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Abstract

When people evaluate explanations in uncertain situations, the
latent scope bias occurs. It refers to the tendency to perceive
explanations that do not include unobservable events as plau-
sible. Previous studies have proposed the inferred evidence
account, which states that the bias is caused by underestimat-
ing the occurrence probability of unobservable events. Addi-
tionally, this account assumes that humans use Bayesian prob-
ability reasoning in evaluating such explanations. However,
previous studies on this bias have not examined the Bayesian
probabilistic reasoning component. This study measured sub-
jective probabilities of explanations and modeled the reason-
ing process. As a result, it was found that latent scope bias is
caused by Bayesian probabilistic reasoning, compared to the
inference using psychological utility. The results also suggest
that there are considerable individual differences in the occur-
rence of latent scope bias. These results support the inferred
evidence account. Future studies are required to investigate the
factors causing such individual differences.

Keywords: causal explanation; probabilistic reasoning;
heuristic; Bayesian cognitive modeling

Introduction
When observing an event, humans try to explain why it hap-
pened. This kind of explanation that assumes a cause for
a specific event is called causal explanation (Lombrozo &
Vasilyeva, 2017; Salmon, 1998; hereinafter, explanation). In
situations where all possible events are observed, previous
studies have shown that humans find explanations that can
account for more events to be more plausible (Johnson, John-
ston, Toig, & Keil, 2014).

However, in the real-world explanations, it is often the case
that we cannot observe all the events. For instance, suppose
that a patient complains of fever and that there are two possi-
ble causes: disease HN , which causes fever only, and disease
HW , which causes fever and elevated blood glucose level. At
this time, the patient may not have had their blood glucose
tested and may not know whether their blood glucose level is
elevated. We denote that fever is in the manifest scope of HN

Figure 1: Graphical representation of the causal structure re-
ferred to in the Introduction.

and HW , the set of observed events predicted by the expla-
nation, and that elevated blood glucose level is in the latent
scope of HW , the set of unobservable events predicted by the
explanation.

In this case, if HN and HW occur with equal probability,
then normatively, the probability that they caused the patient’s
fever is equal. On the other hand, it is known that the expla-
nation by HN , which does not cause the unobservable event,
in other words, which has narrower latent scope, is preferred
to the explanation by HW (Khemlani, Sussman, & Oppen-
heimer, 2011; Johnston, Johnson, Koven, & Keil, 2017). This
kind of bias is called latent scope bias.

Then, why does this bias occur? Johnson, Rajeev-Kumar,
and Keil (2016) proposed that this happens because hu-
mans underestimate the occurrence probability of unobserved
events. This hypothesis is called inferred evidence account.
The details of this account are described in the following.

Suppose that event X has been observed, and event Z is
unobservable. Furthermore, consider that there are two can-
didates for causes: HW , which causes both X and Z, and HN ,
which causes X but does not cause Z, as shown in Fig. 1. Let
I denote the state in which Z is unobservable. Assuming that818
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X and I are conditionally independent given the causes, the
following equation (1) can be derived using Bayes rule (for
the derivation, see Johnson et al. (2016, Appendix A)):

P(HN |X , I)
P(HW |X , I)

=
P(HN)

P(HW )
· P(X |HN)

P(X |HW )

· P(Z|HN) f+Z +P(−Z|HN) f−Z

P(Z|HW ) f+Z +P(−Z|HW ) f−Z

(1)

Here, “X” and “Z” denote the states in which the events X
and Z are observed, respectively, and “−Z” denotes the state
in which Z is found absent. In addition, we define f+Z =
P(Z|I)/P(Z), f−Z = P(−Z|I)/P(−Z).

In previous studies on latent scope bias, the responses
through a two-choice (Johnston et al., 2017; Khemlani et al.,
2011) or Likert-type scale (Johnson et al., 2016; Khemlani et
al., 2011) were obtained, and there are no studies that measure
subjective probability, to the best of our knowledge. How-
ever, by obtaining subjective probability responses about the
likelihood of explanations, a more detailed investigation of
the bias generation process becomes possible by modeling
based on equation (1). Specifically, we can directly examine
the assumption that “Bayes rule is used to infer the plausibil-
ity of explanations, ” which is a basis of the inferred evidence
account.

In the present study, we obtain subjective probability re-
sponses about the likelihood of the explanation, and check
whether latent scope bias is occurring in the data. Moreover,
we examine the generation process of latent scope bias by
fitting possible models and comparing the goodness of fit.

This study is significant in the following manner: First, by
formulating the reasoning process based on equation (1) in
the form of a probability model, we can provide a quantita-
tive description of the process. Second, by comparing such
models, the reasoning process can be specified in a more de-
tailed way. In addition, by estimating the specific value of
P(Z|I), it is possible to quantitatively infer the degree of un-
derestimation for each individual. Furthermore, by creating
a model that represents the normative reasoning process, we
can provide evidence as to whether there is a bias in the rea-
soning of each individual. The specific hypotheses will be
stated after the model is introduced in the next section.

Models
Settings
In this study, we assume the following settings. Assume
that X1, . . . ,Xm is observed, and Z1, . . . ,Zl is unobservable.
Then, let HN be the explanation whose manifest scope is
{X1, . . . ,Xm} and latent scope is empty, and let HW be the
explanation whose manifest scope is {X1, . . . ,Xm} and latent
scope is {Z1, . . . ,Zl}. Here, we tell the participants that the
prior probabilities of HN and HW are equal and that there is
no cause other than HN and HW of X1, . . . ,Xm,Z1, . . . ,Zl . For
the above problem (consider that several such problems were

created and numbered using subscript j), we consider obtain-
ing an estimate of the probability of having HW by participant
i and denote the obtained value as p(ml)

i j . Note that the norma-

tive solution in this case is p(ml)
i j = 0.5.

Based on these settings, we consider how the answer p(ml)
i j

is generated. In both of the models that follow, we assume
that P(Z|I) is underestimated, which is the core assumption
of the theory of inferred evidence. The following two types
of models can be considered, depending on how the answers
are generated.

Bayesian model

One type of the models is based on inferred evidence ac-
count. We assume that the events X1 ∧ ·· · ∧ Xm and Z1 ∧
·· · ∧ Zl are conditionally independent given the causes, HW
always causes X1, . . . ,Xm,Z1, . . . ,Zl , and HN always causes
X1, . . . ,Xm,−Z1, . . . ,−Zl . Then by expressing the estimated
value of P(Z1, . . . ,Zl |I) by participant i as a parameter αi, we
can obtain the following equation:

1− p(ml)
i j

p(ml)
i j

=
1−αi

αi
(2)

Taking the logarithm of this and adding the noise according
to N(0,σ2), the following model is derived:

log

 p(ml)
i j

1− p(ml)
i j

∼ N
(

log
(

αi

1−αi

)
,σ2

)
(3)

We call this model Bayesian model.
In contrast, I, Z1, . . . ,Zl are not conditionally independent,

but we can hypothetically think of them as being computed in
such ways. Then, we can derive the following model:

log

 p(ml)
i j

1− p(ml)
i j

∼ N
(

log
(

αl
i

(1−αi)l

)
,σ2

)
(4)

We call this independent Bayesian model.

Utility model

Next, we can consider a model that assumes that responses
are made based on expected utility. In other words, this model
assumes that psychological utility is obtained depending on
the degree of consistency between the events predicted by the
explanation and those observed, and that responses are made
by comparing the utility of the two explanations.

For each participant i, let ui be the utility when the event
predicted by the cause and the event observed coincide, and
let 1 be the utility when they do not coincide. In this case,
Ui(HW ), the utility of explanation by HW , is calculated as fol-
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lows:

Ui(HW ) =
m

∑
k=1

ui ·P(Xk|X1, . . . ,Xm, I)

+
l

∑
k=1

(ui ·P(Zk|X1, . . . ,Xm, I) (5)

+1 ·P(−Zk|X1, . . . ,Xm, I))

=m ·ui + l · (αiu̇i +(1−αi) ·1) (6)
=(m+ lαi)ui + l(1−αi) (7)

Similarly, the utility of explanation by HN , Ui(HN), is com-
puted as follows:

Ui(HN) = (m+ l(1−αi))ui + lαi (8)

The process of generating answers from this utility can be
considered in several ways. Here, we consider the utility ratio
model (defined by Eq. (9)), which takes the ratio of two util-
ities, and the utility difference model (defined by Eq. (10)),
which takes the difference, defined as follows:

log

 p(ml)
i j

1− p(ml)
i j

∼ N
(

log
(

Ui(HW )

Ui(HN)

)
,σ2

)
(9)

log

 p(ml)
i j

1− p(ml)
i j

∼ N(Ui(HW )−Ui(HN),σ2) (10)

Result Prediction
In this study, we first checked whether latent scope bias oc-
curs in subjective probability responses. The latent scope bias
is thought to be seen in judgments based on subjective prob-
ability, so it is thought that explanations with a narrower la-
tent scope are judged to have higher subjective probability
than those with a wider latent scope. Next, based on the in-
ferred evidence account, the Bayesian model is supported in
the model comparison. Furthermore, if latent scope bias is
explained by the inferred evidence account, the model that
takes into account individual differences should be supported,
because each individual estimates P(Z|I) independently.

In the present study, we tested whether the above hypothe-
ses are supported or not. In addition to this, we will analyze
the quantitative estimates of the parameters to gain insights
into the inference process and its individual differences.

Method
Participants
One hundred participants (55 males, 42 females, 3 non-
responders; mean age 41.3, SD = 9.4), recruited through
a crowdsourcing service, engaged in the study via a web
browser.

Tasks

The texts about medical diagnosis situations were used for the
task, referring to Exp. 2 of Khemlani et al. (2011). To con-
trol for the effect of prior knowledge, fictitious disease and
substance names were used in the task. The experiment was
created using Qualtrics. Participants answered the probability
that the patient had one of the two candidate diseases using a
101-point scale from 0% to 100% using an on-screen slider
(see Figure 2). They were informed that the prior probabil-
ities of the two candidate diseases were equal and that there
was no possibility that there were other candidate diseases.

The tasks were created for the problem settings described
above for the following conditions:

(m, l) = (0,1),(0,2),(1,1),(1,2),(2,1),(2,2) (11)

Of these, the one with (m, l) = (1,1),(1,2),(2,1) was used
because such conditions were set in the previous study
(Khemlani et al., 2011), and (2,2) was added from the view-
point of symmetry. Although there is no previous study on
m = 0, it was used because it is a special condition that the
manifest scope is empty, and it is thought to be effective in
considering the condition that the latent scope bias occurs.

Four items were created for each pair (m, l). Two of them
asked the participants to answer the probability for the ex-
planation with the wider latent scope among the two expla-
nations presented, and the other two asked the participants
to answer for that with the narrower latent scope as inverted
scales.

In addition, two items of the Directed Questions Scale
(DQS; Maniaci & Rogge, 2014) were created to detect partic-
ipants who did not respond according to the instructions. In
the DQS, participants were presented with the same instruc-
tions as in the other tasks, and they were asked to respond
with 0 or 100 percent in the end of the instruction.

Procedure

Participants who agreed to participate in the experiment first
provided their age and gender. Next, participants were in-
structed to judge the likelihood that the patient had one dis-
ease or the other as a doctor in a fictional world under the con-
dition that the names of the diseases and substances were fic-
titious. They were also instructed to answer intuitively with-
out thinking too much. In addition, we confirmed the opera-
tion of the slider. In this experiment, the slider was pointed at
50% when the screen was displayed, and it was not allowed to
proceed to the next screen until the slider was moved. There-
fore, even if they wanted to answer 50%, they were instructed
to move the slider a little before returning it to 50%.

Next, one practice trial was conducted. In the practice trial,
two explanations with different manifest scopes were pre-
sented, and the participants were asked to rate the probability
of one of them. Subsequently, a total of 26 tasks described
above were presented in a randomized order.
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Figure 2: An example of the task, whose parameters are m = 2, l = 1.

Table 1: EAP estimate and 95% CI for each µm
m EAP 95% CI
0 0.463 [0.447, 0.479]
1 0.456 [0.444, 0.469]
2 0.460 [0.447, 0.473]

Results
Prior to the analysis, we excluded the data of 21 participants
who answered the DQS incorrectly. We also excluded the
data of 9 participants who answered 0% or 100% at least once
in the main task, due to the divergence of the log odds used in
the analysis. As a result, data from 70 participants (39 males,
28 females, and 3 non-responders; mean age 40.1, SD = 9.2)
were included in the analysis. In addition, reversal items were
processed so as to transform all responses into responses p(ml)

i j
for the explanation with a wider latent scope.

In the following analysis, we employed Bayesian infer-
ence using Stan to estimate parameters and compare models.
Throughout the analysis, the number of samples per chain
was 12,000, of which the warm-up period was 2,000, the
number of chains was 4, and the seed value was 4,649.

Bias confirmation

First, we checked whether the latent scope bias was gener-
ated by the subjective probability responses. Since m = 1,2
is a condition that has been examined in previous studies,
while m = 0 is a condition that has not, it is necessary to
examine these conditions separately. Therefore, we ana-
lyzed the degree of latent scope bias for each m indepen-
dently. Specifically, we performed beta regression on the pre-
processed data as described above. That is, for m = 0,1,2,
we performed Bayesian estimation of the mean of the beta
distribution µm = am/(am + bm) using the prior distributions
am ∼ N(0,52),bm ∼ N(0,52),am,bm > 0 based on the follow-

Figure 3: Shape of the posterior distribution of the mean µm
of the beta distribution, estimated according to the formula
(12) for each m of elements in the manifest scope. The dots
represent the EAP estimates, the solid horizontal lines repre-
sent the 95% CI, and the dashed line represents µm = 0.5.

ing model:
p(ml)

i j ∼ Beta(am,bm) (12)

The estimation results are shown in Table 1. The shapes of
the posterior distributions, expected a posteriori (EAP) es-
timates, and their 95% credible intervals (CI) are shown in
Figure 3. Since the upper bound of the 95% CI was < 0.5 in
all cases, we can say that the latent scope bias occurred even
in responses based on subjective probability. It is also found
that the bias occurred in the m = 0 condition. In contrast, µm
was close to 0.5, suggesting that the effect of latent scope bias
was not so large.

Model comparison
Next, for each model, we calculated the goodness of fit for
the obtained data. In estimating the parameters, the prior dis-
tributions were set as α ∼ U(0,1),u ∼ N(1,12)(u > 1),σ ∼

821



Table 2: Calculated WAIC and FE for each model.
WAIC FE

Bayesian model 1.097 1947.6
independent Bayesian model 1.118 2008.7

Utility ratio model 1.140 1998.9
Utility difference model 1.113 1971.8

Table 3: Calculated WAIC and FE for the model with and
without individual differences.

WAIC FE
model with individual differences 1.097 1947.6

model without individual differences 1.203 2027.1

N(0,52)(σ > 0). Widely applicable information criterion
(WAIC) and free energy (FE) were computed as measures of
goodness of fit. To calculate the free energy, we used the
bridgesampling package in R.

The results are shown in Table 2. Since the Bayesian model
had the lowest values both for WAIC and for FE, the Bayesian
model fit the data best and was thought to best represent the
participants’ reasoning process. For this reason, we decided
to use the Bayesian model in subsequent analyses.

In addition, to examine individual differences of the param-
eters, we created a model in which α in the Bayesian model is
a common parameter for all participants. The model created
here is called the model without individual differences, and
the original model is called the model with individual differ-
ences.

A comparison of the goodness of fit for these models is
shown in Table 3. Both the WAIC and FE were lower in the
model with individual differences. This result strongly sup-
ports the model with individual differences, suggesting that
the individual differences in α are considerable.

The mean and 95% CI of the posterior distribution of αi for
each individual are shown in Figure 4. There were 18 partic-
ipants whose 95% CI for αi did not include 0.5. Of these, 17
had upper bounds on the confidence interval < 0.5. There-
fore, it was suggested that a certain number of participants
underestimated P(Z|I). In contrast, for 52 participants (over
70% of the total), the 95% CI included 0.5, and for one par-
ticipant, the lower bound of the 95% confidence interval was
> 0.5. This suggests that many participants did not necessar-
ily underestimate P(Z|I).

Comparison with a normative model
The previous analysis suggests that there were some individ-
ual differences in αi. In contrast, it also suggests that the un-
derestimation, i.e., the latent scope bias, did not necessarily
occur in many participants. In particular, participants around
αi = 0.5 did not exhibit latent scope bias, suggesting that they
were reasoning normatively. However, inference with credi-
ble intervals cannot provide positive evidence that each in-
dividual is doing so. Therefore, we created a normative re-
sponse model and analyzed which of the Bayes or normative

Figure 4: Estimation results of αi for each participant in the
Bayesian model, in ascending order. The dots represent the
EAP estimates, the solid lines represent the 95% CIs, and the
dashed line represents αi = 0.5. Participants whose 95% CI
does not include 0.5 are drawn in darker colors.

Figure 5: Histogram of BFi, classified based on Kass and
Raftery (1995).

models would fit the data for each participant.
In the case of a normative response, the log odds of p(ml)

i j
are expected to follow a normal distribution with mean 0.
In other words, the following model is called the normative
model:

log

 p(ml)
i j

1− p(ml)
i j

∼ N(0,σ2) (13)

For each participant, the Bayes factor BFi was calculated for
the obtained data yi. BFi is defined by the following equation,
i.e., the ratio of marginal likelihoods of the normative model
(denoted as model M0) and the Bayesian model (denoted as
model M1):

BFi =
p(yi|M1)

p(yi|M0)
(14)

Note that in calculating BFi for each individual, the
population-level parameter σ of each model was fixed to the
EAP estimated using everyone’s data.
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The histogram of the calculated BFi is shown in Figure 5.
In this figure, Bayes factors were classified based on the cri-
terion of Kass and Raftery (1995) 1. Twenty-one of the 70
participants supported the normative model at the “positive”
level or higher, while 25 participants supported the Bayesian
model at the “positive” level or higher. This suggests that al-
though some participants showed latent scope bias, the bias
did not appear in a certain number of participants. Further-
more, for each model, there were several participants who had
“very strong” levels of support, suggesting that there were
large individual differences in latent scope bias.

Discussion
This study focused on the inferred evidence account as the
process of the latent scope bias, and directly verified the
Bayesian probabilistic reasoning component by cognitive
modeling using the subjective probability response data. The
bias confirmation showed that latent scope bias was gener-
ated even in responses based on subjective probability. In ad-
dition, the results of the model comparison suggested that the
inferred evidence account proposed by Johnson et al. (2016)
was a relatively reasonable explanation. The analysis of indi-
vidual differences suggested that there are certain individual
differences in the occurrence of latent scope bias.

Furthermore, the results of the beta regression (Figure 3)
suggest that the effect size of the latent scope bias is not very
large, and the Bayes factor (Figure 5) suggests that although
there were indeed a certain number of participants who had a
bias, but at least for the participants in this experiment, there
were not many who experienced the latent scope bias.

In this study, it is suggested that it is more appropriate to
assume that we are reasoning with probabilities, rather than
reasoning with utilities, as an inference process for the likeli-
hood of explanations. Together with the result that the biased
term in the (1) equation is P(Z|I) (Johnson et al., 2016), this
result supports the theory of inferred evidence as the process
of generating latent scope bias. However, it should be noted
that the results of the model comparison in this study are only
within the scope of the models examined, and different results
may be obtained by considering other models.

In previous studies, individual differences in latent scope
bias or the heuristics that cause it have not been examined.
The present study quantitatively showed that some individu-
als engage in normative reasoning, while others do not, sug-
gesting that the majority of individuals engage in normative
reasoning. In future research, it should be considered that la-
tent scope bias does not necessarily occur for everyone, and
future research should consider factors causing such individ-
ual differences.

Future research is to examine whether this study’s findings
can be generalized to other types of responses (e.g., Likert-
type scale). Additionally, the model used in this study as-

1Note: 1 ≤ BFi ≤ 3: Not worth more than a bare mention, 3 ≤
BFi ≤ 20: positive evidence for M1, 20≤BFi ≤ 150: strong evidence
for M1, BFi ≥ 150: very strong evidence for M1

sumes that the participants understand the questions correctly.
However, it is possible that the participants do not under-
stand the question statement according to normative proba-
bility theory, as seen in the criticisms of the research on rep-
resentativeness heuristics (e.g., Hertwig & Gigerenzer, 1999;
Hertwig, Benz & Krauss, 2008). Further studies are needed
to address this point as well.

Conclusion
In this study, we modeled how the latent scope bias arises,
and the results showed that the Bayesian inference process
proposed in previous studies was the most supported. More-
over, the results suggest that there are individual differences
in the occurrence of latent scope bias and that there are some
individuals who have bias, whereas others show normative
inference.
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