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Abstract

Importance learning: new methods to efficiently model heterogeneous catalysts with

quenched disorder

by

Craig Austin Vandervelden

Over the past few decades there have been tremendous advances in the accuracy of

electronic structure calculations, rigorous methods to assess proposed reaction mecha-

nisms, and techniques to create representative models of active sites for homogeneous

and ordered heterogeneous catalysts. Advances on all these fronts have greatly improved

our understanding of numerous catalysts. However, most of these methods assume that

the active sites are both well-defined and uniform (or are in an ensemble of uniform sites).

Catalysts with quenched disorder have non-uniform active sites. Most established mod-

eling techniques are inapplicable and many important catalysts in this category remain

poorly understood. The major challenges of modeling catalysts with quenched disorder

are (i) the nature of the disorder is out-of-equilibrium and unknown; (ii) each active site

has a different local environment and activity; (iii) active sites are rare, often less than

∼20% of potential sites, depending on the catalyst and preparation method.

In this thesis, we develop new methods to efficiently predict kinetic properties of the

distribution of quenched-disordered sites and how they affect different steps of catalyst

operation. We combine population balance modeling techniques with machine learning

methods to learn how the population of grafted sites evolves in time. We develop a new

algorithm to efficiently converge site-averaged kinetics for a given distribution of grafted

sites, the Importance Learning algorithm. A combination of Importance sampling and

machine Learning are used to efficiently and accurately learn activation parameters of
viii



rare sites that dominate site-averaged kinetics. Finally, we develop a protocol to create

cluster models of active sites that most accurately preserve quenched degrees of freedom.
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Chapter 1

Introduction

1.1 Overview

Catalysts play a crucial role in chemical technologies. Approximately 90% of chemi-

cal processes utilize catalysts to annually produce 2–4 trillion USD of chemicals.1 Viable

industrial catalysts require sufficient activity, selectivity, stability (mechanical and ther-

mal), and most importantly commercial feasibility.2 There has also been an emphasis

to decrease reliance on precious metals and use more environmentally benign processes,

e.g. less byproducts, milder operating conditions, or non-toxic catalytic materials.3 Ef-

forts to engineer better catalysts often involve a trial-and-error approach, and usually

require numerous (sometimes hundreds of thousands!) experiments.4 Over the past cou-

ple decades there has been a surge in “rational catalyst design”, which aims to engineer

better catalysts through understanding the governing physical phenomena. Examples

include increasing the activity and/or selectivity of nanoparticles by changing the com-

position5 or morphology,6 designing sinter-resistant heterogeneous catalysts by chemically

or physically modifying the catalyst surface,7 and increasing the efficiency or selectivity

of enzymes by modifying their protein sequences.8 Computations have played an increas-
1



Introduction Chapter 1

ing role in better understanding the underlying phenomena of catalysts. The increasing

presence of computational catalysis can be attributed to three factors: (i) computing

power has drastically increased, in correspondence with Moore’s Law,9 (ii) the compu-

tational methods used to predict catalyst properties have greatly increased in accuracy,

and (iii) methods to create representative models of catalysts and compute their kinetics

have been developed for many categories of catalysts.

1.2 Computational catalysis

The most common applications of modeling catalysts include testing hypothesized

mechanisms10, high-throughput screening,11 and engineering catalysts with known mech-

anisms to be more active, selective, and/or stable.12,13 Modeling a catalytic cycle requires

a model of the active site, a means to compute the relative energies of reactants, prod-

ucts, intermediates and transition states, and a means convert and compare the computed

energies of the catalytic cycle to experimentally observable quantities.

Active site models can vary in their complexity, which usually balances computational

cost with model accuracy. For example, many industrial processes use heterogeneous

catalysts consisting of a nanoparticles supported on a high-surface area support like alu-

mina.14 The earliest and simplest catalyst models consists of a single crystal face, which

represented a face of the nanoparticle. More complex catalyst models including steps

and/or defects in crystal faces. Current catalyst models can include entire nanoparticles

and a portion of the support.15 Many other classes of catalysts like zeolites, organometal-

lic complexes, and metal oxides all have established methods for creating representative

active site models.16–18

Electronic structure methods are almost exclusively used to compute energies of a

catalytic cycle because bond-formation and bond-breaking steps of a catalytic cycle are
2



Section 1.2 Computational catalysis

inherently quantum-chemical. Density functional theory (DFT) is by far the most com-

mon method for computing relative energies because it has a desirable balance of compu-

tational cost and accuracy.19,20 Wavefunction-based methods like coupled cluster theory

have excellent accuracy, but are much less common due to their high computational

cost.21 Electronic structure calculations are used in conjunction with optimization algo-

rithms to optimize the energy of a species to a stationary point (i.e., a minimum and

saddle point) by changing the atomic structure. Performing structure optimizations is

well-studied and robust algorithms are available in many quantum chemistry software

packages.22–24

Once the relative energies of reactants, intermediates, transition states, and prod-

ucts are computed, they must be converted into quantities that can be compared with

experimental observables. One of the most common methods is to compute a rate law

by constructing a microkinetic model from the elementary steps of the mechanism.10,25

Rate constants are usually computed using harmonic transition state theory,26 which

parameterized by the relative free energies. If a microkinetic model is derived from the

correct mechanism, the predicted rates, intermediate abundancies, and selectivities will

be consistent with experimental data over a range of species concentrations and temper-

atures. The results of electronic structure calculations can also be used to compute IR,27

NMR,28–30 or Raman31 spectra of abundant intermediates, which can be compared to

experimentally measured spectra.

In addition to methods to assess mechanisms, there are frameworks to help engi-

neer and discover more effective catalysts. For example, Campbell’s degree of rate con-

trol formalism identifies the rate determining step of complex, multistep mechanisms.32

Understanding which step is rate determining is crucial before attempting to design a

better catalyst. Nørskov and coworkers also developed a framework for catalyst screen-

ing/discovery.33 The adsorption energy of adatoms (e.g., C) is linearly related to the
3



Introduction Chapter 1

adsorption energy of molecules containing said adatom (e.g., CHx , x = 1, 2, 3). Corre-

lated adsorption and dissociation energies can be used with reaction stoichiometries to

compute heats of formation. Free energy relations from Bell, Evans, and Polanyi (BEP

relations)34 linearly relate quantities like dissociation energies and heats of formation to

activation barriers, the latter being far more difficult to compute. When paired with

a microkinetic model, there is a direct route to compute the turnover frequency as a

function of atomic adsorption energy. While these energy relations are only qualitatively

accurate, they can quickly screen the periodic table for candidate materials, dopants, or

supports to investigate with more accurate methods.35

Developments in all these areas have greatly advanced our understanding of many

types of catalysts through computation. Although many computational catalysis is still

an active field of research, most types of catalysts at least have established protocols for

modeling them.

1.3 Heterogeneous catalysts with quenched disorder

Most of the methodological developments discussed above leverage the fact that cata-

lysts have uniform (or an ensemble of uniform) sites. One class of catalysts, heterogeneous

catalysts with quenched disorder, has unique properties which violate the assumptions

invoked in most modeling techniques. Currently, there are no rigorous methods to model

this class of catalysts and they remain poorly understood.

Heterogeneous catalysts with quenched disorder, i.e., non-equilibrium disorder that

does not vary in time, present special challenges for experimental and computational stud-

ies. Examples of some heterogeneous catalysts with quenched disorder include metallic

glasses,36–38 high-entropy alloys,39,40 mixed metal oxides,41 and single metal atoms grafted

to amorphous supports like silica or silica-alumina.42–45 The latter, single metal atoms
4



Section 1.3 Heterogeneous catalysts with quenched disorder

catalysts, can be encountered in industrial processes and will be the focus of this thesis.

Some well-studied single metal atoms grafted onto amorphous silica include chromocenes

or chromates for olefin polymerization,46–48 titanium and tantalum complexes for olefin

epoxidation,49 molybdates for methanol dehydration,50 and vanadates for partial oxida-

tion of methanol.51 A typical active site consists of a metal center grafted to surface

hydroxyls on the amorphous support. The resulting sites are non-uniform on two ac-

counts. First, the amorphous support has both structural and topological disorder, so

each site has a different local environment. Structural disorder is frequently character-

ized by bond-length and bond-angle distributions. An example of topological disorder

is the distribution siloxane rings in amorphous silica.52 Different support preparation

methods (sol-gel,53,54 pyrolysis,55 or precipitation56) also leads to amorphous oxides with

different disorder characteristics.57 Second, different surface hydroxyl groups (isolated,

geminal, vicinal, and proximal) can lead to qualitatively different sites.57 For example,

a metal center grafted to an isolated silanol will have a fundamentally different coordi-

nation environment than one grafted to a pair of vicinal silanols. The two sources of

non-uniformity and a schematic of different surface OH types are shown in Figure 1.1

5



Introduction Chapter 1

Figure 1.1: Sources of non-uniformity for sites on an amorphous support. Figure (1.1a)
shows the structural and topological disorder for different OH groups (highlighted in
blue) on an amorphous SiO2 model. Figure (1.1b) shows the different type of surface
OH groups that can populate a silica surface. Proximal groups refer to pairs of isolated
surface OH groups which are close enough to graft a metal to. Note that proximal OH
groups can occur as tuples, triplets, etc.

Both types of non-uniformity are important in catalysis. Specific metal precursors

may only be able to graft to certain types of OH groups. Furthermore, sites where graft-

ing is possible will not necessarily produce a catalytically active site. The structural and

topological disorder of the support also gives rise to a distribution of non-uniform sites,

where each site has exponentially different kinetic and thermodynamic properties.58 Any

observed kinetics are averages over the quenched distribution of sites, referred to as site-

averaged kinetics. Furthermore, only a small fraction of sites are active, typically less than

ca. 20%, depending on the catalyst and preparation method.48,59–61 This makes study-

ing disordered heterogeneous catalysts tremendously challenging, both experimentally
6



Section 1.3 Heterogeneous catalysts with quenched disorder

and computationally. Characterization techniques that probe the structure, oxidation

state, and coordination environment of catalytic sites likely scan inactive sites. Testing

mechanisms and discovering features of active sites is difficult because these rare active

sites present a “needle in a haystack”-type challenge. On the computational side, most

challenges stem from creating a representative distribution of active models or efficiently

averaging kinetics over the distribution of sites.

Models of active sites

Creating a distribution of active site models that accurately matches the real distribu-

tion of sites for amorphous oxides is difficult because because they are out of equilibrium,

so sampling techniques like Monte Carlo cannot be used. For studies that investigate how

site heterogeneity affects a sites activity, the ensemble of active site models usually con-

sists of cluster models carved from periodic slab models of amorphous oxide surfaces.62–68

The cluster models are much smaller than the entire slab, which makes them amenable

to more accurate electronic structure calculations.

However, assessing how accurately cluster and slab models resemble real amorphous

oxides like silica is an outstanding challenge because atomically resolved structural data is

unavailable. Present amorphous oxide models are also created with approximate methods

because mimicking experimental synthesis methods like sol-gel or pyrolysis is currently

intractable.53,55 This further makes it challenging to compare which computational proto-

col yields a more realistic model because all are based on ad hoc methods. Nevertheless,

most modern slab models are able to reproduce many average quantities, e.g., average

Si–OH surface converge, the average Si–O bond distance, the average O–Si–O bond

angle, etc.68

The procedures to create these cluster models of amorphous oxides69,70 resemble those

used to create cluster models of crystalline zeolites.16,71 The cluster encompasses all atoms
7



Introduction Chapter 1

within some cutoff away from a site of interest, all “peripheral” Si-O-Si linkages beyond

the cutoff are cut, and dangling bonds are terminated with capping atoms like F, H,

or OH groups. The peripheral atoms are often constrained in place during subsequent

analyses of grafting and reactivity to mimic the structural constraints imposed by the

silica matrix.66,68,72–74 An example of carving a silica cluster model from a periodic slab

is shown in Figure 1.2.

Figure 1.2: Example of carving a small cluster model (outlined in blue) from an
periodic SiO2 slab model. Dangling O bonds are capped with H atoms, which are
aligned along the Si–O bond and rescaled to an equilibrium distance.

Cluster models are also a reasonable model choice because oxides are insulators, so

long-range electronic interactions should have a negligible effect.75,76 The size of the clus-

ter can also be adjusted to provide an acceptable cost-accuracy balance. The cluster

size should be large enough so that key interactions (including steric effects, electro-

static/dispersion attraction, and H-bonding) present catalytic sites are accurately cap-

tured.77–79 However, the cluster model should also be small enough so accurate electronic
8



Section 1.3 Heterogeneous catalysts with quenched disorder

methods and basis sets remain computationally tractable. While calculations using pe-

riodic slab models as active sites are possible, they require a large simulation cell to

accurately capture the quenched disorder.68 This limits the number of sites that can be

used in an ensemble and also the accuracy of the level of theory that can be employed

(e.g., using accurate hybrid or double-hybrid functionals is not feasible).

Site-averaged kinetics

In addition to difficulties in creating and assessing realistic active site models, aver-

aging kinetics over the distribution of sites has its own statistical challenges. For single

metal atom catalysts, the metal center first has to be grafted to the support by react-

ing an organometallic precursor with surface hydroxyls on the support.44 Because every

site is different, sites will graft at different rates. Different grafted populations can be

obtained by changing the grafting reaction conditions or how long the grafting reaction

is conducted. Once grafted, the site may also undergo an activation step before the cat-

alytic cycle can proceed. Only once the distribution of activated sites is obtained can

site-averaged kinetics be computed, which will likely depend on all prior steps. However,

converging estimates of site-averaged kinetics involves computing exponential averages,58

which are notoriously difficult to converge.80–82 It was estimated that converging site-

averaged kinetics within 10% of their actual values may require thousands of sites when

standard sampling methods are used.44 Because each sample is a handful of expensive

electronic structure calculations, randomly sampling the quenched distribution of sites is

an infeasible strategy.

For example, the Phillips catalyst (Cr/SiO2 for olefin polymerization) is believed to

activate by forming (–––SiO)2Cr(III)alkyl sites from Cr(II) sites exposed to ethylene.48

From a given population of grafted sites, only a subset of these might activate or be

catalytically active due to differences in a site’s local environment. Only from the final
9
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distribution of active sites can site-averaged kinetics be computed. A schematic illus-

trating grafting, activation, and polymerization steps steps in the Phillips catalyst, along

with how the distribution of sites changes in each step, is shown in Figure 1.3.

Figure 1.3: Schematic showing grafting, activation, and polymerization steps in the
Phillips catalyst. The plots below graphically represents the population of sites, de-
noted at x, as conditional probability distributions. A Cr precursor grafts to a subpop-
ulation of all sites as dioxoCr(VI), ρ(x|xgraft). An even smaller subpopulation forms
catalytically active sites, ρ(x|xact). The catalytic cycle proceeds from the population
of active sites.

Prior computational studies have used one83,84 or a small number (< 10)66,74,85–90 of

active site models. Most studies also focused on qualitatively assessing the plausibility

of mechanisms or illustrated how site diversity affects the kinetic and thermodynamic

properties of a site. No studies have attempted to rigorously compute site-averaged

kinetics. While these studies provide useful mechanistic insight, the conclusions drawn are

limited because only a small number of sites are considered. One of the biggest challenges

with this modeling approach is distinguishing unviable mechanisms from inactive site

models. Because only a small fraction of sites are active, most randomly selected sites
10



Section 1.4 Outline

might appear inactive, even according the correct mechanism. Another related challenge

is computing the relative abundance of active sites. If a site model is catalytically active,

is that site abundant enough to contribute to the observed kinetics? With increasingly

realistic amorphous oxide models being developed, site-averaged kinetics can address

these issues by accounting for the activity and relative abundance of the non-uniform sites.

However, efficient methods to accurately estimate site-averaged kinetics are necessary.

1.4 Outline

The main goal of this dissertation is to develop new methods to model catalysts

with quenched disorder. Chapter 2 assesses an activation mechanism involving pairs of

active sites for the Phillips catalyst. This chapter can be thought of an application of

current methods to model catalysts with quenched disorder in the sense that one local

environment is considered with a minimal cluster model. We then develop a statistical

model that accounts for the spatial distribution of sites to estimate the total fraction of

sites that can activate.

Chapters 3 – 5 focuses on new methods to efficiently model catalysts with quenched

disorder. We developed a structurally disordered, functionalized lattice model to mimic

the surface of amorphous SiO2: the quenched disorder lattice model. The quenched

disorder lattice model serves as a platform for method development. The model contains

sites for grafting and catalysis reactions, along with a simple model chemistry that allows

for reaction energies to be computed as a function of the local environment. The simple

model chemistry also allows for site-averaged kinetics to be exhaustively computed for

all sites, enabling new methods to be benchmarked against standard sampling methods.

Chapter 3 develops tools to efficiently model the grafting step. A small set of expensive

electronic structure calculations are used to construct a training set for a kernel regression
11
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(KR) model. The trained KR model is used to predict the grafting barriers for the entire

distribution of sites. The trained kernel regression model is paired with a population

balance model to predict how population of grafted sites evolves in time. Chapter 4

presents an algorithm combining of importance sampling and KR-based machine learning

methods to efficiently estimate the site-averaged kinetics of a catalytic cycle given a

distribution of grafted sites, the Importance Learning algorithm. Chapter 5 presents an

efficient estimator for the site-averaged turnover frequency (TOF) using the Importance

Learning algorithm. The site-averaged TOF estimator requires no calculations in addition

to the ones used in the Importance Learning algorithm. We also show how to account for

errors in the trained KR model, which provides more accurate estimates of site-averaged

kinetics.

Finally, Chapter 6 presents a protocol for carving cluster models from slab models that

most accurately preserve the quenched disordered degrees of freedom. We demonstrate

the protocol with the simple quenched disorder lattice model, which allows us to use large

cluster models and collect many statistics. We also use large atomistic cluster models

of SiO2 with electronic structure calculations to model the grafting step in the Phillips

catalyst as a realistic example.

12
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Chapter 2

Computational Support for Phillips

Catalyst Initiation via Cr-C Bond

Homolysis in a Chromacyclopentane

Site

Reproduced in part with permission from:

. Fong, A., Vandervelden, C., Scott, S. L. & Peters, B. Computational Support for

Phillips Catalyst Initiation via Cr–C Bond Homolysis in a Chromacyclopentane

Site. ACS Catal. 8, 1728–1733. https://doi.org/10.1021/acscatal.7b03724

(2018).

The Phillips catalyst (Cr/SiO2) is used to produce about 30 million tons of high

density polyethylene annually. Despite its long history and continuing industrial impor-

tance,1,2 the mechanism by which the active sites are initially formed remains incom-

pletely understood. In industrial practice,2 Cr(VI) sites are reduced by either CO3 or
25
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ethylene4 to (–––SiO)2Cr(II) sites. Upon exposure to ethylene at ca. 100 C, the active

sites (which are widely believed to be (–––SiO)2Cr(III)-alkyls)2 form spontaneously with-

out the assistance of an alkylating co-catalyst. For typical industrial catalysts, estimates

of the fraction of Cr sites that is eventually activated vary from 7 to 32 %.2 According to

McDaniel’s authoritative review of the commercial Phillips catalyst: “The CO-reduced

catalyst, much like its hexavalent parent, polymerizes ethylene under commercial condi-

tions, producing similar polymer”.2 Furthermore, McDaniel shows that activation profiles

of Phillips catalysts reduced by either CO or ethylene are very similar,2,3 strongly sug-

gesting that they follow the same activation mechanism with the same kinetic barrier.

Thus while the distribution of Cr coordination numbers and local environments may dif-

fer in Phillips catalysts subjected to different treatments,5–7 and may be manifested in

their average spectroscopic properties, there is no evidence that such differences influence

reactivity. Based on published observations that approx. one hour is needed to achieve

full catalytic activity from either reduced catalyst in an industrial reactor at 373 K,2 and

using transition state theory, we estimated the overall barrier for initiation to be approx.

120 kJ/mol.8

Many mechanistic proposals and active site models for the Phillips catalyst have

been put forth, some despite ambiguous evidence or even considerable counter-evidence

(as discussed extensively by McDaniel).2 Peters et al. emphasized the need to evaluate

computational results more critically for consistency, offering the following three guide-

lines:9

1. The complete catalytic cycle should be considered (initiation, propagation, and

termination). A viable mechanism and active site model should distinguish be-

tween the preliminary reduction of Cr(VI), slow initiation of the first chain, and

chain termination with rapid re-initiation of subsequent chains. In the words of
26



McDaniel,2 “. . . termination of a typical chain must not leave the site in the virgin

state, requiring full re-alkylation.”

2. Computational studies should distinguish between plausible and implausible de-

partures from experiment.9 Computationally-predicted polymerization rates and

polymer molecular weights are not expected to have “chemical” accuracy, particu-

larly for heterogeneous catalysts whose active site structures are not well-defined.

However, benchmark DFT calculations10 suggest that discrepancies in computed

rates that exceed factors of ca. 105 are likely due to problems in the active site

model and/or proposed mechanism, rather than to inherent inaccuracies in DFT.

3. There should be a viable pathway (based on experimental synthesis protocols) to

obtain the sites proposed in computational models.11 This point is especially im-

portant in mechanistic proposals that invoke highly strained sites/unusual metal

coordination environments,12 or support defects.13 Certainly, site variability can in-

fluence the properties of metal sites grafted onto amorphous supports.5,14 However,

proposals that invoke unusual sites must also demonstrate sufficient site abundance

to explain the observed catalyst activity and/or active site counting results. Com-

putational proposals which invoke undetectably rare sites must also quantify their

abundance in order to make falsifiable predictions about their kinetic viability.

Recently, Gierada et al.13,15 examined a proposed mechanism in which hydroxyl lig-

ands associated with rare (–––SiO)2Cr(III)–OH sites abstract a proton from ethylene to

give (–––SiO)2Cr(III)(OH2)(vinyl) sites. Since the partial pressure of water is extremely

low under polymerization conditions, the subsequent desorption of H2O from such sites

would generate polymerization-active (–––SiO)2Cr(III)–vinyl sites. However, this pro-

posed initiation mechanism is not supported by any experimental evidence for the exis-

tence of the putative (–––SiO)2Cr(III)–OH sites;15 instead, the polymerization activity of
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the catalyst is inversely correlated with hydroxyl content of the catalyst.2

In another recent paper, Floryan et al.12 revisited a proposed initiation mechanism

involving highly energetically unfavorable proton transfer from ethylene to a bridging

oxygen atom on a purported (–––SiO)3Cr(III) site. The authors examined several ver-

sions of this site computationally in order to show that very highly strained sites can

spontaneously deprotonate ethylene and thereby initiate polymerization. However, the

most highly strained sites also have markedly different energetics than the previously

proposed site for the same mechanism (e.g., their proton transfer energies differ by ca.

150 kJ/mol, compared to the original study).16 In addition, the strained sites were ob-

tained by computational alchemy,17 i.e., hand replacement of an –––SiOH site by a Cr(III)

ion.12 In this respect, the model violates guideline (3) above: the authors do not show

that their grafting strategy using a molecular Cr(III) complex and mild calcination could

generate such highly strained sites on silica, nor do they predict the abundance of the

model sites. Furthermore, their computational findings were reported to be based in part

on incompletely optimized structures, with multiple imaginary frequencies.12

Our recent studies,18 as well as earlier calculations by Espelid and Børve,19,20 con-

firmed that alkylCr(III) sites interacting with silica via two anionic silanolate ligands (and

possibly additional neutral siloxane ligands) are viable propagating sites for olefin poly-

merization, but the mechanism by which they could form has not yet been fully resolved.

Using a simple cluster model (5I in Figure 2.1),8 our previous work examined several hy-

pothesized initiation pathways that begin with reduced (–––SiO)2Cr(II) sites. Nearly all

were excluded on the basis of very high activation barriers and/or rapid termination af-

ter initiation. Ethylene disproportionation to give (–––SiO)2Cr(IV)(CH2CH3)(CH––CH2)

sites followed by ethyl radical extrusion was found to be consistent with the observed

formation of organic radicals during initiation.21,22

Thus ab initio calculations8 as well as experimental observations21,22 and precedents
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from molecular chromium chemistry23,24 all suggest a probable role for homolysis path-

ways in the initiation mechanism. However, our previous computational investigation

using simple, rigid cluster models predicted that a two-step mechanism involving activa-

tion of coordinated ethylene to give an (ethyl)(vinyl)Cr(IV) site followed by homolytic

Cr-C bond cleavage would require hemilabile coordination of siloxane ligands, and no

suitable arrangement of ligands was found to allow both steps to proceed at appreciable

rates.88 In this work, we explore a modified Cr-C bond homolysis mechanism, beginning

from readily accessible chromacyclopentane sites. Of course, different homolysis path-

ways may be favored at various sites in the heterogeneous catalyst due to differences in

the local Cr geometry.

Our calculations begin with the same cluster model used in our previous works:8 a

small chromasiloxane ring with fixed OH capping groups. The small model assumes only

minimal information about the local environment around the Cr site. Larger models rely

on more detailed assumptions and, for the Phillips catalyst, there is evidence in many

cases that they provide similar results.13 Also following our previous work, intermediates

and transition states were optimized using the ωB97X-D functional25,26 with a def2-

TZVP basis for Cr27–29 and a TZVP basis for all other atoms.30 All free energies include

translational, rotational, and vibrational contributions. Further details on the cluster

model and computational methods can be found in Appendix A.

The most stable form of the bis(ethylene)Cr(II) complex has quintet spin multiplicity,

and is denoted 5III in Figure 2.1. Its preferred reaction with ethylene is cycloaddition to

give a chromacyclopentane. We and others previously reported computational evidence

for facile chromacyclopentane formation in Phillips catalyst models by ethylene oxida-

tive addition,8,19 and many chromacycles have been described in molecular chromium

chemistry,31–33 particularly in homogeneous catalysts for ethylene oligomerization.34,35

Spectroscopic evidence for chromacyclopentane formation in the Phillips catalyst has
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also been reported,36,37 although this intermediate is considered unlikely to be involved

in the polymerization mechanism.18,19,38 Direct conversion of 5III to the quintet metalla-

cycle 5IV requires a free energy barrier of 177 kJ/mol, while a spin crossing route to the

triplet metallacycle 3IV requires only 81 kJ/mol (i.e., 57+24 kJ/mol).8 Non-adiabatic

rate estimates from Landau-Zener theory suggest that the spin crossing step (67 kJ/mol)

and the adiabatic barrier crossing step (81 kJ/mol) allow both rapid formation of the

metallacycle ring IV and its cycloreversion. These paths, shown in Figure 2.1, include

the Cr(II) and Cr(IV) starting points for each of the mechanisms discussed below.
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Figure 2.1: Stationary points and minimum energy crossing points (MECPs) in chro-
macyclopentane formation. The preferred path is indicated in red (geometries shown
in Appendix Figure A.1) . Dangling Si- bonds were capped with OH groups. Free ener-
gies (kJ/mol) for all species are given relative to the bis(ethylene)Cr(II) complex, 5III,
at 373 K. Numbers next to arrows represent free energies of transition states. Quintet
spin species: 5IV, chromacyclopentane; Triplet spin species: 3III, bis(ethylene)Cr(II)
complex; 3IV, chromacyclopentane.

The chromacyclopentane site IV can undergo direct homolysis of a Cr-C bond, re-

sulting in a tethered n-butyl radical, V. Homolysis can occur from either 3IV or 5IV,

with the latter requiring a spin-crossing through MECP-IV. In either case, the over-

all effective free energy to form the tethered radical 5V is 123 kJ/mol relative to the

bis(ethylene)Cr(II) resting state, 5III, Figure 2.2. Once created, 5V could react in one

of four ways:
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1. Ethylene could coordinate and insert into the remaining Cr-C bond, with an addi-

tional barrier of 71 kJ/mol (Appendix Figure A.2) , thereby extending the length of

the tethered radical chain. However, the high overall barrier (homolysis+insertion),

at 194 kJ/mol, makes this pathway unlikely.

2. Gas phase (i.e., uncoordinated) ethylene could react with the dangling n-butyl rad-

ical chain end to create an n-hexyl radical chain. We estimate that this pathway

requires an additional 80 kJ/mol, based on the barrier computed for reactions be-

tween gas phase alkyl radicals and olefins (Appendix A, Figure A.3). This pathway

is consequently also unlikely, because of its high overall barrier of 204 kJ/mol.

3. The tethered n-butyl radical in site 5V could reattach to the Cr center that gener-

ated it, with no additional barrier. Reattachment is therefore the most likely fate

of the tethered n-butyl radical on most sites.

4. If 5V is sufficiently close to another Cr(II) with an open coordination site, the

dangling radical could react with that site to form an n-butyl bridge, shown as

3BB (Figure 2.2). Based on our previous work,(Fong, Yuan et al. 2015) both of

the resulting alkylCr(III) sites would be capable of facile ethylene polymerization.

Similarly, Espelid and Børve showed that Cr(III)-O-Cr(III) sites connected by an

n-butyl chain, can incorporate ethylene at both Cr-C bonds.20 As shown below, the

computed overall barrier for this initiation pathway is comparable to the estimated

initiation barrier for the industrial Phillips catalyst.

The reactions of the organic radical in 5V with a neighboring Cr(II) site lacking

ethylene ligands, or with a mono(ethylene)Cr(II) site (5II), have no barrier. However,

our model predicts that most Cr(II) sites exist in the resting bis(ethylene) state (5III)

under reaction conditions (i.e., high ethylene pressure). An additional 9 kJ/mol is needed
32



to create the 5II site from 5III at PC2H4 = 1 atm (Figure 2.2). Thus the overall free

energy barrier to create the n-butyl-bridged alkylCr(III) sites from two neighboring 5III

sites is 132 kJ/mol.
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-C2H4
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123.0
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-C2H4
Downhill and
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l ≈ 5.8 Å
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Figure 2.2: A tethered n-butyl radical attached to a Cr(III) site can attack a neighbor-
ing Cr(II) site co-located within a distance ` to create a pair of Cr(III) sites connected
by an n-butyl chain (see the full free energy path in the Appendix A Figure A.6).
Numbers below structures represent free energies; the combined free energies of 5V
and 5II provide an estimate of the overall initiation barrier.

Phillips catalyst initiation mechanisms that involve the formation of bridging alkyl
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chains (and specifically n-butyl bridges) between Cr sites have been proposed previously.

For example, Rebenstorf et al. proposed direct cycloaddition of two ethylene molecules to

form an n-butyl bridge across a [Cr(II)-O-Cr(II)] site.39 Espelid and Børve proposed an n-

butyl-bridged site could form from a chromacycle connected via an oxo bridge to a Cr(II)

site.20 Although they attempted a coordinate-driving calculation, they were not successful

in determining the barrier. Our work establishes 132 kJ/mol as a computational upper

bound on the free energy barrier to form n-butyl-bridged Cr(III) sites. The barrier may

be further lowered by coordination of nearby siloxanes from the silica surface to the

chromacyclopentane site,8 or by sharing of electron density from the dangling n-butyl

radical with the Cr orbitals of the neighboring Cr(II) site as the radical migrates from

one Cr atom to the other.

To further explore the plausibility of initiation by formation of an n-butyl chain

between neighboring sites, we estimated the fraction of sites that could be activated by

chromacyclopentane homolysis. To form the 3BB site, the two Cr atoms can be no

further apart than the distance `. Assuming that all Cr sites are randomly distributed

at a surface Cr density σCr [Cr atoms per surface area], the average number of Cr ions

within bonding range of the n-butyl chain is given by the Poisson distribution:40

p (m) = exp(−λ)λm/m! (2.1)

with Poisson parameter λ = π`2σCr. For industrial Phillips catalysts, a typical loading

σCr is 0.4 Cr/nm2 (corresponding to 0.6 - 1.0 wt% Cr, depending on the silica surface

area).2 Based on eqn. 2.1, and the ideal distance between Cr atoms in the bridged Cr(III)

cluster of ca. ` = 5.8 Å(Figures 2.2 and A.5), we estimate λ ≈ 0.42. Accordingly, eqn.

2.1 predicts that 66% of Cr sites are isolated with zero nearby neighbors, 27% of Cr sites

have a single neighbor within distance `, and about 7% of Cr sites have two or more
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neighbors within distance `. Chromacyclopentane homolysis should be able to activate

all of the sites with a single neighbor and some sites with multiple neighbors, i.e. between

27% and 34% of sites. Thus the tethered homolysis mechanism could fully account for

the fraction of active sites in the industrial catalyst, which has been estimated to be in

the range 7 - 32 %.2

Finally, we developed a simple kinetic model to estimate the time scale for initiation by

chromacyclopentane homolysis. Initially, all sites are dormant (D), but an approximate

fraction λ exp[−λ] of sites (those paired with a single neighbor at a distance ` or less,

e.g., 27% for a typical industrial catalyst) can become active (A). A full derivation of

the kinetic model is provided in Section A.3 of Appendix A. Here we summarize the

main results. According to our DFT calculations, the fraction of activated sites θA as a

function of time t after exposure of reduced Cr(II)/SiO2 sites to ethylene is

θA = λ exp[−λ](1− exp[−t/τind]) (2.2)

where the induction time τind depends on the overall free energy to reach the approximate

transition state configuration, as depicted in Figure 2.2. Specifically, activation requires

conversion of two 5III sites (the most abundant dormant state) into one site 5V, one site

5II, and one gas phase ethylene molecule. The predicted induction time is

τind = 1
/(
θ5IV|Dθ5II|Dk5IV→5V

)
(2.3)

where θ5IV|D and θ5II|D are fractions of the dormant site population in states 5IV and

5II, respectively. The rate constant k5IV→5V is the frequency of Cr-C bond homolysis in

state 5IV. Inserting the computed free energies and using transition state theory gives
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the expression

τind = PC2H4

/(
kBT

h
e−(132kJ/mol)/kBT

)
(2.4)

which predicts an induction time of ca. 100 hours at 373 K and PC2H4 = 1 atm. This

estimate is plausible, compared to the observed induction time of ca. 1 hour,2 and given

the current limitations of DFT. The dependence on ethylene pressure emerges from the

pre-equilibrium between sites 5III and 5II.
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Figure 2.3: Comparison of (a) activity profiles of catalysts pre-reduced by CO (red)
or reduced in situ by ethylene (blue), taken from data reported by McDaniel.2 Expo-
nential rise curves are shown to aid in comparing the data to the simulated kinetic
profile, and (b) simulated kinetic profile based on the mechanism of initiation proposed
in this work. The fraction of sites that can be activated within the induction time is
comparable to active site counting experiments for commercial catalysts.2

Our bichromium initiation mechanism predicts that fewer sites should activate at

lower Cr loadings. However, the average per-site polymerization activity in Phillips

catalysts increases as the Cr loading decreases, down to 0.01 Cr/nm2.2,41 Most, but

not all,20,39,42–44 researchers have interpreted this trend to mean that initiation does not

involve more than one Cr site. In some studies, the apparent increase of activity at low

loading may be due in part to formation of extended Cr2O3 domains at high loadings.
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Even at low loadings, pairing might result from associations between Cr sites. Our

Poisson analysis does not account for the presence of associated sites and/or extended

Cr2O3 domains.

Alternative explanations for the increased activity per site at low loadings might

involve additional initiation pathways that amplify the number of active sites. One

such mechanism we considered is chromacyclopentane ring expansion prior to homolysis,

which could extend the reach of the radical-terminated chain to more distant Cr(II)

sites. This mechanism requires a significant additional barrier beyond the 132 kJ/mol

for the required steps in Figure 2.2, as shown in the Supporting Information (Figure A.9).

Thus we conclude that ring expansion prior to homolysis is unimportant for initiation,

like ethylene insertion into the Cr-C bond of the n-butyl radical, and coupling of the

dangling n-alkyl radical with ethylene (see above).

A potentially viable way to amplify the number of Cr sites that can be initiated by the

tethered homolysis mechanism involves the dangling bonds (–––Si · and/or SiO · radicals)

present on silica fracture surfaces. Such sites are likely to be created as a result of stresses

caused by early stages of polymer production in the silica pores.45 The forces induced

by polymer formation (see section A.5 of Appendix A) can fracture pores with widths

down to ca. 15 nm in silica,46 and these fractures might lead to increased activity47,48

by abstracting hydrogen atoms from ethylene or from polyethylene (Figure A.10) to

create alkyl and/or vinyl radicals. These radicals would readily interact with Cr(II) sites

that have not yet been activated, converting them to polymerization-ready alkylCr(III)

sites. As yet, this possibility is speculative, and similar catalysts on different support

materials can initiate without fracturing.2 However, the possible amplification of the

active site population as the support fractures should be amenable to experimental49,50

and computational51 study.

In conclusion, a viable route to alkylCr(III) sites that are capable of ethylene poly-
37
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merization was identified using density functional theory calculations and small clus-

ter models for the active sites of the Phillips catalyst. According to our calculations,

bis(ethylene)Cr(II) sites readily form chromacyclopentane sites, which undergo homoly-

sis to create tethered butyl radicals, and these radicals can react with neighboring Cr(II)

sites. The overall barrier for this initiation mechanism is ca. 132 kJ/mol, in approximate

agreement with the experimental barrier estimated from the observed induction time.

The tethered homolysis mechanism could cause the activation of about 35% of the Cr

sites present at a typical Cr loading of 1.0 wt%, assuming the Cr sites are randomly

distributed on the silica surface.

We emphasize that questions about the details of the initiation mechanism remain.

Our previous work proposed that hemilabile siloxane ligands at some Cr(II) sites may

decoordinate to allow oxidative addition of ethylene to give (ethyl)(vinyl)Cr(IV) sites,

then recoordinate to facilitate Cr-C bond homolysis to give vinylCr(III) sites.8 That two-

step mechanism is consistent with several key experimental observations. If a suitable

ligand coordination environment were found, it might also explain the low temperature

initiation of polymerization by an unspecified number of sites reported in academic stud-

ies.21,37 However, it is not necessary to invoke such sites in order to fully account for

activation profiles recorded under industrial conditions (Figure 2.3).2,3 Without hemil-

ability of the siloxanes, the computed barrier always exceeds 200 kJ/mol for one of the

two steps. This work proposes an alternative initiation step involving Cr-C bond homol-

ysis in a chroma(IV)cyclopentane ring near a Cr(II) site. This alternative mechanism

does not require a change in Cr coordination number, and appears to be viable without

invoking any unusual Cr coordination environments, leading to much faster rates due to

its lower computed barrier. However, the need for adjacent Cr sites means that it does

not explain the higher per-site activity at lower Cr loadings.41
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Chapter 3

Grafting metal complexes onto

amorphous supports: from elementary

steps to catalyst site populations via

kernel regression

Reproduced in part with permission from:

. Khan, S. A., Vandervelden, C. A., Scott, S. L. & Peters, B. Grafting metal complexes

onto amorphous supports: From elementary steps to catalyst site populations: Via

kernel regression. React. Chem. Eng. 5, 66–76. https : / / doi . org / 10 . 1039 /

c9re00357f (2020).

3.1 Introduction

Most ab initio computational catalysis studies focus on homogeneous catalysts,1–3

enzymes,4–6 or heterogeneous catalysts with ordered structures such as metals,7–11 zeo-
47
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lites,12–14 and crystalline metal oxides.15–17 All of these materials have in common the

advantage that many features of the catalyst structure are known. Even for molecular

catalysts and enzymes, where the active site resides within a fluctuating environment,

there are systematic computational frameworks for averaging over the fluctuations.18–20 In

contrast, amorphous catalysts cannot be modelled with small, periodically repeating solid

structures, nor by sampling a well-defined ensemble for liquid phase disorder. Instead,

the quenched disorder in an amorphous heterogeneous catalyst21,22 is a permanent signa-

ture of its non-equilibrium preparation history. Examples within this family include the

Phillips catalyst (Cr/SiO2) for ethylene polymerization,23 molybdenum (Mo/SiO2) and

tungsten (W/SiO2) catalysts for olefin metathesis,24 and titanium catalysts (Ti/SiO2)

for alkene epoxidation.25

Because of these difficulties, amorphous catalysts have mostly been avoided in ab

initio computational studies. Those exceptions in which calculations on amorphous cat-

alysts were attempted were forced to rely on questionable assumptions.22,26–34 For exam-

ple, are the model sites representative of the real material? Do the models accurately

represent the most active sites? Can reliable conclusions about the reaction kinetics be

drawn from a single-site computational model? At present, none of these questions can

be satisfactorily answered with ab initio calculations.

These questions are addressed in two papers, this one and a companion. They pro-

vide a computational framework that combines machine learning, statistical importance

sampling, and population balance modeling techniques. To illustrate the concepts and

methods, we begin with a model for an atomically-dispersed catalyst on an amorphous

support. The essential features of the model are a quenched disordered support scaffold

(to represent an amorphous silica matrix), surface silanol sites where precursors can be

attached (to represent surface hydroxyl groups), and a microkinetic model for grafting

at each silanol site. These microkinetic models have rate parameters that depend on the
48
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individual grafting site characteristics. The rate parameters at each grafting site will be

determined, much like in a real ab initio calculation, by structural optimization of the

intermediates using a simple force field.

This first paper deals with how the active sites are generated during catalyst prepara-

tion. In particular, we show how the populations of both grafted sites and the unreacted

grafting sites evolve during an idealized grafting process. If the surface reactions are

irreversible, the final metal site distribution will be determined by those surface grafting

sites with the fastest grafting kinetics. However, if the surface reactions are reversible,

the final grafted site distribution will favor grafted sites that lead to the most stable

grafted species. To enable ab initio studies in the future, the algorithm must efficiently

predict the characteristics of the most reactive grafting sites and their abundances, with-

out performing exhaustive ab initio calculations for many thousands of grafting sites.

We demonstrate how kernel regression can learn to anticipate the outcomes of these opti-

mizations. Then, by applying the kernel regression model to thousands of grafting sites,

we can construct a population balance model for the grafting process. The simplicity

of our model system allows us to test the accelerated predictions against an exhaustive

parameterization from structure optimizations at thousands of grafting sites.

The companion paper uses a grafted site population that reflects both the disordered

support and the superimposed grafting kinetics to predict site-averaged kinetics. Because

turnover frequencies at individual grafting sites depend exponentially on their activation

energies, site-averaged kinetics are difficult to converge without rare events sampling

methods. The second paper deals with averaging over the non-uniform distribution of

grafted sites to predict the overall kinetics.

The remainder of this paper is as follows. First, we introduce simple models for

the amorphous support and grafting kinetics. Next, we use kernel regression tools to

predict the grafting thermodynamics and kinetics based on a concise list of grafting
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site characteristics. Finally, we use the kernel regression results and kinetic models to

parameterize the population balance model for grafting.

3.2 Amorphous silica

Amorphous silica is a commonly used catalyst support because of its thermal and

mechanical stability, large surface area, and its chemical inertness. The surface of silica

is terminated by silanol groups which may be categorized as isolated, geminal, vicinal

etc. Real amorphous silicas are created via sol-gel synthesis, spray drying, pyrolysis,

or precipitation methods. Silica can be calcined to increase its mechanical strength

and to remove adsorbed water.35–40 The calcination temperature also determines the

residual surface silanol density, which in turn influences the activity of the supported

catalyst.23,41,42

Many studies have used spectroscopic techniques like IR, NMR, and EPR to inves-

tigate the populations of different silanol types.43,44 However, in contrast to crystalline

materials, the absence of long-range order results in broad peaks that complicate the

precise characterization of silica.

Silicas of different types exhibit different ring size distributions,45–47 and silanols of

the same type can have different bond angles and different dihedral angles.35,44 These

subtle structural differences between silanols and their environments are likely to influ-

ence their reactivity. Many investigators have grafted metal atoms to silica via reac-

tions between silanols and molecular complexes like AlCl3,48 GaR3,49,50 TiCl4,51–53 and

VOCl3.54,55 These grafting reactions are useful both as probes of local structure and as

routes to supported organometallic catalysts.

In a typical grafting experiment, a fluid phase molecular precursor reacts with amor-

phous silica.49,55,56 A protonolysis reaction between the precursor and surface silanols
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results in a metal atom grafted to the silica surface with one, two, or three M-O-Si

linkages, sometimes called monopodal, bipodal, or tripodal species, Figure 3.1.24,57–60

Figure 3.1: Scheme showing the grafting of a molecular ML2 complex to a vicinal
silanol pair. The metal forms two bonds to the silanolate oxygens while two HL
molecules are eliminated. The metal may also coordinate to nearby siloxane oxygens.

Computational studies of atomically-dispersed metals on silica often use cluster mod-

els terminated by hydroxyl groups or hydrogen atoms. These models generally range in

sizes from a few to tens of silicon atoms.28,29,34,61–67 The cluster models are often carved

from crystalline materials like zeolites68 or β-cristobalite.66,69 In such clusters, the periph-

eral atoms are fixed at positions characteristic of the crystalline material. The de facto

assumption is that larger cluster models are more representative of the real amorphous

catalyst. Indeed large cluster models more accurately account for elasticity of the silica

matrix and for dispersion interactions between adsorbates and the support.33,70 However,

each layer of silica requires additional and unjustified assumptions about the environ-

ment. In this sense, large cluster models are overly specific, while small cluster models

are amenable to systematic investigation of the effects of local grafting site geometry.22

In the past decade, some computational studies generated amorphous silica surfaces

that attempt to reproduce experimental observables like surface silanol density and the IR

spectrum.71–74 Typically, such surfaces are prepared by molecular dynamics simulations,

in which crystalline models are heated to high temperatures followed by rapid quenching

to generate disordered structures. Then the bulk amorphous structure is cleaved to cre-
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ate the surface. Unsaturated oxygens are capped with hydrogen atoms, and unsaturated

silicons are capped with hydroxyl groups. Finally, pairs of proximal silanols are con-

densed to achieve the correct surface silanol density. These methods generate atomistic

amorphous models of silica with a non-uniform structural distribution of surface silanols.

However, such in silico preparation routes for amorphous silica do not correspond to ex-

perimental synthesis procedures. In particular, the high surface area of a real silica does

not result from cleavage and subsequent functionalization. In addition, the system sizes

modelled are typically quite small (100-200 silanols). For comparison, a 10 mg sample of

silica with area 350 m2g-1 and 1.0 silanols/nm2 contains about 1018 silanols.

3.2.1 A simple model for amorphous silica

The mechanisms of grafting, activation, and catalytic reactions are still debated for

many amorphous catalysts.26,30,50,58,69,75–77 To resolve the outstanding questions, we need

methods that can predict the kinetics at each grafting site and estimate proper site-

averaged kinetic properties. Then a given support model (if large enough) and proposed

mechanism will yield well-defined, site-averaged predictions to be tested against experi-

ments. To develop such methods, we selected a simple example system for which bench-

mark calculations can be performed exhaustively, for the full ensemble of non-uniform

sites. In this section, we propose a simple abstract model of the amorphous support.

We model the amorphous support as a 2D lattice with quenched disorder, Figure

3.2. Note the loose similarity to the qualitative model of Peri and Hensley.48 First, a

uniform lattice is created in which nearest neighbors are separated by a unit (dimension-

less) distance. Each site is randomly displaced (δ) from the uniform lattice by random

displacements along the x and y directions to create a disordered lattice. Displacements

are drawn from an isotropic 2-D Gaussian distribution (described in Section B.1.4). The
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lattice is then “functionalized” with hydroxyl (-OH), siloxane (≡SiOSi≡), and empty sites

with probabilities pOH, psiloxane, and pempty.

Figure 3.2: Steps to form a functionalized, quenched disorder lattice.

3.2.2 Grafting molecular metal complexes: a simple model

Grafting sites in our model are empty sites surrounded by a pair of vicinal hydroxyls on

one axis and a pair of siloxanes on the other axis. Figure 3.3 shows a grafting site located

between vicinal silanols (≡SiOH)2 and two siloxanes (≡SiOSi≡). The precursor ML2, a

molecular complex, in our model has two displaceable ligands. A real catalyst precursor

may have additional ligands like chloride, oxo, or methyl groups that remain bonded to

the metal M after grafting. The metal is grafted as a bipodal species (≡SiOMOSi≡)

upon reaction of ML2 with the vicinal hydroxyls to eliminate two HL molecules. The

metal may also interact with neighboring siloxanes to form M· · ·O(Si≡)2 bonds. The

strengths of the ≡SiO-M and M· · ·O(Si≡)2 bonds depend on the local geometry near

the grafting site.
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Figure 3.3: Grafting sites on the amorphous 2-D lattice model. One set of opposite
nearest neighbor sites are hydroxyl groups, while the other set is siloxanes. ML2 reacts
with two hydroxyls and interacts with the siloxanes to create a grafted M atom as
shown.

3.2.3 Computing grafting rates on the amorphous silica model

To model grafting kinetics of vicinal silanol sites on the amorphous 2D lattice, we

consider the grafting mechanism outlined in Sec. 3.2.2. The grafting process at each

vicinal silanol site is assumed to be irreversible with the following rate law:

r (x) = [ML2]. (3.1)

Here [ML2] is the gas phase concentration of ML2, x represents the local environment

of the vicinal silanol site, and k(x) is a site-dependent rate constant.78 We use concen-

tration to construct rate laws in this work. One can instead use the precursor partial

pressure, but note that one must beware of the resulting complications in extracting ac-

tivation energies. For example, when precursor pressure is set by its T-dependent vapor

pressure, as in CrO2Cl2 grafting,58 the pressure and temperature cannot be separately

controlled. We use transition state theory (TST) to model the temperature and site-

geometry dependence of the grafting rate constant. TST rate constants are widely used
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to predict and interpret activation barriers and kinetics across a wide range of catalysis

applications.79–83 TST rate constants are now readily computed from electronic structure

calculations.84 The TST rate constant is:

k(x) =
kBT

h
V̂0 exp[−β∆G‡(x)]. (3.2)

Here ∆G‡(x) is the grafting barrier as computed with [ML2] at the reference volume

(V̂0) per particle. Next, we use a Linear Free Energy Relationship (LFER) to model the

grafting free energy barrier. Specifically, we assume that the free energy of grafting is

linearly related to the activation barrier for grafting:78

∆G‡(x) = ∆G‡ref + α∆Go(x). (3.3)

Here α (0 < α < 1) is the Brønsted coefficient and ∆G‡ref is the grafting barrier for a

reference grafting site with a thermoneutral grafting free energy (∆Go(x) = 0). The value

of α indicates the position of the transition state between the reactant and product states.

Small values of α (near 0) indicate an early transition state that resembles the reactants.

Large values of α (near 1) indicate a transition state that resembles the products. In

practice, intermediate values of α are common, so we have chosen α = 1/2.85 The value

of ∆G‡ref determines the time scale for grafting, but it will have no bearing on results

after non-dimensionalization. Thus, to complete the kinetic model, including the effects

of non-uniform grafting sites, we only need a model for ∆Go(x). The energy to graft the

precursor at an empty site is

∆E(x) = 2εHF + VM*(x)− V∗ − 2εML. (3.4)
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Here VM∗(x) is the energy of the grafted metal site, V∗ is the energy of the unreacted

silica site, εML is the energy of the M-L bond, and εHL is the energy of the H-L bond.

V∗ is twice the O-H bond energy,

V∗ = 2εOH (3.5)

Here εOH is the O-H bond energy. To compute VM∗(x), the M-OSi≡ bond energy and

M. . . O(Si≡)2 bond energy are modelled as Morse potentials:

εi(r) = Di(1− exp[−ai(r − ri,rq)])2 −Di. (3.6)

Here i is the interaction type (M-OSi≡ or M· · ·O(Si≡)2), Di is the equilibrium energy

of the interaction, ai is related to the width of the potential well, ri,eq is the equilibrium

distance, and r is the metal-oxygen bond length. All constants defined in this section are

shown in Table 3.1. VM∗(x) is computed by optimizing the position of the metal with

surrounding hydroxyl and siloxane positions fixed:

VM∗(x) = min
xM

(εM−O(rM−O1) + εM−O(rM−O2) + εM−O(rM···O′1) + εM−O(rM···O′2)). (3.7)

Here, rM−Oi
is a metal-oxygen bond distance, and rM···O′i is a metal-siloxane coordination

distance, as shown in Figure 3.4a. The bond lengths are functions of the (variable) metal

atom position xM and the (quenched/fixed) peripheral siloxane and silanol locations in

x. The optimization indicated in Eq. 3.7 therefore involves optimization of the metal

atom position within the fixed peripheral environment.

Finally, the free energy of grafting is computed using

∆Go(x) = ∆E(x) + ∆PV − T∆So. (3.8)
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Table 3.1: Constants used in computing grafting barriers and defining the quenched
disorder lattice (see Section B.1 for further explanations)

Parameter Value
T 298.15K
rM−O,eq 1.0
rM···O,eq 1.16
σ2
lattice 0.00022
pOH 0.3
psiloxane 0.3
pempty 0.4
DM−O 524.4 kJ mol-1
aM−O 1.9
DM···O 120.0 kJ mol-1
aM···O 2.3
2εHL − (V∗ + 2εML) + ∆PV + ∆So 1229.56 kJ mol-1
M 0.026
α 0.5
∆Go

unperturbed -30 kJ mol-1

∆G‡ref 131.3 kJ mol-1

Here ∆So is the entropy of the grafting reaction and ∆E(x) +∆PV is the enthalpy. The

entropy changes are predominantly from site-independent contributions like translational

and rotational degrees of freedom of the ML2 and HL species. As noted for the parameter

∆G‡ref , the site-independent terms in Eq. 3.8 have no bearing on the results after non-

dimensionalization.

3.3 Kernel regression model for grafting barriers

Because ab initio calculations are costly, computational studies of catalyst grafting

have been based on single sites, or at most a few sites. Ultimately, one hopes to make

predictions about grafting across the entire distribution of non-uniform sites. In this

section, we propose a machine learning method (kernel regression) to learn structure-

property relations from a modest number of training calculations.86–88 Kernel regression
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was chosen because it is a non-parametric method; hence it does not need a predefined

form for the fitting function. Specifically, we will use calculations at a small collection of

grafting sites to predict barriers and kinetics for all grafting sites.

The training data includes a collection of computed barriers, ∆Ĝ‡(x1), ∆Ĝ‡(x2),

∆Ĝ‡(x3), etc. The estimated barrier for a new peripheral environment x is a kernel-

weighted average of the training data:

∆Ĝ‡ =

Ntrain∑
i=1

w(x,xi)∆G‡(xi). (3.9)

Here, ∆Ĝ‡(x) is the prediction for a grafting site with local geometry x, ∆Ĝ‡(xi) values

represent the barriers of grafting sites in the training set, Ntrain is the number of training

examples, and w(x,xi) are the weights. The weights are represented using a Gaussian

kernel:89

w(x,xi) =
exp[−d2(x,xi)]∑Ntrain

i=1 exp[−d2(x,xi)]
. (3.10)

Here d2(x,x′) is a squared non-Euclidean Mahalanobis distance between structures x and

x’

d2(x,x′) = (x− x′)TS(x− x′). (3.11)

S is a square, symmetric, and positive definite matrix. To ensure that S remains positive

definite while being optimized/learned, we write S as

S = AAT . (3.12)

Here A is a lower triangular matrix.90 Matrix A should be optimized so that Eq. 3.9

accurately predicts ∆Ĝ‡(x) at new grafting sites. The training data from optimization
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of a small collection of grafting sites is used in a leave-one-out objective function

L =

Ntrain∑
i=1

(∆G‡(xi)−∆Ĝ‡(xi))2. (3.13)

to determine A. In L, ∆Ĝ‡(xi) is a weighted average of all data points in the training

set excluding itself:

∆Ĝ‡(xi) =

Ntrain∑
j=1
j 6=i

∆G‡(xj)w(xi,xj). (3.14)

The Gaussian kernel in Eq. 3.10 generates a continuous and differentiable model of

∆Ĝ‡(x), so the leave-one-out error function is easily minimized with conjugate gradient

methods or other superlinear minimization schemes.91 We use kernel regression as imple-

mented in the metric-learn Python library.92 The library minimizes L using the conjugate

gradient method with analytical derivatives of L.

3.4 Local coordinates

The Gaussian kernel function in Eq. 3.9 can be constructed from the complete set

of internal coordinates for the local environment. However, a subset of the internal

coordinates will usually be sufficient to predict the activation barriers. We do not know

a priori which coordinates are most important, but these can be identified as illustrated

below.

The local environment of silanol and siloxane groups in our model is specified by five

coordinates (2 dimensions × 4 “atoms” - 1 rotation - 2 centre-of-mass translations). We

use three of the five coordinates to construct the kernel regression model: (1) distance be-

tween OH groups (d1), (2) distance between siloxane groups (d2), and (3) angle between

the OH-siloxane groups (θ), Figure 3.4.
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Figure 3.4: Bond lengths in the force field and in the optimization of the M-atom
position. (b) Coordinates for describing the local environment around the grafting
site. We have used three of the five (2 × 4 – 1 (rotation) – 2 (translations)) peripheral
environment coordinates in the initial kernel regression model.

3.5 Sites with non-uniform grafting barriers: a popu-

lation balance perspective

As described in Sec. 3.2, an amorphous support will have a distribution of grafting

sites with different grafting rates. As time progresses, the most reactive grafting sites

will be consumed, while grafting sites with higher reaction barriers remain unreacted and
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reduce the rate of further grafting. This situation can be modelled using the following

population balance scheme:

dρ(∆G‡, t)

dt
= −r (∆G‡,m)ρ(∆G‡, t). (3.15)

Here ρ(∆Ĝ‡, t) is the population of unreacted vicinal silanol sites at time t with a barrier

of ∆Ĝ‡, r (∆Ĝ‡,m) is the rate at which the sites react (Eq. 3.1), and m = [ML2]/V̂ −1
0

is the ratio of the concentration of the precursor ML2 in the gas phase to the reference

concentration (V̂ −1
0 ) at which ∆Ĝ‡ is computed. The rate of change of m is

dm

dt
= −

∫
d∆G‡ρ(∆G‡, t)k(∆G‡,m) +mG. (3.16)

Here, the first term on the right-hand side is rate of consumption of ML2 due to the

grafting reaction, and mG is the rate at which ML2 is fed to the reactor. In some

grafting experiments, the molecular complex is constantly replenished by evaporation

from a reservoir, so that its gas phase concentration is always in equilibrium with its

liquid reservoir.50,58 In such cases, the ML2 concentration remains constant at its vapor

pressure as grafting proceeds. Assuming constant m, Eq. 3.15 can be integrated to yield

ρ(∆G‡, t) = ρo(∆G
‡) exp[−kBT

h
e−β∆G‡mt]. (3.17)

Here ρ0(∆Ĝ‡) is the initial population of vicinal silanol sites.

Defining non-dimensional time as:

τ =
kBT

h
exp[−β∆G‡ref t]. (3.18)

leads to the population of unreacted vicinal silanol sites as a function of τ and grafting
61



Grafting metal complexes onto amorphous supports: from elementary steps to catalyst site
populations via kernel regression Chapter 3

free energy barrier:

ρ(∆G‡, τ) = ρ0(∆G‡) exp[−e−βα∆Go

mτ ]. (3.19)

3.6 Results and discussion

3.6.1 Evolution of grafting site population

A 1500×1500 lattice was randomly perturbed using the procedure outlined in Sec.

3.2.1. A total of 19368 grafting sites were identified. A metal atom was placed in each

grafting site, and its position was optimized. The grafting free energy barrier was com-

puted for each grafting site. A histogram of the results was constructed to approximate

the initial distribution ρo(∆Ĝ‡). Note that the horizontal axis depends on the choice of

∆Ĝ‡ref and ∆So/kB, i.e., different values of these parameters will shift the distribution

left and right along the ∆Ĝ‡ axis. In a real system, ab initio calculations yield ∆Ĝ‡

and ∆So values for all grafting sites with no adjustable parameters, so there would be

no arbitrary shift. Following this, Eq. 3.19 was used to compute the evolution of the

unreacted grafting site population, Figure 3.5a.
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Figure 3.5: (a) Evolution of the unreacted vicinal silanol site population as a function
of non-dimensional grafting time. (b) Fraction of unreacted vicinal silanol sites as a
function of logarithmic time. The inset shows the evolution as a function of real time
in the range 0 < τ < 0.3. It also includes an exponential decay model fit to this data.

The initial range of grafting barriers spans 23 kJ mol-1. Grafting sites with the lowest

barriers react first, so the distribution shifts to the right as grafting proceeds. The 23

kJ mol-1 width of the distribution causes the grafting sites to react at markedly different

rates. The fastest grafting sites react in about 10−4τ . Grafting is complete in about 10τ .

During a grafting experiment, the total number of grafted sites at any time can be

measured, e.g., by monitoring the amount of HL released. The fraction of unreacted
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vicinal silanol sites (relative to the total number of vicinal silanol sites) is:

Θ =

∫
ρ(∆G‡, τ)d∆G‡∫
ρ(∆G‡, 0)d∆G‡

. (3.20)

Figure 3.5b shows the evolution of the fraction of unreacted vicinal silanols (note the

log scale). Grafting progress slows dramatically as the most reactive grafting sites vanish

from the distribution. In an experiment, the reaction might seem complete when all the

vicinal silanols with low barriers have reacted. The inset of Figure 3.5b shows how the

data would appear if the fraction of unreacted silanols were monitored only for time 0

< τ < 0.3. The inset also shows a fit to the common pseudo-first-order kinetic model

Θ = Θ∞(1 − Θ∞) exp(−kobsτ) fraction of unreacted vicinal silanol sites and kobs is an

“apparent” grafting rate constant. Over the range 0 < τ < 0.3, the data appears to be

approximately an exponential decay, thus one might infer that all silanols react with the

same rate constant (kobs), and that 19% (from = 0.19) of the vicinal silanol sites are

unreactive. However, all of the silanols (in this model) do react at exponentially longer

time intervals. The final silanol sites react last because they are different. Therefore,

they change the distribution of grafted sites, and may also change the catalytic activity.

Hence, it is important to analyse grafting kinetics on a logarithmic time scale.

Predictions about catalytic activity require information about the abundance of grafted

sites and their characteristics. Both the grafting kinetics and the catalytic turnover fre-

quency at a particular grafted site depend on the local grafted site environment. However,

the most readily grafted sites may not correspond to the most catalytically active sites.

Therefore, predictions of the overall catalyst activity require predictions about grafting

propensity and characteristics of the grafted sites. Chapter 4 develops tools for computing

site-averaged kinetics starting from the grafted distribution.
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3.6.2 Applying kernel regression to predict grafting barriers

The kernel regression model was trained on grafting barriers for 100 vicinal silanol

sites randomly sampled from the set of all 19368 grafting sites using local coordinates

described in Sec. 3.4. Justification for choosing a training set size of 100 is provided in

Section B.2. A parity plot of the true ∆Ĝ‡ values and kernel regression ∆Ĝ‡ predictions

is shown in Figure 3.6.

Figure 3.6: Parity plot showing predictions of grafting activation barriers by the kernel
regression model trained on 100 grafting sites.

The model trained with 100 ∆Ĝ‡ calculations was used to predict grafting barriers

for all 19368 grafting sites. After training, the only input information for each grafting

site are its values of d1, d2, and θ. The residuals of the predictions are plotted as a

distribution in Figure 3.7. Nearly all residuals are within ±1 kJ mol-1, and the standard

deviation of the residual distribution is 0.48 kJ mol-1.
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Figure 3.7: Distribution of residuals for a model trained on 100 grafting sites.

3.6.3 Identifying important local coordinates

The results in Sec. 3.6.2 used three of five coordinates to construct the kernel regres-

sion model. Three is already a relatively compact structural parameter set, but for this

model it can be reduced further. To evaluate the importance of different combinations of

local coordinates, the model was retrained by systematically excluding some coordinates.

Table 3.2 shows R2 values for fits with different coordinates. Figure 3.8 shows parity

plots like the one in Figure 3.6, but for a model based only on d1, and for a model based

on d1 and d2 (i.e., without θ).

The model trained using d1 and d2 (R2 = 0.99) is comparable in accuracy to the

model trained using all coordinates (R2 = 0.99) Clearly, d1 and d2 are both important

for describing barriers, but θ is inconsequential as its omission does not diminish the

accuracy of the kernel regression model. We can also see that the model cannot be further

simplified from d1 and d2 dependence. The models trained on only d1 (R2 = 0.60) and
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Table 3.2: R2 values of kernel regression models with different combinations of local
coordinates)

Coordinates R2

θ -0.02
d2 0.52
d1 0.60
d2, θ 0.52
d1, θ 0.60
d1, d2 0.99
d1, d2, θ 0.99

Figure 3.8: (a) Parity plot of the model trained with d1 and d2. (b) Parity plot of the
model trained with d1 only.
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d2 (R2 = 0.52) have severely diminished accuracy.

Now, using just two coordinates, we can project the grafting free energy barriers onto

a 2D plot, Figure 3.9. The barrier decreases monotonically with increasing d1 or d2.

Therefore, grafting sites with large values of d1 and d2 react first, while grafting sites

with small values of d1 and d2 react more slowly. We emphasize that, even with this

simple model, it was not obvious a priori how structural characteristics would influence

the grafting kinetics. The procedures in this paper should help to identify features of the

most reactive silanol sites.

Figure 3.9: Model-predicted barriers as function of d1 and d2. Blue dots show training
set grafting sites. The figure also shows the structures of active and inactive grafting
sites. Grafting sites with smaller values of d1 and d2 have larger barriers, while grafting
sites with larger values of d1 and d2 have smaller barriers.
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3.6.4 Predicting the time evolving population of grafting sites

In this section, we recompute results from section 6.1, now using the kernel regression

model. We use the model based only on d1 and d2 and trained on just 100 randomly

sampled grafting sites to predict the evolving population of unreacted silanols. The

results are shown in Figure 3.10a.

Figure 3.10: (a) Evolving population of grafting sites predicted using a kernel re-
gression model trained on 100 grafting sites. (b) The predicted fraction of unreacted
grafting sites as a function of logarithmic time.
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The training set of 100 grafting sites does not include examples of grafting sites

at the extreme fast and slow grafting limits. Accordingly, the trained model does not

accurately predict grafting kinetics at the extreme fast and slow limits. Fortunately, the

extreme tails account for only a small portion of the total grafting sites, so important

properties like the overall grafting progress are still accurately predicted by the model,

Figure 3.10b.

3.7 Conclusions

Several factors make ab initio rate calculations prohibitively difficult for single-atom

catalysts grafted to amorphous supports such as silica. First, the quenched disorder of

the support presents an unknown distribution of local environments. Second, grafted site

abundances depend on differences in grafting kinetics at different grafting sites. Third,

differences between the grafted sites can cause differences in their catalytic activity. Sev-

eral investigators are working to overcome the first challenge.71–74 This paper addresses

the second challenge by combining transition state theory, kernel regression, and popu-

lation balance models. Chapter 4 addresses the third challenge.

To illustrate and test the new methodology, we introduce a simple 2D disordered

lattice model of amorphous silica. The model allows us to compute the grafting rate at

nearly 20 thousand grafting sites to obtain essentially exact solutions for the evolving

grafting/grafted site population during grafting. Then, we trained a kernel regression

model to predict grafting rates from a training set of rate calculations at just 100 grafting

sites. The regression model predicted barriers with ca. ±0.5 kJ mol-1 accuracy on the

test set of about 20 thousand grafting sites. We also showed how the kernel regression

results can identify those grafting site characteristics that most strongly influence the

grafting kinetics. Finally, the trained kernel regression model was used to predict the
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evolving population of unreacted silanols.

In future work, we will use this framework with ab initio calculations and more

realistic silica models to predict grafting rates and active site abundances during the

preparation of real single-site catalysts on amorphous silica. Given a model of amorphous

silica, the new algorithm should enable quantitative predictions about the grafting process

and the grafted site distribution without assuming the characteristics of the most active

or most abundant sites.
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Chapter 4

Site-averaged kinetics for catalysts on

amorphous supports: An importance

learning algorithm

Reproduced in part with permission from:

. Vandervelden, C. A., Khan, S. A., Scott, S. L. & Peters, B. Site-averaged kinetics for

catalysts on amorphous supports: An importance learning algorithm. React. Chem.

Eng. 5, 77–86. https://doi.org/10.1039/c9re00356h (2020).

4.1 Introduction

A recent surge of interest in atomically-dispersed “single atom” catalysts is driven by

their unique and potentially selective reactivity,1–3 and by sustainability efforts that seek

to minimize use of scarce elements and maximize atom economy.4–6 Among single atom

catalysts, those which are chemically bonded to a thermally robust oxide support like

silica are especially resistant to deactivation by sintering.7,8 Moreover, grafting strategies
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https://doi.org/10.1039/c9re00356h


Site-averaged kinetics for catalysts on amorphous supports: An importance learning algorithm
Chapter 4

that promote selective reaction of the catalyst precursor at specific surface sites may

help to minimize differences between grafted metal sites. Well-studied catalysts that are

comprised of single metal atoms grafted onto amorphous silica include chromocenes or

chromates for olefin polymerization,9–11 titanium and tantalum complexes for olefin epox-

idation,12 molybdates for methanol dehydration,13 and vanadates for partial oxidation of

methanol.14

Investigators have occasionally drawn comparisons between the metal atoms present

in the active sites in enzymes, and metal atoms grafted onto silica surfaces.12 There

are similarities, but there are also important differences. Each enzyme molecule of a

given type is the same, while each metal atom on amorphous silica resides in a unique

ligand environment. These non-uniform environments can result in metal atoms with

non-uniform catalytic properties, including a range of activities, selectivities, adsorp-

tion constants, and even different spectroscopic features. When the sites have variable

activities, a minority of the sites may contribute most of the overall catalyst activity.

Indeed, active site counting experiments confirm that only a small fraction of sites in a

heterogeneous catalyst is typically active.15–18 This poses an extraordinary difficulty in

experimental as well as theoretical studies of these catalysts. Powerful characterization

tools (NMR, EXAFS, IR, Raman, etc.) generally provide the strongest signals for the

most common sites, and these are likely inactive.11

If we could understand the mechanisms of these catalysts, we might systematically

work to improve them.19 In some applications like olefin polymerization, where the cat-

alysts are not recovered from the polymer product, one might even use mechanistic un-

derstanding to design catalysts with a desired activity distribution capable of generating

polymer with a desired molecular weight distribution.

Chapter 3 introduced a method to predict the distribution of sites that emerges from

grafting a precursor onto an amorphous support. The simple model system consisted of
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a quenched-disordered lattice (to represent the amorphous silica support), surface func-

tional groups (representing pairs or nests of hydroxyl groups) to which a metal complex

can be grafted, and a microkinetic model for each grafted site with rate parameters that

depend on the site characteristics. Much like in an ab initio study, computing activation

barriers for the model system requires geometry optimizations of intermediates. Our re-

alistic but simple model allowed us to focus on developing the importance sampling and

machine learning tools, without being distracted by controversies about the mechanisms

about the mechanisms of these catalysts.

Starting from the simple model and the grafted site population described in Chapter

3, this chapter aims to compute an average over sites to predict the overall kinetics.

Since the turnover frequencies at individual sites vary exponentially with the activation

energy, even a small variance in the activation energy leads to an enormous variance in

site-specific activities. Such exponential averages are notoriously difficult to converge

with standard sampling tools,20–22 but importance sampling methods can dramatically

accelerate convergence. The ideal importance sampling algorithm23 requires activation

energies for each site, but these activation energies are not known a priori. Each activation

energy must be obtained through costly ab initio calculations. Because of this limitation,

typical approaches calculate just one24,25 or a small handful of sites26–33 – far too few to

converge site-averaged predictions of kinetic properties.34 Kernel regression tools can use

a modest set of ab initio calculations to predict activation energies that have not actually

been computed. This chapter shows how importance sampling and machine learning can

be combined to generate site-averaged predictions efficiently.

In the remainder of this chapter, we discuss model elementary steps and a rate law for

a catalytic reaction with our simple model system. We briefly review the kernel regression

tools (from Chapter 3) that predict activation energies. We combine the importance

sampling and kernel regression tools into an “importance learning algorithm”. We then
87



Site-averaged kinetics for catalysts on amorphous supports: An importance learning algorithm
Chapter 4

use the new algorithm to identify characteristics of highly active sites and to estimate site-

averaged activation energies. Finally, we compare the efficiency of importance sampling

estimates to straightforward sampling.

4.2 Model for amorphous support and grafted sites

Chapter 3 described the creation of a disordered, functionalized lattice model to

approximate the non-uniform silanol sites and siloxane environments on the surface of

amorphous SiO2. That chapter also considered a kinetic model for grafting of metal atoms

onto the silanol sites. All sites with two silanol neighbors and two siloxane neighbors on

opposite sides were eligible grafting sites in the model. A schematic of the simple model

is shown in Fig. 4.1.

Figure 4.1: Quenched disorder lattice model. Sites with a grafted metal center are
shown in gold.

This chapter uses the distribution of non-uniform grafted sites, like those shown in

Fig. 4.1, as its starting point. We assume that grafting has occurred at all eligible
88



Section 4.2 Model for amorphous support and grafted sites

sites, but one could modify the starting distribution (using methods in Chapter 3) to

investigate lower catalyst loadings.

The discussion below invokes bonds between metal atoms and adsorbates, as well

as the oxygen atoms of the silanol and siloxane sites. However, the local environment

of each site (before grafting and during catalysis) is described entirely by the positions

of atoms in the silica support surrounding the metal center. The coordinates used to

describe the local environment are shown in Fig. 4.2 They are: (i) the distance between

siloxane groups, d1, (ii) the distance between silanolate groups, d2, and (iii) the angle

between the silanolate and siloxane groups, θ.

Figure 4.2: Coordinates used to describe the local environment of a grafting site.

The selected coordinates are nearly orthogonal in the sense that their gradients have

little or no overlap. Note, however, that the coordinates are incomplete. For a grafting

site on our two dimensional surface model, the four nearest neighbors are fully described

by five internal coordinates (8 – 2 × (center of mass) – 1 × (rotation)). We use only three
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coordinates in the kernel regression model, and the results below will show that just two

of these coordinates are sufficient to predict site-averaged kinetics. We also emphasize

that some calculations below involve other coordinates at intermediate stages, but that

the overall kinetics and the kinetics of individual sites ultimately depends only on the

coordinates in Fig. 4.2.

4.3 Model for catalysis at grafted sites

We consider a simple model of a catalyst site, M∗, comprised of a metal center M and

its surrounding support environment, *. We will consider the case in which the catalytic

reaction at each site has the same rate-limiting step and the same most abundant surface

intermediate (MASI). We further assume that the site does not deactivate. The model

reaction has a simple Langmuir-Hinshelwood mechanism:

A + M∗ 
 AM∗ K(x)

AM∗ → B + M∗ k2

We further assume that

1. the equilibrium constant K for adsorption of reactant A depends on the local envi-

ronment of site i, xi,

2. the adsorbed molecule A (AM∗) is irreversibly converted into the gas phase product

B and a bare site M∗,

3. K(x)cA � 1 for all sites, so that the bare site is the MASI.

The bond strengths chosen in this work, described below, ensure that these three
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assumptions are true for all sites. Fig. 4.3 depicts the Langmuir-Hinshelwood mechanism

and the three simplifying assumptions for the simple model system in this work.

Figure 4.3: The equilibrated adsorption step and irreversible chemical reaction steps
for the model reaction A → B, and the M∗ sites described in this work.

The Langmuir-Hinshelwood mechanism leads to a rate law of form

r =
k2K(x)cA

1 +K(x)cA
(4.1)

Because of assumption 3., the rate law simplifies to a power law rate expression of the

form

r = k(x)cA (4.2)

where the pseudo-first-order rate constant is:

k(x) = k2K(x) (4.3)

Note that we have also assumed that the rate constant k2 for the second step in the

Langmuir-Hinshelwood mechanism is the same for all sites. In principal, k2 could also
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depend on x, but a model for k2(x) would require additional parameters to create a

model for the saddle region on the potential energy surface. The more elaborate model

system with x-dependence in k2 would still lead to an apparent rate constant k2K that

is one function of x.

The apparent rate constant k(x) depends on the local site geometry through K(x).

The adsorption constant is

K(x) = exp

[
−∆H(x)− T∆S

kBT

]
(4.4)

where ∆H(x) is a site-dependent adsorption enthalpy. T∆S is assumed to be constant

because its main contributions are the loss of translational and rotational freedom upon

adsorption. The rate constant, according to transition state theory, will be of the form

k2 =
kBT

h
exp

[
∆S‡

kB

]
exp

[
−∆H‡

kBT

]
(4.5)

Here, the entropy and enthalpy of activation for the reaction step are assumed to be the

same for all sites.

The site-dependent enthalpy of adsorption, ∆H(x), is modeled by

∆H(x) = VAM∗(x)− (VM∗ (x) + εA + kBT ) (4.6)

where x is the position of M, VAM∗(x) is the energy with A chemisorbed to the metal

site, VM∗(x) is the energy of the bare metal site, εA is the gas phase energy of A, and

kBT is the PV contribution to the gas phase enthalpy of A. The same Morse potentials

that we used to model grafting (Chapter 3) are now used to describe the M−OSi ≡ bond

energies and M(OSi ≡)2 bond energies. Specifically, the individual interaction energies
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are

εi(r) = Di

(
1− exp

[
−ai(r − ri,eq)2])−Di (4.7)

where i is the bond type, Di is the bond dissociation energy, ai is inversely related to

the vibrational well width, r is the bond length, and req,i is its equilibrium bond length.

The energy of the bare metal site is

VM∗(x) = εM−O(r1) + εM−O(r2) + εM···O(r′1) + εM···O(r′2) (4.8)

where εM−O(ri) is the energy of the M − OSi ≡ bonds, ri is the metal-oxygen bond

distance, εM···O(r′i) is the energy of the M · · · (OSi ≡)2 metal-siloxane bond, and r′i is the

metal-siloxane bond distance.

We model adsorption of A onto the grafted metal center as an M-A bond with

energy εM−A. The length of the M-A bond is not explicitly optimized. Instead, we

assume that the M- A bond displaces the longest and most weakly-coordinated siloxane

(M · · · (OSi ≡)2) from M. The displaced siloxane can still exert a repulsive interaction

on M. We model the close-range repulsion with a Weeks-Chandler-Andersen potential:35

εWCA
AM···O(r) = DAM···O

(
1− exp

[
−aAM···O(r − rAM···O,eq)

2]) (4.9)

for r ≤ rAM···O,eq and εWCA
AM···O(r) = 0 otherwise. Thus, the energy of state AM∗ is

VAM∗(x) = εM−A + εM−O(r1) + εM−O(r2) + εM···O(r′1) + εWCA
M···O(r∗) (4.10)

where r∗ is the longest M · · ·O bond prior to the adsorption of A.

With these definitions, eqn. 4.6 presents a geometry optimization problem much

like that encountered in ab initio calculations. The interior atoms must be optimized
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subject to constraints on peripheral atoms around the metal center. The equilibrium

configurations of M∗ and AM∗ are found by changing the M atom position with fixed

silanolate and siloxane group positions to minimize 4.8 and 4.10, respectively. This

procedure creates a collection of model sites with quenched disorder and limited local

flexibility, somewhat like a real amorphous catalyst.
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4.3.1 Parameter selection

The quenched disordered lattice was created by starting with a square lattice with

spacing 1. Random displacements of the lattice sites were drawn from an isotropic 2D

Gaussian distribution with σ2
lattice = 0.00022 in the x and y directions. We used the same

fractions of silanol, siloxane, and empty sites (fsilanol = 0.3, fsiloxane = 0.3, and fempty =

0.4) as Chapter 3. All rate calculations in this work were performed for a temperature of

300 K and a reactant pressure of 1 atm. The metal-adsorbate bond dissociation energy

was modeled as the Cr-C bond dissociation energy for a (≡ SiO)2Cr(III) alkyl site –

the widely accepted active site for Cr/SiO2 olefin polymerization catalysts.11,36 Based on

DFT calculations (Section S1) and reported values for the Cr-C bond,37 we set εM−A =

160 kJ/mol. A list of the parameters and their values are summarized in Table 4.1.

Table 4.1: Parameter values for the quenched disorder lattice, Langmuir-Hinshelwood
mechanism, and model chemistry

Parameter Value

T 300K
PA 1 atm
∆H‡ 65 kJ/mol
σ2

lattice 0.00022
fSilanol 0.3
fSiloxane 0.3
fEmpty 0.4
DM···O 120 kJ/mol
aM···O 1.3
r̂M···O,eq 1.16
DM−O 500 kJ/mol
aM−O 1.7
r̂M−O,eq 1.0
εA 0 kJ/mol
εM−A 160 kJ/mol
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4.3.2 Site-averaged kinetics

Each metal site has a unique environment, and the different environments lead to

a distribution of kinetic properties. For example, the sites will exhibit a distribution

of turnover frequencies and activation energies. In contrast, a conventional experiment

measures just one site-averaged value for each kinetic property. In this Chapter 3, we

focus on the site-averaged activation energy. From eqns. 4.2 - 4.5, the activation energy

for site i is

Ea(xi) = −d ln r i

dβ
= ∆H(xi) + ∆H‡ + 2kBT (4.11)

where β = 1/kBT . A derivation of eqn. 4.11 can be found in Section C.2 of Appendix

C. In this calculation, we assume that Ea, ∆S, ∆S‡, and ∆H‡ are not functions of

temperature.38 For ∆H, the temperature dependence from kBT (eqn. 4.6) is considered,

but other temperature-dependent terms such as partition functions are ignored. (In

practice, all of these properties will probably exhibit some temperature dependence.)

Naively, one might estimate Ea(x) for a large sample of sites and then average them

to obtain the site-averaged activation energy. This straightforward average does not

give the correct value, even in the limit of large sample sizes. The correct site-averaged

activation energy,39 〈Ea〉k is obtained from a derivative of the site-averaged rate:

〈Ea〉k ≡ − ∂ ln 〈r 〉 /∂β

= − ∂

∂β
ln

∫
dxρ(x)k(x)

∏
i
cαi
i

= −
∫
dxρ(x)∂k(x)/∂β∫
dxρ(x)k(x)

(4.12)

=

∫
dxρ(x)k(x){Ea(x) + βEa(x)∂ lnEa(x)/∂β}∫

dxρ(x)k(x)

= 〈Ea{1 + β · ∂ lnEa/∂β}〉ρ(x)k(x)
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In this work, we ignore the temperature dependence of Ea. In practice, the rates at

individual sites cannot be probed, nor are the temperature intervals in which the rates

are measured wide enough to see definitive curvature in the Arrhenius plot. We also

expect the correction to be small. Using Ea from eqn. 4.11, Eaβ∂ lnEa/∂β = 2β−1,

which will be relatively small compared to a typical Ea(x). Moreover, we anticipate

that Eaβ∂ lnEa/∂β term will be similar across different sites, so that conclusions about

characteristics of highly active and abundant sites will be unaffected. Using eqns. 4.2 -

4.5, the derivatives and integrations yield:

〈Ea〉k =
〈
∆H(x) + ∆H‡ + 2kBT

〉
k
. (4.13)

The subscript k indicates that the average is computed with probability weights ρ(x)k(x),

instead of ρ(x). In practice, this average can be computed in two different ways.

The first strategy is to randomly choose sites from ρ(x) and reweight each of them

by k(x) when computing the average:

Ẽa =
∑n

i=1
k(xi)Ea(xi)

/∑
i
k(xi) (4.14)

The numerator and denominator are both exponential averages. As shown in previous

work,34 this strategy usually requires an enormous sample size to converge.

The second strategy is to directly sample sites according to probability weight ρ(x)k(x).

This is difficult, because we do not know k(x) precisely prior to performing ab initio cal-

culations at x. However, if such a sampling algorithm could be devised (see below), the

site-averaged activation energy would become a simple arithmetic average:

Ēa =
1

n

∑n

i=1
Ea(xi). (4.15)
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This second strategy enables fast convergence to the site-averaged activation energy ac-

cording to the central limit theorem. Confidence intervals on the precision of Ea follow

from the usual statistical formulae

〈Ea〉k = Ēa ±
1√
n
ŜEatX,n (4.16)

where tX,n is the student-t statistic for an X% confidence interval with sample size n,

and where the standard error is:

Ŝ2
Ea

=
n

n− 1

{
E2
a,i − Ea,i

2
}
. (4.17)

Of course, these estimates and error formulas do not account for systematic errors in

the ab initio predictions. Moreover, to sample the distribution ρ(x)k(x), we use a kernel

regression model to predict k(x) at sites that have not yet been investigated. The error

formulas above also do not account for errors in the kernel regression estimates. In our

calculations, the kernel regression errors are much smaller than the intrinsic width of the

Ea-distribution, so they can probably be ignored. However, Section C.3 of Appendix C

shows how the typical kernel regression errors could be included in cases where they are

large enough to be important.

4.4 Kernel regression

To sample the distribution ρ(x)k(x) starting from a large collection of sites, i.e., from

ρ(x), we require preliminary estimates for k(x) at each site. Given accurate calculations

as training data at a modest collection of sites, kernel regression can estimate Ea(x) at

all the remaining sites.40,41 The estimated activation energy at site with environment xi
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is a weighted average of the training data, eqn. 4.18:

Êa(xi) =

∑
j Ea(xj)wij (d(xi,xj))∑

j wij (d(xi,xj))
(4.18)

Here Êa(xi) is the predicted activation energy, and the Ea(xj) are computed activation

energies. The wij are Gaussian kernels

wij = exp[−d2(xi,xj)] (4.19)

that depend on a Mahalanobis distance,42 d:

d2(xi,xj) = (xi − xj)
TS(xi − xj). (4.20)

Here, S is a dim(x) × dim(x) dimensional, positive definite, and symmetric matrix. The

kernel regression model is trained by finding the elements of S which minimizes the leave-

one-out loss to best fit the training data. We use Python library tools to implement the

kernel regression.43 Further details about the kernel regression procedures can be found

in Section 3.3.

4.5 Importance learning algorithm

The sections above described rate calculations at individual sites, an importance

sampling procedure, and a kernel regression (machine learning) procedure. This section

integrates all of these components into one “importance learning” algorithm. Importance

learning simultaneously accumulates training data, builds the kernel regression model,

and focuses computational effort on kinetically important sites with low activation bar-

riers. The algorithm is shown in Fig. 4.4.
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Figure 4.4: The combination of efficient sampling techniques and a machine learning
model leads to the “importance learning” algorithm. A set of sites trains a model to
learn characteristics of highly active (i.e., important) sites. Efficient sampling tech-
niques select active sites to improve the model and to efficiently predict average kinetic
properties. A test for convergence terminates the algorithm when the confidence in-
terval on the site-averaged activation energy shrinks to a prescribed narrow size. In
our calculations, the threshold confidence interval was set to 0.75 kJ/mol.

Note that the importance sampling and kernel regression procedures mutually depend

on each other. The kernel regression model guides the importance sampling to kinetically

important sites. Meanwhile, the accumulated sample of sites and rate calculations teach

kernel regression to make accurate preliminary rate predictions.

To compute kinetic properties, precise rate calculations for less active sites are not

important, but we need their populations to predict kinetic properties like the overall

rate and the fraction of active sites. Therefore, the kernel regression model should also

learn to make approximate predictions for inactive sites. For this reason, the importance
100
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learning algorithm begins with rate calculations at a collection of randomly sampled sites.

We verified that an initial training set of 20-50 randomly chosen sites is adequate (see

Section C.4 of Appendix C).

4.6 Results

Because the model system is extremely simple, an accurate site-averaged activation

energy can be directly calculated without importance learning. Using results for ca.

20,000 sites, we computed the activation energy distribution:

ρ̃(Ea) =

∫
dxρ(x)δ[Ea(x)− Ea]. (4.21)

and the k(x)-weighted activation energy distribution:

ρ̃k(Ea) =

∫
dxρ(x)k(x)δ[Ea(x)− Ea]∫

dxρ(x)k(x)
. (4.22)

Fig. 4.5 shows the essentially exact distributions ρ̃(Ea) and ρ̃k(Ea). The activation

energy distribution has support44 over a range of about 40 kJ/mol. The site-averaged

activation energy is 40.4 kJ/mol, about 13 kJ/mol below the (incorrect) average without

k-weighting. These results serve as benchmarks for testing the importance learning al-

gorithm. To start the importance learning algorithm, we began with an initial training

set of fifty randomly chosen sites. The initial kernel regression model was optimized to

minimize the leave-one-out errors. Within this initial training set, the kernel regression

model predicts activation energies with a standard error σ ≈ 0.8 kJ/mol. Fig. 4.6 shows

how the predicted activation energies compare to the true (precisely computed via eqn.

4.11) activation energies for individual sites. At each iteration of the importance learning

algorithm, the activation energy distributions ρ̃(Ea) and ρ̃k(Ea) can be predicted using
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Figure 4.5: Distribution of activation energies (blue) and the rate-weighted activation
energy distribution (orange). The solid line shows the site-averaged activation energy.

Figure 4.6: Parity plot of predicted activation barriers vs true activation barriers at
individual sites. Predictions are from leave-one-out optimization of kernel regression
models based on the initial training set of 50 sites. The residuals for all ca. 20,000 sites
are approximately Gaussian distributed, with a standard deviation of approximately
0.7 kJ/mol (Figure C.1).
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the kernel regression model. After each iteration, the new calculations are appended

to the training set. As more training data is accumulated (primarily at low activation

energies), the estimated Ea distributions should become more like the true distribution

in the kinetically important range of activation energies. As a corollary, the site-averaged

activation energy should also converge to the correct value. Fig. 4.7 shows the predicted

distributions at the 0th and 28th iterations of importance learning (the latter being the

iteration at which the standard error decreases below 0.75 kJ/mol). A rug shows that

the activation energies of the importance sampled sites are indeed centered over the main

support of ρ̃k(Êa).

Figure 4.7: Model-predicted activation energy distribution for the unweighted (top)
and k-weighted (bottom) distributions at iteration 0 (grey, hatched) and 28 (red) of the
importance learning algorithm. Apparent activation energies of importance sampled
sites are shown as a rug at the top of each plot. The H symbol shows the correct site
averaged Ea.

Prior to importance learning, the initial training set contained only one site with an

activation energy under 40 kJ/mol. Importance learning discovers sites with activation

energies below 40 kJ/mol, which dominate the overall kinetics. After 28 iterations of im-

portance learning, the low activation energy tail of the predicted ρ̃(Êa) closely resembles
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that of the exact ρ̃(Ea). More importantly, the main support of the predicted ρ̃k(Êa)

closely resembles that of the exact ρ̃k(Ea). Both distributions are inaccurately predicted

at high activation energies, but these sites make vanishingly small contributions to the

observed kinetics. They only need to be counted in the normalization of ρ̃(Ea) to predict

the kinetic properties.

Fig. 4.8 shows the convergence of 〈Ea〉k estimates from importance sampling using

standard errors. A higher degree of confidence could also be computed using eqn. 4.16.

Figure 4.8: The importance learning algorithm converges to within 0.75 kJ/mol of
the correct site-averaged Ea in 28 iterations. By comparison, a reweighted random
sample requires about 200,000 samples to compute Ẽa with the same level of confidence
(Section C.5).

4.7 Identifying characteristics of active sites

In real applications, optimizing the Mahalanobis matrix is inexpensive compared to

generating training data from ab initio calculations. Therefore, an importance learning

calculation can include all potentially important coordinates. However, a central goal
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of these calculations is to discover those few key characteristics that distinguish active

from inactive sites. Intuition would suggest that the most important coordinates can be

identified from the largest diagonal elements in the Mahalanobis matrix. The optimized

matrix obtained in this work, using d1, d2, and θ, is:

(4.23)

Coordinates d1 and d2 have the largest diagonal elements, and they indeed have the

strongest influence on site activity. The coordinates d1 and d2 correspond to silanolate

– silanolate distances and siloxane – siloxane distances, respectively. In hindsight, these

coordinates should have primary importance because the potential energies are defined

in terms of these coordinates.

In general, the diagonal matrix elements are not reliable indicators of the most im-

portant structural characteristics. For example, the diagonal matrix elements change

magnitude depending on the units used to represent the coordinates. In addition, di-

agonal matrix elements indicate sensitivity to local structural changes. They do not

account for differences in the extent to which sites vary along different structural coor-

dinates within the global ensemble of sites. Off-diagonal matrix elements may also be

important. Large off-diagonal matrix elements may indicate that special combinations of

the coordinates are important. Alternatively, off-diagonal elements may compensate for

non-orthogonality or redundancy in the set of trial coordinates. The latter complications

can be avoided by choosing coordinates that are orthogonal, in the sense:

∂qi
∂x
· ∂qj
∂x
≈ 0 (4.24)
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More general guidelines are that

1. Good coordinates should suffice to predict differences in activity over the region

with support in distribution ρ(x)k(x).

2. The kernel regression model should predict activation energies with errors that are

much smaller than the range of activation energies in ρ̃k(Ea).

These two guidelines suggest ranking models according to the fraction of the actual

Ea variance that is explained by the model. In linear regression, this is the familiar

R2 statistic. Models that include more input coordinates will generally give larger R2

values, but small models are preferred, as long as they give accurate site-averaged rate

predictions. The fit quality of the kernel regression models trained on different sets of

coordinates are shown in Fig 4.9.

Figure 4.9: Parity plot of model trained with d1, d2 (top) and d1, θ (bottom) at
iteration 30 of the importance learning algorithm. As shown in Table 2, d1 and d2 are
sufficient (without the extra variable θ) to allow kernel regression to predict activation
energies across the range of values.

The R2 values identify θ as a kinetically unimportant structural characteristic. The

kernel regression model trained only on θ completely fails to make predictions based on
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Table 4.2: R2 values of trained model with different combination of local coordinates
at iteration 30 of the importance learning algorithm.

Coordinates R2

d1 0.80
d2 0.16
θ -0.03

d1, d2 0.99
d1, θ 0.82
d2, θ 0.34

d1, d2, θ 0.99

the local environment. Models based only on d1 or d2 begin to predict coarse trends in

the activation energies. The model trained using d1 and d2 together makes extremely

accurate predictions across the whole range of activation energies. Note that d1 and d2 are

just two of the five total coordinates that define the local site environment. The model-

predicted Ea is plotted as a function of d1 and d2 in Fig. 4.10. This plot reveals that d1

and d2 compensate for each other in active sites. Among sites with the same activation

energy, one length increases while the other decreases. Fig. 4.10 also illustrates that

the most active sites have shorter d1 (silanolate-silanolate) distances and longer d2 (O-O

distance of the siloxane ligands) distances relative to the unperturbed distance of 2.00.
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Figure 4.10: Activity of sites as function of the local environment. The upper plot
shows the true barriers and the bottom plot shows the model-predicted barriers at
iteration 30 of the importance learning loop. Blue points correspond to the initial
pool and white points are importance sampled sites.

4.8 Conclusions

Several industrially important or promising catalysts are single metal atoms grafted

onto an amorphous support such as silica. These catalysts tend to be poorly understood

because the amorphous support gives each site a unique local environment. Moreover, the

distribution of disordered environments around each site is quenched, history dependent,

and thus largely unpredictable. Each site has a different activation energy, and the

variance in activation energies is exponentially magnified in the distribution of activities.

Accordingly, active sites tend to be rare, with less than 20% of sites accounting for most

of the catalytic activity. The small fraction of active sites hampers both experimental

characterization and theoretical modeling efforts.

This Chapter 3 presented an importance learning algorithm to overcome the theoret-

ical challenges of modeling the activity of such catalysts. It combines machine learning
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techniques (kernel regression) and importance sampling techniques (to focus effort on

the most active and abundant sites). To illustrate the algorithm, we developed a sim-

ple model of a Langmuir-Hinshelwood reaction at sites on a quenched and disordered

support. We used the algorithm to compute the site-averaged activation energy.

The algorithm rapidly converged estimates of the site-averaged Ea with uncertainties

less than 0.75 kJ/mol, even though the individual sites in the model have activation

energies that span a range of nearly 40 kJ/mol. Estimating the site-averaged Ea with

the same level of confidence as importance learning requires through standard sampling

methods requires 200,000 samples (compared to 75 samples in the importance learning

algorithm) for this system. Furthermore, the kernel regression model generated by the

algorithm can accurately predict the activation energies using just two structural charac-

teristics of the local environment. The new importance learning algorithm, if combined

with ab initio calculations and realistic models of amorphous silica, should enable the

first rigorous site-averaged computational studies and quantitative predictions for this

important family of catalysts.
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Chapter 5

Importance learning estimator for the

site-averaged turnover frequency of a

disordered solid catalyst

Reproduced in part with permission from:

. Vandervelden, C. A., Khan, S. A. & Peters, B. Importance learning estimator for

the site-averaged turnover frequency of a disordered solid catalyst. J. Chem. Phys.

153, 244120. https://doi.org/10.1063/5.0037450 (2020).

5.1 Introduction

Catalysts are essential for transforming chemical feedstocks into valuable products in

the petrochemical,1 pharmaceutical,2 and food industries3 – some of the largest sectors

in the world economy. Much of catalysis research aims to identify the active sites and re-

action mechanisms to engineer better catalysts.4–7 Nearly all homogeneous catalysts and

many heterogeneous catalysts have well-defined sites that are amenable to established
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research techniques. For example, characterization techniques can probe the structure

(XRD and NMR),8–11 oxidation states (XANES and XPS),12–14 and coordination envi-

ronments (EXAFS and 2D NMR).13,15 Likewise, DFT calculations based on sites with

known structural characteristics can predict the structures and energies of intermediates

and transition states.16 These calculations are widely used to test specific mechanistic

hypotheses against experimental data.17–19

Disordered heterogeneous catalysts present special challenges for experimental and

computational studies.20,21 Here we distinguish heterogeneous catalysts that exhibit quenched

non-equilibrium disorder from those that exhibit dynamical disorder.22 For example, dy-

namically disordered catalysts include small fluxional nanoparticles that rapidly intercon-

vert between active and inactive forms within or between turnovers.23–25 The steady-state

abundances and turnover frequencies in a system with dynamical disorder follow from the

theories of non-equilibrium thermodynamics26 and rare events.27,28 Though often costly

and complicated, these systems are amenable to established rare events methods for

computing rates and sampling ensembles of dynamically disordered states.29

Examples of catalysts that exhibit quenched disorder include metallic glasses,30–32

high-entropy alloys,33,34 mixed metal oxides,35 and single metal atoms grafted to amor-

phous supports like silica or silica-alumina.20,36–38 Each of these catalysts has sites with

a distribution of permanent structural differences that lead to a distribution of different

activities. Catalysts with quenched disorder pose special difficulties beyond the reach

of established experimental and theoretical methods. Active site counting experiments

for these catalysts show that only a small fraction of sites – usually fewer than 30% –

are responsible for most of the catalytic turnovers.39–42 Uncovering features of the most

active sites is challenging because spectroscopic techniques probe the most common sites,

which are likely inactive. The Phillips catalyst, Cr atoms on amorphous silica for ethylene

polymerization, is perhaps most emblematic of these difficulties.40 Despite its discovery
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in 1951 and subsequent decades of research, the full catalytic cycle remains unknown and

is still debated.43–52

Also on the theoretical side, amorphous catalysts present many challenges. Foremost

among these, are questions about the structure and surface features of an amorphous

solid. Even for amorphous silica, for which tremendous effort has been spent developing

models,53–60 we lack atomically resolved structural data to assess model accuracy. More-

over, the quenched disorder is a signature of the preparation history, so the distribution

of structures is not defined by Boltzmann statistics and cannot be generated by standard

Monte Carlo sampling techniques. Somehow, this unknown distribution must be sampled

to compute site-averaged kinetic properties. A final difficulty is that accurate estimates

of site-averaged kinetic properties require difficult-to-converge exponential averages.61,62

Although a few studies have computed kinetics for large collections of sites, none of

them have computed proper, site-averaged TOFs according to the correct theoretical

expression.61

In the two previous chapters, we introduced a quenched-disordered lattice model as

a platform to develop computational methods for amorphous catalysts. The quenched-

disordered lattice model was inspired by the rings, silanols, and siloxanes on the surface

of amorphous silica,63 by grafting reactions for supported organometallics,64–66 and by a

Langmuir-Hinshelwood mechanism67 with site-dependent kinetic parameters. In Chapter

3, the model was used to illustrate how a combination of population balance modeling

and machine learning (kernel regression) techniques can predict how the population of

grafted sites evolves in time. In Chapter 4, we started with a distribution of grafted sites

and developed an “importance learning” algorithm to efficiently estimate the site-averaged

activation energy, 〈Ea〉k. Importance learning, the first to our knowledge, combination

of importance sampling and machine learning required about 2500-times fewer samples

to estimate 〈Ea〉k with the same uncertainty as random sampling with reweighting (see
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Figure 4.8 and Section C.5).

In this chapter, we develop an efficient estimator for the site-averaged TOF, 〈r 〉.

Starting from the quenched-disordered lattice model and final grafted site distribution

from Chapter 3, this chapter aims to compute the site-averaged, absolute TOF. Like

〈Ea〉k, computing 〈r 〉 also involves converging an exponential average. The efficient

estimator samples sites with the same weights as importance learning, so ab initio cal-

culations beyond those previously used to construct training sets for predicting Ea are

unrequired. In the remainder of this chapter, we develop the theoretical properties of

the efficient TOF estimator, we briefly review the quenched-disordered lattice model of

an amorphous catalyst, and we illustrate the TOF estimator for the quenched-disordered

catalyst model.

5.2 Efficient estimator for the site-averaged TOF

In this work, we show how the importance learning algorithm and its machine learning

(ML) model, trained to be accurate for the most active sites, can estimate the absolute

site-averaged TOF. No new training set calculations are required for the calculations

below, and therefore (as in the 〈Ea〉k estimate) these calculations should be possible with

a training set of ca. 100 sites.

We consider a catalyst where each site has a TOF with power-law dependence on

concentrations Cj,

r (x) = k(x)
∏

j
Cj

αj . (5.1)

Here, k(x) is an Arrhenius-type rate constant which depends on the local environment,
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x,

k(x) = A(x) exp[−βEa(x)]. (5.2)

Here, β = 1/kBT . Note that both A(x) and Ea(x) may depend on the local environ-

ment. In Section 5.3 we show how assumptions like those implicit in eqns. 5.1 and 5.2

can arise from a simple model with a Langmuir-Hinshelwood reaction rate law. From

eqn. 5.1, the site-averaged TOF can be written as

〈r (x)〉 =

∫
dxk(x)ρ(x)

∏
j
C
αj

j

= 〈A(x) exp[−βEa(x)]〉
∏

j
C
αj

j

(5.3)

where ρ(x) is the density of sites with local structure x. The quantity in brackets on

the right side of eqn. 5.3 is 〈k〉, the site-averaged rate constant. Eqn. 5.3 assumes ρ(x) is

normalized, but the normalization will emerge naturally as a number of sites per support

surface area. The average in equation 5.3 is deceptively difficult to compute because it is

an exponential average. Specifically, the Arrhenius law within k(x) amplifies the impor-

tance of sites with unusually small activation energies and diminishes the contribution of

typical sites. Starting from 〈k(x)〉 in eqn. (3),

〈k(x)〉 =

∫
dxρ(x)A(x) exp[−βEa(x)]

= 〈A(x)〉ρ(x) exp[−βEa(x)]

∫
dxρ(x) exp[−βEa(x)]

= 〈A(x)〉ρ(x) exp[−βEa(x)]〈exp[−βEa(x)]〉ρ(x)

(5.4)
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where

〈A(x)〉ρ(x) exp[−βEa(x)] =

∫
dxρ(x) exp[−βEa(x)]A(x)∫
dxρ(x) exp[−βEa(x)]

(5.5)

In the second line of eqn. 5.4, we have multiplied and divided by the integral that

remains on the right side to obtain an average of A(x) in distribution ρ(x) exp[−βEa(x)].

In the third line, we have noted that the remaining integral was itself an average of

exp[−βEa(x)] in distribution ρ(x).

Eqn. 5.4 is the central result of this chapter. It converts the difficult site-average of

k(x) into a product of two averages that are easily computed with importance learning.

In the discussion below, we also make frequent reference to a projected distribution of

activation energies: ρ(Ea) =
∫
dxδ[Ea − Ea(x)]ρ(x). For example, note that

〈exp[−βEa(x)]〉ρ(x) =

∫
dxρ(x) exp[−βEa(x)]

=

∫
dxρ(x)

∫
dEa exp[−βEa]δ[Ea − Ea(x)]

=

∫
dEaρ(Ea) exp[−βEa]

(5.6)

So 〈exp[−βEa(x)]〉ρ(x) can be computed by sampling ρ(x), or by integrating the dis-

tribution ρ(Ea).

No new ab initio calculations are required to estimate 〈A(x)〉ρ(x) exp[−βEa(x)], because

this average uses the same weights as importance learning. It can be directly com-

puted as an arithmetic average of A(x) at sites harvested from ρ(x) exp[−βEa(x)] during

the training procedure. Additional work is needed to study convergence properties of

〈A(x)〉ρ(x) exp[−βEa(x)] because the initially sampled data during training will not yet be

representative of ρ(x) exp[−βEa(x)]. However, we expect A(x) to be a relatively weak
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function of x with a quickly converging average. The 〈exp[−βEa]〉ρ(Ea) average might

still appear to pose a problem. Of course, the exact form of ρ(Ea) is unknown and this

is the reason we need methods beyond standard Monte Carlo importance sampling.

Fortunately, the importance learning algorithm trains the ML algorithm to compute

the integrand in the calculation of 〈exp[−βEa]〉ρ(Ea) accurately and directly. First, we

return to the full ensemble of sites, most of which will not be part of the training set and

will have unknown properties. For this ensemble, we use the trained ML model to predict

the distribution of activation energies. We denote the ML-predicted Ea distribution as

ρ̂(Êa), where the hats indicate that this object is an estimated distribution of estimated

activation energies. Now, the exponential integral is

〈exp[−βEa]〉ρ(Ea) ≈ 〈exp[−βÊa]〉ρ̂(Êa)

=
1

N

∑N

i
exp[−βÊa(xi)]

(5.7)

Eqn. 5.7 is approximate because ρ̂(Êa) is equal to ρ(Ea) if and only if there are no

errors in the ML model. Note that eqn. 5.7 is still an exponential average, but the ML

model is trained to be accurate for sites that dominate the sum, and that evaluating the

sum for large N is now trivial with the ML model.

In practice, errors in the ML model will propagate through the average, biasing the

estimate. The bias arises because activation parameters from the ML model are scattered

symmetrically around the true values, but the exponential magnifies contributions of

errors on the low activation energy side. We can use residuals from the test set to correct

for this bias. Assuming the errors of the ML model are normally distributed, the bias

in the 〈exp[−βÊa]〉 calculation can be estimated through a similar procedure that we

previously used to estimate the bias of 〈Êa〉k, Section C.3. A detailed derivation of
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the bias correction can be found in Section D.1 of the supplementary information. The

bias-corrected estimator, 〈exp[−βÊa]〉B.C. is

〈exp[−βÊa]〉B.C. = exp[
1

2
(βσr)

2]〈exp[−βÊa]〉ρ̂(Êa) (5.8)

Here, σr is the standard deviation of residual errors in the ML predictions. The

residual distribution can be approximated from leave-one-out-predicted Êa values for sites

in the test set. The supporting information shows that the test set residual distribution

closely resembles the residual distribution of all sites, with standard deviations within

10% of each other, Figure D.1. In the remainder of the chapter, we use 〈exp[−βÊa]〉 in

general reference to the theoretical average with distribution ρ(x). Subscripts ρ̂(Êa) and

B.C. are used only when necessary to distinguish the raw importance learning estimates

and bias corrected estimates.

5.3 Example calculation

Section 3.2.1 described a structurally disordered, functionalized lattice model to

mimic the surface of amorphous SiO2. As shown in Figure 5.1, sites in the model are

designated as silanol, siloxane, or empty sites. Grafting sites are defined as empty sites

with two silanol neighbors and two siloxane neighbors on opposite sides. As in Chapter

4, we assume that grafting has occurred at all grafting sites. The same kernel regres-

sion ML model for estimating activation energies via importance learning is here used

to estimate 〈r 〉. The ML model uses three coordinates (see Figure 5.1) to describe the

local environment around each site: (i) the distance between silanolate groups, d1, (ii)

the distance between siloxane groups, d2, and (iii) the angle between the silanolate and

siloxane groups, θ. Our previous work showed that these coordinates are nearly orthog-
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onal and, despite being incomplete, they are sufficient to predict the kinetics at each

site. Moreover, the coordinates describe site characteristics that remain fixed (quenched)

while reactions occur at the site. A more involved discussion on coordinate selection can

be found in Section 4.7.

Figure 5.1: Quenched disorder lattice model. Coordinates d1, d2, and θ describe the
local environment (region in red outline) around the active metal site, M∗ (yellow).

5.3.1 Model of catalytic cycle

The model catalyst site, M∗, as in our previous work, contains a metal center M and

support environment *. A simple model Langmuir-Hinshelwood mechanism at each site

has a quasi-equilibrated adsorption step and an irreversible, rate-liming step.
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A + M∗ 
 AM∗ K(x)

AM∗ → B + M∗ k2

We assume that:

1. the equilibrium constant K for adsorption of reactant A depends on the local

environment of site i, xi,

2. the second step irreversibly converts the adsorbed molecule A (AM∗) into the gas

phase product B and a bare site M∗ with a uniform rate constant, k2,

3. K(x)cA � 1 for all sites, so that the bare site M∗ is the most abundant surface

intermediate (MASI).

The Langmuir-Hinshelwood mechanism under these simplifying assumptions is shown

in Figure 5.2.
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Figure 5.2: The quasi-equilibrated adsorption step and irreversible chemical reaction
step for the model Langmuir-Hinshelwood reaction A → B, with M∗ and AM∗ inter-
mediates.

The simplified rate law under these assumptions is

r ≈ k(x)cA, (5.9)

where k(x) = k2K(x) is the apparent, pseudo-first-order rate constant. The apparent

turnover frequency depends on the local site geometry x because the adsorption constant

K(x) = exp

[
−∆H(x)− T∆S

kBT

]
(5.10)

depends on x. Here ∆H(x) is a site-dependent adsorption enthalpy that we compute

by minimizing the energies of states M∗ and AM∗ subject to the constrained geometry

x, much like the procedure for real ab initio calculations.68,69 The siloxane and silanolate

groups are also held fixed to mimic the approximate rigidity of a real amorphous oxide.
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A transition state theory model was used for the rate constant,

k2 =
kBT

h
exp

[
∆S‡

kB

]
exp

[
−∆H‡

kBT

]
, (5.11)

where ∆S‡ and ∆H‡ are (in this simple model) uniform across all sites. A full

description of the model and its parameters can be found in Section 4.3. The temperature

dependent rate at each site can be summarized in terms of a site-specific activation energy.

The activation energy at each site is

Ea(xi) = −d ln r i

dβ
= ∆H(xi) + ∆H‡ + 2kBT (5.12)

A full derivation of Ea(xi) can be found in Appendix C.2. This simple model chem-

istry allows us to test the accuracy and efficiency of algorithms, as we can exactly compute

site-averaged kinetics for the entire ensemble of sites.

5.3.2 Review of importance learning

Theoretical analyses show that contributions of individual sites to the site-averaged

kinetic properties in a disordered are approximately ρ(x) exp[−βEa(x)]. However, the

distribution ρ(x) and the structure-activation energy relationship Ea(x) are both a priori

unknown. Moreover, ab initio calculations are too expensive to straightforwardly sample

thousands of sites, compute their kinetic properties, and properly reweight them.20 Im-

portance learning circumvents these problems through a combination of machine learning

and importance sampling methods. The algorithm starts from calculated Ea(x) values

at a small pool of randomly sampled sites and a primitive model trained to predict

Ea(x) from this initial data. At each subsequent iteration, we importance sample the

approximate ρ(x) exp[−βEa(x)] distribution, compute Ea(x) at the new site, append the
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new data to the training set, and retrain the machine learning model. The result is an

adaptive importance sampling algorithm that iteratively focuses the training data and

computational effort on those parts of the site ensemble that are most important to the

site-averaged kinetic properties (Chapters 3 and 4).

The ML part of the importance learning algorithm is a simple kernel regression

model70,71 that uses activation energies from ab initio calculations of previous sites

xj (j = 1, 2, 3, . . . , n) in a weighted average to estimate the activation energy of a new

site with local environment x

Êa(x) =

∑n
j Ea(xj)w(x,xj)∑

j w(x,xj)
. (5.13)

Here, Êa(x) is the predicted activation energy, and the Ea(xj) are computed activation

energies in the training set. The w(x,xj) function is a Gaussian kernel:

w(x,xj) = exp[−d2(x,xj)], (5.14)

that depends on the Mahalonobis distance,72 d:

d2(x,xj) = (x− xj)
TS(x− xj). (5.15)

Here, S is a dim(x) × dim(x) dimensional, positive definite, and symmetric matrix.

The ML model was trained to fit the training data (the cumulative set of completed ab

initio calculations) by optimizing elements of S to minimize the sum of leave-one-out

losses, Section 3.3. The ML kernel regression-based procedure can intuitively be thought

of as similarity-based interpolation. If a site has a similar local environment to a site in

the training set, the Mahalanobis distance will be small and that site will have a large

weight in the weighted average. For the model system in Chapter 4, importance learning
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accelerated convergence to the correct activation energy by several orders of magnitude

over standard sampling and reweighting procedures. The importance learning algorithm

obtained 〈Ea〉k to within 0.75 kJ/mol of the correct site-averaged value with fewer than

100 training set calculations, Figure 4.8.
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5.3.3 Site-averaged TOF for model amorphous catalyst

The site-averaged TOF for the model catalyst is given by inserting eqn. 5.9 into eqn.

5.3,

〈r 〉 = 〈k〉cA = 〈K(x)k2〉cA (5.16)

From eqns. 5.10 and 5.11, k(x) can be expanded as

k(x) =
kBT

h
exp

[
−∆H(x)− T∆S

kBT

]
exp

[
−∆H‡ − T∆S‡

kBT

]
(5.17)

The apparent rate constant can be converted to an Arrhenius form by using the

definition of Ea(xi) from eqn. 5.12,

k(x) =
kBT

h
exp

[
∆S + ∆S‡ + 2kB

kB

]
exp

[
−∆H(x) + ∆H‡ + 2kBT

kBT

]
= k0 exp[−βEa(x)]

(5.18)

Where k0 = kBTh
−1 exp[(∆S + ∆S‡ + 2kB)/kB]. In the first line, the rate constant

was multiplied by exp[−2] exp[2] to express the k(x) in terms of Ea(x). The average

TOF is then

〈r 〉 = 〈k0 exp[−βEa(x)]〉cA

= k0〈exp[−βEa(x)]〉cA
(5.19)

Eqn. 5.19 is a special case where the prefactor k0 does not depend on the local

environment only because of the simplicity of our model. For ab initio calculations on

real amorphous catalysts, terms like ∆S and ∆S‡ will have some dependence on x through
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vibrational contributions in the partition function. The explicit dependence will likely

depend on both the support type, the metal center, and the coordination environment.

We expect the entropic contributions to be weaker functions of the local geometry than

the enthalpic contributions. The calculations below focus on 〈r 〉/k0 = 〈exp[−βÊa]〉

because the prefactor in our model is independent of x. For reference, a histogram of

ρ(Ea) is shown in Figure 5.3.

Figure 5.3: Histogram of the activation energy distribution, ρ(Ea).

The site-averaged TOF was estimated using the same data from the importance

learning algorithm in previous work. The ML model from importance learning, ρ̂(Êa) is

also used to approximate ρ(Ea). Note that at each iteration, the ML model is retrained

with the Ea of the importance sampled site appended to the training set. As the number

of importance learning iterations increases, ρ̂(Êa) and ρ̂(Êa)exp[−βÊa] will become more

accurate. The convergence of 〈exp[−βÊa]〉 is shown in Figure 5.4.
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Figure 5.4: Figure 4: (a.) Convergence of 〈r̂ 〉/k0 = 〈exp[−βÊa]〉 using the ML model
from different numbers of importance learning iterations. The red curve shows the
biased 〈r̂ 〉/k0 , computed according to eqn. 5.7. The blue curve corrects for bias,
〈r̂ B.C.〉/k0, using eqn. 5.8. (b.) The bias-corrected, site-averaged activation energy
predicted by the ML model also quickly converges to the correct value. (Chapter 4
estimated 〈Êa〉k by averaging the importance sampled sites.) From Appendix C.3 the
bias-corrected 〈Êa〉k estimate is 〈Êa〉k,B.C. = 〈Êa〉k − βσ2

r .

The biased 〈r̂ 〉/k0 estimate continues to underestimate the rate after 50 importance

learning iterations and even after 374 iterations, Figure D.2 and D.3. After just ca. 25
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iterations of importance learning, the biased-corrected 〈r̂ 〉/k0 estimate converges to the

exact 〈r 〉/k0 value. The biased-corrected 〈r̂ 〉/k0 also underpredicts the bias for the first

ca. 25 importance learning iterations. This occurs because the errors in the ML model

are non-uniform across Ea. In the early iterations of importance learning, the errors of

low-Ea sites will be larger than higher Ea sites from the dearth of data (Figure D.4). The

errors of low-Ea sites are particularly important since they are exponentially magnified

by eqn. 5.7. However, the number of these sites is not large enough to sizably contribute

to σr in eqn. 5.8. As enough low-Ea sites are importance sampled, the ML model error

becomes more uniform across Ea, and eqn. 5.8 correctly accounts for the bias, Figure

D.5.

5.4 Conclusions

Ab initio calculations on single atom catalysts on amorphous supports have been

limited by an inability to account for the non-equilibrium, preparation dependent, and

quenched disordered ensemble of sites in predictions of kinetic properties. Every site

also has a different local environment, different activation parameters, and kinetics that

exponentially magnify the differences. Given a model of the amorphous solid catalyst, ki-

netic predictions that average over the site distribution with standard sampling methods

require an intractable sample size for ab initio calculations. We first addressed these the-

oretical challenges with the importance learning algorithm, which converged an estimate

of the site-averaged activation energy thousands of times faster than random sampling

with reweighting.

This chapter extends our previous efforts by presenting an efficient estimator for

the site-averaged absolute rate, 〈r 〉/k0. We first showed how 〈r 〉 could be split into

a product of judiciously weighted averages for A(x) and exp[−βEa(x)]. Both averages
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use the same information the importance learning algorithm uses to estimate the site-

averaged activation energy, 〈Ea〉k. Thus, 〈r 〉 can be computed concurrently with 〈Ea〉k
during importance learning, without additional, expensive ab initio calculations. We

illustrated the 〈r 〉-estimator using the same simple model of a Langmuir-Hinshelwood

reaction on a support with quenched-disorder used to demonstrate importance learning

〈Ea〉k. Estimates of 〈r 〉 rapidly converged within 1% of the exact value by iteration 30

of importance learning. We also showed how to correct for errors in ML model when

computing 〈r 〉. The enormous acceleration affected by these new importance learning

tools should enable the first ab initio studies of these catalysts with proper site-averaged

rate predictions.
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Chapter 6

Predicted Properties of Active Catalyst

Sites on Amorphous Silica: Impact of

Silica Pre-Optimization Protocol

6.1 Introduction

Amorphous silica is frequently used as a support for industrial heterogeneous cata-

lysts. The term amorphous silica refers to several different materials, including silicas

made by sol-gel synthesis, spray drying, pyrolysis, and precipitation methods.1–5 The

resulting supports are typically characterized to determine their silanol densities, but

the precise atomic structure is unknown. Additionally, these materials “remember” their

non-equilibrium preparation history, which also influences their catalytic properties.6,7

Theoretical considerations suggest that, even within a single amorphous silica material,

a distribution of structurally different sites gives a distribution of different activities.8

Although there has been recent progress with simple model systems, (Chapters 3, 4, and

5), it remains unclear which structural features on the surface of real silica most directly
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influence the activity of a supported catalyst.9,10

Many computational studies rely on “supermolecular” cluster models, where a por-

tion of the amorphous silica is carved out from an extended-solid model and treated with

standard quantum mechanical (QM) methods used for molecules. This approach has the

advantage that high QM levels of theory can be used for modeling the catalytic site, con-

trary to periodic boundary conditions (PBC) approaches. Three types of disorder impact

the computed activity of catalyst sites on amorphous silica in cluster models: quenched

disorder,8 dynamical disorder,11 and procedural disorder. The effects of dynamical dis-

order have been examined in several modeling efforts.12–18 A few recent computational

studies examined the effects of quenched disorder.9,19–21 To our knowledge the impact of

procedural disorder, an easily overlooked artifact of cluster models for amorphous solids,

has not previously been examined.

The disordered siloxane ring network in amorphous silica is quenched, i.e., these

features are locked-in by strong bonds that do not rearrange on the time scale of catalytic

reactions.22 In contrast, silanols on the surface of silica form dynamically disordered

hydrogen bond networks, i.e., these involve weak fluxional bonds that can rearrange

quickly, perhaps even within the time scale of a single catalytic turnover. Note that the

effects of hydrogen bond network rearrangements of liquid water,23 ice,24,25 and polar

compounds adsorbed to metal surfaces26 have already been extensively studied. The

quenched and dynamical disorder contributions undoubtedly influence the activity of

catalyst sites on real amorphous silicas. The quenched disorder gives each active site

unique properties, while the dynamically disordered degrees of freedom influence the free

energy of intermediates and transition states. Figure 6.1 shows a schematic of the energy

landscape as a function of quenched and dynamically disordered degrees freedom.
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Figure 6.1: Schematic showing how the free energy of an intermediate depends on
quenched and dynamically disordered degrees of freedom. Barriers to motion along
the quenched degree of freedom are impassable at temperatures of catalyst operation.
In contrast, barriers for motion along the dynamically disordered degrees of freedom
are easily traversed at temperatures of catalyst operation.

Modeling of these catalysts proceeds in two steps: (1) creating models of amorphous

silica surfaces with representative quenched and dynamical structural disorder, and (2)

creating cluster models of the active sites on these surfaces that are amenable to accurate

QM calculations for the thermodynamics and kinetics. Models of amorphous silica sur-

faces are typically created by melting 3D-periodic crystalline silica in a high temperature

molecular dynamics (MD) simulation, rapidly quenching the silica to a lower tempera-

ture, cutting the bulk silica into slabs with 2D periodicity followed by a re-equilibration

step, and creating surface ≡SiOH (silanol) groups.19,27–31 In many cases, additional equi-

libration, annealing, and condensation steps are included to adjust the silanol orientation
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and density. These additional steps are usually performed with the same MD empirical

force fields because, unlike the small unit cell of crystalline materials like zeolites, the

amorphous silica model typically contains thousands of Si and O atoms.10 The details of

these procedures vary widely. They give different bond angle and ring size distributions,

and different proportions of geminal, vicinal, and isolated silanols. It is difficult to iden-

tify the best procedure given the lack of detailed structural data from experiments,9,32

but we do not concentrate on this important issue here.

Procedural disorder stems from steps that follow the melt, quench, cut, and cap

(MQCC) steps in the formation of amorphous silica, i.e., after the creation of a quenched

extended support model. Following creation of a classical amorphous silica model, a cat-

alytic site is introduced, usually including at least one metal center,9,33 and QM methods

are employed to study the reactivity of the site, typically based on density functional

theory (DFT).34 Although periodic boundary conditions (PBC-DFT) calculations are

possible, they require a large simulation cell to accurately capture the quenched disor-

der.31 This limits the number of silica replicas that can be investigated and the accuracy

of the level of theory that can be employed (e.g., using accurate hybrid or double-hybrid

functionals is not feasible). In fact, most studies only report results for a single model of

an active site.

An alternative approach is to carve a cluster model from the classical slab, and treat

it as a supermolecule.19,35,36 This is reasonable because silica is an insulator and long-

range electronic interactions should not have a considerable effect.37,38 The size of the

cluster can be adjusted to provide an acceptable cost-accuracy balance. The cluster

size should be large enough so that reactants/intermediates/products interact with the

catalytic sites in a realistic manner (including steric effects, electrostatic/dispersion at-

traction, and H-bonding).39–41 However, the cluster model should also be small enough

so accurate QM methods and basis sets remain computationally tractable. Clusters that
148



Section 6.1 Introduction

contain a few hundred atoms are often necessary, and cluster models with just two tetra-

hedral Si atoms are likely insufficient.10 The procedures to create these cluster models

of amorphous silica33,42 resemble those used to create cluster models of zeolites.43,44 The

cluster encompasses all atoms within some cutoff away from a site of interest, all “pe-

ripheral” Si-O-Si linkages beyond the cutoff are cut, and dangling bonds are terminated

with capping atoms like F, H, or OH groups. In most,9,19,31,35,45 but not all cases,46,47 the

peripheral atoms are constrained during subsequent analyses of adsorption and reactivity

to mimic the structural constraints imposed by the silica matrix. These procedures are

largely conserved across different protocols in the literature,31 but the protocols differ

in other subtle and potentially important aspects, which lead to the procedural disorder

introduced above.

For cluster models of zeolites, the peripheral atoms are positioned according to corre-

sponding positions of atoms in the experimental zeolite structure.38,48 This is not possible

in amorphous silica models. Instead, most of the cluster is fixed at the geometry obtained

as a snapshot from a classical low-temperature MD simulation. A relatively small portion

surrounding the active site is relaxed with the QM Hamiltonian, i.e., the “relaxed zone”.

Therefore, the interior atoms of the cluster relax subject to the perturbed peripheral po-

sitions and not to the positions from a QM optimization on the full system. For a given

cluster model size and a given catalytic reaction, cluster models constructed as described

above may appear to give a perfectly reasonable set of barriers and intermediate free

energies. However, the location of the boundary between the MD fixed region and QM

reactive/flexible region affects the results. Each time the radius of the relaxed zone is

increased, new peripheral constraints are released and allowed to relax. These perturbed

degrees of freedom tug on the interior atoms from longer distances as the relaxation

radius grows. Presumably the force that a relaxing constraint exerts on the active site

is attenuated by distance, but the number of perturbed degrees of freedom grows as
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the radius grows. The convergence (if it may be assumed at all) involves a complicated

interplay between elastic forces on a random network of bonds with somewhat random

perturbations imposed at the periphery. We hypothesize that faster and smoother con-

vergence of the QM reaction barriers and energies can be achieved by starting from a

large amorphous silica cluster model that is pre-optimized with the QM Hamiltonian, as

shown in Figure 6.2.

Figure 6.2: Schematic illustrating two different optimization protocols, MD-Opt and
QM-Opt. In the MD-opt protocol, only the region within the radius R is relaxed with
the QM Hamiltonian before and after grafting (in blue), while the rest is frozen at the
MD geometry (in green). In the QM-Opt protocol, the whole cluster is pre-optimized
at QM level, then the region within the radius R is relaxed again after grafting.

In this paper, we study the convergence of reaction energies vs. size of the relaxed

zone, represented by the R radius in Figure 6.2, for clusters starting from the MD and

QM pre-optimized structure. We call the two protocols “MD-Opt” and “QM-Opt”, re-

spectively, throughout the paper. This comparison is carried out using atomistic models

treated at DFT level, and an empirical disordered lattice model that allows us to explore

significantly larger cluster model sizes. We use the grafting reaction of a dioxo-Cr group,

i.e., the initial grafted site in the Phillips catalyst,49 as an example. We also perform a
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computational cost analysis of the two optimization protocols and a structural analysis

of the active site based on the relaxation radius.

The paper is organized as follows. In Section 6.2.1, we introduce a disordered lattice

model that allows analysis of convergence over long length scales. In Section 6.2.2 we

review the atomistic SiO2 cluster models. In Section 6.3, we compare how the energy of

a grafting reaction converges with cluster model size for the MD-Opt and QM-Opt opti-

mization protocols. For the atomistic SiO2 models, we also compare the computational

cost of the the QM-Opt and MD-Opt protocols. Finally, we compare the optimized struc-

tures of both protocols and examine which degrees of freedom in the atomistic cluster

models are most labile. Finally, Section 6.4 summarizes the results and reports concluding

remarks.

6.2 Computational Details

6.2.1 Disordered Lattice Model

The disordered lattice model (DLM) aims to mimic the qualitative characteristics

of an amorphous support like silica and precursor grafting reactions. Like MD and

MM calculations for atomistic models, reactant and product geometries in the DLM are

identified by geometry optimizations. Because the DLM uses simple classical potentials,

we can examine convergence with considerably larger cluster models than with DFT. The

quenched disorder is modeled through a random network of elastic bonds, with different

forcefield parameters corresponding to the “QM” and “MD” Hamiltonians.

The DLM initially starts as a square lattice of size N × (N − 1) × N/2, where N

is an even integer. Each node of the lattice occupies integer lattice positions (e.g., [1,

1, 1]) and is analogous to an SiO2 center in silica. The coordination environment of
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the DLM (octahedral) differs from that of SiO2 (tetrahedral), so we refer to the nodes

as Σ centers. The octahedral (cubic) lattice greatly simplifies model construction and

the DLM still exhibits quenched disorder like the real system. Each node is bonded to

its neighbors. Then, disorder is created by perturbing each Σ center from their initial

lattice position by a random vector drawn from a 3D, isotropic, normal distribution with

variance σ2
disp. The resulting irregular distances are taken as equilibrium distances in

the MD Hamiltonian. The DLM also contains “surface hydroxyls”, each represented as a

single atom. The two surface hydroxyls are placed over the center of the DLM surface as

shown in Figure 6.3. A metal atom (described by an empirical force field) is then grafted

to these two hydroxyls.

Figure 6.3: Sample DLM model with two surface OH groups. Red beads are surface
OH groups, grey beads are Σ centers which are allowed to relax in structure optimiza-
tions, and black beads are peripheral capping groups whose positions are held fixed in
structure optimizations. A small DLM with N = 6 is shown here for clarity. Results
in this paper DLM models with N > 10.

Cluster models of the extended DLM slab are carved by including a specific number of

Σ centers (as opposed to including atoms within a specific distance as for the atomistic

SiO2 models). We refer to the size of the cluster model as nshells, where nshells is an

integer. Starting underneath and between the two central OH groups, a cluster model is
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created by including all Σ centers nshells lattice positions in the positive and negative x

direction, nshells−1 lattice positions in the positive and negative y direction, and nshells/2

in the negative z direction. Figure 6.3 shows an example of carving a cluster model with

nshells = 2. Other examples of carving out cluster models with different sizes in shown

in Figure E.1. The largest cluster model size is also related to the size of the DLM,

nshells ≤ N/2.

We also define two configurations of the DLM. The first one corresponds to the

minimum energy configuration of the Hamiltonian used to create the disordered lattice

structure, akin to the MD Hamiltonian for an atomistic SiO2 slab model. The second

one corresponds to the minimum energy configuration of the QM Hamiltonian used to

compute reaction energies. The minimum energy configuration of the MD Hamiltonian

is perturbed relative to that from the QM Hamiltonian.

We mimic the two different minimum energy configurations in the DLM by using two

different sets of equilibrium Σ-Σ distances. When the DLM was first created by random

Gaussian displacements of the Σ centers from their lattice positions, every Σ-Σ bond

acquired an initial length. We define these Σ-Σ distances as the perturbed-minimum-

energy configuration (i.e., the “MD” equilibrium model structure). The initial (MD)

distribution of Σ-Σ distances is also Gaussian and has a variance related to that of the

displacements, σ2
dist = 2σ2

disp. The factor of 2 appears because the distance involves 2

Σ centers being displaced. The equilibrium (QM) length for a given Σ-Σ bond is then

assigned by re-sampling from the Gaussian distribution with mean distance of 1 and

variance of 2σ2
dist. The equilibrium distance between the two Σ centers with surface OH

groups is set by sampling U(0.77, 0.83), where U is a uniform distribution. We found

that the grafting energy strongly depends on this equilibrium distance, and that an

equilibrium distance less than r̂ = 1 led to a wide range of grafting energies. All Σ-Σ

bonds have the same spring constant.
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Lastly, we explain the model for grafting on the DLM, which allows us to compute

a grafting energy of a cluster model carved from the DLM through geometry optimiza-

tions. The model uses simple classical potentials, commonly used in MD simulations. A

schematic of the coordinates used for the potential is shown in Figure 6.4.

O−Σ−Σθ

OH−Σr

Σ−Σr

O−M−OθO−Mr

Figure 6.4: Schematics of coordinates used to model the grafting energetics. Grey
beads are Σ centers allowed relax during structure optimizations the gold bead is the
metal atom, a red beads represent surface O atoms.

Interactions between Σ centers are modeled with a harmonic potential,

VΣ-Σ(r) =
∑
i∈Σ−Σ

ki(ri − reqi )2 (6.1)

where i runs over all nearest neighbors Σ-Σ bonds. Here, r is the configuration of the Σ

centers and OH groups, ki is the force constant for site i, ri is the Σ-Σ bond length, and

reqi is the equilibrium length for the corresponding Σ-Σ bond. Note that each equilibrium

Σ-Σ distance will be different for every bond to model structural disorder. The bond

between Σ centers and surface hydroxyls is also described with a harmonic potential,

VΣ-OH(r) =
∑

i∈Σ-OH

ki(ri − reqi )2. (6.2)

where the force constant and distances refer to a Σ center and OH group. The surface
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OH groups are kept normal to the surface by

VΣ-Σ-OH(r) =
∑

i∈Σ-Σ-OH

ki
4

4∑
j∈NN

(θj − θeqΣ-Σ-OH)2. (6.3)

For each surface OH, the difference of the angles formed by the OH, basal Σ center, and

4 nearest neighbor (NN) Σ centers is taken with an equilibrium angle (θeqΣ-Σ-OH), squared,

then averaged.

For grafting of a metal atom M on the surface, a Morse potential is used to describe

the two M-O bonds,

VM-O(r) =
2∑

i∈M-O

DM-O(1− exp[−aM-O(ri − reqi )])2 −DM-O. (6.4)

An O-M-O angle term is also added

VO-M-O(r) = kO-M-O(θO-M-O − θeqO-M-O)2. (6.5)

The O-M-O angle is chosen such that the Σ-O groups pucker outwards, straining the

Σ-O angles in VΣ-Σ-OH(r). The degree of the strain depends on the local environment at

the grafting site. Lastly, an Σ-O-M angle term is added

VΣ-O-M(r) = kΣ-O-M(θΣ-O-M − θeqΣ-O-M)2 (6.6)

Here, kΣ-O-M is the force constant, θΣ-O-M is the angle between M, the midpoint of

the two O atoms, and the midpoint of the two Σ groups bonded to the O atoms (Figure

E.6). The DLM energy before (VB(r)) and after (VG(r)) grafting is

VB(r) = VΣ-Σ(r) + VΣ-OH(r) + VΣ-Σ-OH(r). (6.7)
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VG(r) =VΣ-Σ(r) + VΣ-OH(r) + VΣ-Σ-OH(r)

+ VM-O(r) + VO-M-O(r) + VΣ-O-M

(6.8)

The grafting energy of the disordered lattice model, ∆EG,DLM , is computed by

∆EG,DLM = min[VG] + 2EHL − (min[VB] + EML2). (6.9)

where min[·] denotes the energy-minimized potential, obtained by a geometry optimiza-

tion. The values of 2EHL and EML2 were chosen such that ∆EG,DLM = −50 kJ mol−1 for

a perfect (ordered) lattice. Finally, we study the convergence of the results with cluster

size by defining

∆∆EG,DLM(nshells) = ∆EG,DLM(nshells)−∆EG,DLM(∞) (6.10)

In practice, ∆EG,DLM(∞) is the ∆EG,DLM for the largest possible cluster from the DLM,

which exceeds the length scale for the dependence of the grafting energy on the boundary

condition. This is quantitatively confirmed in the plots in Figure E.8. Note that Eq. 6.10

eliminates contributions from dynamical and quenched disorder, so only variance from

procedural disorder remains.

Equilibrium bond distances, bond angles, and force constants were obtained from

DFT calculations on a simple SiO2 cluster model and dioxoCr(VI)/SiO2 cluster model.

Force constants were obtained by performing relaxed scans on these two cluster models.

A full description of the cluster models, computational details, fitting procedures, and

resulting parameters is given in Section E.1 The list of parameters and equilibrium val-

ues is given in Table E.1 Geometry optimizations on the DLM were performed using the

truncated Newton method,50 a Hessian-free method designed for optimizing non-linear
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functions with many degrees of freedom. For convergence criteria, the absolute error

in ropt between optimization iterations was required to be less than 1.25 × 10−8 (di-

mensionless distance) and the absolute error in Vi(ropt) between optimization iterations

was required to be less than 1.25 × 10−7 kJ mol−1. The optimization was performed in

Python with SciPy.51 The optimized structures were confirmed as minima by ensuring

all forces are near zero and the Hessian of optimized geometries is positive definite. The

Jacobian and Hessian of the forcefield were both computed via automatic differentiation

with JAX.52

6.2.2 Atomistic Cluster Models

The atomistic cluster models provide a more realistic representation of the Cr-doped

sites on the amorphous silica. Therefore, we use an approach similar to that we used

to create the METal doped Amorphous SIlica Library, METASIL.19 We start with an

amorphous silica surface created using molecular dynamics (MD) simulations. This was

obtained beginning from a unit cell of β-cristobalite crystal containing 5103 atoms; the

crystal was then heated to 8000 K, after which the simulation cell was expanded in the

z- dimension to create a slab geometry. Following equilibration at this high temperature

for 0.5 ns, the system was cooled down quickly to maintain the disordered structure;

a cooling rate of 25 K/ps was used. The MD simulations were carried out using the

LAMMPS software,53 and the BKS force field27,54,55 was used to describe the interactions

within the silica. The two surfaces of the slab created in this procedure were then

functionalized with hydroxyl groups. Specifically, silanol groups were created by choosing

strained Si-O bonds based on a distance criteria for the bond, r > 1.8Å, and proximity

to the surface. Each strained Si-O bond selected in this way was broken and an OH

(H) group added to the Si (O) atom, so that the functionalization maintains the charge
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neutrality of the surface. The functionalization was followed by an equilibration step

at 298 K, which allows the relaxation of the silanol groups and their rearrangements

in a stable H-bonding network. The final structure is obtained by taking a snapshot

after equilibration is achieved. The resulting surfaces have a silanol density of about 4

nm−2, which is consistent with experimental data.56,57 The structure resulting from this

procedure is not exactly equivalent to a geometry optimization with the same classical

force field (FF) as that used for the dynamics, but it should be fairly close because the

FF contains steep harmonic potential terms.

From this initial large simulation cell, we select ten sites to be doped with the metal,

five from each side of the slab. These are the same sites that we used in METASIL

for doping with Zr, Nb, and W.19,58–61 The metal dopant in this work, Cr, is grafted

between a pair of silanol groups, SiOH. When clusters do not contain a central SiOH

pair, a water is added across the longest Si-O bond of the central silicon atom. The

center of mass (COM) of the two oxygens within this central pair is used as the center

of the cluster. Each model contains approximately 175 non-H atoms on average, as for

the METASIL structures. Eight out of ten grafting sites are on vicinal silanols and the

remaining two are on isolated silanols that are at an appropriate distance for inserting the

metal. Although the distribution of vicinal silanols is likely different than that of isolated

silanols in the real material, thus affecting the corresponding grafting distributions, this is

not a fundamental issue here. In fact, the optimization protocol should be independent

of the site distribution, and it is interesting to consider both types of grafting sites.

Therefore, we include results on the effect of procedural disorder only on the vicinal

silanol grafting sites as well as on the whole collection of sites. Furthermore, although

ten sites would not be sufficient for modeling the site distribution and the effective kinetics

of the grafting process,7 they are sufficient to illustrate trends in the effects of procedural

disorder introduced by the choice of optimization protocol.
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In the pre-optimization protocol (QM-Opt), all of the atoms are relaxed except the

capping -OH groups, which are kept fixed at the initial positions. Grafting energies

obtained with the largest relaxed zone are close to the bulk limit, as shown in Figure

E.9. In the non-pre-optimized case (MD-Opt), only the region within a radius R from

the grafting site (i.e., the COM of the central silanol discussed above) is allowed to relax,

shown schematically in Figure 6.2. A Cr center is grafted on the two central SiOH,

formally corresponding to the chemical reaction:

(6.11)

where the two inner species represent the undoped and doped clusters, respectively.

We consider a range of radii for the relaxed zone: R = 4, 5, . . . , Rmax Å, with Rmax = 10

Åfor three clusters, Rmax = 11 Åfor four clusters, and Rmax = 12 Åfor three clusters. In

the MD-Opt protocol, the region within the radius R is relaxed before and after grafting.

An example of a Cr-doped cluster is shown in Figure 6.5.

Figure 6.5: Example of an atomistic Cr-doped silica cluster.

All DFT calculations were performed with a development version of the GAUSSIAN
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suite of programs.62 The B3LYP hybrid functional and Grimme’s D3 dispersion were

chosen for consistency with the procedure used to build METASIL.63,64 Cr is treated

with the Def2TZVP basis set,65 the oxo and SiOH groups on the surface are treated with

6-31++g(d,p), and the remaining atoms with 6-31G(d). The grafting energy, ∆EG, and

the relative grafting energy, ∆∆EG, are calculated as:

∆EG = (EG + 2EHCl)− (EB + ECr) (6.12)

∆∆EG(R) = ∆EG(R)−∆EG(Rmax) (6.13)

where EB and EG are the energies of the clusters before and after grafting, respectively,

and ECr is the energy of CrO2Cl2. ∆EG(Rmax) is the grafting energy when the entire

cluster (except the capping -OH) is allowed to relax, and ∆EG(R) is the grafting energy

where the atoms within the region of radius R are allowed to relax. The expressions in

Eqs. 6.12-6.13 are equivalent to those for the DLM in Eqs. 6.9-6.10. The ∆∆EG values

in Eqs. 6.13 and 6.10 are the principal quantities for the scope of this study as they filter

out any dependence on the site and grafting energy distributions and focus only on the

procedural disorder.

Beyond the grafting energy, the atomistic clusters can provide valuable structural

information on the Cr sites. Specifically, we can investigate how the grafting energy is

affected by all three forms of disorder discussed in the Introduction. For such comparison,

it is useful to introduce two small models of Cr sites based on grafting on vicinal and

isolated silanols, shown in Figure 6.6, since both types of site are represented in the large

clusters. We identified two important structural parameters that define a Cr site: the

dihedral angles θ and φ depicted in the figure. We perform rigid and relaxed scans of
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Figure 6.6: Front and side views of the small models for grafting on vicinal (a-b)
and neighboring non-vicinal (c-d) silanols. The dihedral angles used for scan are also
defined: Cr-O-O-Si (a-b) and Si-O-O-Si (c-d) dihedral angles, θ and φ, respectively.
Cr is represented as a black ball, O as red, Si as gray, and H as white.

these two angles for the small models in Figure 6.6 and for the ten large clusters. A

comparison of the scans for the two sets of model clusters allows us to discuss the effect

of the quenched disorder on the structure and grafting energy of the metal precursor.
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6.3 Results

6.3.1 Protocol Comparison

For the disordered lattice model, a distribution of sites was created by generating 100

slabs with edge lengths [18 × 17 × 9] with a single pair of silanols over the center. The

grafting energy for an effectively infinite slab was computed by allowing the maximum

number of shells to relax. The grafting energy distribution of the slab models is shown

in Figure 6.7. The distribution is peaked around -40 kJ mol−1, 10 kJ mol−1 above the

grafting energy of an ordered, crystalline lattice, and extends to about -20 kJ mol−1 for

a range of about 30 kJ mol−1.

Figure 6.7: Distribution of grafting energies for 100 disordered lattice models, all with
the maximum cluster size of 8 shells.

We performed geometry optimizations for cluster models of size nshells = 2− 8 using

the two optimization protocols. For the QM-Opt protocol, the lattice was pre-optimized

by allowing all 8 inner shells of the ungrafted lattice to relax before carving clusters

and fixing the terminal atoms. For all subsequent optimizations, centers outside the

relaxation zone were constrained according to their pre-optimized positions. For the
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MD-Opt protocol, peripheral capping atoms were simply held constrained to the initial

configuration (i.e., their perturbed-minimum-energy configuration).

Figure 6.8: Average deviation from exact grafting energy (∆∆EG,DLM ) for the
QM-Opt (blue) MD-Opt (orange) protocol for different sized DLM cluster models.
Errors bars are the standard deviation.

Figure 6.8 reports the average ∆∆EG,DLM of the two protocols, computed via Eq.

6.10. The figure shows that when the DLM is pre-optimized to the minimum-energy

configuration before constraining peripherals atoms, ∆∆EG,DLM converges smoothly and

with low variation. Conversely, with the MD-Opt protocol, ∆∆EG,DLM converges slowly

and with large variability. The sample standard deviations of ∆∆EG,DLM are reported

in Table 6.1. The ∆∆EG,DLM values for the MD-Opt protocol have sample standard

deviations 1 order of magnitude larger than those for the QM-Opt protocol. The standard

deviation of ∆∆EG,DLM values is ca. 1.8 kJ mol−1 for the MD-Opt protocol even at

nshells = 7. These results suggest that procedural disorder can become significant, on

a scale comparable to that of the energy difference between sites due to the quenched

disorder (here ±10 kJ mol−1) even for large clusters.
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Table 6.1: Sample standard deviation (ŝMD and ŝQM , kJ mol−1) of ∆∆EG,DLM values
from the DLM. Rows correspond to different cluster model sizes and columns corre-
spond to different protocols

nshells ŝMD ŝQM

2 0.70 6.58
3 0.45 5.86
4 0.27 3.88
5 0.15 4.70
6 0.08 2.90
7 0.03 1.77
8 0.00 0.00

Lastly, we compare the degree of strain around the metal center for the two optimiza-

tion protocols. The strain of the support can be characterized by the root mean square

difference (RMSD) of the Σ-Σ bond lengths, defined as:

RMSD =

√∑
i∈Σ-Σ

[ri(nshells)− ri(∞)]2. (6.14)

Figure 6.9 shows the Σ-Σ bond length RMSD for different cluster model sizes and the

two optimization protocols. For a given cluster model size, the RMSD is computed for all

bonds in the first three shells relative to the largest cluster model. The RMSD converges

smoothly for both optimization protocols, but the QM-Opt cluster models have RMSD

values ca. 2 orders of magnitude smaller than the MD-Opt clusters.
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Figure 6.9: RMSD values of Σ-Σ bond lengths for DLM cluster models of different sizes,
see Eq. 6.14. RMSD values are computed using only the first 3 shells of Σ-Σ bonds
of a given cluster model size are used. a) shows RMSD values for the pre-optimized
cluster models and b) shows RMSD for the non-pre-optimized cluster models. Note
that scales of the two color bars are different.

The grafting energy convergence shown in Figure 6.8 is likely a direct result from the

RMSD convergence of Figure 6.9. When cluster models are pre-optimized, the RMSD is

low because the Σ centers are already near their minimum-energy configuration. Thus,

the grafting energy converges rapidly and smoothly. For non-pre-optimized cluster mod-

els, the Σ centers are at a perturbed minimum-energy configuration. Because the periph-

eral atoms are held fixed in structure optimizations, the Σ centers cannot fully relax to

their minimum-energy configuration, imparting a greater degree of strain on the metal

site. The greater degree of strain is not only an additional (and non-physical) source

of variance in the grafting energy, but also leads to erratic convergence of the grafting
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energy.

Figure 6.10: Distribution of ∆EG(Rmax) for the ten atomistic clusters treated at DFT level.

The distribution of grafting energies for the fully-relaxed atomistic cluster models,

∆EG(Rmax), is reported in Figure 6.10. For the eight clusters where grafting occurs on

a pair of vicinal silanols, two minima for the metal site can be found, and Figure 6.10

reports the grafting energy distribution for the lowest energy minima. Interestingly, the

two stable site structures are found at all values of R with the QM-Opt protocol, but only

for radii R > 5 Åwith the MD-Opt protocol. This limitation for the MD-Opt protocol

at short radii is due to the rigidity of the MD structure, which prevents the formation

of the second stable minimum configuration. The average ∆EG(Rmax) is 10.6 kJ mol−1,

with a standard deviation of 8.2 kJ mol−1, and a median of 8.2 kJ mol−1. As for the

DLM, the large variations in the grafting energy are due to the quenched disorder in the

local structure of the amorphous silica.
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Figure 6.11: Average ∆∆EG of the ten atomistic clusters (left) and the eight clusters
with vicinal-silanols grafting sites (right) plotted as the relaxation radius R increases
for the QM-Opt (blue) and MD-Opt (orange) protocols. The vertical bars are the
standard deviation of the sample.

The ∆∆EG plot in Figure 6.11 shows that the QM-Opt protocol results in a smooth

convergence of ∆EG with the length of the relaxation radius R. This is independent on

whether we consider only vicinal-silanol grafting sites (right plot) or the whole collection

of clusters (left plot). The ∆∆EG values do not go to 0 at R = 10 Åbecause 7 out of

the 10 clusters have Rmax > 10 Å. Nonetheless, the average |∆∆EG| < 1 kJ mol−1 at

R = 10 Å, and it is 1.5 kJ mol−1 at R = 8 Å, a reasonable compromise between accuracy

and computational cost for the cluster relaxation radius. At the same time, this value

is larger than the 6 Åpreviously recommended for the creation of doping sites.20,66 All

∆∆EG values are positive for all clusters and all values of R, consistent with the DLM

results in Figure 6.8. This indicates that the grafting energy is consistently overestimated

compared to ∆EG(Rmax), which is reasonable because for R < Rmax the doped structure

is not at the minimum while the undoped structure is.

On the other hand, the MD-Opt protocol leads to large shifts in ∆EG and erratic

∆∆EG values that can even become negative, see Figure 6.11. The average ∆∆EG is

comparable to that obtained with the QM-Opt protocol once R reaches 10 Å, but large
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standard deviation values persist even at large R values. This indicates that strained

structural features in the initial MD structures significantly affect the doping site for

certain clusters even at large relaxation radii. In one case, for cluster 4 at R = 7 Å, a

peripheral silanol group dehydrates, leading to a water molecule and a siloxane group

(the grafting energy for this cluster is not included in the plot in Figure 6.11). The water

molecule is not released at R = 6 Åbecause the strained silanol group is frozen, and at

R = 8 Åbecause enough atoms are relaxed so that the silanol group can rearrange to a

more favorable orientation. As for the DLM, the variation in ∆∆EG, even at large R,

is comparable in magnitude with the differences in grafting energy due to the quenched

disorder (compare Figures 6.10 and 6.11).

Figure 6.12: Average number of geometry optimization iterations for the ungrafted
and grafted clusters with the QM-Opt (blue) and MD-Opt (orange) protocols. The
number of iterations for ungrafted and grafted clusters are first summed, then averaged.
The Rmax bar corresponds to the QM pre-optimization step before grafting, and it is
reported for reference. The averages are taken over the ten clusters and the standard
deviations are represented by the black bars.

A reasonable concern with the QM-Opt protocol is the extra computational cost

associated with the initial relaxation of the full structure (minus the capping groups)

before metal grafting. We estimate the cost as the average sum of iterations (Nit) for
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the geometry optimizations of doped and undoped clusters at every R with the two

protocols, reported in Figure 6.12. The figure separately reports the average number

of iterations to pre-optimize the undoped structures at Rmax, i.e., the first step in the

QM-Opt protocol for grafting calculations. The blue bars in the figure are computed as

the (average) sum of the “Rmax” iterations and the number of iterations required after

grafting. The Nit value can be used as a proxy to approximate the computational cost.

The cost of the QM-Opt protocol is essentially the same for all values of R. On the

other hand, the MD-Opt protocol is less computationally intensive at small values of

R, but there is a crossing point at R = 7, near the R value where the ∆∆EG becomes

sufficiently small, see Figure 6.11. The combination of a smoother energy convergence

and comparatively smaller computational cost at larger radii indicates that QM-Opt is

the preferred protocol.

6.3.2 Structural Analysis

Figure 6.13: Heat maps of the RMSD, see Eq. 6.14, of the a) bond lengths, b)
bond angles, and c) dihedrals of the atoms within a 3 Åradius from the Cr site as R
increases, obtained with the QM-Opt protocol (only the lowest-energy configurations
are included).
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The convergence of the cluster structure with R can be also discussed in terms of

geometrical parameters, not only the grafting energy. Figure 6.13 reports the root mean

square deviations (RMSD) with respect to Rmax of bond lengths, angles, and dihedrals

of the centers within the 3 Åradius from the metal center as R increases for the QM-

Opt clusters. The RMSD of the bond lengths and angles are small at all values of R

but especially when R ≥ 8 Å, with changes less than 0.015 Åand 3◦, respectively. The

dihedral angles RMSD is small (0◦−4◦) for most clusters at R > 8 Å, but more significant

changes (10◦ − 20◦) are observed at smaller radii. Cluster 8 shows a deviation of ca. 30◦

at higher R values. The primary contribution to this large RMSD value in Figure 6.13c

is the θ dihedral, see Figure 6.6.

The heat maps in Figure 6.13 suggest that dihedral angles are the structural param-

eters with the largest degree of variability. More specifically, the dihedral angles θ and φ

defined in Figure 6.6 associated with the Cr sites are the key parameters, as one would

expect given that the metal coordinates to the silica surface only through two bonds.

We investigate this geometrical flexibility by using the small models in Figure 6.6 and

comparing the results with those for the large clusters. Using the small model in Fig-

ure 6.6c-d, we first performed a relaxed scan of the grafting energy as a function of the

φ angle, reported in Figure E.11. This figure presents two minima corresponding to an

“eclipsed” configuration with φ close to 0◦ and a “gauche” configuration at φ = 95◦, shown

pictorially in Figure E.12. The eclipsed configuration is equivalent to the structure found

in vicinal-silanol grafting sites, see Figure 6.6a-b. In fact, the eclipsed structure is found

in the eight large clusters with vicinal-silanols grafting sites (−45◦ < φ < 45◦) while

the gauche structure is found in the two large clusters with isolated-silanol grafting sites

(90◦ < φ < 100◦).

Now that we have isolated these two configurations, we perform a rigid scan along

the θ dihedral angle for the small clusters, using the vicinal-silanol grafting model for the
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Figure 6.14: Rigid scan of ∆EG as a function of the dihedral angle θ (5◦ increments)
for the two small (a) and two large clusters (b), representative of the eclipsed (blue)
and gauche (green) configurations.

eclipsed configuration and the isolated-silanol grafting model for the gauche configuration

(with φ fixed at 95◦). We also performed the same rigid scan for two representative large

cluster models, and both scans are shown in Figure 6.14. The eclipsed configuration

shows two stable minima for the Cr position (one on either side of the plane defined

by the two Si–O linker groups). However, while these two minima are degenerate for

the small model, they are not for the large cluster because of the different interaction

of the CrO2 group with the surrounding amorphous silica support. On the other hand,

the gauche configuration shows a single minimum in both the small model and the large

cluster. The grafting energies are comparable between the two types of sites in the large

clusters while they are significantly different in the small models, and the metal grafting

is considerably more favorable on the large clusters than on the small models. This
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indicates that the interaction with the silica surface considerably stabilizes the Cr sites.

We report relaxed scans along the θ dihedral angle of the large clusters in Figure E.13.

The eight clusters with the eclipsed configurations show barriers ranging around 4–18 kJ

mol−1. There are two types of eclipsed structures, those with near-degenerate double

minima (|∆Eec1
G −∆Eec2

G | < 5 kJ mol−1) and those with non-degenerate double minima

(|∆Eec1
G −∆Eec2

G | > 7 kJ mol−1). The eclipsed structures with near-degenerate grafting

energies have the CrO2 site oriented perpendicularly relative to the surface, so that the

interaction with the local silica environments is similar on either side. The clusters with

non-degenerate grafting energies have the CrO2 site parallel to the surface, leading to a

preferential interaction with the silica environment when the Cr group is more embedded

in the silica surface. The two clusters with the metal site in the gauche configuration

(isolated-silanols grafting) have only one stable structure and larger ∆EG values com-

pared to those in the eclipsed configuration (vicinal-silanols grafting), consistent with the

results in Figure 6.14.

One limitation of the large clusters created in this study is the lack of an extended

H-bonded network. This is due to the silanol density on the initial MD slab used to

create the clusters (4 SiOH/nm2). While this situation is consistent with experimental

data,56,57 other studies have shown that grouping of several silanol groups is possible.67

Nevertheless, it will be important in the future to also study how the dynamical disorder

is influenced by the fixed atom constraints.

6.4 Conclusions

Typically, a large number of models sites is necessary to estimate site-averaged reac-

tion rates for amorphous catalysts,7 even when efficient importance learning algorithms

are employed (Chapters 4 and 5). Beyond the real dynamical fluctuations and quenched
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disorder differences between catalyst sites on doped amorphous silica, there are also easily

overlooked procedural disorder artifacts. The goal of this study is to determine a robust

approach to build cluster models of these catalysts to enable accurate QM calculations,

starting from amorphous silica slabs created with classical MD simulations. Grafting

of CrO2 onto silica, i.e. preparation of the Phillips catalyst, was used as an example

reaction. Specifically, we examine how computed ∆EG values depend on cluster model

size and boundary conditions. We use two model classes for the analysis: an illustrative

but simplified disordered lattice model and an atomistic cluster model treated at DFT

level. The former system allows us to investigate very large structures, close to the bulk

limit, while the latter system provides a more realistic system with complications of real

QM calculations. For example, as detailed in Section 6.3, we find two different minimum

energy configurations when CrO2 is grafted at all vicinal silanols, but only one energy

minimum when CrO2 is grafted at neighboring, non-vicinal silanols.

We test two optimization protocols: one where the grafting is based on the structures

obtained directly from the MD simulation, MD-Opt, and one where the undoped cluster

is pre-optimized with the target (DFT) level of theory, QM-Opt. As discussed in Section

6.2, our analysis eliminates the effects of quenched and dynamical disorder, isolating the

effects of different procedural steps. Specifically, we examine effects of different radii for

the relaxed regions and different Hamiltonians used to specify the peripheral constrained

region around each cluster model. Pre-optimization with the target (QM) Hamiltonian

for a large region around the active site leads to structures and reaction energy predictions

that converge quickly and smoothly with cluster size. In contrast, clusters optimized with

the target (QM) Hamiltonian, but with boundary constraints from the MD simulations

(MD-Opt protocol) exhibit slow, highly variable, and erratic convergence with cluster

size. In some cases, we found that labile dihedral angles could lead to multiple stable

configurations with the QM-Opt protocol and not with the MD-Opt. For both the DLM
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and the atomistic DFT model, see Figures 6.8 and 6.11, we find that pre-optimization

of the MD structures provides a better computational protocol for the creation of the

active site models. The change in grafting energy with the radius of the optimized region,

∆∆EG, shown in Figures 6.8 and 6.11 for the DLM and DFT models, converges smoothly

with R when using the pre-optimization protocol with either model system. Furthermore,

the error standard deviation for different models is also significantly reduced with the

pre-optimization protocol.

We also examine structural aspects of the geometries obtained with the pre-optimization

protocol and find that the torsional degrees of freedom of the CrO2 group are the most

flexible aspect of the entire cluster. If the pair of O–Si linker groups that bind the metal

are approximately coplanar, a conformation that is common in vicinal-silanol grafting

sites and that we called eclipsed in Figure E.12a-b, two stable orientations of the CrO2

group are found. In the small cluster models, the interconversion barrier is relatively

small, about 6 kJ mol−1 as shown in Figure 6.14a. In the large clusters, different inter-

actions with the silica on either side of the linker groups plane may result in one of the

two minima being considerably more stable than the other, see Figures 6.14b and E.13.

When the metal is grafted to two isolated silanols that are in a gauche configuration, see

Figure E.12, only one stable CrO2 conformation is possible and the grafting energy tends

to be larger than that for the most stable eclipsed conformer, as shown in Figures 6.14b

and E.13.

The pre-optimization comes at the cost of relaxing a large portion of the cluster,

which in principle might considerably increase the computational effort. We find that

∆∆EG becomes sufficiently small (of the order of 1.5 kJ mol−1) for R ≥ 8 Å. Significantly,

at these R values the QM-Opt protocol has a lower computational cost than the MD-

Opt protocol, see Figure 6.12. The extra computational effort expended in optimizing the

ungrafted silica at the QM level is more than balanced by the reduction in computational
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effort to optimize the grafted catalyst site on the QM-pre-optimized cluster. These

findings should help to create a large number of cluster models for computational analysis

of amorphous catalysts, and to obtain results that are nearly converged with respect to

cluster size, while minimizing artifacts introduced by the computational protocol.
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A.1 Cluster model structure

The structure of the cluster model was obtained by performing an unconstrained gas

phase optimization of 5I using the computational methodology described in the Chapter

2. The peripheral OH groups were held fixed for all subsequent calculations.

Figure A.1: Ball-and-stick representation of stationary points from Figure 1, illustrat-
ing geometry changes that occur due to spin state crossings for the bis(ethylene)Cr(II)
complex and chromacyclopentane site. Free energies (kJ/mol) are given relative to
5III, at 373 K. Colored arrows show the preferred path.
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Figure A.2: Stationary points in ethylene insertion at Cr for a growing teth-
ered alkyl radical. Free energies (kJ/mol) for all species are given relative to the
bis(ethylene)Cr(II) complex, 5III, at 373 K. 5V, tethered n-butyl radical; 5VI, ethy-
lene complex with tethered n-butyl radical; 5VII, tethered n-hexyl radical.

Figure A.3: Reaction of ethylene with ethyl radical. Free energies (kJ/mol) for all
species are given relative to the ethyl radical, C2H5•, at 373 K. The free energy barrier
approximates that for reaction of the tethered radical 5V with ethylene to increase
the length of the alkyl radical chain.

A.2 Irreversibility of initiation by n-butyl-bridged Cr(III)

formation

All free energies quoted in the manuscript use the OH terminated cluster. However, we

used a different cluster in calculations (only discussed in the SI) to ensure the formation

of 3BB is effectively irreversible. Our assumption is that ethylene insertion into the C-Cr

bonds of the 3BB site will begin before 3BB can revert to the tethered radical (5V). To

test this assumption with calculations, we needed a model that included two adjacent Cr

sites. The model of these sites was changed in three respects:
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1. The capping hydroxyl groups were replaced by fluorine atoms. This change was

made to avoid hydrogen-bonding interactions between capping groups of adjacent

5I sites, to simplify the geometry optimizations, and to ensure that the capping

atoms from one cluster model do not interact with the Cr atom on the adjacent

cluster.

2. The basis set 6-31G was used for the F atoms to better mimic the size of oxygen

and its electronegativity in an extended silica framework. Goldsmith et al. found

that this basis set best matches the deprotonation energy of HOSiF3 (ca. 1405

kJ/mol) to the deprotonation energy of a silsesquioxane (1412 kJ/mol) modeled

using B3LYP/LANL2DZ for the non-fluorine atoms.1 The positions of the F atoms

were found by optimizing an unconstrained, bare Cr(II) species (5I.F), as we did

for the OH capped cluster model, 5I.2

3. Once the isolated site with F-capping atoms was optimized, we created an n-butyl

bridged pair of sites with the F-capping atoms (3BB.F). To ensure that the indi-

vidually optimized site geometries were not altered during the 3BB.F optimization,

we fixed the F-F bond lengths, F-F-F angles, and F-F-F-F dihedral angles within

the individual clusters. In this manner, the optimization effectively determines the

ideal distance and orientation of two rigid 5I.F sites to support the formation of an

n-butyl bridge. Species capped with fluorine atoms are denoted YX.F, where X

designates the species, Y is its spin state, and F indicates that the dangling bonds

are capped by fluorine atoms. The optimized model 5I.F is shown in Figure A.4. A

comparison of key geometric parameters with the OH-capped cluster, 5I, is shown

in Table A.1.
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Figure A.4: Cr(II) cluster model 5I.F, with F capping atoms. Color scheme: Blue:
Cr; Red: O, Green: Si; Yellow: F.

Table A.1: Comparison of key bond lengths (Å) and angles (deg.) in the cluster models
5I and 5I.F

5I 5I.F

∠ O1-Cr-O2 109.78 107.54
∠ O3-Si1-O1 107.94 111.44
∠ O2-Si2-O3 107.9 111.41
∠ Si1-O3-Si2 139.25 134.89
r(Cr-O1) 1.82 1.84
r(Cr-O2) 1.82 1.84
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Figure A.5: Stationary point for the n-butyl-bridged Cr(III) clusters. The Cr-Cr
distance is 5.83 Å. Color scheme: Blue: Cr; Red: O, Green: Si; Yellow: F; Grey: C;
White: H.

Figure A.6: Free energy diagram for 3BB.F formation from 5IV.F and 5III.F, using
cluster models capped with fluorine atoms (Figure A.4). The estimated free energy
barrier is 119.2 kJ/mol, in agreement with the estimated barrier in Figure 2.2 (123.4
kJ/mol). The free energy barrier for the reverse reaction (from 3BB.F to 5V.F +
5II.F) is 108 kJ/mol. Based on the previous work, the free energy barrier to insert
ethylene into C-Cr bonds like those in site 3BB.F is about 80 kJ/mol. We therefore
conclude that (on most sites) formation of n-butyl bridges between Cr(III) sites leads
to irreversible initiation.

Note that information in Table A.2 can be used to estimate the overall barrier entirely
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from calculations based on the F-capped cluster model. The overall barrier for initiation

from F-capped sites is 160 kJ/mol (from the free energies of 5V.F and 5III.F). This

estimate is 28 kJ/mol higher than the 132 kJ/mol barrier obtained based on OH-capped

cluster calculations. The sensitive dependence of rates to subtle structural and electronic

differences between sites illustrates the uncertainty in all findings based on single-site

calculations. The sensitivity to subtle structural and electronic differences also suggests

that the real catalyst (with many different sites) may present sites that cannot initiate

by tethered homolysis and, perhaps, sites that initiate much faster than predicted by our

calculations.

A.3 A kinetic model for initiation of paired Cr sites

Here we develop an approximate kinetic model to predict the rate at which sites

activate starting from fully reduced Cr(II) sites 5I in the presence of ethylene. The

rate of initiation depends on the free energy differences between states, the free energy

barriers between states, and the density of Cr atoms, as described in the main text. The

derivation requires a few additional definitions. Let θD(t) be the fraction of “dormant” (D)

Cr sites that have not yet been activated at time t. Also define conditional probabilities

(fractional coverages) within the dormant population as

θX|D ≡ probability of being in state X given in population D (A.1)

According to our DFT calculations, the bottleneck during initiation is the rate-determining

(adiabatic) transition state for the creation of the tethered n-butyl radical 5V from state

5IV. Once formed, the n-butyl radical 5V must have a neighbor in state 5II or 5I to

create the n-butyl-bridged 3BB site. The standard free energy of site 5II at 373 K is 25
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kJ/mol lower than that of site 5I. Therefore, the probability of finding the neighboring

site in state 5I is negligible compared to the probability of finding a neighboring site in

state 5II. The DFT calculations predict that the most abundant dormant intermediate

is state 5III, with a standard free energy that is approximately 9 kJ/mol lower than all

other dormant states. Accordingly, we can approximate that

θ5III|D ≡ fraction of dormant sites in state 5III

≈ 1.0

(A.2)

with all other dormant sites having relatively small fractional coverages. Based on a

quasi-equilibrium approximation for other dormant states (all before the bottleneck), the

fractional (conditional) coverages of other key dormant states are

θ5IV|D ≡ fraction of dormant sites in state 5IV

= K5III→5IV · θ5III|D

≈ e−(100.8 kJ/mol)/kBT · 1.0

(A.3)

and

θ5II|D ≡ fraction of dormant sites in state 5IV

= θ5III|D/(K5II→5IIIPC2H4)

≈ (e(+9.0kJ/mol)/kBT · PC2H4)−1

(A.4)

The free energy calculations that were used to compute K5III→5IV and K5II→5III were

performed at 373 K and 1 atm, so the numerical value of the ethylene pressure PC2H4

will have units of atm.

The rate at which the elongated Cr-C bond in site 3IV undergoes homolysis can be
193



Supporting information for Computational Support for Phillips Catalyst Initiation via Cr-C Bond
Homolysis in a Chromacyclopentane Site Chapter A

estimated using a simple transition state theory expression:

k5IV→5V ≡ rate constant for Cr - C bond homolysis from state 5IV

≈ kBT

h
e−(123.0−100.8)(kJ/mol)/kBT

(A.5)

More accurate rate expressions could be obtained by (1) finding the actual saddle point on

the potential energy surface for n-butyl radical migration from one Cr atom to the other,

and/or (2) by performing a variational transition state theory calculation as outlined

by Fong et al.3 The results of these more elaborate calculations will vary from one site

to another. Here we proceed to develop a simple and approximate model based on the

properties of the one cluster model from our DFT calculations.

The quantities above can be used to develop a kinetic model in two ways: (1) by

considering individual dormant sites or (2) by explicitly considering pairs of dormant Cr

sites within the maximum length ` of the n-butyl bridge. A mean field kinetic model

based on the number of individual dormant sites must incorporate, for each site, the same

non-zero probability of having a neighboring dormant Cr site within distance `. Thus, a

mean field kinetic model with irreversible initiation must eventually activate all sites. To

avoid this limitation of the mean field model, we start with an explicit estimate of the

number of dormant pairs of Cr sites. Using Poisson statistics (eqn. 2.1 from Chapter 2),

the number of pairs of sites separated by a distance ` or less is

nP (0) = n · λ exp[−λ]/2 (A.6)

where λ = π`2σCr, and where n is the total number of Cr sites. At a typical industrial

Phillips catalyst loading of σCr ≤ 0.4 Cr atoms/nm2 and using ` ≈ 5.8 Å, about 27%

of Cr sites are paired (based on λ exp[−λ] = 0.27). Note that by using λ exp[−λ], we

ignore sites with multiple neighbors within distance `. These multiply-paired sites are
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already rare (ca. 7 %, from λ2 exp[−λ]/2! + λ3 exp[−λ]/3! + · · · ) at typical catalyst

loadings and they become even rarer at lower loadings. Moreover, a site with multiple

nearby neighbors (see Figure A.7) can only form an n-butyl bridge to one neighbor, so

some of the “extra” neighbors may not become active sites.

Figure A.7: Cr sites on the SiO2 surface may be isolated, paired, or multiply paired,
depending on the number of neighboring Cr sites within a distance `. Gray circles
of radius ` in the diagram highlight four of the paired Cr sites. Our kinetic model
does not account for multiply paired Cr atoms, which become more common as the
Cr loading σCr increases.

The rate at which dormant pairs of Cr sites become active is given by

dnP
dt

= −2 · θ5IV|Dθ5II|Dk5IV→5Vpb · nP (A.7)

where pb is the probability that an n-butyl radical attaches to a neighboring Cr site

rather than re-forming the original chromacyclopentane. We assume that pb ≈ 1/2.

Using expressions A.1 – A.6 in A.7 gives

dnP
dt

=
kBT

h
e−(132kJ/mol)/kBT

1

PC2H4

· nP (A.8)

where 132 kJ/mol is the computed standard free energy difference for the net reaction
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3IV + 5III −−→ 5V + 5II + C2H4(g). Equation A.9 identifies an initiation time scale,

i.e., an induction time starting from the fully reduced 5I sites.

τind = PC2H4

/(
kBT

h
e−(132kJ/mol)/kBT

)
(A.9)

Based on the computed free energies, the induction time for initiation is 108 hours at 373

K and 1 atm of ethylene. The experimentally observed induction time is on the order of

1 hour for a catalyst that has been pre-reduced by CO to Cr(II)/SiO2. For example, see

Figure 16 in McDaniel’s review in Adv. Catal.4 The predicted induction time is about

100 times longer than the observed induction time. The discrepancy, modest by DFT

standards, can be explained by errors in free energy calculations of about 15 kJ/mol,

comparable to the mean absolute deviation for state-of-the-art DFT calculations.5

Equation A.8 is easily solved to obtain the number of dormant pairs as a function of

time

nP (t) = nP (0)e−t/τind =
1

2
nλ exp[−λ]e−t/τind (A.10)

There are two sites per pair (at low coverage), so the number of active sites as a function

of time is

2(nP (0)− nP (t)) = nλ exp[−λ](1− e−t/τind) (A.11)

Finally, the fraction of active sites as a function of time (ignoring multiply paired sites)

is

λ exp[−λ](1− e−t/τind) (A.12)

with λ = π`2σCr. Figure 2.3 from Chapter 2 (reproduced here) shows the predicted

fraction of active sites as a function of time.
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Figure A.8: Equations A.2-A.12 show the predicted fraction of active sites for
σCr ≤ 0.4 Cr atoms / nm2 (ignoring multiply paired sites). We emphasize that Figure
A.8 only predicts the rate of initiation via the tethered homolysis mechanism. Other
processes may also contribute to the total number of active sites, as described in the
main text.

A.4 On enlarging the chromacycle prior to homolysis

to extend its reach

As noted in the main text, chromacyclopentane ring expansion prior to homolysis

could extend the reach of the radical-terminated chain to more distant Cr(II) sites (Fig-

ure A.9). Ethylene inserts into the chromacyclopentane 3IV to give a chromacyclohep-

tane 3VIII with an overall free energy barrier of 157 kJ/mol, relative to 5III. Further

expansion to form a chromacyclononane 3IX is prohibitively slow with a barrier of 189

kJ/mol. Cr-C bond homolysis in the chromacycloheptane 3VIII requires an activation

free energy of only about 122 kJ/mol. The distance between the Cr and the radical

carbon chain end increases to 7.58 Å. However, the chromacycloheptane homolysis step

competes with faster termination by intramolecular H-atom transfer. The latter pathway,

with a barrier of only 114 kJ/mol, yields 1-hexene and regenerates the inactive bare 5I

site. Thus any chromacycle expansion events before the homolysis step will more likely
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create an ethylene oligomer and an inactive site, rather than two active sites for poly-

merization. Moreover, the limiting step in this oligomerization cycle (from 3IV to 3VIII

via ethylene insertion) requires 157 kJ/mol, which is 25 kJ/mol more than if Cr-C bond

homolysis had occurred directly from 3IV. We conclude that this path is not important

for initiation.

Figure A.9: Stationary points in metallacycle expansion, termination to 1-alkene, and
Cr-C bond homolysis to a tethered radical. Free energies (kJ/mol) for all species are
given relative to the bis(ethylene)Cr(II) complex, 5III, at 373 K. Numbers next to
arrows represent free energies of transition states. 3IV, chromacyclopentane; 3VIII,
chromacycloheptane; 3IX, chromacyclononane; 3X, (1-hexene)Cr(II) complex from
intramolecular H-atom transfer; 3VII, tethered n-hexyl radical. Note: the triplet spin
(1-hexene)Cr(II) complex, 3X, can later form a quintet spin (1-hexene)Cr(II) complex
5X that has an even lower free energy of -93.4 kJ/mol.
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A.5 Approximate critical pore size calculation

Here we approximate the minimum silica pore size that is susceptible to fracture by

polymer generation. The Griffith’s equation6 (eq A.13) relates the depth of a slit pore

(a) to the Young’s modulus (E), the interfacial energy (γ), and the fracture stress σ:

σ
√
a =

√
2Eγ/π (A.13)

To estimate the maximum stress that can be generated by polymerization, we equate

∆G = σ∆V . The change in Gibbs free energy of reaction is 47 kJ/mol and the change

in volume, ∆V , can be estimated as the inverse of the number of ethylene chains per

unit volume, ρ−1. Substitution of these terms yields σ = ρ∆G. Based on a value

of ρ = 34581 mol/m3 and ∆G = 47 kJ/mol, the maximum stress generated is 1.63

GPa. Applying σ = 1.63 GPa, γ = 1 J/m2, and E = 62 GPa into eq A.13, ethylene

polymerization can crack silicas with slit pores deeper than a = 15 nm.

In experiments using siliceous Cr-SBA-15, Aguado et al.7 showed that ethylene poly-

merization can fracture pores with diameters greater than 15 nm, given the walls are

sufficiently thin. Their experiments and our calculation suggest that 15 nm be loosely

identified as a critical pore size. However, the agreement between these estimates is prob-

ably coincidental, since the pore geometry in SBA-15 is very different from the notch/slit

pore geometry in the Griffith model.
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Figure A.10: Dangling bonds formed from fracturing can abstract an H atom from
propane (a.) and ethylene (b.). which could react with Cr(II) sites to create active
alkylCr(III) sites. F3SiO and polyethylene model dangling bonds and polyethylene,
respectively. Free energies (kJ/mol) are given relative to the products of schemes
(a.) and (b.) and are downhill for both cases. These reactions are expected to have
small barrier heights based on other studies of H atom abstractions involving hydroxyl
radicals and hydrocarbons.8
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Table A.2: Spin contamination before (S2) and after annihilation (S2A) of highest
spin contaminant and the number of imaginary frequencies (Nω) for each stationary
point; energies in Hartrees

Species Energy S2 S2A Nω Species Energy S2 S2A Nω

5I -2512.9 6.0150 6.0000 0 5TS[III-IV] -2310.1 6.0867 6.0015 1
5I.F -2248.8 6.0131 6.0000 0 3TS[III-IV] -2310.1 2.0652 2.0018 1
5II -2231.5 6.0127 6.0000 0 3TS[IV-VIII] -2388.7 2.9221 2.1571 1
5II.F -2327.4 6.0114 6.0000 0 5TS[VI-VII] -2388.7 6.0638 6.0008 1
5III -2310.1 6.0123 6.0000 0 3TS[VI-VII] -2388.7 3.0632 2.1313 1
5III.F -2406 6.0114 6.0000 0 3TS[VIII-IX] -2467.3 2.9398 2.1701 1
3II -2231.5 2.1102 2.0017 0 3TS[VIII-X] -2388.7 2.0826 2.0024 1
3III -2310.1 2.0463 2.0007 0
3III.F -2405.9 2.0495 2.0006 0 MECP-III -2310.1
5IV -2310.1 6.0649 6.0006 0 MECP-IV -2310.1
5IV.F -2405.9 6.0774 6.0007 0
3IV -2310.2 2.0803 2.0028 0 C2H3 -77.899 0.7638 0.7501 0
3IV.F -2406 2.1045 2.0047 0 C2H4 -78.587 0.0000 0.0000 0
5V -2310.1 6.0647 6.0007 0 C2H5 -79.157 0.7544 0.7500 0
5V.F -2406 6.0768 6.0008 0 C3H7 -118.48 0.7547 0.7500 0
3V -2310.1 3.0562 2.1297 0 C3H8 -119.15 0.0000 0.0000 0
5VI -2388.7 6.0701 6.0009 0 n−C4H9 -157.79 0.7544 0.7500 0
3VI -2388.7 3.0677 2.1426 0 C4H9

+C2H4 -236.38 0.7544 0.7500 0
5VII -2388.7 6.0625 6.0007 0 C4H8

+C2H5 -236.38 0.7544 0.7500 0
3VII -2388.7 3.0617 2.1276 0

2TS[C2H5+C2H4-
C4H9]

-157.74 0.7911 0.7503 1

3VIII -2388.8 2.0774 2.0025 0
2TS[C4H9+C2H4-
C4H8 + C2H5]

-236.33 0.8401 0.7512 1
3IX -2467.4 2.0837 2.0029 0
5X -2388.8 6.0124 6.0000 0
3X -2388.8 2.1094 2.0016 0
3BB.F -4654.9 4.0813 4.5123 0
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Table A.3: Computed energies (kJ/mol), enthalpies (kJ/mol), entropies (kJ/mol), and
Gibbs free energies (kJ/mol) of reaction and activation at 373.15 K

∆E ∆H T∆S ∆G ∆E‡ ∆H‡ T∆S‡ ∆G‡

5I+C2H4 → 5II -83.8 -76.5 -52.2 -24.3
5I.F+C2H4 → 5II.F -102.1 -90.0 -68.0 -22.0
5II+C2H4 → 5III -68.1 -61.0 -52.1 -8.9
5II.F C2H4 → 5III.F -79.1 -71.8 -62.8 -9.1
3II+C2H4 → 3III -64.8 -54.9 -54.5 -0.4
5II → 3II 44.1 41.1 -7.6 48.7
5III → 3III 47.3 47.2 -10.0 57.2
5III.F → 3III.F 66.9 62.6 -11.2 73.7
5III → 5IV 88.7 86.2 -14.6 100.8 186.0 177.3 0.5 176.7
5III.F → 5IV.F 109.8 104.1 -13.1 117.2
3III → 3IV -56.2 -55.6 -7.1 -48.6 19.9 17.2 -7.0 24.2
3III.F → 3IV.F -35.6 -39.1 -7.1 -32.0
3IV → 5IV 97.6 94.7 2.5 92.2
3IV.F → 5V.F 126.7 121.4 11.2 110.2
5IV → 5V 35.0 32.2 9.9 22.2
3IV → 3V 131.9 126.4 11.2 115.2
3IV → 3VIII -127.6 -113.9 -64.8 -49.0 89.1 89.9 -59.0 148.8
5V → 5VI -58.3 -50.6 -53.8 3.2
3V → 3VI -57.3 -49.7 -51.6 1.9
5VI → 5VII -56.8 -50.5 -5.6 -44.8 60.2 57.8 -8.9 66.7
3VI → 3VII -57.0 -50.8 -6.8 -44.0 60.0 57.6 -11.0 68.7
3VIII → 3IX -99.8 -88.4 -69.3 -19.0 129.0 129.1 -59.6 188.8
3VIII → 3X 9.1 9.9 5.9 4.0 114.3 105.2 -9.2 114.4
3X → 5X -53.7 -50.0 6.9 -57.0
3VIII → 3VII 145.2 139.8 17.7 122.1
3BB.F + C2H4 -27.8 -24.7 83.9 -108.6
2C2H5 +C2H4 → 2C4H9 -113.0 -100.3 -59.7 -40.6 21.5 25.9 -54.4 80.3
2C4H9 +C2H4 →
C4H8 + 2C2H5

-13.2 -13.2 -1.3 -11.9 118.0 102.5 -27.0 129.5
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Appendix B

Supporting information for Grafting

catalysts onto amorphous supports:

from elementary steps to site

populations via kernel regression

B.1 Parameters in model of grafting barriers and lat-

tice displacements

B.1.1 Grafting temperature and dimensionless precursor concen-

tration (m)

The grafting temperature was chosen to be 298.15 K (room temperature). The ratio

of the ML2 concentration in the gas phase to the reference concentration (V̂ −1
0 ), m =

[ML2]/V̂ −1
0 , was set to the ratio of CrO2Cl2 vapor pressure at 298.15 K (20 Torr) to
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atmospheric pressure (760 Torr), giving m = 0.026.

B.1.2 DFT computational details

DM−O, DM···O, aM−O, aM···O, and ∆G‡ref were set using density functional theory

(DFT) calculations. All DFT calculations were performed with the ωB97X-D functional.1

The def-2TZVP basis set2 was used for chromium and the TZVP basis set3,4 was used

for all other atoms. The Berny algorithm, as implemented in Gaussian 16, was used to

find minima and transition states.5 The RMS and maximum forces were required to be

less than 3.00× 10−4 Hartrees/Bohr and 4.50× 10−4 Hartrees/Bohr, respectively, while

the RMS and maximum displacements were required to be less than 1.20 × 10−3 Bohr

and 1.80×10−3 Bohr respectively. Transition states were required to have one imaginary

frequency.

To make a reference site for DFT calculations, the bis(silanolato)chromium(II) clus-

ter was optimized and its peripheral atom positions were held fixed for all subsequent

computations to mimic a rigid support, Fig. B.1.6

Figure B.1: The optimized bis(silanolato)chromium(II) cluster. Color scheme: oxygen
(red), hydrogen (white), silicon (blue), and chromium (purple). Peripheral atoms
(fixed) are transparent.
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B.1.3 Morse potential parameters

The M-O bond strength (DM−O) was calculated by removing the Cr atom from the

bis(silanolato) chromium(II) and performing a single-point energy calculation, Fig. B.2.

DM−O was calculated using

DM−O = EII + ECr − EI . (B.1)

Here EII is the electronic energy of structure II, ECr is the electronic energy of a Cr atom,

and EI is the electronic energy of the bis(silanolato)chromium(II) cluster (structure I).

We get DM−O=524.4 kJ/mol.

Figure B.2: Calculation of the M-O bond strength. Electronic energies of the optimized
Cr(II) cluster (left) and cluster with dissociated Cr (right). Peripheral atoms (fixed)
are red. d1 is used as the displacement variable in a Morse potential model (below).

The Morse potential width (a) can be related to the force constant by a second-order

Taylor expansion of V (r) around the equilibrium bond length (req):

V (r) ≈ d2V

dr2

(r − req)2

2!
= k

(r − req)2

2!
= Da2(r − req)2 (B.2)

Here, k is the force constant. The zeroth-order term of the taylor expansion evaluates to

0 by construction, while the first derivative evaluates to 0 because req corresponds to the

minimum of the potential energy surface. Thus, a = [k/2D]0.5. The force constant was

computed using DFT by calculating the second derivative of the potential energy with
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respect to the Cr-O bond length (d1). We obtain kM−O = 0.2063 Ha/Bohr and aM−O = 1.

Here aM−O was non-dimensionalized by d1. The non-dimensionalized equilibrium bond

distance for the M-O bond (rM−O,eq) was set to 1.

To calculate the M · · ·O bond strength (DM···O), a water molecule was adsorbed

on the bare Cr cluster, and the cluster was reoptimized while keeping the positions of

the peripheral atoms fixed, Fig. B.3. The bond strength of the Cr· · ·OH2 bond was

calculated using

DM···O = EI + EH2O − EIII (B.3)

Here EI is the electronic energy of structure I, EH2O is the electronic energy of the

optimized water molecule, and EIII is the electronic energy of structure III. We get

DM···O = 117 kJ/mol.

Figure B.3: Calculation of the M· · ·O bond strength. Electronic energies of the Cr
cluster with H2O adsorbed (left) and the bare Cr cluster and H2O in the gas phase
(right). Peripheral atoms (fixed) are red. d2/d3 was used to compute rM ···O,eq and d3

was used as a displacement variable in the Morse potential model for M· · ·O.

kM···O was computed as the second derivative of the energy of structure III with respect

to the M · · ·O bond length (d3). We get kM···O = 0.054 Ha/Bohr and aM···O = 2.3 (Eq.

(B.2)). Here aM···O was non-dimensionalized by d3 (Fig. B.3).

The non-dimensionalized equilibrium kM···O bond length (rM···O,eq) was set to d3/d2.

This yields rM···O,eq = 1.16.
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B.1.4 Lattice displacements

The lattice points were displaced by drawing dispalcements according to a bivariate

Gaussian distribution using the numpy.random.multivariate_normal function in python:7

p(x,µ,Σ) =
1

2π|Σ| 12
exp(

1

2
(x− µ)TΣ−1(x− µ)) (B.4)

Here Σ is a 2 × 2 dimensional covariance matrix, µ ∈ R2 is the mean, and x ∈ R2 is a

2D random variable representing displacement of lattice points. The covariance matrix

was set equal to a scalar diagonal matrix

Σ = σ2
latticeI. (B.5)

Here I is the 2× 2 identity matrix. σ2
lattice was set to 0.00022 and the value of µ was set

to (0,0).

B.1.5 εHL, V∗, ∆PV , and ∆So to compute grafting free energy

From Eq. B.4, it follows that the grafting energy for a site on the unperturbed lattice

is given by

∆Eunperturbed = 2εHL − (V∗ + 2εML) + VM∗(xunperturbed). (B.6)

Here VM∗ is obtained by optimizing the metal position in a site on an unperturbed lattice.

Similarly, from Eq. 3.8 it follows that the grafting free energy on an unperturbed site is

given by

∆Go
unperturbed = 2εHL − (V∗ + 2εML) + VM∗(xunperturbed) + ∆PV − T∆So. (B.7)
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Rearranging Eq. B.7, we get

2εHL − (V∗ + 2εML) + ∆PV − T∆So = ∆Go
unperturbed − VM∗(xunperturbed) (B.8)

Using Morse potential parameters from Section B.1.3, we obtain VM∗(xunperturbed) =

−1259.57 kJ/mol. To make grafting favorable for a reference site, ∆Go
unperturbed was set

equal to -30 kJ/mol. This yields 2εHL− (V∗+ 2εML + ∆PV − T∆So) = 1229.56 kJ/mol.

εHL, V∗, εML, ∆PV , and ∆So always occur together in the combination on the LHS of

Eq. B.8, therefore they do not need to be determined separately.

B.1.6 Reference free energy barrier and linear free energy rela-

tion (∆G‡ref)

The LFER for an unperturbed site is given by

∆G‡unperturbed(r) = ∆G‡ref + α∆Go
unperturbed(r). (B.9)

∆G‡unperturbed(r) was set equal to the DFT-computed activation barrier for CrO2Cl2 graft-

ing to a vicinal disilanol model site at 1 atm pressure of CrO2Cl2 (Fig. B.4).

Figure B.4: Calculation of the reference free energy barrier. Free energies of CrO2Cl2
in the gas phase with the vicinal silanol site (left) and the transition state for CrO2Cl2
grafting to the vicinal silanol site (right). Free energies are at 1 atm CrO2Cl2 and
298.15 K. Peripheral atoms (fixed) are red.
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Using ∆Go
unperturbed = −30 kJ/mol (Section B.1.5) and solving for ∆G‡ref we get

∆G‡ref = 131.3kJ/mol. (B.10)

B.2 Effect of training set size on test set error

Figure B.5: Residual distributions for predicted grafting barriers as a function of train-
ing set size for all ≈ 20, 000 sites. As expected, the width of the residual distribution
decreases on increasing the training set size.
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Appendix C

Supporting information for

Site-averaged kinetics for catalysts on

amorphous supports: An importance

learning algorithm

C.1 Strength of M-A bond

The M-A bond strength in the quenched-disordered lattice model was chosen to

approximately match the Cr-C bond strength for an alkylchromium(III) site on SiO2.

We started from a bis(silanolato)chromium(II) cluster model, which has been used in

previous studies of Cr/SiO2 catalysts.1,2 Labile siloxane coordination was modeled by

binding a water molecule. The M-A bond strength was calculated according to Scheme

S1 and density functional theory calculations, and was computed as εM-A = 160 kJ/mol.

We chose a one-electron redox pathway (as opposed to a two-electron redox pathway) to

ensure a strong bond energy for the chemisorption step. We stress that the bond strength
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was chosen only to ensure a realistic model. The model is not intended make accurate

predictions for Cr/SiO2 olefin polymerization catalysts.

DFT calculations were carried out using Gaussian16.3 All energies were calculated

with the range-separated density functional, ωB97X-D.4 The def2-TZVP basis set was

used for Cr5 and TZVP was used for C, H, O, and Si atoms.6 All minima have zero

imaginary frequencies. The peripheral OH atoms of the cluster model were also held

constrained to model the geometric constraints of an extended silica network. The pe-

ripheral atom constraints were found by optimizing the bare Cr(II) cluster. The same

peripheral atom constraints were applied to structures I and II. Cartesian coordinates of

the optimized clusters are tabulated below Table SC.1.

Table C.1: Spin contamination before (S2) and after annihilation (S2A) of highest spin
contaminant; energies in Hartrees

Species Energy S2 S2A

I -2229.395021 6.0107 6.0000
II -2308.613831 3.8158 3.7506
C3H7 -157.7869992 0.7544 0.7500
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C.2 Derivation of apparent activation energy

In this section, a formula for the apparent activation energy of a site, Ea(xi), is

derived. The apparent activation energy for site i is given by

Ea(xi) = −d ln r i

dβ
(C.1)

From eqns. 4.2 - 4.5, the turnover frequency (TOF) of a site, r i, can be expressed as

r i = k2K(xi)cA =
kBT

h
exp

[
−∆H‡ − T∆S‡

kBT

]
exp

[
−∆H(xi)− T∆S

kBT

]
cA (C.2)

Taking the natural logarithm of the eqn. C.2, grouping temperature dependent terms,

and simplifying yields

ln r i = ln cA − lnh+
∆S + ∆S‡

kB
− β∆H(xi, β)− β∆H‡ − ln β (C.3)

where β = 1/kBT . From eqn. 4.6, ∆H(xi) is temperature dependent through kBT.

Taking the derivative of eqn. C.3 gives

Ea(xi) =
d

dβ
β∆H(xi, β) + ∆H‡ + kBT (C.4)

Inserting eqn. 4.6 into ∆H(xi) to evaluate the derivative gives

d

dβ
β∆H(xi, β) =

d

dβ
[βVAM∗(xi)− βVM∗ (xi) + 1]

= VAM∗(xi)− VM∗ (xi)

= ∆H(xi) + kBT

(C.5)
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Thus, Ea(xi) can be written as

Ea(xi) = ∆H(xi) + ∆H‡ + 2kBT (C.6)
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C.3 Propagation of kernel regression model uncertainty

in estimating 〈Ea〉k

Site-averaged kinetics are estimated by importance sampling the activation energy

distribution with Ea values obtained from the trained kernel regression model. Since

errors in the kernel regression model propagate through the 〈Ea〉k calculation (beyond

sampling error and error from ab initio calculations), the kernel regression model con-

tributes additional errors. Here, we show that the regression errors, even when unbiased,

will systematically bias the 〈Ea〉k estimate toward lower activation energy. We also show

how this bias can be quantified and corrected to obtain 〈Ea〉k estimates with only sam-

pling and ab initio calculation errors. Let the distribution of kernel regression activation

energies be ρ̂(Êa). rhoEaHat can be related to the Ea distribution, ρ(Ea), by

ρ̃(Êa) =

∫
dEaρ̃(Ea)P (Êa|Ea) (C.7)

Here, P (Êa|Ea) is the distribution of the model-predicted activation barriers around the

true activation barriers, and the integral is over the all possible Ea values. The site

averaged activation energy from ρ̂(Êa) is

〈Êa〉k =

∫
dÊaÊae

−βÊa ρ̃(Êa)∫
dÊae−βÊa ρ̃(Êa)

(C.8)

where β = 1/kBT , and T is the operating temperature of the catalyst. Combining eqns

C.7 and C.8 yields

〈Êa〉k =

∫ ∫
dÊadEaÊae

−βÊaP (Êa|Ea)∫ ∫
dÊadEae−βÊaP (Êa|Ea)

(C.9)
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Assuming ρ̂(Êa) is normally distributed around ρ(Ea) with a standard deviation of σg

gives:

ρ̃(Êa) =

∫ +∞

−∞
dEaρ̃(Ea)

1√
2πσg

exp
(Êa − Ea)

2

2σ2
g

. (C.10)

Combining eqns C.7 and C.10 and simplifying yields:

〈Êa〉k =

∫
dEaρ̃(Ea)

∫ +∞
−∞ dÊaÊa exp

[
(Êa−Ea)

2

2σ2
g
− βÊa

]
∫
dEaρ̃(Ea)

∫ +∞
−∞ dÊa exp

[
(Êa−Ea)

2

2σ2
g
− βÊa

] . (C.11)

The two integrals in eqn. C.11 have closed-form solutions:

∫ +∞

−∞
dÊaÊa exp

[
(Êa − Ea)

2

2σ2
g

− βÊa
]

=
√

2πσg(Ea − βσg2) exp

[
β2σg

2

2
− βEa

]
(C.12)

and

∫ +∞

−∞
dÊa exp

[
(Êa − Ea)

2

2σ2
g

− βÊa
]

=
√

2πσg exp

[
β2σg

2

2
− βEa

]
(C.13)

Introducing eqns. C.12 and C.13 into eqn. C.11 and simplifying gives

〈Êa〉k =

∫
dEaρ̃(Ea)(Ea − βσg2)e−βEa∫

dEaρ̃(Ea)e−βEa
(C.14)

From eqn. C.8, it can be seen that

〈
Êa

〉
k

= 〈Ea〉k − βσg2 (C.15)

Kernel regression errors (σg) can be used to estimate the error in the kernel regression

model predicted k-weighted activation barrier (〈Ea〉k) using eqn. C.15. We can estimate

typical size of kernel regression errors using the training set error.
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C.4 Test set and training set statistics

The set of randomly sampled sites used to train the kernel regression model should

sufficiently sample the main support of ρ(Ea) to properly normalize ρ̂(Êa) for predicting

kinetic properties. Once the main support of ρ(Ea) is sufficiently sampled, additional

sites do not improve the normalization of ρ̂(Êa) and require additional, costly structure

optimizations. Figure C.1 shows the leave-one-out parity plot of the kernel regression

plot trained on 25, 50, 75, and 100 randomly sampled sites.

Figure C.1: Parity plot of kernel regression model trained on different initial pool sizes.
An initial pool of 50 randomly selected sites samples the main support of ρ(Ea).
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Errors in the kernel regression model should be smaller than the width of ρ(Ea) to

accurately importance sample ρ̂(Êa). Therefore, the initial pool should contain a set

of sites with diverse local environments and activation energies to effectively train the

kernel regression model. Residual distributions of all ca. 20,000 sites are shown for the

kernel regression model trained on 25, 50, 75, and 100 randomly sampled sites in Figure

C.2.

Figure C.2: Kernel regression model residual distribution for all ca. 20,000 sites with
different initial pool sizes. For all initial pool sizes, the standard error is within 1.0
kJ/mol which is ca. 40 times smaller than the range of ρ̂(Êa). The standard error
does not decrease for initial pool sizes greater than 50.
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Figure C.3: Distribution of residuals for iterations 0 (left) and 30 (right) of the impor-
tance learning algorithm.

C.5 Number of samples required to estimate Ẽa with

the same precision Ea

The Ea estimator from the importance learning algorithm (eqn. 4.15) quickly con-

verges to the correct site averaged activation energy because sites are sampled with

weights ρ(x) exp[−βEa(x)]. Alternatively, the Ẽa estimator randomly samples sites with

weights ρ(x) and computes a ratio of exponential averages (eqn. 4.14). The reweighted

estimator will require many more samples to converge to a precise estimate. In this

section, the relative variance for the Ẽa estimator is derived and the number of samples

required to estimate Ẽa with the same level of confidence as Ea is computed.

From eqn. 4.14, Ẽa is computed by

Ẽa =
∑n

i=1
k(xi)Ea(xi)

/∑
i
k(xi)

=
k̃Ea

k̃

(C.16)
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Section C.5 Number of samples required to estimate Ẽa with the same precision Ea

Both k̃Ea and k̃ are random variables for a given sample size, so their ratio is also a

random variable. Assuming k̃ and k̃Ea are independent and uncorrelated, the sample

variance of Ẽa can be approximated by:

σ2
Ẽa
≈
(
∂Ẽa

∂k̃Ea

)2

σ2

k̃Ea
+

(
∂Ẽa

∂k̃

)2

σ2
k̃

(C.17)

Evaluating the derivatives and dividing by Ẽa yields the relative sample variance

σ2
Ẽa

Ẽ2
a

=
σ2

k̃Ea

(k̃Ea)
2 +

σ2
k̃

k̃2
(C.18)

The relative sample variance can be related to the relative variance by the central limit

theorem:7
σ2

k̃Ea

(k̃Ea)
2 +

σ2
k̃

k̃2
=

1

N

[
σ2
kEa

〈kEa〉2
+

σ2
k

〈k〉2
]
ρ(x)

≡
σ2
〈Ea〉k
〈Ea〉k

2

∣∣∣∣∣
ρ(x)

(C.19)

where N is the number of samples. The right most equality with subscript ρ(x) indicates

that C.19 estimates the relative variance in the Ea estimate as computed with a sample

from ρ(x). The number of random samples required to match the uncertainty of the

Ea estimator from the importance learning algorithm is found by equating the relative

uncertainties of the two estimators:

σ2
〈Ea〉k
〈Ea〉k

2

∣∣∣∣∣
k(x)ρ(x)

=
σ2
〈Ea〉k
〈Ea〉k

2

∣∣∣∣∣∣
ρ(x)

(C.20)

Inserting eqn. C.19 in the right hand side of C.20 and solving for N yields

N =

[
σ2
〈Ea〉k
〈Ea〉k

2

]−1

k(x)ρ(x)

[
σ2
kEa

〈kEa〉2
+

σ2
k

〈k〉2
]
ρ(x)

(C.21)

The relative uncertainty in the Ea estimator is (0.75 kJ/mol) / (40.5 kJ/mol) = 1.85 %.
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Since ρ(Ea) can be precisely calculated for our simple model, σ2
kEa

/〈kEa〉2 and σ2
k/〈k〉2

can be computed exactly. Evaluating eqn. C.21 gives

N = (0.0185)−2 × (28.1 + 41.2) ≈ 200, 000 (C.22)

Therefore, the reweighting estimator Ẽa requires about 200,000 sites for the same level of

confidence that the importance learning estimator Ea achieved with less than 100 sites.
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Appendix D

Supporting Information for:

Importance learning estimator for the

site-averaged turnover frequency of a

disordered solid catalyst

D.1 Propagation of kernel regression model uncertainty

in computing 〈exp[−βÊa]〉

The site-averaged TOF is estimated from activation energies predicted by the trained

ML model. Importance sampling selectively adds low Ea sites to the training set, im-

proving model accuracy in this region. However, errors in the ML model will propagate

through the average, biasing the estimate. Here, we show how to quantify this bias and

correct 〈exp[−βÊa]〉 estimates with only sampling and ab initio calculation errors. Let

the distribution of ML-predicted activation energies be ρ̂(Êa). We can relate ρ̂(Êa) to
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the Ea distribution, ρ(Ea), by

ρ̂(Êa) =

∫
dEaρ(Ea)P (Êa|Ea) (D.1)

Here, P (Êa|Ea) is the distribution of the model-predicted activation barriers around

the true activation barriers, and the integral is over all possible Ea values. The exponen-

tial average from ρ̂(Êa) is

〈exp[−βÊa]〉ρ̂(Êa) =

∫
dÊaρ̂(Êa) exp[−βÊa] (D.2)

where β = 1/kBT , and T is the operating temperature of the catalyst. Combining

eqns. D.1 and D.2 yields

〈exp[−βÊa]〉ρ̂(Êa) =

∫ ∫
dEadÊaρ(Ea)P (Êa|Ea) exp[−βÊa] (D.3)

Assuming exp[−βÊa] is normally distributed around ρ(Ea) with a standard deviation

of σr gives

ρ̂(Êa) =

∫ +∞

−∞
dEaρ(Ea)

1√
2πσr

exp
(Êa − Ea)

2

2σ2
r

. (D.4)

Combining and rearranging eqn. D.3 and eqn. D.4 yields:

〈exp[−βÊa]〉ρ̂(Êa) =

∫
dEaρ(Ea)

∫ +∞

−∞
dÊa

1√
2πσr

exp[−βÊa] exp
(Êa − Ea)

2

2σ2
r

(D.5)
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Section D.1 Propagation of kernel regression model uncertainty in computing 〈exp[−βÊa]〉

The definite integral in eqn. D.5 has a closed-form solution:

〈exp[−βÊa]〉ρ̂(Êa) = exp

[
1

2
(βσr)

2

] ∫
dEaρ(Ea) exp[−βEa]

= exp

[
1

2
(βσr)

2

]
〈exp[−βEa]〉ρ(Ea)

(D.6)

Because the ML model is a weighted average of the training set, the ML model cannot

make estimates outside the range of activation energies in the training set. As a result, low

Ea sites which are below the range of the training set are almost always over-predicted,

and 〈exp[−βÊa]〉 is underpredicted. The biased corrected estimator, 〈exp[−βÊa]〉B.C., is

then

〈exp[−βÊa]〉B.C. = exp[
1

2
(βσr)

2]〈exp[−βÊa]〉 (D.7)

Kernel regression errors, σr, can be estimated from residuals of the test set, Figure

D.1.

Figure D.1: Histograms of the residual (Êa −Ea) distribution of the test set (i.e. the
leave-one-out predictions of the training set, red) and residual distribution for all ca.
20,000 sites (blue) at iteration 25 of importance learning. The standard deviations of
the two histograms are also shown.
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D.2 Convergence properties of 〈exp[−βÊa]〉

Figure D.2: Convergence of 〈r̂ 〉/k0 = 〈exp[−βÊa]〉, for 374 importance learning it-
erations. Estimates are plotted every 11 iterations. The red curve shows the biased
〈r̂ 〉/k0, computed according to eqn. 5.7, and is slightly biased due to errors in the ML
model. The blue curve computes 〈r̂B.C.〉/k0 using Êa and also corrects for the bias,
eqn. 5.8.

Figure D.3: Exact (grey outline) and model-predicted (red) exponentially weighted Ea
distributes after 40 (left) and 374 (right) importance learning iterations. Note that no
sites in the lowest Ea bin have been importance sampled at iteration 40, so the ML
model is unable to make accurate predictions in that Ea interval.
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Section D.2 Convergence properties of 〈exp[−βÊa]〉

Figure D.4: Histogram of Êa for all sites after 10 importance learning iterations (red,
top). The blue histograms below are residuals for all sites in the selected bin. Note
the residual distributions are non-uniform across bins.
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Figure D.5: Histogram of Êa for all sites after 35 importance learning iterations (red,
top). The blue histograms below are residuals for all sites in the selected bin. Note
the residual distributions are non-uniform across bins.
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Appendix E

Supporting Information for: Predicted

Properties of Active Catalyst Sites on

Amorphous Silica: Impact of Silica

Pre-Optimization Protocol

This supporting information contains the details for the parameterization of the DLM

(section E.1), plots for the change in ∆EG with the cluster size (section E.2), and plots

of ∆EG relaxed scans as a function of the dihedral angles θ and φ as defined in the main

text (section E.3).
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E.1 Force constant parameterization

Figure E.1: Different sized cluster models carved from the DLM. A red box is drawn
around around the grey beads in the x− z plane for clarity.

The force constants used for the DLM potential were parameterized from relaxed

scan DFT calculations of simple cluster models, Figure E.2. The coordinates scanned

are shown with arrows.
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Section E.1 Force constant parameterization

Figure E.2: Cluster models of SiO2 and grafted dioxoCr(VI)/SiO2. LeftA7: Si-OH
coordinate scanned (blue arrow), Si-Si-OH coordinate scanned (red arrows), Si-Si co-
ordinate scanned (black arrow). RightA7: The M-O bond is modeled as the Cr-O
bond and the O-M-O angle is modeled by the O-Cr-O angle.

The configuration of peripheral capping OH groups was obtained by performing an

unconstrained optimization of the dioxoCr(VI) species. The peripheral OH configuration

was applied to the SiO2 model. For all subsequent DFT calculations, the peripheral

OH atom configuration was held fixed to mimic the rigidity of bulk SiO2. The harmonic

potentials were fit to the electronic energy of the relaxed scan calculations. The following

harmonic potential was fit using the Levenberg-Marquardt algorithm in Python with the

Scipy package,

Vi(x) = ki(xi − xeqi )2 (E.1)

Where k is the force constant that is fitted, x is the value of coordinate i (i.e., a

distance or angle), and xeqi is the equilibrium value of the coordinate i. Only the value

of ki was fit to the scan data. The value of xeqi was set to the DFT energy-minimized

value. Results for kΣ-OH, kΣ-Σ, kΣ-Σ-OH, and kO-M-O are shown in Figure E.3.
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Figure E.3: Fit results of harmonic potentials to relaxed DFT scans of various coordinates.

The M-O bond energy was fit to a Morse potential,

Vi(r) = Di(1− exp[ai(ri − reqi )])2 −Di. (E.2)

Here Di is the dissociation energy and ai is a force constant-like value for coordinate

i. In addition to scanning the M-O bond length, the dissociation energy was computed

according to Scheme S1. We get DM-O = 325 kJ/mol.
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Section E.1 Force constant parameterization

Figure E.4: Scheme to calculate M-O dissociation energy. Note the dissociation energy
is divided by two because two M-O bonds are broken. Peripheral atoms (fixed) are
red. rM−O is used as the displacement variable in the Morse potential model.

We get aM−O = 1.92 Å−1. The fit to the scan data is shown in Figure E.5.

Figure E.5: Fit of the aM-O parameter to the relaxed DFT scan.
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Figure E.6: Angle between the midpoint of the two Si atoms, two silanolate O atoms, and Cr.
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Section E.1 Force constant parameterization

Figure E.7: Fit of the relaxed scan. Because the DFT-computed scan is anharmonic,
only the angles near the equilibrium angle were fit. Capturing the complex, anharmonic
nature of this potential is unimportant because this coordinate is orthogonal to all
other coordinates. Thus, this coordinate will always relax to the equilibrium value
during structure optimizations. A potential for this coordinate is included because it
is otherwise a free mode, which corresponds to a near-zero eigenvalue of the Hessian of
VG (equation 6.8). The near-zero eigenvalue was sometimes negative, which made it
difficult to confirm if the Hessian of an optimized cluster model was positive-definite
(i.e., the structure was successfully minimized).
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Table E.1: Parameters used in DLM model
Parameter Value Unit

N 18 -
r̂ 3.02 Å
σdisp 0.07 r̂
kΣ-Σ 6111 kJ mol−1 r̂−2

kΣ-OH 12195 kJ mol−1 r̂−2

reqΣ-OH 0.63 r̂
kΣ-Σ-OH 0.127 kJ mol−1 deg−2

θeqΣ-Σ-OH 90 deg
kO-M-O 0.113 kJ mol−1 deg−2

θeqO-M-O 120 deg
DM-O 325 kJ mol−1

reqM-O 0.627 r̂
aM-O 5.92 r̂−1

kΣ-O-M 0.01 kJ mol−1 deg−2

θeqΣ-O-M 145 deg
T 300 K
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Section E.2 Finite size effects and geometry optimization

E.2 Finite size effects and geometry optimization

Figure E.8: Grafting energy versus the inverse cube of the number of unconstrained
Σ centers allowed to relax for 10 randomly selected DLM slabs.
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Figure E.9: Grafting energy versus the inverse cube of the number of unconstrained
atoms (N) allowed to relax for the ten atomistic clusters obtained with the QM-Opt
protocol. The line below shows approximately the corresponding value of R.

Figure E.10: Plots of ∆∆EG as a function of the radius R (Å) of the relaxed zone for
the ten atomistic clusters with the QM-Opt (left) and MD-Opt (right) protocols.
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E.3 Dihedral angle scans

a)

b)

Cr-O-O-Si Dihedral (°)

ΔE
G

(k
J/

m
ol

)
ΔE

G
(k

J/
m

ol
)

ΔE
G

(k
J/

m
ol

)

Si-O-O-Si Dihedral (°)

Figure E.11: Relaxed scan of ∆EG as a function of the φ dihedral angle (5◦ increments)
for the small cluster shown in Figure 6.6c-d.

Figure E.12: Top and side views of the “eclipsed” (a-b) and “gauche” (c-d) configura-
tions corresponding to the minima in Figure E.11. Cr is represented as a black ball,
O as red, Si as gray, and H as white.
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Figure E.13: Relaxed ∆EG scans as a function of the θ dihedral angle for the ten large
clusters. Top: clusters with near-degenerate double minima (vicinal-silanol grafting);
middle: clusters with non-degenerate double minima (vicinal-silanol grafting); bottom:
clusters with a single minimum (isolated-silanol grafting).
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