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Abstract

In this paper we present a transdisciplinary framework and testable hypotheses regarding the 

process of fetal programming of energy homeostasis brain circuitry. Our model proposes that 

key aspects of energy homeostasis brain circuitry already are functional by the time of birth 

(with substantial inter-individual variation); that this phenotypic variation at birth is an important 

determinant of subsequent susceptibility for energy imbalance and childhood obesity risk; and 

that this brain circuitry exhibits developmental plasticity, in that it is influenced by conditions 

during intrauterine life, particularly maternal-placental-fetal endocrine, immune/inflammatory 

and metabolic processes and their upstream determinants. We review evidence that supports 

the scientific premise for each element of this formulation, identify future research directions, 

particularly recent advances that may facilitate a better quantification of the ontogeny of energy 

homeostasis brain networks, highlight animal and in-vitro based approaches that may better 

address the determinants of inter-individual variation in energy homeostasis brain networks, and 
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discuss the implications of this formulation for the development of strategies targeted towards the 

primary prevention of childhood obesity.

Keywords

Childhood Obesity; Fetal Programming; Energy Balance Homeostasis; Brain Circuitry; Reward; 
Interoception; Satiety; Salience

1. Introduction and Overview

Obesity represents among the most urgent national and global health challenges due to 

its high prevalence and established health risks1–4. Childhood obesity is a particularly 

grave concern as obese children are substantially more likely to have obesity as adults5,6 

and to develop obesity-related disorders at earlier ages7,8 and of greater severity9–11. 

Understanding the causal origins of obesity requires not only the consideration of the multi-

factorial interplay between genetic and environmental risk factors, but also the temporal 

sequence of conditional probabilities underlying its emergence. That is, the effects of any 

given risk factor at any given stage of the life span are conditioned upon the enduring effects 

of prior exposures at prior life stages.

Over the past several years there has been substantial interest in the role of developmental 

processes, over and above those of genetic and lifestyle factors, in shaping individual 

differences in susceptibility for developing obesity12–16. Indeed, a rapidly growing and 

convergent body of epidemiological, clinical and experimental evidence in humans and 

animals suggests that the origins of obesity can be traced, in part, back to developmental 

processes occurring during the intrauterine period of life, at which time the developing 

embryo/fetus responds to ‘suboptimal’ conditions by producing structural and functional 

changes in cells, tissues and organ systems that persist across the life span and 

modulate susceptibility for many complex common disorders (i.e., the concept of fetal, 

or developmental, programming of health and disease risk). To date, research on fetal 

programming of obesity has focused largely on processes and mechanisms within peripheral 

cells, tissues and organ systems, such as adipocyte17, pancreas18, liver19–21 and muscle22,23 

biology. While this focus is entirely justified, we suggest there is yet another system of 

critical importance that also warrants attention in the context of fetal programming: the brain 

circuitry that underlies energy balance homeostasis.

Energy balance homeostasis refers to the phenomenon that governs homeostatic regulation, 

or synchronization, between energy intake (EI) and energy expenditure (EE). The 

importance of the brain, and specifically hypothalamic-limbic-cortical brain circuitry, in 

the regulation of energy homeostasis is well-established. Differences have been described 

in this brain circuitry between normal-weight individuals and those diagnosed with obesity, 

however, it is not yet clear whether these differences are a cause, consequence, or both, of 

the obese state. In light of this fundamental gap in our understanding, and based on the 

growing evidence that supports the phenomenon of fetal programming of the brain (but has 

not yet focused specifically on energy balance homeostasis circuitry, particularly beyond the 

hypothalamus), we propose here a conceptual, trans-disciplinary framework and articulate 
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testable hypotheses regarding the process of fetal programming of energy homeostasis 

brain circuitry along the developmental trajectory to obesity (excess adiposity) (see Figure 

1). This framework is built on converging evidence that overlapping mechanisms of fetal 

programming of the brain and peripheral systems may play a substantial role in explaining 

inter-individual variation in the structure, function, and connectivity of energy homeostatic-

relevant brain circuitry at birth, and its subsequent implications for the trajectory and 

magnitude of fat gain. Our conceptual model proposes that a) key aspects of energy 

homeostasis brain circuitry already are established and functional by the time of birth; 

b) there is substantial structural and functional inter-individual variation in this circuitry 

by the time of birth; c) this phenotypic variation at birth is a determinant of subsequent 

susceptibility for energy imbalance and is hypothesized to be prospectively associated 

with markers of childhood and adult obesity risk (e.g., change in adiposity over the early 

postnatal period and persistence of the effect into childhood); and d) this newborn brain 

circuitry exhibits developmental plasticity, in that it is influenced by conditions during the 

intrauterine life, particularly key maternal-placental-fetal endocrine, immune/inflammatory, 

metabolic and oxidative processes across gestation and their upstream determinants.

In this perspectives paper, we first review the concept of energy balance and provide a 

brief description of the role of the brain in regulating energy balance. We then review 

and synthesize evidence that examines the premise that energy homeostasis-related brain 

circuitry is already established and functional by the time of birth, with meaningful 

inter-individual variation. Next, we review and synthesize evidence underlying the fetal 

programming of energy homeostasis-related brain circuitry hypothesis. Finally, we identify 

questions, issues and research directions aimed at testing key elements of our model and 

discuss their potential implications for the development of strategies ultimately targeted 

towards the primary prevention of childhood obesity.

2. The Concept of Energy Balance Homeostasis

Human physiology conforms to the first law of thermodynamics, which states that energy 

cannot be created or destroyed; it can only be transformed from one form to another. It then 

follows that the rate of change in the body’s energy stores (ES) is equal to the difference 

between the effective rates of energy intake (EI) and energy expenditure (EE). EI occurs 

primarily via the consumption of the three major macronutrient food groups - carbohydrate, 

protein, and fat24. Absorbed carbohydrates, proteins, and fats are then transformed in vivo 
to substrates that ultimately are either oxidized to produce metabolically useful energy 

that drives biological processes such as growth, maintenance, physical activity, etc., (EE) 

or they are stored (ES). Any imbalance between the intake (EI) and utilization (EE) of 

these macronutrients results in a non-zero balance (ES) that will lead to an alteration in 

body composition in the form of tissue contraction/expansion via triglycerides in adipocytes 

(dominant form), and protein and intracellular glycogen in skeletal muscle. Thus, the 

long-term stability of body weight and composition is considered a marker of being in a 

state of energy balance. The development of obesity necessitates positive energy imbalance 

over and above that required for normal growth and development from conception through 

adolescence. In lean individuals and those diagnosed with obesity, a state of energy balance 
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ultimately occurs over the long term, but in individuals with obesity this steady state is 

simply achieved with a higher amount of body fat.

In the context of an acute reduction in EI relative to EE it also is clear that evolutionary 

adaptations over time have favored a number of physiological responses acting against 

weight loss to promote weight regain towards a homeostatic set point25. Such weight-

preserving mechanisms are thought to be equally present in lean individuals and those 

with obesity despite the over-abundance of energy stores present in obesity. Thus, once 

established, the condition of excess adiposity is difficult to reverse. In contrast to the 

oversimplified “eat less move more” solution to addressing the problem of unwanted 

weight gain and obesity, the U.S. Endocrine Society has taken the position, based on the 

convergence of evidence, that obesity should now be conceptualized as a disorder of the 
energy homeostasis system, rather than simply arising from the accumulation of excess 
weight. Moreover, the Society’s position paper on this issue has emphasized the need to 

elucidate underlying mechanisms, with a major focus on the influence of developmental 

processes26.

3. Components of the Energy Balance Homeostasis System

Energy homeostasis is centrally regulated within the central nervous system (CNS), with 

peripheral inputs and outputs (see Figure 2)27. Communication within and between the 

central and peripheral systems occurs via afferent and efferent signaling involving endocrine 

and other effectors. The CNS relies on long- (tonic) and short-term (episodic) peripheral 

inputs to obtain information regarding the state of energy intake (nutrients) and energy stores 

(body composition). Outputs from the CNS guide the adjustments to energy expenditure 

and caloric intake that are needed to achieve energy balance. Ultimately, the majority of 

peripheral signals converge on the hypothalamus where, in concert with other cortical and 

subcortical regions, these signals are integrated with gustatory (e.g., olfaction), interoceptive 

(e.g., gastric expansion), behavioral (e.g., stress) and social (e.g., peer pressure) contextual 

information. Below, we briefly review the role of the brain in maintaining energy 

homeostasis, beginning with the hypothalamus and then vertically expanding beyond the 

hypothalamus to include higher-order brain structures critical to feedback and feed-forward 

energy homeostasis signaling, including the ventral striatum, limbic, insula and anterior 

cingulate. Because these individual structures do not operate in isolation, we organize the 

discussion into four canonical energy homeostasis brain networks: satiety, visceral, reward, 

and salience networks. Finally, we frame the development of these systems in the context of 

the effects of the fetal programming process, with a focus on those elements of this circuitry 

that exhibit developmental plasticity (wherein maternal-placental-fetal biological processes 

during fetal life forecast its observed variation at the time of birth).

3.1 The satiety network

Hypothalamic nuclei constitute the principal CNS regulators of energy balance 

homeostasis28–30. Early lesion studies were instrumental in establishing the key satiety 

network nuclei underlying hyperphagic (i.e., paraventricular, dorsomedial and ventromedial 

nuclei) and hypophagic (i.e., lateral nuclei) behaviors. The melanocortin system of peptide 
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hormones functioning within the hypothalamus is the key regulator of energy intake (i.e., 

promotion or suppression of appetite signaling) via the sensing of current energy status in 

peripheral organs31. Hormonal signaling from adipose tissue (leptin, representing satiety) 

and the gastrointestinal tract (ghrelin, representing hunger) confers homeostatic status to 

melanocortin receptors in orexegenic (agouti-related peptide/neuropeptide Y [AgRP/NPY]) 

and anorexigenic (proopiomelanocortin [POMC]) neurons residing in the arcuate nucleus of 

the hypothalamus. Ghrelin promotes AgRP/NPY activation and inhibits POMC activation, 

providing higher order brain systems with an increased appetite signal. Conversely, 

leptin inhibits AgRP/NPY activity and promotes POMC activation, decreasing the CNS’s 

motivation for energy intake while increasing signaling to upregulate energy expenditure. 

In coordination with the hypothalamus, the brainstem (e.g., nucleus of the solitary tract 

[NTS]) acts as a co-regulator of energy balance through the peripheral sensing of nutrients32, 

descending projections from the hypothalamus33, and interoceptive (see Section 3.3 Visceral 

network below) and nutrient signaling ascending from the gastrointestinal tract34.

The importance of POMC (appetite suppressing, expenditure promoting) and AgRP 

(appetite promoting, expenditure suppressing) neurons in the modulation and regulation 

of energy balance is well established. However, the full relevance of direct communication 

between these cell types is not yet well understood, as AgRP neurons do not appear to 

contribute to spontaneous input to POMC neurons35, and while optogenetic stimulation of 

AgRP does inhibit POMC neurons, such inhibition is not necessary for the induction of 

feeding behaviors36. It is clear, however, that other intrahypothalamic signaling pathways are 

of relevance to energy homeostasis as postprandial POMC signaling to the paraventricular 

nucleus (PVN) via α-melanocyte-stimulating hormone and melanocortin 3 and 4 receptors 

results in decreased appetite and increased energy expenditure37, and AgRP signaling to the 

PVN promotes appetite and decreases energy expenditure38.

Central regulation of energy expenditure to meet the demands of thermoregulation, basal 

metabolism and physical activity also is accomplished, in part, via hormonal signaling 

to the hypothalamus. For example, thermoregulation in response to exogenous cold 

exposure is achieved through the activation of the hypothalamic-thyroid-adrenal axis and 

the downstream effects of thyroid (T3/T4) hormones in upregulating cellular metabolism 

and heat production in peripheral tissues39. The hypothalamus also modulates cellular 

metabolism in response to endogenous conditions reflecting over-nutrition. For example, 

increased diet induced thermogenesis occurs in response to high-caloric intake, whereas 

fasting produces a reduction in energy expenditure. As noted previously, these energy 

balance mechanisms are asymmetric, in that they are more sensitive to weight loss than 

weight gain, thus emphasizing the importance of higher cognitive regulation of energy 

intake in the context of the abundance of western diets (whose influence is believed to 

further mask or reduce the effectiveness of energy balance set points40,41).

3.2 Reward network

Over and beyond the hypothalamus, the ultimate ‘decision’ of what, when, and how much 

to eat implicates the recruitment of several inter-linked cortical and subcortical structures 

(see Figure 3), of which the mesolimbic dopaminergic (reward) pathway plays a crucial 
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role42–46. The reward network is the catalyst for motivated behavior in the context of 

feeding, in that learned associations with foods that are high in energy content provide 

positive reinforcement through the release of dopamine47. Direct evidence comes from 

lesion studies demonstrating a decreased desire for food after experimental damage to 

reward areas48. The reward network relies on projections between dopaminergic neurons in 

the ventral tegmentum area (VTA) and the nucleus accumbens, but also relies on modulatory 

connections between the amygdala49, hippocampus50,51, insula52, prefrontal49/orbitofrontal 

cortex, caudate53, putamen, thalamus and pituitary gland54. Upon novel exposure to food 

rewards, dopamine is released in the nucleus accumbens. Prolonged exposure habituates 

such a response, ultimately transferring the reward response on to food-related stimuli (e.g., 

images, smells), and thus becoming a potent predictor of reward55–58. From an evolutionary 

perspective, environmental stimuli motivating food seeking behaviors clearly are adaptive. 

Yet, in the modern obesogenic environment, in which such stimuli are ubiquitous, they 

have often become a liability. Because dopamine and the reward network play such a 

prominent role in motivating food intake behaviors59, it has been suggested in the context 

of the problem of obesity that this feature may now constitute an affliction similar to other 

addictive behaviors including narcotics abuse60 and reflect an inherent obstacle to weight 

loss.

3.3 Visceral network

The visceral/gustatory/interoception network represents another key component61 of the 

brain circuitry implicated in caloric intake. This network integrates sensory information 

about internal bodily states (e.g., insula activation via gastric distension62), food-related 

cues (e.g., olfactory/gustatory cortex activation via olfaction/taste), and their interaction63, 

enabling feedback (setpoint error detection and correction) and feedforward (anticipation 

of future energy availability) input64. The olfactory system consists of signaling from 

smell receptors (chemosensation) in the nasal cavity to the primary/secondary olfactory 

cortex via the olfactory bulb. Conversely, the gustatory system consists of an ascending 

pathway originating from taste receptors in the tongue through to the rostral division of the 

NTS, the ventroposterior medial nucleus of the thalamus (VPMpc), and terminating in the 

gustatory cortex located within the insula. The role of the insula in modulating complex 

feeding behaviors in the context of obesity is well established65–68. In addition to gustation, 

the insula plays an essential role in somatosensation, interoception, reward/addiction and 

emotion69. Thus, the insula is believed to integrate multisensory input66,70. Further, the 

insula has dense, reciprocal structural connections to the amygdala71, a brain structure 

involved in taste and textural coding72, and therefore hypothesized to mediate the processing 

of taste and reward73,74.

3.4 Salience network

The salience network (anterior cingulate cortex [ACC], anterior insula75), in concert 

with satiety-related input from the hypothalamus, is believed to underlie the drive for 

the prioritization of sustenance and the de-prioritization of other functional tasks of less 

importance76. The salience network is centered on bilateral orbital frontoinsular and dorsal 

anterior cingulate cortices77, with connectivity to the VTA, thalamus, hypothalamus and 

amygdala. This network is also likely important for switching between internal (default 
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mode network) and external (central executive network) modes of thought78,79, a property 

consistent with and necessary in the context of feeding behaviors80. Critically, structural and 

functional variation in the salience network has been shown to predict food intake under 

stressful conditions, has been associated with familial obesity risk, and differences have 

been described between normal-weight and individuals with obesity81. This then suggests 

that the integrity of the salience network is functionally relevant in the context of energy 

homeostasis.

4. The Ontogeny of Inter-individual Variation in Energy Homeostasis Brain 

Networks

Our framework postulates that energy homeostasis brain networks are already established 

at the time of birth, albeit further maturation and finetuning occurs postnatally, and that the 

inter-individual variation in their functional variation is prospectively associated with key 

markers of subsequent obesity risk (e.g., postnatal feeding behaviors and infant weight/fat 

gain). In this section we describe animal and, where available, human evidence that supports 

the scientific premise of these postulates (see Table 1 for summary).

4.1 Ontogeny of the Satiety Network

As reviewed above in Section 3.1, the hypothalamus represents the hub of the primary 

appetite regulatory network. A considerable body of evidence, primarily in rodents, suggests 

that the hypothalamus takes shape beginning with the formation of neuronal progenitor 

cells appearing shortly after the closure of the neural tube, and this is followed within days 

by cellular specification into hypothalamic neurons (e.g., POMC, VMH neurons). Axonal 

growth occurs throughout gestation from differentiated cell types to various target regions. 

Importantly, inter-individual variation is evident in hypothalamic expression of genes 

encoding extracellular matrix (ECM) protein production (e.g., Col1a1, Col3a1) at postnatal 

day 10 in rodents (roughly equivalent to the human newborn period), accompanied by 

subsequent variation in postnatal body fat accrual, thus indicating functionally meaningful 

inter-individual phenotypic variation at this early life82,83 stage. Interestingly, while the 

rodent hypothalamus responds functionally at birth84–87 to metabolic stimuli, appetite is not 

yet modulated by acute injections of leptin or ghrelin84,88. Further, a functional response 

to food deprivation (i.e., NPY expression) is not observed until between 10 to 20 days 

postnatal age. However, in rodents structural connectivity originating within and between the 

hypothalamus is largely incomplete at birth, whereas in precocial species such as non-human 

primates89 and humans these connections are comparatively mature at birth90. In contrast 

to the ontogeny of the rodent satiety network, fetal hypothalamic NPY and POMC have 

been shown to be well expressed in baboons in late gestation, even prior to birth. Moreover, 

an appetite-promoting functional phenotype (i.e., increased NPY and decreased POMC 

expression in the hypothalamus) is established by late gestation in fetuses exposed to in 
utero caloric restriction. Thus, collectively, this evidence suggests that in precocial species 

the satiety network exhibits structural and functional maturity by the time of birth.
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4.2 Ontogeny of the Reward Network

In rodents, dopaminergic projections from the VTA to the Nucleus Accumbens are in place 

by the time of birth and rapidly expand over the first few weeks of postnatal life91–93. 

Recent evidence in rodents also supports substantial inter-individual variation in Dopamine 

Receptor D2 expression within the VTA and the Nucleus Accumbens as early as postnatal 

day 1094. In humans, the connections of the reward network are largely in place by 

the end of the gestational period, with dopamine transporter immunoreactivity reaching 

a functional state by 40-weeks gestation95. And based on the presence of a diverse set 

of human infant behaviors in response to gustatory and olfactory stimuli, it appears that 

key aspects of learned behaviors and reward-based anticipatory responses to food cues are 

established and functional by birth. For example, it is well established that breast milk odor 

produces an analgesic effect on term and preterm newborns96. Based on the consideration 

that the aversiveness of pain is encoded by reward mesocorticolimbic circuitry97, it seems 

reasonable to suggest that aspects of this circuitry, particularly in the context of feeding, are 

established and functional in humans by late gestation. Moreover, the olfaction of fatty acids 

from maternal amniotic fluid is sufficient to elicit appetitive responses within 24 hours of 

birth98,99. Here, mesocorticolimbic circuitry appears to underlie such responses, as maternal 

colostrum and novel odorant100 olfaction is sufficient for the activation of orbitofrontal 

cortical regions in newborns101–104. Thus, these findings support the premise that key 

aspects of conditioned learned associations50 with stimuli are present during gestation and 

are functional at the time of birth. Moreover, it is clear that there is inter-individual variation 

in newborns in behavioral preferences for flavors (e.g., garlic, anise) consumed by the 

mother with volatile compounds present in the amniotic fluid during pregnancy105–110, 

further supporting the premise of functional maturity in its underlying neurocircuitry. In 

addition to flavor preference, recent evidence suggests fetal growth conditions (small for 

gestational age and intrauterine growth restriction) are associated with variation in early 

life dopamine signaling in the nucleus accumbens111,112 and newborn hedonic responses 

to sweet stimuli113 with long term consequences on the preference for highly palatable 

foods (e.g., high fat and sugar content) 114,115. While more complex reward-based feeding 

behaviors begin to emerge around the weaning period116,117, we suggest that reward 

circuitry in humans in response to gustatory and olfactory cues is functional by birth and 

acts in coordination with limbic regions through dopamine release.

4.3 Ontogeny of the Visceral Network

In rodents, visceral network connectivity between the gastrointestinal tract and the gustatory 

pathway are structurally in place as early as the first postnatal day of life118–120, with 

evidence of the presence of direct control of ingestive behavior (e.g., postingestive but 

preabsorptive signaling). The visceral network continues to mature postnatally through 

changing biochemical signaling121 and further synaptic organization122 and appears to play 

a clear role in energy homeostasis. In a recent report in human newborns, we demonstrated a 

prospective, inverse association between the volume of the newborn insula (a key component 

for sensing the physiological state of visceral organs) and fat gain during early life (a key 

marker of childhood obesity risk) 123. We note this finding is consistent with those evident 

in human adults linking insula gray matter volume and activity with gastric distension, the 
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obese state124–127 or future risk of developing obesity128, and metabolic factors associated 

with obesity, including blood leptin concentration129.

4.4 Ontogeny of the Salience Network

Although the developmental ontogeny in prenatal life of the salience network in the context 

of feeding and childhood obesity risk has yet to be described, we suggest, based on three 

lines of evidence, that it likely is structurally and functionally intact by the time of birth, 

with meaningful inter-individual variation in the context of obesity risk. First, as discussed 

previously in Section 3.4, inter-individual variation in adults in the functional connectivity 

of the salience network has consistently been shown to be associated with several obesity-

related phenotypes130. Second, the salience network is structurally supported by multiple 

white matter pathways131, (e.g., Uncinate Fasciculus132, corpus callosum131) that develop 

in humans during the mid-gestation period. And third, the functional connectivity of the 

salience network is evident by birth133, and the strength of its connectivity is associated 

with maternal BMI134 and inflammation135 during pregnancy, supporting the premise that it 

exhibits meaningful inter-individual variation at birth.

Table 1 provides a summary of the above evidence supporting the presence of structural and 

functional inter-individual variation in brain circuitry at birth and its prospective associations 

with offspring obesity risk. It is organized by network and depicts the model species studied 

and the presence or absence of evidence.

5. Fetal Programming of Energy Homeostasis Brain Networks

A rapidly growing and convergent body of epidemiological, clinical and experimental 

evidence in humans and animals suggests that the origins of obesity can be traced, in 

part, back to developmental processes occurring during the intrauterine period of life, at 

which time the developing embryo/fetus responds to ‘suboptimal’ conditions by producing 

structural and functional changes in cells, tissues and organ systems that persist across 

the life span and modulate susceptibility for many complex common disorders. This 

process, commonly referred to as fetal programming, is adaptive from an evolutionary 

perspective, but at the individual level may confer a trade-off favoring short-term survival/

reproductive fitness at the long-term cost of susceptibility to complex common disorders. 

The importance of fetal programming is supported by evidence that exposures to suboptimal 

maternal nutrition, suboptimal maternal metabolic health, excess maternal stress, and excess 

maternal inflammation during intrauterine life have the potential to alter neurodevelopmental 

outcomes and obesity risk throughout the life course. Specifically, several convergent 

lines of evidence suggest that key brain structures involved in energy homeostasis (e.g., 

hypothalamus, amygdala and hippocampus) exhibit plasticity in response to maternal 

conditions during pregnancy. However, with the exception of the hypothalamus, this 

literature has, to date, largely focused on observations in the context of neuropsychiatric 

disorder risk136. For the remainder of this section, we highlight standing and recent 

developments in which maternal states and conditions influence offspring body composition 

and energy homeostasis relevant brain circuitry in a manner consistent with one another. 

Rasmussen et al. Page 9

Obes Rev. Author manuscript; available in PMC 2023 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These findings support our premise that fetal programming of energy homeostasis brain 

circuitry may, in part, mediate the influence of maternal conditions on offspring obesity risk.

5.1.1 Sociodemographic factors

In humans, offspring adiposity risk is associated with several sociodemographic factors, 

including maternal age at conception, race/ethnicity, and socioeconomic status. Younger 

maternal age at conception has been linked with child outcomes including low 

birthweight137, an increased obesity risk138, and increased risk for central adiposity139. 

Race and ethnicity are also associated with birthweight140, newborn adiposity141, and early 

life feeding behaviors. It is likely that economic deprivation may explain some of the racial 

and ethnic disparities in infant birth outcomes (e.g., birthweight), feeding behaviors, and 

subsequent childhood obesity142–145 prevalence.

In addition to obesity risk, sociodemographic states and conditions have been associated 

with energy homeostasis-relevant brain circuitry and development. For example, it is well 

established that children from high socioeconomic status (SES) families perform better on 

a number of cognitive tasks146, including executive functioning tasks believed to underlie 

aspects of childhood obesity147. In addition, current evidence suggests that structural brain 

development (e.g., insula, frontal cortex) is SES-dependent and mediates the association 

between SES and cognitive performance, particularly in executive function domains148. 

Further, the effects of SES on brain development can be traced back to well before 

childhood because SES has been shown to influence growth and functional connectivity 

of the frontal cortex already in human infancy149,150. In fact, recent evidence has emerged 

that the effects of SES can be traced back to fetal brain development151, particularly in 

the amygdala, a structure highly integrated into the central control of energy homeostasis. 

Certainly, because SES could not exert a direct effect on the fetal brain, these findings 

motivate the needs for a mechanistic understanding of the role of putative mediators such as 

gestational biology on programming homeostasis-relevant brain circuitry throughout the life 

course.

5.1.2 Biophysical/clinical factors

Maternal biophysical and clinical factors such as obesity, excess gestational weight gain 

and gestational diabetes are associated with greater offspring birth weight and fat mass. 

The metabolic consequences of over-nutrition during the fetal period are also believed to 

track beyond infancy, as children born to mothers with obesity or diabetes continue to 

have increased obesity risk152–154. Additionally, not only are offspring of over-nutrition 

pregnancies larger at birth and in later life155, they are also more likely to suffer from 

adverse metabolic conditions such as hypertension and diabetes156,157 as adults. While 

genetic variation (DNA base pair variation) certainly plays a role in the intergenerational 

transmission of obesity and obesity-related outcomes, it is clear that the intrauterine 

milieu plays an important role above and beyond genetics. For example, one Swedish 

national cohort study of pregnancy following bariatric surgery found a marked decrease 

in pre-pregnancy BMI (from roughly 44 to 30, on average) accompanied by a reduced 

risk of gestational diabetes and excessive fetal growth158. Importantly though, the Swedish 

study and others159,160 have found an increased risk for small-for-gestational-age offspring 
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following gastric bypass, suggesting that such restrictive surgery may result in a milieu of 

nutritional deficiency during pregnancy. In a recent meta-analysis of natural weight gain 

between successive pregnancies161, it was estimated that a BMI increase of greater than 

three units between pregnancies was associated with a 63% higher risk (adjusted odds ratio) 

of large-for-gestational age offspring.

In addition to offspring obesity outcomes across the lifespan, there is emerging 

evidence that maternal obesity is associated with offspring cognitive162 163 164,165 and 

neurodevelopmental disorder166 outcomes, and plays a specific role in shaping newborn 

functional and structural brain connectivity patterns within key aspects of the satiety, 

salience, and reward networks. Indeed, recent neuroimaging evidence supports a direct role 

for the hypothalamus as a mediator between maternal nutrition status and susceptibility to 

weight gain in childhood167. Within interoception, salience and reward systems134,168,169, 

maternal obesity has also been linked with fetal and newborn human offspring functional 

and structural connectivity. Because salience and reward networks play a requisite role 

in assigning motivation and importance based on integrated input from the hypothalamus 

by de-prioritizing other76 functional tasks of less importance, it is plausible that maternal 

obesity (through associated gestational biological factors) also plays a meaningful role in 

programming aspects of central feeding behaviors that then contribute to obesity throughout 

the human life-course.

5.1.3 Maternal Diet/Nutrition

The influence of maternal nutrition on offspring brain function in the context of obesity 

is well established. In rodents, a maternal high fat diet alters offspring feeding behavior 

and predisposes to an obese phenotype170–172. This effect is partially mediated by POMC 

expression in the hypothalamus and likely programmed via CpG methylation in a POMC 

promoter region. Other recent findings support endoplasmic reticulum stress brought on by 

fetal exposure to maternal free fatty acid concentrations as a cause of altered hypothalamic 

development, with metabolic consequences in postnatal life173. Beyond the hypothalamus, 

maternal diet-induced obesity models have demonstrated altered feeding behavior in rodent 

offspring, favoring highly palatable foods (e.g., high-fat, high-sugar) accompanied by altered 

aspects of limbic174 and reward175–179 circuitry. Strikingly, maternal under-nutrition during 

pregnancy also promotes an increased appetite for high fat foods in offspring180. Because 

preference for high fat foods is commonly considered to be associated with reward circuitry 

function181, it is likely that under-/over-nutrition models share a common programming 

target in reward circuitry, albeit through a different mechanism (e.g., differential epigenetic 

modification)182 of nutrition status. Potentially, this may also be attributed to separate 

motivational mechanisms where exposure to excess nutrition could influence offspring 

hedonic liking (opioid and cannabinoid) via in utero priming, whereas exposure to 

undernutrition could influence the fetal development of circuitry underlying homeostatic 

wanting (dopamine)183 in preparation for an ex utero environment limited in food resources.

In humans, higher maternal protein intake (relative to carbohydrate or fat intake) in mid-

pregnancy is associated with lower visceral adiposity in neonates184. In the same cohort, 

maternal sugar intake was positively associated with peak BMI in infancy, and maternal 
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carbohydrate and sugar intakes were positively associated with BMI between two to four 

years of age185. In a separate study, an imbalance in maternal micronutrient intake (excess 

folic acid in a B12 deficient diet) during pregnancy was associated with whole-brain 

oxidative stress. In addition, in a large prospective mother-child cohort study, researchers 

documented a negative association between maternal depression during pregnancy and 

offspring IQ, mediated by the maternal diet at 32-weeks gestation186. Collectively, these 

findings support the plausibility that aspects of maternal behavior (e.g., diet and nutrition) 

influence early life adiposity outcomes through changes to appetite regulating networks 

(e.g., satiety, limbic and reward circuitry) during fetal brain development.

5.1.4 Maternal-Placental-Fetal Metabolic, Endocrine and Immune/Inflammatory Biology

The effects of maternal states and conditions during pregnancy on fetal programming of 

the brain and peripheral systems are ultimately mediated via gestational biology. Over and 

above the role of gestational biology in mediating the effects of maternal diet/nutrition 

during pregnancy (as discussed above) it is evident that aspects of gestational biology also 

may mediate the effects of other key prenatal states and conditions on fetal brain energy 

homeostasis-related phenotypes. Here, we discuss these offspring outcomes in relation 

to fetal exposures to three key aspects of maternal-placental-fetal biology: metabolic, 

endocrine, and immune/inflammatory gestational state.

5.1.4.1 Maternal Metabolic State—Glucose and insulin are important markers of 

maternal metabolic state, and of consequence to offspring health and development, including 

the brain. In humans, recent evidence supports the notion that maternal gestational diabetes 

status and insulin sensitivity187 are associated with fetal brain function (auditory evoked 

response latency) following a maternal oral-glucose stimulus188. While maternal insulin 

does not cross the placental barrier, glucose constitutes a predominant form of energy 

substrate provided to the developing fetus by crossing the placenta. The mechanisms that 

regulate the differential effect of maternal insulin sensitivity on the fetal brain response 

to glucose administration are not well established. However, Linder et al observed that 

insulin-resistant mothers have higher glucose levels accompanied by increased insulin levels 

in the postprandial state and go on to suggest that as glucose transfer across the placenta 

increases, hyperinsulinemia (e.g., increased pancreatic insulin production) in the fetus may 

be induced (Pedersen hypothesis) 189. As a result, increased insulin levels in the mother 

correspond with increased insulin levels in the fetal brain compartment. Importantly, insulin 

within the brain compartment appears sufficient for modulating energy homeostasis brain 

networks both in utero and postnatally, with ramifications on food intake, body weight, 

and ultimately obesity190–193. For example, intravenous insulin elicits changes in brain 

activity measured using magnetoencephalography194, and insulin reactivity is associated 

with limbic activation as measured by fMRI in response to visual food cues195. Further, 

recent evidence in animals supports a specific role for brain-based control of glucose 

homeostasis in Type-2 diabetes196, further supporting the role of the brain as both a sensor 

and effector of energy homeostasis. To summarize, the fetus experiences variation in glucose 

concentration exposure that is dependent on variation in maternal metabolism, which in turn 

is sufficient to elicit differential brain function in utero197 likely via fetal insulin production. 

Thus, because the brain is a regulator of energy homeostasis, the above collectively suggests 
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a pathway through which maternal insulin sensitivity status programs offspring metabolic 

health, mediated through fetal brain development and function.

5.1.4.2 Maternal endocrine state—Stress plays an important role in obesity; it alters 

metabolism, affects appetite, and influences dietary intake198,199. During pregnancy, excess 

stress has been associated with adverse developmental outcomes200 including obesity risk201 

and atypical brain development202–205. The stress hormone cortisol is perhaps the most 

robust biological indicator of response to a diverse range of stressors, including low 

socioeconomic status, psychosocial distress, inter-personal conflict, performance pressure, 

and lack of social support206–209. Indeed, cortisol’s importance in effecting appetite and 

metabolism is well established. For example, differentiation of human adipocyte precursor 

cells in the presence of insulin is promoted by cortisol in a dose-dependent manner and 

occurs at physiological concentrations in vitro210,211. Consistent with this observation, 

prenatal maternal cortisol levels have been positively associated with early life adipose 

tissue accumulation in human newborns212.

With respect to the brain and appetite, several studies have reported associations between 

fetal cortisol exposure and alterations in brain development in energy homeostasis-relevant 

brain regions including the amygdala213, hippocampus, insula214, frontal cortex215, and 

anterior cingulate216. For example, in rodents, dexamethasone treatment during pregnancy 

has been shown to affect offspring birth weight, and glucocorticoid receptor mRNA 

expression in the amygdala and hippocampus in a time-dependent manner217. More 

specifically to appetite, induction of corticotropin releasing factor (a hypothalamic precursor 

of cortisol production) in the maternal brain during late pregnancy predisposes rodent 

offspring, in a sex-specific manner, to episodes of binge eating218 when subjected 

to a limited-access food paradigm219. Such binge eating behavior is accompanied by 

hypothalamic adaptation in the offspring, as evidenced by hypomethylation of miR1-a and 

downstream dysregulation of the melanocortin system. Collectively these findings suggest 

that stress during pregnancy may play a meaningful role in setting up obesity susceptibility 

by influencing fetal brain development of energy homeostasis-relevant networks.

In addition to nutrition (see above Section 5.1.3), maternal stress during pregnancy is 

one of the most commonly-studied factors in the context of the fetal programming of 

brain development. However, the effects of maternal nutrition and stress on offspring brain 

development are often studied separately despite evidence of a bi-directional relationship 

between them220,221. The limited literature that does consider the combined effect of 

diet and stress seems to point to a high fat diet, or higher dietary intake of targeted 

nutrients (e.g., antioxidants), as being neurodevelopmentally protective with respect to 

high levels of stress exposure during pregnancy222. However, at least one recent study 

suggests synergistic effects between maternal stress and diet on offspring body weight, 

food-motivated behaviors, and reward center functioning223. Importantly, the interaction 

between diet and stress during pregnancy appears to consistently affect regions in the brain 

that are of high relevance to energy homeostasis, including hippocampal morphology224, 

nucleus accumbens dopamine release223, and the morphology of the prefrontal cortex225.
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In humans, psychosocial stress is positively associated with oxidative stress (OS) 226,227. 

Further, correlative studies during pregnancy have demonstrated positive associations 

of maternal and umbilical cord blood oxidative stress markers228 with maternal and 

neonatal oxidative status in small-for-gestational age newborns229. However, the precise 

mechanisms are not yet fully understood230,231. While a moderate increase in OS is 

an expected physiological component of pregnancy232,233, excessive maternal OS during 

pregnancy has been linked with a number of adverse pregnancy outcomes (e.g., growth 

restriction234 and gestational diabetes235) that have a demonstrable influence on offspring 

metabolic health in later life. In support of the role of OS in fetal programming of energy 

homeostasis relevant brain regions, several rodent studies have established negative effects 

of maternal OS on offspring neurogenesis, hippocampal glucocorticoid receptor density, 

and cognitive functioning, that can be ameliorated by antioxidant administration to the 

pregnant dam236–238. Interestingly, in humans, excess maternal adiposity is associated with 

increased OS239,240 and has been shown to alter DNA methylation sites relevant for CNS 

development and appears to reduce limbic white matter microstructure in offspring169. Thus, 

OS represents an additional pathway between maternal stressors and alterations to offspring 

energy homeostasis-relevant neurocircuitry. It should be noted, however, that because direct 

maternal-fetal transfer of reactive oxygen species is unlikely, OS should be considered as 

part of a broader pathway involving physiological mediating correlates (e.g., inflammatory 

processes, elevated glucocorticoid concentrations) 241.

5.1.4.3 Maternal immune/inflammatory state—Maternal inflammation is another 

potentially critical factor in programming of newborn energy homeostasis-relevant brain 

circuitry (e.g., salience, fronto-limbic). Animal studies have established that prenatal 

exposure to pro-inflammatory cytokines results in increased fat depots in offspring 

postnatally242. Further, adult male offspring of lipopolysaccharide-exposed dams have been 

shown to have higher caloric intake, fat mass, circulating leptin and up-regulation of 

hippocampal glucocorticoid receptor proteins243. While healthy fetal brain development 

and metabolic programming requires a rich set of cell-signaling mechanisms, the literature 

suggests that both are susceptible to excessively abundant inflammatory cytokines. 

Animal models demonstrate maternal immune activation (MIA) alone is sufficient to 

alter early neurodevelopment with long term consequences on the susceptibility to 

developing neuropsychiatric disorder (e.g., autism, schizophrenia244). In humans, recently 

emerging evidence points to the importance of interleukin-6 (IL-6) in programming 

energy homeostasis relevant brain circuitry and behavior. For example, maternal IL-6 

concentrations during pregnancy are associated with newborn amygdala volume and 

connectivity245, fronto-limbic white matter structural connectivity246, and the functional 

connectome135. Importantly, each of these studies used inter-individual variation in the 

newborn brain circuitry to demonstrate prospective associations with cognitive outcomes 

that are relevant for feeding behavior including impulse control, cognition, and working 

memory (a cognitive domain associated with obesity247).

5.1.5 Summary of Fetal Programming of Energy Homeostasis Brain Networks

Based on the above-discussed findings, it is apparent that variation in metabolic function 

and in brain development share considerable overlap in terms of their developmental origins. 
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Yet, a comprehensive understanding of the relationship between these two domains has not 

yet been mapped and is potentially of high value to the field of fetal programming of obesity. 

The recent explosion of research on the fetal origins of obesity has focused primarily on 

peripheral cells, tissues and organ systems. It is plausible that fetal programming of energy 

homeostasis brain circuitry likely and additionally plays an important role in mediating the 

influence of maternal states and conditions on offspring obesity risk.

Table 2 summarizes the above-discussed evidence supporting the developmental plasticity 

of newborn brain energy homeostasis regulating networks and structures in humans and 

rodents. It is organized by maternal risk factors that, on one hand, have been prospectively 

associated with offspring obesity risk, and, on the other hand, have separately been 

associated with the development of key offspring brain phenotypes that are known to 

underlie energy homeostasis.

6. Questions, Issues, Considerations, and Future Research Directions

We outline below issues, considerations, and opportunities for future research directions. 

We begin by discussing recent advances that may facilitate a better quantification in the 

human newborn brain of the ontogeny of energy homeostasis brain networks at a systems 

level. Second, we discuss state-of-the-art approaches (recent and proposed) for phenotyping 

energy expenditure and energy intake in the human newborn. Third, we consider optimal 

approaches to phenotyping the consequences of variation in newborn energy homeostasis 

brain networks. Finally, we highlight several novel animal and in-vitro-based approaches 

that may advance our understanding of the determinants of inter-individual variation in 

energy homeostasis brain networks (through experimental models that trade off translational 

generalizability for mechanistic specificity).

6.1.1 Advances in neonatal brain imaging

The key variables of interest in neonatal brain imaging in the context of fetal programming 

are resolving the structural morphometry (size/shape), structural connectivity (integrity 

of the physical connections between brain structures/regions/networks), and functional 

connectivity (the degree to which structures/regions/networks covary in activity) within and 

between brain networks.

Over the course of the last decade, there has been a dramatic increase in the ability 

to non-invasively image the developing human brain using non-invasive MRI-based 

techniques133,249,250. This methodological advancement holds great promise in increasing 

our understanding of the developmental ontogeny of energy homeostasis-relevant brain 

circuitry and its prospective role in shaping propensity for childhood obesity. Specifically, 

differences are well established between normal weight adults and those with obesity 

in MRI-based (gray matter (GM) structure, white matter (WM) fiber integrity, and 

functional connectivity) measures of the hypothalamic-limbic-cortical brain circuitry that 

regulate energy homeostasis. It is, however, unclear whether the observed difference in 

this brain circuitry between normal-weight and individuals with obesity is a cause or 

consequence of the obese state. Identifying neural correlates of childhood obesity risk that 

predate the influence of the postnatal obesogenic environment and their fetal determinants 
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would advance scientific understanding of the neurobiological underpinnings of obesity. 

In this section, we summarize and identify potential MRI-based biomarkers of human 

energy homeostasis brain circuitry in infancy, including structural morphometry, structural 

connectivity and functional connectivity. Finally, we discuss the importance of and the 

opportunities in longitudinal imaging of early life neurodevelopment with MRI.

6.1.1.1 Structural Morphometry—GM/WM volume is an indirect measure of the 

amount and size of neurons, glial cells, and dendritic processes. Decreased GM and 

WM volume has been regionally associated with excess weight/obesity in adolescents 

and adults124,126. Adiposity effects neurotrophic factors such as leptin, insulin and pro-

inflammatory cytokines, whose long-term influence may lead to excessive burden on 

the brain, as evident in elderly populations251. Alternatively, it is plausible that volume 

reductions in areas within energy homeostasis networks may also effect feeding behaviors. 

Insula volume serves as an ideal example because its importance in obesity is well 

established65–67, and it is a brain region known to independently modulate complex-feeding 

behaviors64,68. Furthermore, reduced insula GM in adult individuals identified as obese-

prone, relative to those categorized as obese-resistant, supports the notion that reduced 

insula volume is itself a risk factor for future weight gain128. This is further supported by 

data in newborns demonstrating a prospective association between newborn insula volume 

and increased gains in body fat percentage in the first six-months of postnatal life123. 

Collectively, these findings support the premise that structural morphometry of the newborn 

brain represents a promising neurophenotype underlying the functional consequences of 

variation in energy homeostasis brain circuitry.

6.1.1.2 Structural Connectivity—Diffusion Tensor Imaging (DTI) directly measures 

the isotropy of water diffusion in the brain and, indirectly, the capacity to transmit efferent 

and afferent signals between cortical nodes in the brain. In adults, hypothalamic mean 

diffusion252, and WM anisotropy and volume253 are associated with obesity. However, the 

directions of these WM associations are inconsistent and brain-region/tract-dependent254. 

In normal-weight children relative to those with obesity, Ou et al demonstrated increased 
fractional anisotropy in tracts related to food intake (e.g., forceps minor, inferior fronto-

occipital fasciculus)255, and they suggest fatty acid presence in the extracellular space 

surrounding the axons as a cause. In contrast to their findings in children, Ou et al have 

also demonstrated reduced anisotropy in neonatal offspring of mothers with obesity169. 

Analogous with obesity-related GM changes, it is possible that the WM deficits observed 

in adult individuals with obesity are a consequence, as opposed to a cause, of long-term 

exposures to obesity-related factors. To date, there are no studies characterizing the 

association between newborn WM phenotypes and postnatal obesity -related outcomes.

6.1.1.3 Functional Connectivity—Resting state functional MRI provides information 

about how the brain is organized, with “connected” brain regions working more closely 

in synchrony. Alterations in functional connectivity in and between energy homeostasis 

brain networks have been observed in overweight and adults with obesity256–258. In 

one early study of MR-based hypothalamic connectivity, Wijngaarden et al observed 

hypothalamic-insula connectivity differences in adult subjects with obesity259. A second 
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study of hypothalamic connectivity identified deficits in overweight/obese adults between 

both the orbitofrontal cortex and ventral striatum and the medial hypothalamus260,261. Since 

these two early studies, several others support nutritional status-dependent connectivity 

between the hypothalamus and the insula, striatum, and hippocampus262–265. In the salience 

network, adult obesity261,266 and fat intake after sleep deprivation267 have been associated 

with deficits in ACC-putamen connectivity. Importantly, similar circuitry (ACC-prefrontal) 

in the human newborn appears to be associated with maternal obesity state (weight134). One 

recent report has further identified effects of maternal weight status on newborn offspring 

functional brain connectivity strength within sensory, reward, executive, and motor control 

networks268. Collectively, these results suggest altered connectivity patterns across multiple 

homeostasis-regulating networks in the obese relative to lean state. However, little is known 

about the developmental ontogeny or integrity of these specific networks in obesity prone 

newborns.

6.1.1.4 Longitudinal Imaging—In both humans and rodents, the mechanisms 

motivating the initiation and cessation of feeding transition from visceral/gustatory/

interoceptive dominated in early life, to satiety/reward-dominated control in post-pubertal 

life116. However, these dominant networks act in concert with other cortical and subcortical 

networks that regulate feeding decisions, justifying a more systems level approach that 

includes and integrates feedback and feed-forward input in order to understand energy 

homeostasis relevant neurodevelopment. Yet, despite acknowledgement of the likelihood 

of its developmental importance269, little attention has been paid to the ontogeny of the 

system of networks as a whole, the maternal influences during pregnancy on this ontogeny, 

or the postnatal consequences of variation in this ontogeny for later obesity. MRI-based 

techniques present a unique and timely opportunity to address this current knowledge gap. 

Specifically, MRI provides a maximally non-invasive approach suitable for longitudinal 

observation of systems-based neurodevelopment across species. In neonatal/infant human 

research that likely requires natural sleep during scanning, this is largely limited to passive 

observation of anatomical morphology, and functional/structural connectivity within and 

between systems. However, recent evidence supports the plausibility of odorant delivery 

and functional response recorded using MRI in infants100. In contrast to human research, 

stimuli in early rodent life can likely be extended to include nutritive gastric distension and 

hormonal inputs (e.g., leptin administration), though care should be taken in experimental 

design as most hormonal stimuli-of-interest are known effectors of development. In later 

stages of development, when human children are old enough for compliance, the opportunity 

for more complex stimuli (e.g., tasteants) and challenge protocols (e.g., stressors) would 

allow gaining a greater understanding of the gestational influence on specific systems 

including reward, satiety, visceral and salience networks.

6.2.1 Advances in the quantification of energy expenditure during the early postnatal life 
period/phase.

The key variables of interest in the quantification of energy expenditure during early 

postnatal life are focused on the constituents of total energy expenditure (TEE): basal 

metabolic rate (BMR), diet induced thermogenesis (DIT) and physical activity levels (PAL).
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Doubly labeled water (DLW) is the most widely-used method for measuring infant 

TEE270–273 owing to its minimal invasiveness, high accuracy, and repeatability274. Indirect 

calorimetry is a complimentary measure capable of further delineating the two components 

of TEE that compromise BMR: sleeping metabolic rate (SMR) and wakeful resting energy 

(WEE) 275,276. DIT is also typically measured via indirect calorimetry, however, is measured 

using pre- and postprandial conditions277. DIT is then defined as the post-ingestion increase 

in BMR divided by the energy content of the food. Thus, there exists a challenge and 

opportunity with respect to refined measures of intake for normalization (see Section 

6.2.2). With respect to PAL, actigraphy devices are a common method for determination 

in pediatric samples as they are relatively inexpensive, reliable, and convenient, making 

them highly accessible in a research context. Recent improvements in wearable devices 

for infants have also begun to provide insights into the role of early life PAL in typical 

growth trajectories278,279. As a proxy, when included with TEE, SMR can also be used 

to objectively estimate PAL280,281 in early life by assuming that variation in WEE is 

principally driven by variation in PAL. In ideal study conditions, frequent measures of 

energy intake quantity and quality (see Section 6.2.2) would be coupled with repeated 

measures of energy expenditure (e.g., TEE, DIT, PAL, and BMR), and longitudinal 

measures of body composition (see Section 6.3.1) in order to provide high temporal 

resolution measures of early life energy balance.

6.2.2 Advances in quantification of energy intake during the early postnatal life period/
phase.

The key variables of interest in the quantification of energy intake during early postnatal 

life can be categorized as indirect (frequency of intake, nutritional biomarkers) and direct 

(breastmilk/formula composition and volume) measures.

In children and adults, self-reported measures of dietary intake are commonly used 

despite their susceptibility to day-to-day variation in diet (e.g., 24-hour recall) and recall 

error282,283. Recent advances in smartphone applications have helped address this by 

allowing for high frequency intake assessments over long periods of time at minimal cost 

and subject burden284,285 yet remain susceptible to rater bias and perception. Alternatively, 

nutritional biomarkers (e.g., plasma carotenoid286, lipid profiles287, urinary sucrose288, 

plasma alkylresorcinol289) hold the potential to reduce error from day-to-day diet variation 

and rater bias by providing objective measures of energy intake over varying time scales 

dependent on the tissue being sampled290 (e.g., blood, hair, adipose tissue). Further towards 

this aim, recent biosensor advances are enabling sweat-based continuous monitoring of 

metabolites and protein concentrations using wearable micropatch arrays291–293. While the 

majority of developments in the electronic recording of feeding behaviors294 and nutritional 

biomarkers have thus far focused on older populations, emerging evidence suggests they 

provide similar advantages in studies focused on early life295 behaviors designed for the 

detailed characterization of energy intake.

Early life assessments of energy intake reflect a relatively stable and simple dietary intake 

(breast milk/formula). However, objective and accurate quantification of intake volume and 

composition during breastfeeding in an accessible and minimally invasive manner remains 
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challenging296. In addition to the challenges of accurate volume measures, there exists 

variability in the composition of breast milk temporally across a single feed. For example, 

hind milk has higher lipid content relative to fore milk, and such a difference in composition 

appears to be of consequence to early life growth in very premature infants297. For this 

reason, assessment of breast milk composition (e.g., lipid content) across feeding duration 
would advance current understanding of the influence of intake on energy intake/imbalance 

in early life. Towards this, limiting study recruitment to maternal cohorts identified as 

suboptimal infant breastfeeding behavior298 (SIBB) would enrich for exclusively bottle 

fed infants, thus allowing for easy, frequent and accurate quantification of homogeneous 

intake by objectively and precisely weighing bottles before and after feeding. While this 

would result in a comprehensive, precise and well-controlled measure of intake, it would 

generalize poorly (e.g., to breastfed individuals) and limit understanding with respect to 

heterogeneity in breast milk/formula composition. Nipple shields299, while controversial 

with respect to its level of invasiveness, are instrumental in SIBB populations and could 

address such a shortcoming by leveraging negative pressure300–302 to proportionally sample 

volume. Minimal fluidic mixing is a feature of microfluidic devices303, and if incorporated 

into a nipple shield design, could allow for the retention of temporal composition 

profiles, providing valuable information about the interaction between breast milk temporal 

composition dynamics, feeding behaviors and subsequent growth. Accurate and precise 

characterization of both breast and bottle feeding is particularly relevant to understanding 

early life feeding behaviors including cessation, duration and intensity of feeding. Because 

variation in these feeding behaviors304,305 is likely driven by variation in energy homeostasis 

brain circuitry, they are of high relevance to the context of the current framework.

6.3.1 Advances in quantification of the biophysical, metabolic and clinical consequences 
(outcomes) of variation in newborn energy homeostasis brain circuitry

The key variable of interest in furthering our understanding of the clinical consequences of 

variation in newborn energy homeostasis brain circuitry is the magnitude and trajectory of 

adiposity and its regional distribution.

The consequence of positive imbalance in energy homeostasis above and beyond normal 

growth is excess tissue deposition. Mounting evidence suggests child size and growth 

velocity during early infancy represent the most reliable, valid, and strongest predictors 

of childhood obesity risk. Rapid size increase, and weight or fat gain during early life is 

associated with increased infant cardiovascular risk factors306, increased childhood (and 

adult) obesity risk307 and related outcomes308–314 including type 1 diabetes315, metabolic 

disorders316, hypertension317, and asthma318 in later life. Recent evidence supports the 

notion that change in infant fat mass during early infancy is a much stronger predictor of 

childhood obesity risk than weight gain alone308. More specifically, the phase of rapid fat 

accrual in the first three months of life has been identified as a critical window for adiposity 

growth319.

However, it should be noted that early life growth is highly non-linear, suggesting that two 

single-measure time points insufficiently characterize growth features including tempo, peak 

magnitude/velocity320,321, and age at peak magnitude/velocity, particularly in relation to 
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later health risks322. It therefore seems imperative that studies using growth as an outcome 

ought to record frequent measures (e.g., skinfold, length, weight) and, when possible, 

anchor them to more informative measures of body-composition including MRI, DXA, 

or air displacement plethysmography. One emerging technology that promises to deliver 

frequent, precise and, most importantly, convenient quantification of body composition is 

3d structured light imaging323,324. Commercially available structured light scanners are now 

affordable and can be packaged with user-friendly software, enabling research participants 

to obtain in-home surface and volume measures of their growing child, independent of 

support staff. Coordinated measurements of volume and weight allow for body composition 

(e.g., body fat percentage) estimates in a manner consistent with those derived from air 

displacement plethysmography at a fraction of the cost and inconvenience. Serial measures 

utilizing structured light imaging would also reduce the effect of measurement bias (via 
repeated measures) while simultaneously enabling true non-linear modeling of early life 

growth patterns.

While frequent serial longitudinal measures will provide a greater understanding of growth, 

it is likely that proxy measures of total body fat will only provide a partial picture 

of metabolic health and disease risk. For example, it has recently been argued that it 

is the spatial and class distribution of lipids in fat deposits that determines metabolic 

risk325,326. Importantly, emerging MRI-based techniques allow for the precise quantification 

of fat composition throughout the whole body under free breathing conditions327,328. The 

importance of this development lies in the lack of compliance observed during the traditional 

breath-holding protocols in pediatric populations. The application of these emerging 

techniques would provide whole-body proton density fat fraction maps, thus allowing for 

the precise quantification of lipid distribution and density throughout the body. Important 

deposits of interest include the liver and classical Brown Adipose Tissue sites329,330. In 

addition to such detailed measures, combining them with frequent longitudinal (serial) 

assessments would not only provide a more complete picture of body composition but could 

provide important anchor points in longitudinal curve fitting, as they would represent a more 

accurate and precise measurement of total body fat.

Collectively, these findings and considerations support the critical importance of 

longitudinal and detailed cross-sectional assessments of body composition during the period 

of rapid tissue expansion in early life and the validity of their use as outcomes in the context 

of research pertaining to fetal programming of energy homeostasis brain circuitry.

6.3.2 The role of postnatal conditions in assessing the consequences of altered newborn 
energy homeostasis brain circuitry

Prenatal states, conditions, and biological factors that influence newborn energy homeostasis 

brain networks can also influence brain networks postnatally. For example, as suggested 

above, maternal stress may influence the intrauterine development of limbic brain circuitry 

implicated in several aspects of food intake. Moreover, it is evident that sequelae of 

maternal stress, including depression331, anxiety332, and obesity333, are associated with 

reduced breastfeeding initiation and/or duration. This then creates a scenario in which 

susceptibility to stress exposure may be established in utero (altered brain development), 
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only to then encounter adverse postnatal exposures that are themselves conditioned 

on the same stress exposure. The infant microbiome is an additional postnatal factor 

increasingly acknowledged to play a role in postnatal brain development334,335. Further, 

infant microbiome composition and activity are believed to be susceptible to maternal 

conditions (e.g., inflammation) 336 that may also alter fetal brain development. Because 

most maternal conditions with the potential to alter fetal brain development during 

pregnancy are likely to persist through the postnatal period, they then may potentiate the 

adverse effects of prenatal exposures. Indeed, our model recognizes that the effects of 

prenatal and postnatal states and conditions may not be mutually exclusive, and that in many 

instances the effects of postnatal exposures may, in part, be conditioned upon the effects of 

prenatal exposures and that these effects may be additive or multiplicative in nature.

6.4 Advances in the use of animal models and in vitro approaches for studies of 
the determinants and consequences of variation in newborn energy homeostasis brain 
circuitry

Till this point we have focused on currently-available opportunities for human research 

on fetal programing of energy homeostasis brain circuitry. Now, we briefly provide a 

perspective on animal and in vitro research opportunities, with a specific focus on how 

they can complement and inform human research.

First, recent advances in optogenetics337 allows for high temporal and spatial resolution 

control of living neural tissue. Thus, this method provides an in vivo basis for 

experimentally validating the behavioral/physiological consequences of activating specific 

brain regions that have been identified in human cohorts as susceptible to developmental 

programming and prospectively relevant to early life energy imbalance. Further, combining 

optogenetic methods with fMRI338–340 could facilitate assessment of the functional 

connectivity of precise neural circuitry, particularly in the context of variation in fetal 

exposures (e.g., stress/inflammation). For instance, one could vary maternal exposures 

like diet (e.g., saturated fats) during pregnancy and then characterize the inter-individual 

variation in offspring functional connectivity to the arcuate nucleus by optically exciting 

virally transfected cells during fMRI acquisition. The advantage of this approach combines 

features of optogenetics not available using conventional MRI techniques (precise neural 

control) while obtaining whole brain function on a scale translatable to that observed in 

human studies. Yet several challenges remain in establishing its utility in a developmental 

context when considering the time necessary to establish the virus necessary for light-based 

excitation relative to the pace of early life development, and its invasive nature relative to 

the plasticity of the developing brain. In contrast, manganese enhanced MRI (MEMRI) has 

recently emerged as a powerful but minimally invasive (administration of MnCl2 through the 

tail) tool for understanding neural recruitment in rodents. MEMRI is considered non-toxic 

at viable doses, validated with histology and gene expression, has been used to map pain 

circuitry in newborn rodents341, and most relevantly, has been instrumental in recent gains in 

the fundamental understanding of early life neurodevelopment at a systems level342–344. 

Further, it is compatible with more conventional MR imaging (DTI and resting state 

functional connectivity) techniques allowing for its use as a complimentary measure345,346. 

Finally, MEMRI has the demonstrated ability to map neural dynamics in the hypothalamus 
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during administration of leptin. Because MEMRI and optogenetics provide precise neural 

control and inference observable at a macroscopic scale, these tools promise maximal 

translation from rodent to human research in a developmental context. In particular, they 

present a unique opportunity to gain insight into the early life transition from visceral-based 

control of feeding to reward-based feeding, as well as its gestational determinants and later 

consequences on the obese state.

Second, the placenta (and placental biology) represents the key interface between the 

maternal and fetal compartments. A number of questions remain regarding when, what, 

and how circulating maternal factors (e.g., lipids, cytokines) are able to cross the placental 

barrier. Recently, MRI techniques have been developed to non-invasively detect complement 

activation in the placenta using C-3 targeted ultrasmall paramagnetic iron oxide (USPIO) 

nanoparticles to bind within inflamed placenta and fetal cortex347,348. USPIO is an 

MR contrast agent that locally increases field inhomogeneity and thereby decreases T2* 

relaxation time (signal void). Ultimately this technique could be leveraged to gain a greater 

understanding of the impact of maternal inflammation (e.g., resulting from maternal obesity) 

on the placenta and fetal brain. While this technique is potentially viable in humans (as 

Ferumoxytol is FDA-approved for human use), it is unlikely to see applications in pregnancy 

research in the near future and therefore should be considered for rodent models only.

Finally, tissue engineering methods represent an additional opportunity to gain a greater 

understanding of the role of the gestational milieu on neurodevelopment. Specifically, 

lab-on-a-chip and organoid models allow for well-controlled environments in which to 

perturb living tissues with metabolic, inflammatory or endocrine challenges. One recently 

micro-engineered placenta-on-a-chip349 provided an in vitro testbed for assessing the 

structural and functional complexities of the placental barrier under varying conditions. 

Importantly, this placenta-on-a-chip was able to recapitulate maternal-to-fetal glucose 

transfer properties found in ex-vivo perfused human placentas. Similarly, brain organoids 

are continually improving in both complexity and function with respect to their respective 

target tissues350,351. Specifically, four recent advances have allowed for the development 

of highly complex functions in brain organoids including: 1) fine scale transcriptional 

mappings352, 2) photo-responsive retinal networks353, 3) inter-neuronal migration354, 

and 4) enhancement of forebrain and cortical plate formation355. By perturbing the 

microenvironment with physiologically relevant levels of inflammatory and stress-related 

factors during development of lab-on-a-chip devices and/or brain organoids, one could 

gain a highly detailed understanding of the impact of the gestational milieu on tissue 

development at the cellular level.

6.5 The scientific and clinical relevance of characterizing variation in newborn energy 
homeostasis brain circuitry

The scientific relevance of characterizing variation in the newborn brain derives from 

the logic that energy homeostasis brain circuitry near birth represents a relatively (to 

children/adults) simple model of the neurobiology of energy homeostasis, and that brain 

circuitry at this time largely precedes influence by the postnatal obesogenic environment. 

The conceptual framework discussed above includes several brain networks that have 
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downstream behavioral analogues to feeding in later life (e.g., reward/motivation, learned 

associations), however in infancy, there are also several external pressures and networks 

found in adulthood that are not yet relevant. For example, brain networks associated 

with conscious inhibition356, food-related monetary economic decision making357 (i.e., the 

balance between food costs and nutrition), and susceptibility to food advertising358 are not 

of direct relevance to infant feeding. In addition, given the extreme nutritional requirements 

during infancy (several times the caloric requirements, per kg, in adulthood) it is likely 

that feeding behaviors are especially salient during infancy, and are thus more readily 

measurable. Finally, because the state of the brain at birth reflects the cumulative sum of 

influences by in utero exposures during fetal brain development, yet precedes influence 

by the postnatal environment under which the brain further adapts, the inter-individual 

variation present at birth provides the most unconfounded characterization of in utero 

influences possible. Therefore, we assert that the time of birth is of scientific importance 

as it enables a more complete understanding of the temporality and sequence of effects in 

fetal programming than observations made in later life alone (e.g., early childhood).

The clinical importance (i.e., effect size) of inter-individual variation in human energy 

homeostasis brain networks at birth (i.e., initial setting) is largely unknown. While it 

is unlikely that any single conceptualization of the causal origins of obesity will be of 

major consequence to the global obesity crisis, obesity has been labeled a “heritable 

neurobehavioral disorder that is highly sensitive to environmental conditions” 359. This 

then suggests that pre- and postnatal environmental exposures play a critically important 

role in expressing inter-individual variation in the developing brain. Further, because fetal 

brain development happens at such a rapid pace culminating with the formation, segregation 

(differentiation/specialization) and integration (forming a network of networks) of brain 

networks by the time of birth, it is likely that the foundational setting of these brain networks 

plays a meaningful role in the ontogeny of downstream feeding behaviors in later life. 

However, because brain development in humans is especially protracted in order to further 

adapt to the postnatal environment, we assert that the proposed framework should largely be 

viewed in the context of susceptibility. That is, future efforts also focusing on the postnatal 

ontogeny (e.g., cascading effects, reversibility) of these brain networks under the influence 

of the postnatal obesogenic environment, as well as potential interventions and positive 

influences360, are critical in further contributing to the current understanding of the clinical 

importance of fetal programming of human energy homeostasis brain networks.

7 . Summary/Conclusion

Here, we have provided an overview of the concept of energy balance and the role of the 

brain in regulating energy balance. We have described evidence supporting the premise that 

energy homeostasis relevant brain circuitry is established and functional by the time of 

birth, with contextually-meaningful variation across individuals. We have advanced a novel 

conceptual framework placing fetal brain development on the putative pathway between 

maternal conditions during pregnancy and offspring susceptibility for obesity. Specifically, 

we describe a model by which classes of exposure in utero (sociodemographic, maternal 

biophysical, metabolic, endocrine, and inflammation) may influence the development of 

brain networks (satiety, reward, visceral, salience) that are ultimately for responsible for 
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regulating downstream feeding behaviors. Further, we have identified questions, issues, 

considerations, and research directions relevant to our proposed model. By identifying 

determinants of childhood obesity that are already present at birth (i.e., predating the 

influence of postnatal conditions), this conceptual framework seeks to lay the groundwork 

for primary prevention strategies. In addition, through the identification of neural correlates 

of childhood obesity risk that predate the influence of the postnatal obesogenic environment 

and their fetal determinants, this framework aims to advance the current scientific 

understanding of the neurobiological underpinnings of obesity in humans.
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Figure 1. Conceptual Model.
The conceptual model incorporates the role of fetal programming of the setpoint of 

energy homeostasis-related brain circuitry at birth into the process of fetal programming 

of offspring body composition.
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Figure 2. Hormonal Inputs to the Central Regulation of Energy Homeostasis.
Hormonal orexegenic input to the CNS originates from stomach contraction, specific 

nutrient sensing in the gut, and peripheral energy substrate sensing. Anorexigenic signaling 

arises from stomach distension, nutrient sensing in the gut, and adipocytes. The CNS 

integrates these signals in order to regulate energy homeostasis through modulation of 

energy intake and expenditure.
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Figure 3. Energy Homeostasis Relevant Brain Regions.
Highlighted brain regions are organized based on their network membership (color outline).

Rasmussen et al. Page 44

Obes Rev. Author manuscript; available in PMC 2023 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rasmussen et al. Page 45

Table 1.
Summary of Evidence Supporting Structural and Functional Inter-individual Variation in 
Newborn Energy Homeostasis Brain Circuitry.

Energy Homeostasis Relevant 
Brain Networks and Structures Model species Evidence supporting notion that function 

is present by the time of birth?

Evidence supporting notion that 
variation at birth is prospectively 

associated with obesity risk?

Satiety: Hypothalamus
Rodents, non-

human 
primates

Yes
See: Baquero 2014; Bouret 2012; Caron 
2010; Gali Ramamoorthy 2015; Greyson 

2006; Steculorum 2011

Yes
See: Barrand 2017; Gali 

Ramamoorthy 2015; Plagemann 
2017

Reward: VTA, NA, Amygdala, 
Hippocampus, Insula, Prefrontal/

Orbitofrontal Cortex, Caudate, 
Putamen, Thalamus, Pituitary 

Gland

Rodents, 
humans

Yes
See: Antonopoulos 2002; Van den Heuvel 
2008; Meng 1999; Contreras 2013; Loos 

2019

Yes
See: Ayres 2012; Dalle Molle 2015; 
Dalle Molle 2016; Laureano 2016; 

Silveira 2018

Visceral: Insula, Olfactory and 
Gustatory Cortices, NTS, VPMpc

Rodents, 
humans

Yes
See: Rinaman 1999; Swithers 1989

Yes
See: Rasmussen 2017

Salience: ACC, anterior Insula Humans Yes
See: Gao 2016; Li 2016; Rudolph 2018; Unknown
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Table 2.
Summary of Evidence supporting the presence of developmental plasticity in Newborn 
Brain Energy Homeostasis Regulating Structures and Networks.

The presented evidence relates to human studies unless otherwise indicated by an asterisk (*) in which the 

evidence predominantly exists in rodent models.

Maternal Risk Factors that are prospectively 
associated with Obesity Risk Brain Networks/Structures/Regions that exhibit Developmental Plasticity

Sociodemographic (e.g., SES) Executive function (e.g., Insula, Frontal Cortex)148, Amygdala151

Maternal Biophysical (e.g., Obesity, Gestational 
Weight Gain) Prefrontal Cortex, Anterior Cingulate Cortex134, 169, Hypothalamus248

Maternal Nutrition*
Indirect evidence for appetite regulating networks (e.g., satiety170, 172, limbic/reward 

circuitry
171, 174–179), hypothalamus173

Maternal Metabolic State Non-specific to date. Literature suggests insulin sensitivity-dependent brain function

Maternal Endocrine Stress Biology Amygdala213, 217*, Hippocampus217, Insula214, Frontal Cortex215, Anterior 
Cingulate216

Maternal Inflammation Limbic (Hippocampus, Amygdala)/Frontal Cortex135,245,246
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