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Mechanical and Aerospace Engineering Department
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ABSTRACT
This study reports, for the first time, non-equilibrium

molecular dynamics (MD) simulations predicting the thermal
conductivity of amorphous nanoporous silica. The heat flux
was imposed using the Müller-Plathe method and interatomic
interactions were modeled using the widely used van Beest,
Kramer and van Santen potential. Monodisperse spherical
pores organized in a simple cubic lattice were introduced in
an amorphous silica matrix by removing atoms within selected
regions. The simulation cell length ranged from 17 to 189 Å, the
pore diameter from 12 to 25 Å, and the porosity varied between
10 and 35%. Results establish that the thermal conductivity of
nanoporous silica at room temperature was independent of pore
size and depended only on porosity. This qualitatively confirms
recent experimental measurements for cubic and hexagonal
mesoporous silica films with pore diameter and porosity ranging
from 3 to 18 nm and 20% to 48%, respectively. Moreover,
predictions of MD simulations agreed well with predictions
from the coherent potential model. By contrast, finite element
analysis simulating the same nanoporous structures, but based
on continuum theory of heat conduction, agreed with the
well-known Maxwell Garnett model.

∗Address all correspondence to this author.

NOMENCLATURE
Ai j parameter in the BKS potential [eV]
Bi j parameter in the BKS potential [Å−1]
Ci j parameter in the BKS potential [eV.Å6]
dp pore diameter [m]
fv porosity
kB Boltzmann constant [kB = 1.38×10−23 m2kg/s2K]
k thermal conductivity [W/m·K]
kc the thermal conductivity of the silica matrix [W/m·K]
kd the thermal conductivity of air in the pore [W/m·K]
kd,0 thermal conductivity of bulk air (Kn = 0.0)
Kn Knudsen number [Equation (5)]
ℓ gas molecule mean free path [m]
Lz simulation cell length [m]
mi mass of atom i [kg]
N number of slices
n number of atoms
p pressure inside the pore [N/m2]
q atomic charge [e]
q′′z heat flux [W/m2]
ri j interatomic distance between atoms i and j [Å]
S simulation cell cross-section [m2]
T temperature [K]
vi velocity of atom i [m/s]
V (ri j) interatomic potential [eV]
z distance along the direction of heat propagation [m]
Symbols
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β coefficient in Equation (5)
εi j depth of the L-J potential well between atoms i and j [eV]
σ diameter of the hard-shell particles representing gas

molecules [m]
σi j characteristic distance in the L-J potential between atoms i

and j [Å]
Subscripts
i, j refers to individual atom i or j
k refers to the kth slice
O refers to oxygen atom
Si refers to silicon atom

1 Introduction
Nanoporous silica consists of nanoscale pores (0.1 nm - 1

µm) embedded in an amorphous silica matrix. They are being
considered as ultra-low-k dielectric interlayer materials for their
low dielectric constant [1]. However, by introducing nanoscale
pores into the dielectric material, not only the effective dielec-
tric constant but also the thermal conductivity substantially de-
creases. Then, nanoporous silica acts as a thermal insulator and
may constitute a barrier to efficient heat removal. Nanoporous
silica thin films have also been used for thermal insulation of
infrared detectors and various MEMS devices [2]. In these ap-
plications, knowledge of the thermal conductivity of nanoporous
silica thin films is essential for the design and thermal manage-
ment of devices.

Predicting the thermal conductivity of amorphous
nanoporous materials is very challenging because of their
disordered atomic structures and the presence of nanopores
presenting large matrix/pore interfacial area and resistance to
energy transport through the nanostructure. Effective medium
approximations (EMAs) predicting the thermal conductivity of
such complex materials can vary widely and were shown to be
inaccurate [3]. On the other hand, classical molecular dynamics
(MD) simulations are based on a limited number of assumptions
aside from the interaction potential and represent an alternative
to both experiments and EMAs. They can also provide insight
into the physical phenomena controlling energy transport in
nanostructured materials.

In this manuscript, the thermal conductivity of nanoporous
amorphous silica thin films is predicted using non-equilibrium
MD simulations for various cell length, spherical pore diameter,
and porosity. Results are compared with (i) recent experimental
measurements for highly ordered mesoporous silica thin films [3]
and (ii) predictions based on continuum theory of heat conduc-
tion in porous media.

2 Background
Three different methods have been used to determine the

thermal conductivity of materials using MD simulations, namely

(i) the equilibrium method using the Green-Kubo relations [4–6],
(ii) the direct non-equilibrium method [4, 7], or (iii) the Müller-
Plathe method [8]. The first method consists of retrieving the
thermal conductivity at equilibrium through linear response the-
ory using relations derived by Green [5] and Kubo et al. [6]. In-
deed, perturbations are induced by the fluctuations of the system
temperature at equilibrium. The response of the system to these
perturbations is determined by its thermal conductivity. In a so-
called NVE ensemble defined by constant number of atoms, vol-
ume, and energy, the thermal conductivity can thus be evaluated
through the time integration of the auto-correlation function of
the energy current [9]. Indeed, the energy current vector indi-
cates the direction and amount of energy transfer in the system
at an instant in time. The thermal conductivity of the system de-
termines how long this energy current remains correlated with
itself. In a material with a large thermal conductivity, the corre-
lation will be long lasting because fluctuations from equilibrium
dissipate slowly. On the other hand, the correlation will be short
lived in materials with low thermal conductivity. This method
has already been implemented to estimate the thermal conductiv-
ity of fluid and solid systems such as argon [10], diamond [11],
β -silicon carbide [12], silicon [7, 13] or silica [14], for example.

The two other methods, on the contrary, are performed un-
der non-equilibrium conditions. The direct non-equilibrium MD
simulations, consist of imposing a temperature gradient across
the system by analogy with experimental measurements. Alter-
natively, the Müller-Plathe method consists of imposing a heat
flux to the system and estimating the resulting temperature gra-
dient. These methods have been implemented to predict the ther-
mal conductivity of (i) bulk dense silicon [7] using the Still-
inger and Weber potential [15] as well as that of (ii) dense sil-
ica [16–18] and amorphous silica nanoparticles or nanowires [9]
using the the so-called BKS potential proposed by van Beest,
Kramer and van Santen [19].

The literature mostly reports MD simulations performed on
bulk dense materials [4, 7, 11, 12, 14, 16–18, 20–22]. Numerous
studies have discussed the effects of the finite size of the simula-
tion cell on thermal conductivity predictions [7,11,14,16,17,20–
22]. These effects are mostly due to the limited mean free path
of the phonons that can be simulated [22]. Finite size effects are
expected to be larger in crystalline than in amorphous systems
because phonons have shorter mean free paths in amorphous ma-
terials. On the other hand, very few studies [9, 11, 23–26] have
focused on modeling the thermal conductivity of nanostructured
materials where finite-size effects may also be caused by the ac-
tual geometry of the structure simulated. Che et al. [11] simu-
lated the thermal conductivity of carbon nanotubes (CNTs) made
of up to 6,400 atoms at 300 K using the Green-Kubo method.
Lukes and Zhong [27] reported the thermal conductivity, phonon
density of states, and phonon relaxation times for single-wall
CNTs of various length from 100 K to 500 K. Recently, Thomas
et al. [25] used the direct non-equilibrium method to predict the
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thermal conductivity at 300 K of empty and water-filled CNTs
consisting of nearly 200,000 atoms. The authors explored the
transition to fully diffusive phonon transport with increasing
CNT length. In a second study [26], they presented a method for
predicting phonon dispersion relations and lifetimes from MD
simulations and applied it to CNTs. Thermal conductivities cal-
culated from the phonon properties were in excellent agreement
with those obtained from direct MD simulations [25]. Mahajan
et al. [9] modeled the thermal conductivity of both amorphous
silica nanoparticles and nanowires made of 600 atoms at 300 K
using the Müller-Plathe method. Lukes and Tien [23] reported
the thermal conductivity of nanoporous thin films of Argon us-
ing MD simulations with a simple Lennard-Jones (LJ) potential.
They investigated the effects of average temperature, pore loca-
tion, shape, size, and orientation on the film thermal conductivity.
The results showed that larger porosities and higher temperatures
yielded lower thermal conductivity. However, pore shape and
arrangement did not significantly influence thermal conduction
while effects of orientation were noticeable only for the most
anisotropic cases. Note that this study was limited to systems
with less than 1,000 atoms and simulated only one or two pores
smaller than 2 nm in diameter. Finally, Lee et al. [24] investi-
gated the thermal conductivity of nanoporous silicon with poros-
ity ranging from 7 to 38% and cylindrical pores with diameter
ranging from 0.63 to 2.26 nm. The predicted thermal conduc-
tivity was two orders of magnitude smaller than that of dense
silicon. Note that in this latter study, only one pore was consid-
ered.

He et al. [28] performed both equilibrium and non-
equilibrium MD simulations as well as lattice dynamic simula-
tions of amorphous silicon at 300 K. They showed that most heat
carriers were non-propagating or quasi-stationary modes. The
small fraction (∼ 3%) of propagating phonon modes had mean
free path of the order of 0.1-1 µm and contributed to about 50%
of the total a-Si thermal conductivity. However, the presence of
cylindrical nanoholes significantly reduced their mean free path
causing a major reduction in the thermal conductivity.

The present study uses non-equilibrium classical molecular
dynamics simulations and the Müller-Plathe method [8] to pre-
dict the thermal conductivity of amorphous nanoporous silica at
room temperature. It is unique in that it investigates amorphous
nanoporous silica systems with (i) more than 9,000 atoms, (ii)
up to 11 pores, and (iii) a wide range of cross-sectional area,
length, porosity, and pore diameter. The system length, porosity,
and pore diameter investigated ranged from 17 to 189 Å, 10 to
35%, and 12 to 25 Å, respectively. First, the method was vali-
dated by comparing the predicted thermal conductivity of dense
(non-porous) crystalline α-quartz and amorphous silica with data
previously reported in the literature [9, 16, 17]. Then, the ther-
mal conductivity of amorphous nanoporous silica systems was
computed after introducing pores within the previously generated
dense amorphous silica phases. Results were compared with (i)

predictions from finite element simulations based on continuum
theory for heat conduction, (ii) commonly used EMAs, and (iii)
previously reported experimental data [3].

3 Analysis
3.1 Müller-Plathe Method

The thermal conductivity, k, along the direction of heat prop-
agation z is defined by Fourier’s law as the ratio of the heat flux
q′′z to the steady-state temperature gradient dT/dz,

k =−
q′′z

dT/dz
. (1)

Thermal conductivity can therefore be estimated in two different
ways: (i) by imposing a temperature gradient and determining
the resulting heat flux, or (ii) by imposing a heat flux and deter-
mining the resulting temperature gradient. Both methods can be
implemented through non-equilibrium MD simulations. How-
ever, imposing a temperature gradient was not considered here
due to the slow convergence of the heat flux value [8, 29]. In-
stead, the previously mentioned Müller-Plathe method [8,9] was
implemented. In this approach, the slowly converging quantity
(i.e., the heat flux) was imposed through velocity rescaling. On
the other hand, the temperature and its gradient were calculated
by averaging the atomic kinetic energy over time and over a large
number of atoms. To do so, the simulation cell was divided into
an even number, 2N, of plane-parallel slices along the direction
of the heat flux as shown in Figure 1. The temperature of each
slice at every time step was determined from the classical statis-
tical mechanics equipartition theorem as [9],

Tk =
1

3nkkB

nk

∑
i=1

miv2
i (2)

where nk is the number of atoms in the kth slice and mi and vi are
the mass and velocity of the ith individual atom. The temperature
of each slice was then averaged over multiple time steps. Note
that, Equation (2) is valid if (i) the temperature gradient is not
imposed, (ii) the total momentum of the system vanishes, and
(iii) the heat capacity is independent of temperature [13].

The heat flux was imposed by exchanging velocities be-
tween atoms of the (N + 1)th slice in the middle of the cell and
atoms of the 1st slice at one end of the cell. The velocity of the
atom with the largest kinetic energy (i.e., the hottest) of the 1st

slice was exchanged with the velocity of the atom with the low-
est kinetic energy (i.e., the coolest) of the (N + 1)th slice. Note
that those atoms had to be of identical mass so that the total lin-
ear momentum, kinetic energy, and total energy of the system
were conserved [8]. However, the total angular momentum of
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FIGURE 1. Simulation cell divided into 2N slices along the heat flux
direction. Periodic boundary conditions were applied in all directions.

the system may not be conserved [8]. Those velocity exchanges
were performed every given number of simulation steps to im-
pose a constant adjustable heat flux q′′z . After reaching steady
state, a temperature profile T (z), which decreased from the cen-
ter to the ends of the simulation cell could be measured. Then,
the thermal conductivity was retrieved using Equation (1). In
addition, in order to simulate bulk materials, periodic boundary
conditions were imposed in all directions. This method had pre-
viously been implemented to predict the thermal conductivity of
dense solid materials such as silicon [7] as well as quartz [17]
and amorphous silica at temperatures 300 K [9] and between 100
and 700 K [16]. In the present study, this numerical procedure
was implemented using the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) [30]. Simulations were ran
in parallel on eight to sixty four 64-bit nodes with 1024 MB of
RAM. The MD simulation method implemented in the present
study was first validated by modeling the thermal conductivity
of dense crystalline α-quartz. Results were systematically com-
pared with those previously reported in the literature [9, 16, 17].

3.2 Validation: Thermal Conductivity of Crystalline α-
Quartz

MD simulations of crystalline α-quartz were performed at
500 and 800 K following the procedure adopted by Yoon et al.
[17]. The Müller-Plathe method was implemented. As in most
studies modeling properties of silica based nanostructures [9,16–
18], the BKS potential [19] was used. The BKS potential is a two
body potential given by [19],

V (ri j) =
qiq j

ri j
+Ai jexp(−Bi jri j)−

Ci j

r6
i j

(3)

where ri j is the distance separating two atoms i and j, qi and
q j are the atomic charges of both atoms and Ai j, Bi j and Ci j are

constants specified for each type of pair of atoms i and j. The
values used for those parameters where the same as those initially
defined in Ref. [19] and used by Yoon et al. [17] namely ASiSi =
0.0 eV, ASiO = 18,003.7572 eV, AOO = 1,388.7730 eV, BSiSi =
0.0 Å−1, BSiO = 4.87318 Å−1, BOO = 2.760 Å−1, CSiSi = 0.0 eV·
Å6, CSiO = 133.5381 eV· Å6, COO = 175.0 eV· Å6, qSi = 2.4
e, and qO = -1.2 e. The short-range cutoff, where interactions
were computed in real space, was set to 8 Å [16]. The long-
range Coulombic interactions beyond the short-range cutoff were
calculated in reciprocal space using a particle-particle particle-
mesh solver [31].

!"#!!""

!$#!!$$

%!&# %'&#

%(&#

10 Å 

5 Å 

FIGURE 2. Typical atomic structures of (a) α-quartz phase with the
out-of-plane direction corresponding to the [0001] direction or c-axis,
(b) amorphous silica phase, and (c) nanoporous amorphous silica phase
with two spherical pores of 18 Å in diameter aligned along the z-
direction of a 23.4x22.5x45.7 Å3 simulation cell. Note that these 2D
representations correspond to the projection of a 8.5 Å thick slab in the
out-of-plane direction.

Simulations were performed using an α-quartz structure
[32] at both 500 and 800 K with density equal to 2,647 kg/m3

while the heat flux was imposed along the c-axis ([0001] direc-
tion). Figure 2a shows the atomic structure of a typical α-quartz
phase simulated, viewed down the c-axis. Periodic boundary
conditions were applied in all three directions and simulation
cells had dimensions identical to those used by Yoon et al. [17].
The cross-section of the simulation cell was set to 4×4 repeat
units of the α-quartz basal plane while its length, Lz, was set
to 12, 16 and 20 times the α-quartz lattice parameter along the
c-axis. The rate of velocity exchanges was chosen so that the
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corresponding heat flux was approximately 3.8×1011 eV/nm2·s
(i.e., 3×1010 W/m2) by analogy with Yoon et al. [17]. Note that
the retrieved thermal conductivity was found to be independent
of the choice heat flux. The time step was set to 0.55 fs instead
of 0.97 fs used in Ref. [17] for comparison purposes and to en-
sure that the results were converged. Simulations were run at
constant number of particles, volume and energy (NVE ensem-
ble) for a total of 4 to 6 million time steps corresponding to a
simulation time more than twice as long as in Ref. [17]. The
equations of motion were integrated using a velocity Verlet al-
gorithm [4]. The z-direction of the simulation cell was divided
into 2N slices of width equal to the α-quartz lattice parameter in
that direction. The temperature of each slice was obtained using
Equation (2) after averaging over the last 2 million steps of the
simulation run. Note that the temperature profile was found to
have already converged after the first 2 million steps. It was lin-
ear except for the slices within 60 Å of the heat source and heat
sink regions. The non-linearity in temperature observed around
those regions was attributed to the strong scattering caused by the
heat source/sink [33]. The linear part of the temperature profile
was fitted with a linear function, T (z), and the gradient, dT/dz,
was used in Equation (1) to estimate the thermal conductivity.
The gradients estimated for the two different linear regions, on
each side of the heat source, typically differed by less than 15%.
This difference was used to estimate the error associated with the
predicted value of the thermal conductivity. Finally, Equation (1)
was used to estimate the thermal conductivity of α-quartz at 500
and 800 K [34].

Figure 3 plots the values of 1/k as a function of 1/Lz pre-
dicted at 500 and 800 K and for different simulation cell lengths
along with results reported by Yoon et al. [17] and Huang et
al. [16]. Error bars correspond to the error estimates for the ther-
mal conductivity values retrieved from MD simulations. Figure
3 indicates that all results obtained in the present study but one
are within the numerical uncertainty of those previously reported
by Yoon et al. [17]. Differences with data reported by Huang
et al. [16] are slightly larger. This can be attributed to the fact
that the density of the crystalline structure simulated in Ref. [16]
was 2,180 kg/m3 compared with 2,647 kg/m3 in Ref. [17] and in
the present study. In addition, the exact phase and atomic struc-
ture were not reported in Ref. [16] and may be different from
the α-quartz structure used here and in Ref. [17]. Note that the
thermal conductivities computed were relatively small (∼3 to 5
W/m·K). Therefore, the differences in 1/k, observed with Yoon
et al.’s data [17] in Figure 3, actually corresponded to less than
10% relative differences in terms of thermal conductivity.

3.3 Procedure For Predicting the Thermal Conductiv-
ity of Dense Amorphous Silica

The first step toward predicting the thermal conductivity
of nanoporous amorphous silica consisted of preparing a dense

0.10
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0.20

0.25
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0.35

0.40

0 0.005 0.01 0.015 0.02 0.025 0.03

1/Lz (Å
-1)

1/
k 

(m
.K

/W
)

 500K, present study

 800K, present study

 500K, Yoon et al. [17]

 800K, Yoon et al. [17]

 500K, Huang et al. [16]

FIGURE 3. Predicted values of 1/k as a function of 1/Lz for crys-
talline α-quartz at 500 and 800 K along with results reported in the
literature [16, 17].

phase of amorphous silica. Then, pores were introduced into the
dense phase by removing atoms within selected areas of the sim-
ulation cell. The amorphous silica phase was generated follow-
ing a procedure similar to those described in Refs. [9,14,18,20].
The α-quartz system was heated at a temperature of 10,000 K
and subsequently quenched to 300 K. During this process, be-
cause of the very large atomic kinetic energy at such high tem-
peratures, atoms may approach each other very closely. The
BKS potential, previously used for α-quartz, does not provide
large enough repulsive forces at high energies. Therefore, it was
modified, for small interatomic distances, to ensure the system’s
cohesion during melting [9, 14]. To do so, a so-called 24− 6
Lennard-Jones potential was added to the initial BKS potential
given by Equation (3) to yield [14],

V (ri j) =
qiq j

ri j
+Ai jexp(−Bi jri j)−

Ci j

r6
i j
+

4εi j

[(
σi j

ri j

)24

−
(

σi j

ri j

)6
]
. (4)

The parameters εi j and σi j were the same as those introduced
by Guissani et al. [35] and also used by McGaughey et al. [14]
and Mahajan et al. [9]. They were set as εSiSi = 13.20 eV, εSiO =
1.12×10−2 eV and εOO = 4.78×10−4 eV; σSiSi = 0.40 Å, σSiO =
1.35 Å and σOO = 2.20 Å [35]. The values of qi, q j, Ai j, Bi j and
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Ci j remained unchanged. It was verified that this modified poten-
tial for α-quartz resulted in the same thermal conductivity at 500
and 800 K as that presented in Figure 3 and obtained without the
additional 24−6 LJ potential.

Three different approaches were tested to perform the melt-
ing and quenching of the initial α-quartz phase using (i) a con-
stant number of particles, pressure, and enthalpy (NPH) ensem-
ble, (ii) a constant number of particles, pressure and tempera-
ture (NPT) ensemble, and (iii) a constant number of particles,
volume and temperature (NVT) ensemble. Note that the most
physically realistic approach consists of performing the melting
and quenching processes from the initial α-quartz phase and let
the volume expand. However, performing such MD simulations
in the NPH or NPT ensemble was found to yield a final den-
sity for the amorphous phase ranging between 2,520 and 2,580
kg/m3. This is significantly larger than the typical density of
2,200 kg/m3 reported for amorphous silica [36]. This means that
the implemented potential was unable to yield spontaneously an
amorphous phase with the desired density. Thus, the density was
artificially lowered by isotropically expanding the simulation cell
in the three Cartesian directions. Moreover, the use of the NPH
ensemble was found to make the volume of the simulation cell
very unstable at high temperatures and therefore only the NVT
and NPT ensembles were used.

When using the NVT ensemble, the density of the initial α-
quartz phase was lowered from 2,647 kg/m3 to 2,200 kg/m3 [36]
before the melting and quenching processes. The last step con-
sisted of letting the system relax, at room temperature, to the
zero-pressure condition. This was achieved while performing
an energy minimization of the system by iteratively adjusting
atoms’ coordinates. Since the BKS potential spontaneously gives
a density larger than that of amorphous silica at room tempera-
ture, the density of the amorphous phase would thus slightly in-
crease during this last minimization step, up to a final value of
approximately 2,218 kg/m3.

On the other hand, when using the NPT ensemble, the melt-
ing and quenching were performed from an unmodified initial
α-quartz phase. The energy minimization step was subsequently
performed. Finally, for comparison purposes, the density of sys-
tems obtained using the NPT ensemble was also set to 2,218
kg/m3 by isotropically expanding the simulation cell, this time,
after the melting and quenching processes.

Note that the use of the NVT ensemble was found to be in-
appropriate to generate amorphous silica systems from strongly
anisotropic simulation cells with one dimension being more than
five times larger than the two others. Indeed, the BKS poten-
tial yielded a spontaneous density of approximately 2,550 kg/m3.
Thus when the system was first expanded to lower its density to
2,200 kg/m3, it was put under negative pressure. As a conse-
quence, anisotropic systems were found to split in two parts dur-
ing the quenching process, along the direction of the largest sim-
ulation cell dimension. This was avoided in the NPT ensemble

where the volume of the simulation cell was allowed to fluctuate
at constant pressure.

In both approaches, the system temperature was first set to
10,000 K for 60,000 steps and then progressively lowered to 300
K using a Nose-Hoover thermostat [37, 38]. The time step dur-
ing quenching was set to 0.905 fs by analogy with Ref. [14].
Quenching was performed over three million time steps corre-
sponding to a simulation time of 2.715 ns and a quenching rate
of 3.68×1012 K/s. Note that this quenching rate was lower than
that used by Mahajan et al. [9] or Jund and Jullien [18] but re-
mained much larger than that of actual quenching processes. On
the other hand, time scales of physical experiments were also
shown to be much longer than those of MD simulations [39].
Such a quenching rate was indeed shown in previous studies to
generate amorphous silica phases with over 99% of the atoms
having the proper coordination [9, 14]. Here, it was also veri-
fied that simulations performed on amorphous systems generated
with four times lower quenching rates predicted identical thermal
conductivities.

Similarly, simulations performed on systems melted up to
12,000 K predicted a thermal conductivity at 300 K identical
to those obtained after melting at 10,000 K. However, systems
melted at 5,000 K, featured thermal conductivities up to seven
times larger than those obtained after melting at 10,000 K or
more. These observations show that the quenching rate and
melting temperature used in this study ensured that the resulting
phase was fully amorphous. Figure 2b shows the atomic struc-
ture of a typical dense amorphous silica phase obtained using the
above described procedure.

Finally, thermal conductivity of dense silica at 300 K was
modeled using the Müller-Plathe method already validated for
dense α-quartz. Amorphous silica systems of various sizes were
investigated. Each amorphous system was prepared starting from
an α-quartz system of the corresponding size. The z-direction
of the simulation cell was divided into slices of width ranging
from 1.5 to 4.0 Å, depending on the system size. The velocity
exchange rate was adjusted to set the heat flux to approximately
3.8×1011 eV/nm2·s (i.e., 6.0×1010 W/m2). The time step was
set to 0.55 fs and thermal conductivity simulations were run in
the NVE ensemble for 4 to 6 million time steps. The procedures
used to estimate the temperature gradient and to calculate the
thermal conductivity were identical to that previously described
α-quartz.

4 Results and Discussion
4.1 Thermal Conductivity of Dense Amorphous Silica

4.1.1 Thermal Conductivity of a Cubic System
First, in order to compare our thermal conductivity predictions
with those reported by Jund and Jullien [18], an amorphous sil-
ica system of 23.4 Å×22.5 Å×22.9 Å and n = 648 atoms (216
silicon atoms and 432 oxygen atoms) was simulated. The amor-
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phous system was prepared using the NVT ensemble starting
from an α-quartz phase made of 3×4×4 quartz unit cells in the
x-, y- and z- directions, respectively. Our MD simulations pre-
dicted a thermal conductivity of 1.20 ± 0.05 W/m·K at room
temperature. This was in good agreement with results previously
obtained by Jund and Jullien [18] and Huang et al. [16] for sys-
tems with similar dimensions and numbers of atoms.

4.1.2 Effect of System Length Figure 4 shows the
thermal conductivity k of amorphous silica systems at 300 K as a
function of Lz. The cross-sectional area S of the systems was set
to 15.4×13.5 Å2, 23.4×22.5 Å2, or 31.3×27.1 Å2. On the other
hand, the length Lz of these systems varied from 17 to 189 Å. For
some systems, both the NVT and NPT ensemble methods were
used to prepared the amorphous phase. Results previously re-
ported by Huang et al. [16] for systems with cross-section equal
to 21.4×21.4 Å2 are also displayed in Figure 4 for comparison
purposes. Error bars correspond to the error estimates for the
thermal conductivity values retrieved from MD simulations. Fig-
ure 4 indicates that the thermal conductivity of the dense amor-
phous silica phase increased as the length of the simulation cell
increased. It also establishes that results were independent of the
cross-section and of the ensemble used to prepare the amorphous
phase. Finally, good agreement was found with results reported
by Huang et al. [16]. These simulations show that, although sil-
ica is amorphous, size-effects are still observable for simulation
cell lengths smaller than 110 Å. Thermal conductivity reached
a plateau for simulation cell lengths larger than 110 Å beyond
which it is approximately 2.10 ± 0.10 W/m·K .

Moreover, McGaughey et al. [14] obtained a thermal con-
ductivity of 1.96 W/m·K by applying the Green-Kubo method to
an amorphous silica system of 576 atoms. This number of atoms
corresponds to the smallest system showed in Figure 4. As al-
ready discussed in Ref. [17], it appears that smaller systems can
yield results closer to those of the bulk when using the Green-
Kubo method. However, it has also been established that results
obtained with the Green-Kubo method are still affected by finite-
size effects [11, 13, 22]. This may explain the slight discrepancy
between results reported in Ref. [14] and those obtained in the
present study.

Finally, the thermal conductivity predicted by the Green-
Kubo method and by non-equilibrium MD simulations overesti-
mate the experimental value of 1.40 W/m·K [40]. As previously
suggested by McGaughey et al. [14] and Huang et al. [16], the
BKS potential is “somewhat” suitable to simulate amorphous sil-
ica.

4.1.3 Thermal Conductivity of Systems with Con-
stant Number of Atoms Simulations were also performed
for amorphous silica systems of different dimensions but con-
stant number of atoms n similar to those presented by Mahajan et
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FIGURE 4. Predicted thermal conductivity of amorphous silica sys-
tems at 300 K as a function of Lz for various cross-sections generated
using NVT and NPT ensembles along with results reported in the liter-
ature [9, 16].

al. [9]. Systems with n = 600 atoms approximately, and varying
length and cross-section were simulated. The system length Lz
varied from 22.9 to 86.0 Å while the cross-section was adjusted
to keep the number of atoms nearly constant. MD simulation re-
sults as well as data previously reported by Mahajan et al. [9] are
displayed in Figure 4.

Data obtained in the present study confirms that thermal con-
ductivity of the dense amorphous silica phase increases with the
length of the simulation cell and that reducing the cross-sectional
area of the system did not influence the predictions. However, re-
sults where found to disagree with those reported by Mahajan et
al. [9] who predicted a maximum thermal conductivity of about
1.20 W/m·K for Lz exceeding 70 Å.

To conclude, this preliminary study showed that results ob-
tained with the method implemented here were in good agree-
ment with those previously reported in the literature [14,16–18].
The modified BKS potential [Equation (4)] used for dense amor-
phous silica yielded an amorphous silica phase with (i) a density
which was spontaneously larger than actual amorphous silica,
and (ii) the predicted bulk thermal conductivity overestimated
that experimentally measured at room temperature [40]. How-
ever, the BKS potential has been widely used [16,18] and can be
used to qualitatively assess the effect effect of pore diameter and
porosity on the thermal conductivity of nanoporous silica.
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4.2 Thermal Conductivity of Amorphous Nanoporous
Silica

In this section, the thermal conductivity of amorphous
nanoporous silica systems made of monodisperse spherical pores
organized in a simple cubic arrangement was predicted at 300
K for a wide range of system length, pore diameter, and poros-
ity. The pores were simulated as empty, i.e., without any gas
molecules inside. This is based on the fact that the thermal con-
ductivity of gas in such confined space, denoted by kd , is negli-
gibly small as predicted by kinetic theory for very large Knudsen
number Kn according to [41],

kd =
kd,0

1+2βKn
where Kn =

ℓ

dp
=

kBT√
2πσ 2 pdp

. (5)

Here, ℓ is the gas molecule mean free path inside the pores of
diameter dp while p is the pressure, and σ is the diameter of the
hard-shell particles representing the gas molecules. The coeffi-
cient β is equal to 1.5 for air, and kd,0 is the thermal conductivity
of bulk air corresponding to Kn = 0.0 and equal to 0.026 W/m.K
at atmospheric pressure and room temperature [42]. It is evi-
dent that for pores a few nanometer in diameter Kn becomes very
large at atmospheric pressure and room temperature resulting in
kd ≈ 0.0.

4.2.1 Effect of System Length and Pore Diameter
Three different sets of systems corresponding to simulation cells
with cross-sectional area S equal to 15.4×13.5 Å2, 23.4×22.5
Å2, and 31.4×31.6 Å2 were studied with length Lz varying from
17 to 189 Å, 22 to 138 Å, and 69 to 138 Å, respectively. The
spherical pores’ diameter dp was set to 12 Å, 18 Å, or 25 Å.
The pores were all aligned and equally spaced along the cen-
terline of the simulation cell. The heat flux was imposed along
the z-direction. Figure 2c shows the atomic structure of a typi-
cal amorphous nanoporous silica phase with two pores 18 Å in
diameter in a 23.4×22.5×45.7 Å3 simulation cell. The number
of pores simulated ranged from 1 to 11. It was adjusted as the
length of the simulation cell was increased in order to maintain
the porosity fv at 25 ± 2%. Figure 5 shows the thermal con-
ductivity k predicted at 300 K as a function of Lz for both dense
and nanoporous amorphous silica systems. It establishes that the
thermal conductivity of amorphous nanoporous silica systems (i)
increased with increasing Lz and (ii) was lower than that of the
corresponding dense amorphous systems.

Moreover, Figure 5 indicates that the thermal conductivity of
amorphous nanoporous silica was independent of the pore diam-
eter when the system length was larger than approximately 100
Å. It is particularly interesting to note that the same observations
were made experimentally for highly-ordered cubic and hexago-
nal mesoporous silica thin films with pore diameter and porosity
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FIGURE 5. Predicted thermal conductivity k at 300 K as a function of
Lz for amorphous nanoporous silica systems of porosity fv = 25± 2%
with various values of cross-section S and pore diameter dp along with
that of the corresponding dense amorphous silica systems.

ranging from 3 to 18 nm and from 20 to 48% [3]. It also sug-
gests that a minimum amount of material (or number of atoms
and pores) needed to be modeled in order for the amorphous
nanoporous medium to behave as homogeneous and continuous
with some effective thermal conductivity ke f f . Then, effective
medium approximation are valid and can be used to model the
effect of porosity on thermal conductivity [43, 44].

4.2.2 Effect of Porosity Molecular dynamic simula-
tions of amorphous nanoporous silica systems with cross-section
S = 23.4×22.5 Å2 and length Lz = 114.7 Å were performed
to investigate the influence of porosity on the effective thermal
conductivity of amorphous nanoporous silica. For such dimen-
sions, the effective thermal conductivity was previously shown to
be independent of the system’s length and cross-section as well
as of the pore diameter. Therefore, the effect of porosity alone
could be investigated. Five pores, all aligned and equally spaced
along the centerline of the simulation cell were introduced into
the amorphous silica phase. The diameter of the pores varied
from 13.3 to 20.1 Å so that the system porosity ranged from 10
to 35%.

Finite element analysis simulations were also performed us-
ing COMSOL Multiphysics 3.4. The conventional heat diffu-
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sion equation based on continuum theory and Fourier’s law was
solved in each phase for the same simple cubic arrangements of
spherical pores as those modeled with MD simulations (Figure
2c). Continuous heat flux boundary conditions were imposed at
all pore/matrix interfaces. The thermal conductivity of the gas
phase kd was set equal to zero as previously discussed. The
thermal conductivity of the matrix kc was assumed to be 1.4
W/m.K [40].

Results from MD simulations and continuum theory were
compared with predictions from various and commonly used
EMAs including the parallel model, Maxwell Garnett model
[41, 45, 46], as well as the porosity weighted simple medium
(PWSM) model, porosity weighted dilute medium (PWDM)
model [47], and the coherent potential approximation [48]. Ex-
pressions and physical interpretations of these EMAs were pro-
vided in our previous study [3]. Note that the PWDM and PWSM
models use a common semi-empirical fitting parameter x which
may range from zero to infinity in order to accounts for the cu-
mulative effects of parameters such as pore shape or pore size on
thermal conductivity [47]. Also, in these EMAs, kd and kc were
taken as 0.0 and 1.4 W/m.K, respectively. Then, the parameter
x equals 0.29, was found to provide the best fit of the experi-
mental data. Furthermore, MD simulations predicted the thermal
conductivity of dense amorphous silica as kc = 2.10 W/m·K as
previously discussed. Therefore, for comparison purposes, both
the numerically predicted and experimentally measured effective
thermal conductivities ke f f of nanoporous silica were scaled by
the thermal conductivity of the corresponding dense phase kc.

Figure 6 plots the ratio ke f f /kc for amorphous nanoporous
silica at 300 K as a function of porosity fv predicted from (ii)
MD simulations, (ii) finite element analysis, (iii) commonly used
EMAs, and (iv) previously reported experimental data for amor-
phous sol-gel mesoporous silica films [3]. In all cases, the
thermal conductivity of the amorphous nanoporous silica sys-
tem decreased with increasing porosity. However, MD simula-
tions, finite element analysis, and experimental measurements
give quantitatively different values.

First, Figure 6 indicates that predictions from finite element
analysis agreed well with Maxwell Garnett model given by [45],

ke f f

kc
= 2

(
1− fv

2+ fv

)
(6)

This was also established analytically by Whitaker [49] using
volume averaging theory for porous materials with spherical
pores arranged in a cubic lattice. Note that the poor agreement
observed between the finite element analysis predictions and ex-
perimental data can be explained by the fact that the former was
based on Fourier’s law and did not account for sub-continuum
thermal transport in nanoporous structure.

Moreover, Figure 6 establishes that the thermal conductiv-
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FIGURE 6. Predicted thermal conductivity ratio ke f f /kc at 300 K
as a function of porosity for amorphous nanoporous silica systems of
23.4x22.5x114.7 Å3 along with experimental data [3] and predictions
from commonly used effective medium approximations.

ity ratios predicted by MD simulations was in good agreement
with the coherent potential approximation [43, 50]. For kd = 0.0
W/m.K the latter simplifies to [43],

ke f f

kc
= 1−1.5 fv. (7)

This EMA was first derived by Landauer [48] and expresses
the thermal or electrical conductivity of a composite structure
made of a matrix material and spherical inclusions of a second
phase. Note that it is also identical to the symmetric Bruggeman
model [51] when the thermal conductivity of the dispersed phase
kd is equal to zero. Cahill and Allen [43, 50] successfully used
Equation (7) to predict the thermal conductivity of Vycor glass
from 30 to 300 K with pore diameter and porosity approximately
equal to 10 nm and 30%, respectively.

Furthermore, predictions from MD simulations failed to pre-
dict the experimental data. Experimentally, the porous structure
of mesoporous silica films is typically a BCC arrangement of
quasi-spherical pores connected by narrow necks less than 1 nm
in diameter [3]. The necks can be considered as micropores
which contribute for a small part to the total porosity but sig-
nificantly to the surface area per unit volume. They were shown
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to represent approximately 15% of the total porosity in sol-gel
mesoporous silica thin films [52]. However, calculations assum-
ing micropores to be cylindrical with diameters about ten times
smaller than the mesopores, show that microporosity accounts
for approximately 50% of the total pore surface area. Those
necks, which were not modeled in the present simulations, may
constitute significant resistance to heat transfer in amorphous sol-
gel mesoporous silica and decrease their effective thermal con-
ductivity. Faithfully simulating the actual mesoporous structure
would require significantly larger computing resources and time.
In addition, simulating the necks presents a major challenge as
they may collapse within a few time steps as was observed in the
present study for amorphous silica with spherical pores 0.64 nm
in diameter.

Finally, note that in actual mesoporous silica films, the sur-
face of the pores is naturally passivated with hydrogen atoms.
This was not accounted for in the present MD simulations be-
cause of the complexity of the atomic structure of the generated
amorphous silica phase. The presence of hydrogen atoms would
also require the use of new interaction potentials or increasing
the effective mass of Si and/or O atoms located at the pore sur-
face [53]. However, surface passivation is expected to have a
very small influence on thermal conductivity at the temperature
considered in this study. Indeed, it only concerns a small frac-
tion of the atoms inside the simulation cell and those atoms are
located at the surface of the pores whereas heat is mainly trans-
ported through the amorphous silica matrix.

5 Conclusion
This paper presented predictions of the effective thermal

conductivity of amorphous nanoporous silica at 300 K using non-
equilibrium molecular dynamics simulations. Nanoporous silica
structures consisting of more than 9,000 atoms and up to 11 pores
aligned in the direction of the heat flux were simulated. System
length, pore diameter, and porosity varied from 17 to 189 Å, 12
to 25 Å, and 10% to 35%, respectively. The widely used BKS
potential was modified with a 24−6 LJ potential to model inter-
atomic interactions in amorphous silica. The thermal conductiv-
ity was estimated using the Müller-Plathe method and the pro-
cedure was validated against previously reported data for crys-
talline α-quartz [17] and non-porous amorphous silica [14, 16].
The results were independent of the cross-section of the simula-
tion cell and of the ensemble used to generate the amorphous sil-
ica phase. The thermal conductivity was also independent of the
system length Lz when the latter was larger than 110 Å, for both
non-porous and nanoporous silica. The thermal conductivity of
nanoporous silica was also found to be independent of pore diam-
eter and depended only on porosity. It is worth noticing that the
same results were observed experimentally for highly-ordered
cubic and hexagonal mesoporous silica [3]. Then, nanoporous
silica can be treated as a continuous homogeneous medium with

some effective thermal conductivity. The thermal conductivity
predicted by MD simulations was in good agreement with the
coherent potential model given by Equation (7). On the other
hand, predictions by finite element analysis based on continuum
theory agreed with the well-known Maxwell Garnett model. Dif-
ferences between MD simulation predictions and experimental
data [3] could possibly be attributed to the presence of “necks”
connecting the pores in actual amorphous sol-gel mesoporous sil-
ica and ignored in the MD simulations.
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