy consumption by 2025 [126]. To incentivize construction of utility-scale
wind farms, many countries and states have provided preferential treatment for wind power
in the form of guaranteed grid access. However, such support cannot continue indefinitely.
The impact of variability in renewables at high levels of wind energy penetration on reserve
costs will become unacceptable. Indeed, certain countries have already begun to modify
rules governing wind power producer (WPP) participation in wholesale electricity markets
[2, 109, 55].

Motivated by such transitions, we consider the scenario in which WPPs offer power in
conventional two-settlement electricity markets. Specifically, the WPP agrees to produce a
contracted amount ex-ante and is penalized for deviations (up and down) from this contracted
position. In this setting, a WPP with the ability to curtail wind production can avoid
imbalance penalties by adjusting production levels in real-time.

In this context, curtailment is a voluntary and rational action of a profit-maximizing
WPP and is not the result of ISO-mandated dispatch adjustments. Currently, certain ISOs
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curtail wind generation through manual dispatch to alleviate congestion in the transmis-
sion network [110]. There are two issues with this form of generation re-dispatch. First,
this requires fair schemes for compensating WPPs for their curtailed output. To the best
of our knowledge, such schemes do not exist - an assertion supported by the sizable vari-
ation in payment practices employed by different ISOs [110]. Second, the ISO assumes a
degree of legal risk under this paradigm as WPPs may allege that certain curtailment re-
quests were unnecessary. This issue came to light in a 2011 petition to the Federal Energy
Regulatory Commission (FERC), in which WPPs in the Bonneville Power Administration’s
(BPA) balancing area challenged BPA’s curtailment practices. FERC, ruling in favor of the
WPPs, called the BPA’s mandatory curtailment policy under system overproduction condi-
tions ‘unduly discriminatory’ [57]. In line with this recent FERC ruling, we focus exclusively
on market-based mechanisms inducing voluntary curtailment.

Much of the recent literature outlines mechanisms, such as retail dynamic pricing tar-
iffs [114] and energy storage [58], that mitigate energy spillage resulting from wind power
curtailment. Alternatively, other studies have attempted to quantify the benefit accruing
from wind curtailment. Evans [54] quantifies the economic gain of coordinated wind power
curtailment with a hydro-electric storage system – enabling price arbitrage to increase profit
margins. Ela [50] argues that curtailment of wind power in response to LMPs may relieve
transmission congestion and simultaneously provide economic benefits to the WPP. To the
best of our knowledge, no attempt has been made to explore the strategic self-induced cur-
tailment of wind power in response to asymmetric imbalance prices – an effect we refer to
as market induced curtailment.

In this chapter, we quantify the financial benefit to a WPP of having full curtailment ca-
pability. We begin by developing a stochastic model for wind power production and present
a stylized model of a competitive two-settlement electricity market. We then formulate and
solve a two-stage stochastic optimization problem yielding the profit-maximizing contract
and curtailment policies. Using these results, we quantify the increase in expected profit
attainable through curtailment. We show that the optimal contract offer and the resulting
expected profit can be expressed analytically on a partition of the space of expected imbal-
ance prices. We also show that curtailment always results in an increase in the expected
profit. Moreover, this curtailment benefit depends solely on expected values of imbalance
prices and wind power. Finally, we conduct several empirical studies, using time series
data from the NYISO and MISO, to demonstrate the financial benefit achievable through
curtailment.

Implicit in the decision to curtail is the problem of optimizing forward contract offerings
in the face of uncertain supply. This is a well studied problem. Morales et al. [93] and
Bathurst et al. [17] used stochastic programming approaches to numerically compute DA
contract offers that maximize expected profit in a two-settlement market setting. Recently,
Botterud et al. [24] studied optimal bidding strategies through nonlinear programming in the
case where a WPP has the choice of bidding into either the DA or RT market. These studies
are computational in nature. Other studies have focused on analytical characterizations of
the optimal contract offerings. Bitar et al. [18] and Pinson et al. [103] showed the optimal
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DA contract offer is a quantile on prices – a well established result in inventory theory
[102]. With the inclusion of curtailment capability, the results obtained in this chapter are a
natural extension of those presented in [18]. Indeed, we compare our results to those of [18]
to ascertain the impact of curtailment on optimal WPP behavior.

The remainder of this chapter is organized as follows. In Section 5.2, we present market
and wind power production models. Sections 5.3 and 5.4 contain our main results on opti-
mal curtailment and forward contract policies, respectively. In Section 5.5, we empirically
compute the financial benefit afforded by curtailment using wind and price time series data.
We conclude and suggest possible directions for future research in Section 5.6.

5.2 Problem Formulation

5.2.1 Wind Power Model

Let w(t) refer to the wind power available to a WPP at time t. To accommodate the variable
nature of wind speed and direction, we model w(t) as a scalar-valued stochastic process. We
normalize this value by the farm’s nameplate capacity, thus w(t) ∈ [0, 1]. Let w refer to this
stochastic process over a specific delivery window [t0, tF ]:

w = {w(t)|t ∈ [t0, tF ]}. (5.1)

For fixed t ∈ R, w(t) is a random variable with probability density function φ(w; t). Let
fw(w) and Fw(w) be time-averaged probability density and cumulative distribution functions
on the delivery window [t0, tF ] of width T = tF−t0. These quantities can be readily computed
using the formulae (5.2) and (5.3).

fw (w) =
1

T

∫ tF

t0

φ(w; t)dt. (5.2)

Fw (w) =

∫ w

0

fw(x)dx. (5.3)

In addition, we define the quantile function F−1w : [0, 1]→ [0, 1] corresponding to the cumu-
lative distribution function (CDF):

F−1w (y) = inf {x ∈ [0, 1] : Fw(x) ≥ y} . (5.4)

This function plays a key role in characterizing the optimal contract offerings.

5.2.2 Curtailment Model

The curtailment decision at time t is expressed as a scalar α(t), where α(t)w(t) denotes the
amount of power produced at time t. We make two simplifying assumptions to facilitate
analysis.
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A1. WPP output can be fully curtailed at any time within the delivery window. As a
result, the curtailment factor α(t) takes values on the closed interval [0, 1].

A2. There are no inter-temporal constraints limiting the curtailment rate. In other words,
for all times t1, t2 ∈ [t0, tF ], the curtailment decisions α(t1) and α(t2) are independent.

Remark 5.1 (Curtailment in practice). Physically, wind curtailment is achieved by pitching
the angle of turbine blades with respect to wind direction. This alters the angular velocity of
the blades and consequently, the amount of power generated. In practice, the curtailment rate
is limited as sudden decreases in plant output result in real power imbalances that adversely
affect system frequency. As a result, while fast curtailment rates are possible, typical ramp
rate limits for WPPs in practice are on the order of 3–5 MW/min [91].

Let α refer to the continuous set of curtailment decisions on the time interval [t0, tF ]:

α = {α(t)|t ∈ [t0 tF ]}. (5.5)

We highlight the fact that these decisions are made within the delivery interval.

5.2.3 Market Model

Model Description

We assume the wind power producer (WPP) participates in a competitive two-settlement
market system. This system consists of an ex-ante day-ahead (DA), or forward, market
and an ex-post imbalance settlement mechanism to penalize uninstructed deviations from
contracts scheduled in the DA market. In this framework, the WPP agrees in the DA market
to supply a level of generation C over the delivery window. The WPP is obligated to deliver
this level of generation and is penalized for deviations from this contracted position. Figure
5.1 is a graphical illustration of this model for WPP participation in electricity markets.

Working within this framework, the WPP faces three market prices:

1. p: ($/MWhr) contract settlement price in the DA market or DA price,

2. q: ($/MWhr) imbalance price for negative deviations (w(t) < C) or shortfall price.

3. λ: ($/MWhr) imbalance price for positive deviations (w(t) > C) or surplus price.

This pricing scheme for penalizing contract deviations reflects both the energy imbalance
in the control area and the price of balancing energy at times between the DA market and
the delivery window. We assume that the imbalance prices (q, λ) are unknown during the
DA market and are not revealed until the delivery window. These imbalance prices can
be either positive or negative, and play the role of market signals from the ISO indicating
system generation conditions. For instance, a negative shortfall price q can occur in the
event of systemic over-production, thereby inducing WPPs to deliberately supply less than
their contracted positions.
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Figure 5.1: Timeline illustrating the two-settlement market model assumed for WPP par-
ticipation.

Assumptions

We make the following assumptions regarding prices and production costs.

A3. The WPP is assumed to have zero marginal cost of production.

A4. As the capacity of a single WPP is small relative to the entire market, the effect of
individual offers on the forward market clearing price p is minimal. Thus, we assume
the WPP behaves as a price taker in the forward market. This market price, p, is
assumed fixed and known.

A5. The imbalance prices (q, λ) are constant over contract intervals and are revealed 5-15
minutes before the delivery window.

A6. As imbalance prices are generally difficult to forecast in advance of the delivery window,
we model q and λ as random variables with a joint probability distribution function
fq,λ(q, λ) assumed known at the forward market.

A7. Again, as the capacity of a single WPP is small relative to the entire market, associated
deviations have negligible effect on the imbalance prices. Thus, we assume q and λ to
be statistically independent of the corresponding wind power process, w.

A8. The scenario in which the WPP is compensated by the ISO for both generation sur-
pluses and shortfalls (q < 0 and λ < 0) is not practical in any envisaged market.
Accordingly, the following constraint is imposed on the joint probability distribution
function:

P {q < 0, λ < 0} = 0. (5.6)
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5.2.4 Metrics

Working under these assumptions, the profit acquired by a WPP over time interval [t0, tF ]
is given by:

Π(C, α,w, λ, q) = pCT

− q

∫ tF

to

[C − α(t)w(t)]+ dt

− λ

∫ tF

to

[α(t)w(t)− C]+ dt. (5.7)

where [x]+ = max(x, 0).
The first term refers to revenue obtained from agreeing to the contract C signed at the

time of the DA market. The second and third terms represent imbalance costs for generation
shortfall and surplus respectively.

This quantity is inherently random, as it depends on the realization of wind power w
and imbalance prices (q, λ). Consequently, we focus on the metric of expected profit:

J(C, α) = E [Π(C, α,w, q, λ)] , (5.8)

where expectation is taken with respect to the imbalance prices (q, λ) and the wind power
process w.

Using this model, we formulate a two-stage stochastic program consisting of an initial
forward contract offering C – scheduled to be delivered continuously over a time interval
[t0, tF ] – followed by a sequence of curtailment decisions α upon realization of imbalance
prices (q, λ) and wind power w.

5.2.5 Optimization Problem

Our objective is to identify a forward contract C and curtailment policy α that maximize
expected profit (5.8). Specifically,

(C∗, α∗) = argmin
C,α

J(C, α). (5.9)

Because of the significant lead time on delivery of the ex-ante commitment C, problem
(5.9) can be decomposed into a two-stage stochastic optimization problem, where the set of
decisions (C, α) are assumed to have a causal information structure. Specifically, the contract
C is agreed to in the forward market (Stage I) well in advance of the actual delivery interval,
while the curtailment factor α is chosen at time of delivery (Stage II). While the forward
contract offering C is decided upon in the face of uncertainty in wind and imbalance prices,
the decision to curtail α(t) at a time t is made with full knowledge of the wind realization
w(t), contract C, and imbalance prices (q, λ). It follows that (5.9) can be decomposed into
the following two-stage optimization problem.
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Stage I: C∗ = argmin
C

E
[
max
α

Π(C, α,w, q, λ)
]

(5.10)

Stage II: α∗ = argmin
α

Π(C, α,w, q, λ) (5.11)

Effectively, probability distributions for the wind process w, and the imbalance prices
(q, λ) are only necessary in determining the optimal contract. Our approach in this chapter
is as follows. First, we find the optimal choice of curtailment factors α∗ assuming an arbi-
trary contract C (Stage II). We then compute the optimal contract C∗ (Stage I) given the
optimal curtailment policy, α∗. The resulting solution is optimal with respect to the original
optimization problem (5.9).

5.3 Optimal Curtailment Policy

As we have assumed no inter-temporal constraints limiting the rate of curtailment α(t), the
curtailment decisions decouple across time. It follows that the optimal curtailment decision
α∗(t) at each time t depends only on the available information at that time - the wind power
available w(t) and the imbalance prices (q, λ). Specifically, the curtailment decision depends
on the following properties of the available information:

1. The wind power available w(t) compared to the forward contract C,

2. The signs of the imbalance prices (q, λ).

To simplify the characterization of the optimal curtailment policy, we partition the space
of possible available generation into two half-spaces representing generation shortfall, Ω−(C),
and surplus, Ω+(C).

Shortfall: Ω−(C) = {w(t) < C}
Surplus: Ω+(C) = {w(t) ≥ C}

Clearly, Ω−(C) ∪ Ω+(C) = [0, 1], the support for available wind power w(t). We now
describe the optimal curtailment policy, α∗−(t) and α∗+(t), on each half-space Ω−(C) and
Ω+(C) respectively.

5.3.1 Shortfall (Ω−(C))

In the case of generation shortfall, the surplus price λ does not affect the realized profit for
all possible curtailment decisions (α(t) ∈ [0, 1]). Accordingly, the choice of α(t) depends
solely on the sign of the shortfall price q. Clearly, for a positive shortfall price (q > 0), the
WPP, attempting to avoid under–producing as best it can, delivers the entire quantity –
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yielding α∗(t) = 1. Alternatively, for a negative shortfall price (q ≤ 0), the WPP profits
from under-producing, yielding optimality of full curtailment α∗(t) = 0.

Combining these characterizations, we see that the optimal curtailment policy, during
realized generation shortfalls, is piece-wise constant on the space of imbalance prices (q, λ).
In summary, we have:

α∗−(t) =

{
1, q > 0, λ ∈ R
0, q ≤ 0, λ ∈ R

. (5.12)

5.3.2 Surplus (Ω+(C))

In the case of generation surplus, the profit depends on the signs of both surplus λ and
shortfall q imbalance prices. The optimal curtailment policy is different on each quadrant of
the space of imbalance prices (q, λ) ∈ R2. This dependence is as follows:

1.
{

(q, λ) ∈ R2 : q > 0, λ > 0
}

This is the case where both surpluses and shortfalls are penalized. Here, the obvious
policy is to curtail down to the ex-ante commitment C, thereby avoiding any imbalance.
The corresponding curtailment factor α∗(t) = C/w(t).

2.
{

(q, λ) ∈ R2 : q > 0, λ ≤ 0
}

In this case, surpluses are rewarded and shortfalls penalized. The optimal policy is
one of full delivery, which maximizes revenue gained from surplus while minimizing
the chance of paying a shortfall penalty – i.e.: α∗(t) = 1.

3.
{

(q, λ) ∈ R2 : q ≤ 0, λ > 0
}

In this case, shortfalls are rewarded and surpluses penalized. the optimal policy is one
of full curtailment, which maximizes revenue gained from shortfall while avoiding any
penalty for over-production – i.e.: α∗(t) = 0.

4.
{

(q, λ) ∈ R2 : q ≤ 0, λ ≤ 0
}

This case is not considered for reasons outlined in Assumption A8, Section 5.2.

Combining these characterizations, the optimal curtailment can be explicitly character-
ized as a piece-wise affine function on the space of imbalance prices. More specifically, the
optimal policy is:

α∗+(t) =





C/w(t), q > 0, λ > 0

1, q > 0, λ ≤ 0

0, q ≤ 0, λ > 0

−, q ≤ 0, λ ≤ 0

. (5.13)



CHAPTER 5. THE BENEFIT OF WIND CURTAILMENT 94

Combining (5.12) and (5.13), we have the optimal curtailment policy defined on the entire
space of available information (w(t), q, λ):

α∗(t) = α∗−(t) I{w(t) < C} + α∗+(t) I{w(t) ≥ C}. (5.14)

5.4 Optimal Contract Offer

Given the optimal curtailment policy outlined in Section 5.3, we now compute the expected-
profit maximizing contract offering C∗ in the DA forward market, defined as:

C∗ = argmin
C∈[0,1]

J(C, α∗). (5.15)

We now define four weighted conditional expectations that will play a central role in char-
acterizing the optimal contract.

Definition 5.1. Average shortfall penalty: µ+
q

µ+
q = E [ q | q > 0 ] P{q > 0} (5.16)

Definition 5.2. Average shortfall reward: µ−q

µ−q = E [ q | q < 0 ] P{q < 0} (5.17)

Definition 5.3. Average surplus penalty: µ+
λ

µ+
λ = E [λ |λ > 0 ] P{λ > 0} (5.18)

Definition 5.4. Average surplus reward: µ−λ

µ−λ = E [λ |λ < 0 ] P{λ < 0} (5.19)

These weighted conditional expectations depend solely on the probability distribution of
imbalance prices fq,λ(q, λ). Notice that the law of total expectation yields:

µ+
q + µ−q =: µq = E [q]

µ+
λ + µ−λ =: µλ = E [λ]

In an analogous manner to [18], we now show that the optimal contract policy C∗ can be
analytically expressed on a partition of the space of expected imbalance prices (µq, µλ) ∈ R2

given by P1 ∪ P2 ∪ P3 = R2, where:

P1 = { (x, y) ∈ R2 | y ≤ −p+ µ−q + µ+
λ ,

µwy + (µw − 1)x ≤ −p+
(
µ−q + µ+

λ

)
µw }

P2 = { (x, y) ∈ R2 | x > p , y > −p+ µ−q + µ+
λ }

P3 = { (x, y) ∈ R2 | x ≤ p ,

µwy + (µw − 1)x > −p+
(
µ−q + µ+

λ

)
µw }.

(5.20)
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Figure 5.2: Graphical illustration of the optimal contract policy on the partition (P1,P2,P3)
of expected imbalance prices (µq, µλ)

Here, µw denotes the expected value of the time-averaged distribution of the wind power
process on [t0, tF ]. This partition is graphically illustrated in Figure 5.2.

We are now ready to state the main result of this chapter - the optimal contract policy
that maximizes expected profit for a WPP with full curtailment capability.

Theorem 5.1 (Optimal Contract). For a WPP, exercising the curtailment policy α∗ given
by (5.14), that faces the pair of expected imbalance prices ξ = (µq, µλ) ∈ R2,

(a) the optimal contract offering C∗ is given by:

C∗ =





0, if ξ ∈ P1

F−1w (γc), if ξ ∈ P2

1, if ξ ∈ P3.
, γc =

p− µ−q + µ−λ
µ+
q + µ−λ

(5.21)

(b) the optimal expected profit J(C∗, α∗) is given by:

J(C∗, α∗)

T
=
J∗

T
=





−µ−λ µw, if ξ ∈ P1

µ+
q

∫ γc

0

F−1w (θ) dθ − µ−λ
∫ 1

γc

F−1w (θ) dθ, if ξ ∈ P2

(
p− µ−q

)
− µ+

q (1− µw) , if ξ ∈ P3.

(5.22)
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Proof. (a): Recall that the time-averaged probability density function for the wind is denoted
fw(w), and the joint probability density for the imbalance prices, fq,λ (q, λ). The expected
profit function for a WPP over a time interval of length T = tF − t0 can be expressed as:

J(C, α)

T
= pC − Ew,q,λ

[
q [C − αw]+ − λ [αw − C]+

]
(5.23)

Assuming the WPP employs the optimal curtailment factor α∗ outlined in (5.14), the
imbalance costs encountered by the WPP differ depending on the particular combination of
w, q and λ:

J(C)

T
=
J (C, α∗)

T
= pC − Ew,q,λ

[
I{w < C, q < 0} qC + I{w < C, q > 0} q (C − w)

+ I{w > C, λ > 0, q > 0} (0) + I{w > C, λ < 0, q > 0} λ (w − C)

+ I{w > C, λ > 0, q < 0} q C
]

(5.24)

Notice that we have invoked the assumption that at least one of the imbalance prices is
non-negative (Assumption A8, Section 5.2) and excluded the appropriate cases from (5.24).

As we consider the random variable w to be independent of the imbalance prices q and
λ (Assumption A7, Section 5.2), the expected profit can be expressed as:

J (C)

T
= pC −

∫ 0

−∞
q

∫ ∞

−∞
fq,λ(q, λ) dλ dq C

∫ C

0

fw(w)dw

−
∫ ∞

0

q

∫ ∞

−∞
fq,λ(q, λ) dλ dq

∫ C

0

(C − w) fw(w)dw

−
∫ 0

−∞
λ

∫ ∞

0

fq,λ(q, λ) dq dλ

∫ 1

C

(w − C) fw(w)dw

−
∫ 0

−∞
q

∫ ∞

0

fq,λ(q, λ) dλ dq C

∫ 1

C

fw(w)dw

(5.25)

Assumption A8 also yields the following equalities:

∫ 0

−∞
λ

∫ ∞

0

fλ,q(λ, q) dq dλ =

∫ 0

−∞
λ

∫ ∞

−∞
fλ,q(λ, q) dq dλ (5.26)

∫ 0

−∞
q

∫ ∞

0

fλ,q(λ, q) dλ dq =

∫ 0

−∞
q

∫ ∞

−∞
fλ,q(λ, q) dλ dq (5.27)

Using (5.26) and (5.27) and the terminology defined in (5.16) - (5.19), we can express the
expected profit as:

J (C)

T
= pC − µ−q C − µ+

q

∫ C

0

(C − w) fw(w)dw − µ−λ

∫ 1

C

(w − C) fw(w)dw (5.28)
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Assuming fw(w) is a continuous distribution on [0, 1], it follows that J(C) is also differen-
tiable on [0, 1]. We apply the Leibniz integral rule to obtain the first and second derivatives
of J(C):

dJ

dC
= T

(
p− µ−q + µ−λ −

(
µ+
q + µ−λ

)
F (C)

)
(5.29)

d2J

dC2
= −Tf(C)

(
µ+
q + µ−λ

)
(5.30)

As T > 0 and f(C) ≥ 0 ∀C ∈ [0 , 1], J(C, α∗) is concave ⇔ µ+
q + µ−λ ≥ 0 and convex

⇔ µ+
q + µ−λ ≤ 0. In the space of expected imbalance prices (µq, µλ), the concave half-space

corresponds to µq + µλ ≥ µ−q + µ+
λ and the convex half-space to µq + µλ ≤ µ−q + µ+

λ .
We first find the optimal policy, C∗, in the concave half-space. In this region (µq + µλ ≥

µ−q + µ+
λ ), C∗ ∈ [0, 1] is a maximum ⇔

(x− C∗) dJ
dC

∣∣∣
C=C∗

≤ 0, ∀x ∈ [0, 1]

This can be interpreted as:

• C∗ = 1 when J(C) is a non-decreasing function of C.

• C∗ = 0 when J(C) is a non-increasing function of C.

• C∗ = β when
dJ

dC
(C = β) = 0. (A stationary point)

Consider the following partition of the concave half-space,:

G1 = {µλ ≤ −p+ µ−q + µ+
λ } ∩ {µq + µλ ≥ µ−q + µ+

λ }
G2 = {µq > p} ∩ {µλ > −p+ µ−q + µ+

λ }
G3 = {µq ≤ p} ∩ {µq + µλ ≥ µ−q + µ+

λ }

It is easy to verify that when (µq, µλ) ∈ G1 ,
dJ

dC
≤ 0 ∀C ∈ [0, 1] and so the optimal

contract C∗ = 0. Similarly, C∗ = 1 when (µq, µλ) ∈ G3 as
dJ

dC
≥ 0 ∀C ∈ [0, 1]. Finally,

when (µq, µλ) ∈ G2, the concave function J(C) has a stationary point at F−1w (γc) where

γc =
p− µ−q + µ−λ
µ+
q + µ−λ

. Thus, the profit maximizing contract is C∗ = F−1w (γc).

We now analyze optimality on the half-space µq + µλ ≤ µ−q + µ+
λ . As J(C) is convex

in this region, the maximum must occur on the endpoints of the set of feasible contracts
[0, 1]. The maximization problem is then a simple comparison of two values: C∗ = 0 when
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J(0) ≥ J(1) and C∗ = 1 otherwise. The difference between the two candidate maxima is
given by:

J(0)− J(1) = T
(
−p+ µ+

q (1− µw) + µ−q − µ−λ µw
)

Therefore, in the convex half-space, C∗ is:

C∗ =

{
0, −p+ µ−q ≥ µ−λ µw + µ+

q (µw − 1)
1, −p+ µ−q < µ−λ µw + µ+

q (µw − 1)

In the (µq, µλ) space, the corresponding condition is:

C∗ =

{
0, µwµλ + (µw − 1)µq ≤ −p+ (µq− + µλ+)µw
1, µwµλ + (µw − 1)µq > −p+ (µq− + µλ+)µw

(5.31)

Combining the results obtained for the convex and concave half-spaces, one recovers The-
orem 1(a).

(b): The values of the optimal expected profit when (µq, µλ) ∈ P1 and P3 can be com-
puted easily by substitution of the appropriate optimal profit into (5.28). When (µq, µλ) ∈
P2, we perform a change of variables θ = Fw(w) to obtain:

J (C∗, α∗)

T
= (p− µ−q )C∗ − µ+

q

∫ C∗

0

(C∗ − w) fw(w)dw − µ−λ

∫ 1

C∗
(w − C∗) fw(w)dw

= (p− µ−q )C∗ − µ+
q

∫ γc

0

(
C∗ − F−1w (θ)

)
dθ − µ−λ

∫ 1

γc

(
F−1w (θ)− C∗

)
dθ

=
(
p− µ−q + µ−λ −

(
µ+
q + µ−λ

)
γc
)
C∗ + µ+

q

∫ γc

0

F−1w (θ)dθ − µ−λ

∫ 1

γc

F−1w (θ)dθ

= µ+
q

∫ γc

0

F−1w (θ)dθ − µ−λ

∫ 1

γc

F−1w (θ)dθ (5.32)

by the definition of γc. Thus, we completely recover the claim.

Remark 5.2 (Inverse supply function). Because of our price-taker assumption (Assumption
A4, Section 5.2), the optimal contract offer C∗ can be interpreted as the WPP’s inverse
supply function. Notice that C∗ is an explicit function of the day-ahead clearing price p.
Consequently, in the DA market, the WPP simply provides the ISO with the supply schedule
C(p) characterized by (5.21). Working under the assumption that µ+

q + µ−λ > 0, this supply
function simplifies to:

C(p) =





0, p ≤ µ−q − µ−λ
F−1w (γc), µ−q − µ−λ < p < µq
1, p ≥ µq.

, γc =
p− µ−q + µ−λ
µ+
q + µ−λ

(5.33)
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In order to quantify the increase in expected profit attainable through curtailment, we
compare our results to the baseline case where the WPP has no curtailment capability. For
this baseline, explicit characterizations of the optimal contract offering and corresponding
expected profit were given by [18]. That result is stated below to facilitate exposition.

In the absence of curtailment capability (∀t, α∗(t) = 1), the optimal contract offering
can be analytically expressed on the following partition of the space of expected imbalance
prices, M1 ∪M2 ∪M3 = R2:

M1 ={ (x, y) ∈ R2 | y ≤ −p , µwy + (µw − 1)x ≤ −p }
M2 ={ (x, y) ∈ R2 | x ≥ p , y ≥ −p }
M3 ={ (x, y) ∈ R2 | µwy + (µw − 1)x > −p , x < p}.

(5.34)

For a WPP facing a pair of expected imbalance prices ξ ∈ (µq, µλ),

(a) the optimal contract offering C∗o is given by:

C∗o =





0, if ξ ∈M1

F−1w (γ), if ξ ∈M2

1, if ξ ∈M3

, γ =
p+ µλ
µq + µλ

(5.35)

(b) the optimal expected profit J(C∗o , 1) is given by:

J(C∗o , 1) = J∗o = T





−µλµw, if ξ ∈M1

µq

∫ γ

0

F−1w (θ) dθ − µλ
∫ 1

γ

F−1w (θ) dθ, if ξ ∈M2

p− µq (1− µw) if ξ ∈M3.

(5.36)

Examining the structure of the expected profit functions, we can make the following
claim about the benefit of curtailment.

Theorem 5.2. Curtailment only increases the optimal expected profit.

∆J := J∗ − J∗o ≥ 0 (5.37)

Proof. J∗o = J (C∗o , 1) ≤ J (C∗o , α
∗) as α∗ was the optimal curtailment policy for any contract

C. J∗ = max
C

J (C, α∗) ≥ J (C∗o , α
∗) ≥ J∗o . Hence, ∆J ≥ 0.

Remark 5.3 (Quantiles). The quantile, γc , obtained in the case with curtailment (5.21)
can be re-expressed as:

γc =
p+ µλ −

(
µ−q + µ+

λ

)

µq + µλ −
(
µ−q + µ+

λ

) , (5.38)

which is identical to γ, the quantile in the no curtailment result (5.35) if and only if:

µ−q + µ+
λ = 0. (5.39)
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It is apparent from (5.38) that the main difference between optimal contracts in the cases
with and without curtailment depend on surplus penalties (µ+

λ ) and shortfall rewards (µ−q ).
This agrees with intuition as curtailment offers financial benefits in both these cases.

Remark 5.4 (Surplus Penalties). In the event of a surplus penalty {λ > 0}, a WPP avoids
financial penalties by curtailing any excess generation when generation w(t) exceeds the con-
tract C. Consider the scenario where a WPP offers no contract in the DA market (C = 0)
but supplies power in the hope that it will be rewarded for surplus generation. In this case,
a WPP without curtailment capability realizes an expected profit of −µλµw. On the other
hand, a WPP that can curtail its production, by avoiding surplus penalties, can increase its
expected profit to −µ−λ µw.

The ability to avoid these penalties clearly affects the forward contract offering (5.38). In
response to high values of µ+

λ , WPPs that cannot curtail their output offer larger contracts
than those that can, to avoid surplus production scenarios.

Remark 5.5 (Shortfall Rewards). In the event of a shortfall reward {q < 0}, a WPP can
curtail production to increase profit. Consider the scenario where a WPP offers a full capacity
contract in the DA market (C = 1). Here, a WPP is subject to shortfall penalties irrespective
of its ability to curtail generation. However, only a WPP with curtailment capability can fully
benefit from shortfall rewards. Comparing the maximum expected profits realized with (5.22)
and without (5.36) curtailment confirms our inference as the curtailment benefit is −µ−q µw.

Clearly, the ability to realize shortfall rewards through curtailment impacts the forward
contract offering (5.38). In response to highly negative values of µ−q , WPPs that can curtail
production offer larger contracts, hoping to induce shortfall scenario, than those that cannot.

We now explore conditions under which the optimal contract offerings for WPPs with
and without curtailment are the same.

Remark 5.6 (Contract Policy Equivalence). The condition described in Remark 5.3 is also
a necessary and sufficient condition for the two partitions of the space of expected imbalance
prices, {P1,P2,P3} and {M1,M2,M3} to be the same. This is summarized by the following
corollary.

Corollary 5.1. The optimal contract policies for the curtailment and no curtailment cases
are identical, (i.e.: {P1,P2,P3} ≡ {M1,M2,M3} and γc = γ)⇔ µ−q + µ+

λ = 0.

This condition can be interpreted by examining (5.38). As average shortfall rewards (µ−q )
increase in magnitude, WPPs with curtailment capability offer larger contracts than WPPs
that cannot curtail production. Conversely, as average surplus penalties (µ+

λ ) increase, WPPs
with curtailment capability offer smaller contracts than WPPs that cannot curtail produc-
tion. The condition µ−q + µ+

λ = 0 corresponds to an equilibrium between these incentives to
increase or decrease the contract offer compared to the offer in the no curtailment case.

We remark that the equivalence condition (5.39) holds true for imbalance pricing mech-
anisms where q = −λ. This symmetric penalty structure is currently applied to imbalances
for conventional thermal generation in many balancing areas [96, 27, 28].
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Remark 5.7 (Curtailment Benefit). When µ−q + µ+
λ = 0, that is when curtailment does not

affect the optimal contract policy, the financial benefit (∆J) resulting from curtailment is
identical across the entire space of expected imbalance penalties.

Corollary 5.2.
∆J = J∗ − J∗o = −µ−q µwT = µ+

λ µwT. (5.40)

Proof. According to Corollary 5.1, the partitions on which the optimal contract policy are
defined are identical {M1,M2,M3} ≡ {P1,P2,P3} if µ−q + µ+

λ = 0. We then calculate ∆J
on each set of the partition.

It is straightforward to show that the claim, ∆J = µ+
λ µwT , holds on M1 and M3. On

M2, notice that the quantiles used in the optimal policies are identical (γc = γ) when
µ−q + µ+

λ = 0 (Remark 5.3). As a result, the increase in expected profit can be expressed as:

∆J =

(
−µ−q

∫ γ

0

F−1w (θ) dθ + µ+
λ

∫ 1

γ

F−1w (θ) dθ

)
T = µ+

λ µwT .

5.5 Empirical Results

In this section, we empirically compute the financial benefit afforded by curtailment using
price data from the New York (NYISO) and Midwest (MISO) independent system operators.
Currently, imbalances for conventional thermal generation are settled based on locational
marginal prices (LMP) [96]. The LMP at a particular node represents the incremental system
cost of serving an additional unit of demand at said node, subject to transmission losses and
capacity constraints.

In our analysis, we assume WPPs participate in a two-settlement market (e.g.: Section
5.2), where the imbalance settlements are calculated based on LMPs. Specifically, a positive
LMP represents a shortfall penalty and surplus reward, whereas a negative LMP represents a
shortfall reward and surplus penalty. This scenario is equivalent to the two-sided imbalance
penalty mechanism presented in Section 5.2 with the additional constraint

q = −λ (5.41)

where q is equal to the LMP at the WPP bus.
Working under this pricing structure, the contracts offered by WPPs with and without

curtailment capability are the same since µ−q = −µ+
λ (Corollary 5.1). It follows that the

curtailment benefit can computed analytically using (5.40).

5.5.1 Data Set

In order to compute the benefit derived from curtailment capability, as characterized by
Corollary 5.2, we require empirical estimates of the mean statistics (µw, µ

−
q , µ

+
λ ). As typical

DA contracts are constant on intervals of length one hour, we compute statistics indepen-
dently for each hour of the day.
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Wind generation

In order to estimate average wind power production, we work with time series data from the
Bonneville Power Administration (BPA). This is time series data of measured wind power
aggregated over the 14 wind power generation sites in the BPA control area. The wind power
output is sampled every 5 minutes and covers the 2008 and 2009 calendar years. In order to
account for additional wind power capacity coming online at various points in time over the
2-year horizon, we normalized all data by the aggregate nameplate wind power capacity as
a function of time.

Due to the diurnal periodicity in wind speed, we assume that the daily wind power
trajectories are drawn from distributions that are identical across days. To simplify analysis,
we additionally assume these trajectories to be independent across days. Working under these
assumptions, a consistent estimator for the mean wind power µw(t) = E[w(t)] at time t is
given by:

µ̂w(t) =
1

N

N∑

n=1

wn(t), (5.42)

where n indexes days. Figure 5.3 depicts the trajectory of the empirical mean averaged
over contract intervals of length one hour. While the actual wind power trajectory varies
with WPP location, this empirically obtained sample is a reasonable estimate for rough
curtailment benefit calculations.

00:00 04:00 08:00 12:00 16:00 20:00 24:00
0

0.1

0.2

0.3

0.4

Time of day (hr)

µ
w

Figure 5.3: Empirical means of wind generation (µw) computed from BPA time series data.
Empirical means are calculated for each hour of the day.
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LMP

In order to compute estimates of the mean price statistics (µ−q , µ
+
λ ), we work with LMP

time series data from both the NYISO and MISO. For the NYISO 2008 calendar year, we
work with real-time LMP time series sampled every 5 minutes from 4 different zones in
the network. For the MISO, we work with real-time LMP time series from 2011 from 7
select nodes in this network. In both cases, this data is averaged over hour long intervals.
Specifically, we estimate the weighted expected value of the LMP q condition on it being
negative. This quantity, which is the average shortfall reward, is calculated for each hour
(t = 1, · · · , 24) of the day according to:

µ̂−q (t) = −µ̂+
λ (t) =

1

N

N∑

n=1

qn(t) I{qn(t) ≤ 0}, (5.43)

where n indexes days.
Figures 5.4 and 5.5 depict the average surplus penalties µ̂+

λ (t) for each hour of the day
at select nodes in the NYISO and MISO balancing areas, respectively. From Figure 5.4,
it is readily apparent that certain nodes (e.g.: ALTW.LKFLD.IPL) experience larger and
more frequent negative excursions in their LMPs than other nodes (e.g.: OTP.BIGSTON1).
This can be attributed to transmission capacity limitations and typical flow patterns within
the network. Because of these LMP differentials, the financial benefit derived from wind
curtailment will vary across nodes. It is also apparent from comparing figures 5.4 and 5.5
that there is greater location-based variation in MISO prices than in NYISO prices. This
observation agrees with intuition as the MISO footprint is a far larger geographical area
than that of NYISO. Transmission network considerations over this larger area cause greater
LMP variation across the network.

Node State Savings ($)
OTP.BIGSTON1 SD 186,176
MEC.WSEC3 IA 245,971
NSP.NOBLESTR2 MN 687,058
ALTW.LKFLD.IPL MN 935,414
NSP.WHEATO2 WI 73,540
OTP.COYOT1 ND 144,343
AMIL.CLINTO51 IL 361,061

Table 5.1: Annual curtailment benefit for a 50 MW WPP with full curtailment capability
sited at 7 different locations within the MISO balancing area

5.5.2 Curtailment Benefit

Using the described wind generation and LMP data, we estimate the benefit derived from
having full curtailment capability. We consider a representative WPP with a nameplate



CHAPTER 5. THE BENEFIT OF WIND CURTAILMENT 104

00:00 04:00 08:00 12:00 16:00 20:00 24:00
0

2

4

6

8

10

12

14

16

Time of day (hr)

µ
λ
+

($
/M

W
h
r)

OTP.BIGSTON1 (SD)

MEC.WSEC3 (IA)

NSP.NOBLESTR2 (MN)

ALTW.LKFLD.IPL (MN)

Figure 5.4: Average surplus penalties (µ+
λ ) computed using MISO LMP market data from

January-June 2011. Empirical means are calculated for each hour of the day.
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Figure 5.5: Average surplus penalties (µ+
λ ) computed using NYISO LMP market data from

2008. Empirical means are calculated for each hour of the day.

capacity of 50MW. The expected annual cost savings can be computed using:

Savings =
24∑

t=1

µ+
λ (t)µw(t) (Number of days) (WPP Capacity) (5.44)

Tables 5.1 and 5.2 list the expected annual savings realized by a 50 MW WPP at different
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Node Savings ($)
NORTH 525,514
WEST 438,443
GENESE 441,790
HQ 471,710

Table 5.2: Annual curtailment benefit for a 50 MW WPP with full curtailment capability
sited at 4 different locations within the NYISO balancing area

nodes within the MISO and NYISO networks respectively. It is immediately apparent that
bus location has a direct impact, through the LMPs, on the curtailment benefit. This
geographical dependence, particularly evident in the MISO price data (Figure 5.4), is the
only reason behind the substantial variation in annual savings ($50,000–1,000,000). The
NYISO price data, owing to limited location-based LMP variation, exhibits far less variation
in annual savings.

We remark that this calculation can be easily repeated for any WPP by using only histor-
ical time series data of wind power and market prices. In the case of a symmetric imbalance
settlement mechanism, this calculation only requires mean statistics of wind generation, and
imbalance prices (µw, µ

+
λ ) at the WPP connection node.

5.6 Conclusions & Possible Extensions

In this chapter, we quantify how a wind power producer – participating in a two-settlement
market – might leverage power curtailment capability to mitigate financial risk in the face
of uncertain production and imbalance prices. Using a general stochastic model for wind
power production and a stylized two-settlement market model, we explicitly characterize the
expected profit-maximizing curtailment policy and forward contract offerings. Moreover, we
demonstrate that power curtailment capability always leads to an expected profit higher
than the profit achievable without curtailment. Using NYISO and MISO market data, we
compute the curtailment benefit realized by a 50 MW WPP at various nodes exhibiting
differing LMP mean statistics.

Using the tools presented in this chapter, a WPP can calculate an upper bound of their
curtailment benefit a-priori, thus permitting a cost-benefit analysis of the installation of
curtailment capability. As mentioned previously, this calculation can be readily performed
using historical wind power and price data. Moreover, an ISO can use the results presented
in this chapter to understand and predict how WPPs will respond to imbalance price signals.

There are several avenues for future work. The market model used in this chapter makes
no mention of ancillary service (A/S) markets, markets used by ISOs to procure reserve
generation capacity. While WPPs currently do not participate in A/S markets, such par-
ticipation becomes more likely as wind penetration increases and WPPs, forced to curtail
generation due to market conditions, are allowed to sell excess generation in these markets.
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Alternatively, WPPs with storage capability could curtail their output, store this energy,
and inject it into the grid during favorable market conditions. More nuanced analyses are
required to compute the profit-maximizing contract for a WPP with curtailment capability
in these situations.

Finally, this model can be used to inform the selection of imbalance prices. Using this
model for WPP behavior, one can create mechanisms for setting these imbalance prices to
induce power curtailment that helps manage: (1) sudden changes in renewable generation
levels, and (2) transmission network congestion.
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