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Quantitative Aspects of Image 
Intensifier- Television-Based 

Digital X-Ray Imaging 

O. Na/ciog/u, W. W. Roeck, J. A. Seibert, 
A. V. Lando, J. M. Tobis, and W. L. Henry 

1. INTRODUCTION 

The utilization of video systems in diagnostic X-ray imaging has been 
around for quite some time. In addition to the visual diagnostic value of 
images obtained by such systems, the X-ray video systems also offer the 
potential for extracting quantitative information from the images. In this 
chapter we will not deal with quantitative determinations based on dis­
tance measurements. Even though the quantitation potential has been 
under investigation for the past decade, (1-3) it was not until the introduction 
of digital subtraction angiography (DSA)(4) that it received a concentrated 
effort. DSA makes it possible to visualize a small amount of radiopaque 
contrast agent within the vessels by means of various digital image en­
hancement methods which are discussed elsewhere in this book (Chapters 
3, 7). Image processing takes place after the digitization of the video signal. 
Many users may assume that since the output is digital format, it must 
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be as accurate as the data in computed tomography (CT) systems. Un­
fortunately, this is not true, and the reason is the existence of some basic 
differences between the CT and image intensifier-television (IT - TV)­
based digital X-ray imaging systems. In digital fluoroscopy (or radiogra­
phy), one usually uses large-area detectors such as an X-ray II. Due to 
poor detection geometry, the scattered photons within the patient seri­
ously degrade the information obtained by a digital fluoroscopic system. 
In addition to poor geometry, the II detector itself is the source of another 
problem. This is the lateral propagation of light within the II, which is 
known as the veiling glare.(5) Veiling glare causes nonlinear upward shift 
of the video levels in the dark parts of an image. A final major problem 
is the beam hardening within the patient. The source of this problem is 
the preferential absorption of low-energy X-rays by an object, and the 
variation of effective beam energy as a function of object thickness. All 
these problems result in an overestimation of measured digital fluoro­
scopic numbers, but an underestimation of quantities which are based on 
the X-ray projection. Even though the three physical problems mentioned 
above reduce the accuracy of absolute measurements considerably, we 
have found in certain relative measurements that one may have a can­
cellation of errors.(6) However, the success in the computation of these 
parameters should not give a false sense of confidence. The development 
of correction techniques to reduce these errors is possible and some of 
them will be discussed in this chapter. Our basic philosophy differs sub­
stantially from many researchers who have attacked the same problems. 
We are not interested in applying empirical "Band-Aid" correction tech­
niques which may only be applicable in a limited situation. We will discuss 
general methods which are applicable to broader phenomena, and, spe­
cifically, will improve the accuracy of digital fluoroscopic numbers for 
absolute measurements. 

In Section 2, we will review the imaging system and various com­
ponents. Section 3 will cover a detailed discussion ofthe characterization 
of the three physical problems mentioned earlier. Effect of physical deg­
radation factors on the measurement of volumes is reviewed in Section 
4. Techniques to reduce the effects of these problems will be presented 
in Section 5. Some examples of typical applications will be discussed in 
Section 6. A summary will be given in Section 7. 

2. SYSTEM DESCRIPTION 

Most of the imaging systems used in digital fluoroscopy utilize an 
II-TV camera as the receptor. A typical X-ray video system used in 
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diagnostic imaging is shown in Figure 1. The various components of the 
imaging chain are the X-ray generator, X-ray tube, II, TV camera, video 
processor, viewing and recording devices. In this chapter, we will discuss 
the propagation of a signal through the system and relevant equations 
describing this process. We will not be concerned with recording or view­
ing equipment. 

2.7. X-Ray Generator and Tube 

The term generator applies to that part of the system which controls 
and provides the high voltage and electrical power required to energize 
the X-ray tube. In quantitative measurements using an X-ray video sys­
tem, it is essential that the X-ray tube output remains constant throughout 
the whole study. Pulse-to-pulse fluctuations in the X-ray fluence can be 
minimized by the use of 3-phase 12-pulse X-ray generators. For such 
generators, the maximum fluctuation in the tube output is about 3.5% of 
the peak voltage. 

The X-ray tube should have a heat storage capacity of 300,000 heat 
units or more, so that a large flux of X-rays can be sent through the object. 
Another important aspect of the X-ray tube is the size and intensity dis­
tribution of the focal spot. The smaller the size, the smaller the objects 
we can image. Unfortunately, small focal spot size also implies loading 
a large amount of heat into a smaller area of anode, thus causing further 
X-ray flux limitations. For most applications, a 0.3/1.3-mm switchable 
focal spot is sufficient. 

The function which describes the incident X-ray fluence at a location 
(x' ,y') in front of the object is given by 

Incident fluence = No(x' ,y':£) (1) 

A 
E 

Figure 1. Overall imaging system: (A) X-ray generator, (B) X-ray tube, (C) image intensifier, 
(D) TV camera, (E) video image processor, (F) recording devices, and (G) monitor. 
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In writing Eq. (1), we assumed a parallel X-ray beam geometry and hence 
no dependence on z' where z' is the distance measured from the source. 
The energy variable E in Eq. (1) indicates the polychromatic nature of X­
rays used explicitly. 

2.2. Object 

Let us assume that a three-dimensional object with a linear atten­
uation coefficient distribution J.L(x,y,z:E) is placed into the X-ray beam. 
If the X-rays are emitted from the source in the z' direction, then the 
transmitted X-ray fluence is given by 

N(x' ,y':E) = P(x' ,y':E) + S(x' ,y':E) (2) 

where Sand P are the scatter and primary components, respectively. The 
primary X-ray distribution is related to the incident one by the following 
equation: 

P(x',y':E) = No(x',y':E) exp [- I J.L(x',y',z':E)dz'] (3) 

where No is the incident flux at location (x' ,y') and J.L is the distribution 
of energy-dependent linear attenuation coefficients along the X-ray beam 
which is assumed to be parallel to the z' axis. The scatter component is 
related to the incident flux by a complex relationship. It is a complicated 
function of many variables including X-ray beam energy, object compo­
sition, and imaging geometry. A more detailed discussion of the scatter 
component will be presented in a later section. 

2.3. Image Intensifier 

All of the elements of an II tube are enclosed within a glass bottle 
that is highly evacuated. The input end ofthe tube has a coating consisting 
of the input phosphor, a thin transparent membrane, and the photocath­
ode. The input phosphor is usually made of cesium iodide which absorbs 
the incident X-ray beam and emits visible light. Most lIs in use today 
have a cesium iodide input phosphor with a thickness of 100 mg/cm2. The 
input phosphor thickness determines the detection efficiency as well as 
the spatial resolution capabilities of the II. The phosphor thickness is 
chosen as a trade-off between detection efficiency and spatial resolution. 
The limiting spatial resolution of a typical 9-inch II is about 4 lp/mm at 
the input phosphor. The detection efficiency is highly energy dependent. 
The visible light emitted from the phosphor passes through the thin mem-
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brane and is absorbed in the photocathode. As a result of photoelectric 
absorption in the cathode, electrons are released to the interior of the II 
tube. These electrons are accelerated and focused toward the output phos­
phor which is much smaller in size than the input one. The output phos­
phor absorbs the kinetic energy of the electrons and produces an inten­
sified visible light. A fraction of electrons and produced light photons 
scatter within the II, thus causing a degradation of image quality known 
as veiling glare. In regions of low transmission adjacent to regions of high 
transmission of the detected X-rays, electrons and light produced from 
the brighter areas spread into the darker areas. This nonuniform added 
bias affects the contrast response as well as the quantitative integrity of 
the information -contained in the two-dimensional projection image. In 
addition to veiling glare, there might be spatial distortions due to poor 
electron optics. 

The generation of light images by an II may be described by the 
following general equation: 

I(x,y) = a If D(x',y':£)T(x',y:x',y')N(x',y':£)dx'dy'dE (4) 

where a is a constant of proportionality and D(x' ,y':£) is the detection 
efficiency of the II at point (x' ,y') for an X-ray of energy E. The function 
N(x' ,y':£), which was defined in Eq. (2), indicates the transmitted X-ray 
fluence of energy E at a location (x' ,y'). The transfer function T takes an 
X-ray absorption event from a location (x' ,y') on the input phosphor and 
generates light at location (x ,y) at the output phosphor. In defining T, we 
assumed that it is independent of energy E, but the energy dependence 
could also be included in a straightforward manner. Equation (4) was 
originally proposed by Kruger. (7) The transfer function T includes the 
various image degradation processes such as veiling glare and spatial 
distortions. 

2.4. Television Camera 

The TV camera converts the light flux incident on its target surface 
into an electronic signal which will eventually be digitized. Most of the 
TV cameras used in digital fluoroscopy utilize a lead oxide (plumbicon) 
target. It is absolutely necessary to measure and know the response of 
the TV camera for quantitative applications. In a later section, we will 
discuss how this is done. The conversion of the light image I(x,y) into a 
video image by the camera is described by 

V(x,y) = flI(x,y)] (5) 
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where 1 is defined in Eq. (4) andj[I] is the transfer function for the process. 
In Eq. (5), V(x,y) is the amplitude of the video signal at a location (x,y) 
within the image. Even though a general response function f is given in 
Eq. (5), in most cases it can be approximated by 

f[/] = af'Y (6) 

where a is a scaling factor and 'Y is a constant. For a plumbic on camera 
'Y = 1.0. 

2.5. Analog-to-Digital Converter 

The analog-to-digital converter (ADC) is the device which converts 
the analog video signal into digital numbers. Due to the finite number of 
levels used, the ADC always adds additional noise (quantizing noise) to 
the signal. If the analog noise is normally distributed with a standard 
deviation a, then an equation which relates the rms noise before and after 
the digitization ~an be derived. This relation is given by 

[

00 JII2 
ao/a = 0.5 i~ (2i + 1)2g;(E/a) E/a (7) 

where aD and a are the rms noise after and before digitization and E is 
the step size. The function gi(X) is defined by 

g;(x) = erf[0.5(i + 1)x] - erf[0.5ix] (8) 

where erf is the error function. (8) The step size E may also be expressed 
by 

(9) 

where S is the maximum linear video signal and N is the number of bits 
in the ADC. Using the definition for the signal-to-noise ratio (SNR) 

SNR == S/a (10) 

one can relate E/a to SNR by 

E/a = SNRi2N (11) 

The ratio ao/a may be computed using Eq. (7) with E/a = 1, 2, and 3. 
These results are given in Table 1. 
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TABLE 1. Variation of 
Digitized rms Noise (UD) as a 

Function of Step Size (E) 

1.03 

2 

1.17 

3 

1.50 
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It is seen that if € is equal to the analog rms noise a, digitization 
introduces only an additional 3% noise. One can also use Eq. (11) to 
compute the number of bits required for a given SNR. This is given by 

N = INT [In (SNRlm)/ln 2] + 1 (12) 

where m = €/a and INT [0] indicates integer truncation operation. Figure 
2 shows the relation between the SNR and the number of bits required. 

For an SNR of 500: 1, one needs an 8-bit ADC for ada = 1.5 (50% 
error) and a 9-bit ADC for a 3% error. For many dynamic clinical appli­
cations, the ADC should also be fast enough to digitize the images in real 

Figure 2. In SNR versus number 
of bits. 
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time, i.e., 30 images/sec, with enough spatial resolution. A typical digi­
tization format for real-time applications is 512 x 512 with 8 bits/pixel. 

2.6. Image Acquisition Memory 

After the data are digitized by the ADC, they are usually stored in 
a solid-state random access acquisition memory (RAM). For most radio­
logic applications, a matrix size of 512 x 512 pixels for the memory is 
sufficient. The size of the image matrix must be compatible with the TV 
camera resolution. Furthermore, each pixel must have at least as many 
bits as the number of bits of the ADC. 

Larger memories are useful for image integration which is necessary 
in some applications. Even though acquisition memories as large as 
2048 x 2048 pixels are also available, they do not seem to offer any 
additional advantage for quantitative applications. 

2.7. Measurement of System Response 

Here we will discuss the measurement of the TV camera and TV-II 
combination separately. 

2.7.1. TV Camera Response 

The purpose of this measurement is to determine the functional re­
lationship given in Eq. (5) which relates the video signal V to the incident 
light level I. The TV camera response is measured by mounting the camera 
on an optical bench and varying the input light level incident on the 
camera. 

The video voltage for each input light level I is measured to determine 
the response. The experimental results are given in Figure 3 for a I-inch 
Syracuse Scientific plumbicon camera. In Figure 3 the video voltage ver­
sus the relative light input is plotted on a log-log graph. The response 
function for this camera was given by the simpler form shown in Eq. (6). 
If one substitutes Eq. (6) into Eq. (5) and takes the logarithm, one obtains 

In V = y In I + In a (13) 

The solid line in Figure 3 was obtained by a linear least-squares fit to the 
experimentally measured data (last point where camera saturation starts 
was not included). The fit had a correlation coefficient r = 0.999 and 
slope (y) equal to 0.99. The maximum linear video signal from the camera 
was equal to 1 volt. The measured rms noise ofthe camera was determined 



IMAGE INTENSIFlER-TELEVISION·BASED IMAGING 

Figure 3. TV response as a function of 
relative light input. 
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TV 

10 100 
reI. light input 

to be 2 m V. Thus, the Syracuse Scientific camera used in our laboratory 
had a dynamic range of 500: 1. 

2.7.2. 11-TV Response 

Once the linear operating range of the TV camera is known, then the 
response of the II-TV system needs to be determined as a function of 
input X-ray exposure rate. This was done by varying the incident X-ray ? 
exposure rate by changing the X-ray rnA while keeping the kVp constant. ./ 
In this case, the video images were digitized and the II-TV response was 
determined from these measurements. The video voltage V is related to 
the input exposure rate X by 

V = aX'Y (14) 

Taking the logarithm of both sides yields 

InV= ylnX+lna (15) 

The experimental results for a Philips II-TV system are shown in 
Figure 4. The maximum linear voltage from the Philips camera was 920 
m V and the rms noise was 4 m V. The Philips plumbicon camera had an 
SNR of 230: 1. The straight line in Figure 4 is the II-TV response. The 
linear least-squares fit of Eq. (15) had a correlation coefficient r = 0.99 
and y = 1.0. Once the linear operation range ofthe TV camera and II-TV 
camera chain is known, one has to make sure to operate the system within 
this range so that there is a linear relationship between the output video 
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1 10 100 Figure 4. System response as a function of 
reI. input relative X-ray exposure. 

voltage and the input X-ray exposure rate. Even if the response is not 
linear, one may still be able to linearize it by measuring the system re­
sponse and using a lookup table. 

2.8. System Spatial Resolution 

Here we will closely follow the discussion given in Kruger et al. (9) If 
the focal spot ofthe X-ray tube has dimension b (mm), then the resolution 
limit (Le., cutoff frequency) due to focal spot blurring is given by fFS = 

m/[b(m -1)] lp/mm as measured in the object plane for an object magni­
fication m. For a 525-line TV camera, the vertical resolution is approxi­
mately 340 lines (see Hendee(lO»). If we assume the same vertical and 
horizontal resolution for the TV camera, then the limiting spatial fre­
quency is given by fe = 340/2D where D is the object size covering the 
full image field. In the object plane, this limiting resolution is given by 
fc = 340m/2D. Finally, the limiting resolution in the object plane due to 
image digitization for a 512 x 512 image matrix is given by fD = 512m/2D. 
In Figure 5, these three limiting frequencies are plotted as a function of 
magnification. It is seen that for 1 $ m $ 2 (which is a reasonable range 
for most clinical applications), the bottleneck of spatial resolution is the 
525-line TV camera. In this example, we assumed a 1.2-mm focal spot 
and a 9-inch II. 

3. CHARACTERIZATION OF PHYSICAL DEGRADATION FACTORS 

In this section we will present results which demonstrate effects of 
physical degradation factors on digital numbers measured with digital 
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Figure 5. Resolution limits as a function of mag­
nification. Solid curve, focal spot (1.2 mm); dashed 
curve, camera; dotted curve, digitizer cutoff fre­
Quencies for a 9-inch II. 
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fluoroscopic systems. The physical factors which will be considered are: 
beam hardening, X-ray scatter, and veiling glare. At this point, we will 
define a new function called the X-ray projection by 

Pr(L) = In[V(L = O)IV(L)] (16) 

where V(L) is the video signal (Eq. 5) at a location (x,y) for an object 
thickness of L. If the object is a composite material, then L is the upper 
limit of the integral in Eq. (3). For simplicity, we suppressed the depen­
dence on (x,y) in Eq. (16) but it should be remembered that Pr is also a 
function of (x,y). 

3.1. Beam Hardening 

In order to study the effects of beam hardening alone, we have re­
stricted the experimental setup to a narrow beam geometry, i.e., both the 
entrance and exit beams were collimated. Figure 6 illustrates the exper­
imental setup. As a result of narrow beam geometry, we were able to 
eliminate scattered radiation within the object. The reduction of veiling 
glare(lI-13) was accomplished by limiting the exposed field of view of the 
II to a small area (1 cm 0). The reduction of the primary signal due to 
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Figure 6. Narrow beam geometry on optical bench. 

the limited II field of view was approximately 23% for the system used 
in these experiments. The reduction is due to the fact that light from the 
center escapes toward the edges, but since the remainder of the II was 
covered with lead, no light travels from the periphery to the center to 
compensate for the loss of light from the center to the periphery. 

With this setup, Eqs. (2)-(6) can be combined to yield 

V\(x,y) = f3 f D(x,y:E)P(x,y:E)dE (17) 

where the transfer function was taken to be T(x,y;x' ,y') ll(x - x')ll(y 
- y') and f3 = aer. An experimental investigation of Eq. (17) was done 
by using various thicknesses of lucite as a scatter phantom, along with 
changes in X-ray tube filtration and iodine thickness in the X-ray beam. 
The imaging chain consisted of a Philips dual-mode (9 inch/5 inch) II, 
Model 9807 201 02 701. The X-ray tube was a Dunlee DU-175 0.3/1.0 
dual-mode focal spot type. The X-ray generator was a 3-phase, 12-pulse 
system manufactured by Picker. The TV camera was a I-inch Philips 
plumbicon system. Video images were digitized and stored in the memory 
of an American Edwards Laboratories Cardiac 1000 video image proces­
sor. The images were digitized into 512 x 512 format and 8 bits/pixel. A 
square ROI was chosen and the mean and standard deviation within the 
region were computed. The mean value corresponds to the digital value 
of the video signal due to transmitted X-rays. In this measurement, the 
video signals were not logarithmically amplified prior to digitization. 

The experiment was designed to study the amount of beam hardening 
due to iodine in the presence of a fixed thickness of lucite. We varied the 
concentration of Renografin-76 which was placed behind the lucite object. 
The experiment was repeated twice, using 0- and 4-mm added aluminum 
filtration at 70 kVp and 20 rnA. The measured projection values, as defined 
in Eq. (16), are plotted in Figure 7. For a monoenergetic X-ray beam, 
i.e., D(x,y:E) = Dll(E - Eo) where Eo is the energy, the projection given 
in Eq. (16) is equal to 

(18) 
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Figure 7. X-ray projection for the primary beam as a function of Renografin-76 concentration. 

where J.L(Eo) is the linear attenuation coefficient of a homogeneous material 
at an energy Eo and thickness L (in this example, concentration). Thus, 
for a monoenergetic X-ray beam, the projection is a linear function of 
thickness. Nonlinear response in this case is due to beam hardening since 
the imaging system was shown previously to be linear. The straight lines 
in Figure 7 were obtained using the linear least-squares fitting technique 
with the experimental data within the low concentration range (0-5%). 
They also represent the monoenergetic extrapolation to the data. The 
deviation of the experimental points from the straight line is an indication 
of beam hardening with this system using iodine in the presence of 15-
cm lucite. As seen from Figure 7 and as expected, the deviation is larger 
than O-mm added aluminum filtration. 

3.2. X-Ray Scatter 

An experimental study of the effect of object scatter without the 
influence of veiling glare was undertaken in the following manner. A lead 
cover with a small circular aperture (1 cm 0) at the center was used to 
cover the II face as described in Section 3.1. The lead collimators in front 
and back of the scatter medium were removed. The experimental setup 
is illustrated in Figure 8. The distance between the exit face of the lucite 
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II J 
Figure 8. Open beam geometry for measuring X-ray scatter. 

and II input was 25 cm. A IS-cm-diameter circular collimator was placed 
on the entrance face of the lucite which geometrically restricted the trans­
mitted primary X-rays to just within the diameter of the intensifier input 
(9-inch diameter). With this setup, the detected video signal within the 
circular aperture was given by 

V2(X,Y) = c f D(x,y:E)N(x,y:E)dE (19) 

where N is given by Eq. (2) and includes both the primary and scattered 
photons detected at location (x,y). Due to removal of veiling glare with 
this experimental setup, we substituted T(x,y;x' ,y') = 5(x - x')5(y - y') 
in deriving Eq. (18) from Eq. (4). The amount of beam hardening was 
determined in Section 3.1 and can be corrected for, so as to eliminate 
beam-hardening artifacts and study the effect of X-ray scatter alone. 

An experimental study of Eq. (18) was done using IS-cm lucite with 
various concentrations of 2-cm-thick Renografin-76 solution as discussed 
in Section 3.1. The video signal was measured both with and without an 
X-ray grid on the II. The measured signal, primary plus scatter, is denoted 
by P + S in Figure 9. The primary signal (P) with and without the grid 
was measured using the experimental setup shown in Figure 6. The scatter 
component (S) was computed by taking the difference of (P + S) and (P) 
and is also shown in Figure 9. It is seen that for large concentrations of 
iodine, the (P + S) curves approach a constant value asymptotically. This 
is due to the fact that for large concentrations of iodine, neither the primary 
nor the scattered photons pass through iodine. The X-rays which reach 
the open aperture in this case are the ones which are scattered within 
lucite without passing through the iodine. Thus, this scattered component 
is independent of the iodine concentration and hence the constant value. 
The total number of scattered photons reaching the open aperture on the 
II (see Figure 8) can be expressed as 

Stotal = Siodine + Soutside (20) 

where Siodine and Soulside are the number of scatterd photons passing through 
iodine and the outside region, respectively. In Figure 10, Siodine was com-
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Figure 9. Measured digital numbers versus Renografin-76 concentration. P, primary; S, 
scatter; P + S, primary and scatter. 

puted by subtracting the constant asymptotic value (i.e., for large iodine 
concentrations) from Stotal. It is seen from Figure 10 that when Siodine 

versus concentration is plotted semilogarithmically, one obtains the ex­
pected straight line relationship. The situation is similar with or without 
the X-ray grid. The measurements presented in Figures 9 and 10 were 
done with 4-mm Al added filtration at 70 kVp. Figure 11 shows the mea­
sured projection (see Eq. 16) as a function of iodine concentration. In the 
same figure, we plotted the polychromatic primary projection taken from 
Section 3.1 as well as the monoenergetic extrapolation. We see that the 
polychromatic projection deviates from the straight line monoenergetic 
one as the concentration of iodine is increased. The deviation from lin­
earity is more substantial when the scatter is included. As one would 
expect, the situation is slightly better with than without the grid. The 
results presented in this section included the effects of scatter and beam 
hardening on the measured video signal and deviation from linearity of 
the projection. 
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Figure 10. Computed scatter contri­
bution versus iodine concentration. 

The final study included all the physical degradation factors: beam 
hardening, X-ray scatter, and veiling glare. In this case, the detected video 
signal at a location (x,y) is given by Eq. (4). An experimental realization 
of this was achieved by removing the lead cover on the II, thus exposing 
the whole input phosphor during the experiments. The setup is illustrated 
in Figure 12. The experiment was performed by changing the concentra­
tion of Renografin-76 within a 2-cm-thick bottle in the presence of 15-cm­
thick lucite. The images were acquired with 70 kVp at 20 rnA. The ex­
periment was repeated both with and without an X-ray grid. The mean 
digital number within a small square region at the center of the image was 
measured for all cases. These numbers, indicated by (P + S + VG), are 
shown with and without a grid in Figure 13. Also shown are the primary 
measurements performed by using the setup described in Section 3.1. The 
two curves for the primary with and without the grid are separated by a 
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Figure 11. Projection for various cases as a function of iodine concentration. 

constant amount due to constant grid transmission. The measured digital 
number for (P + S + VG) approaches a constant value as the concen­
tration of Renografin-76 is increased in a manner similar to that of Section 
3.2. Using the data presented in Figure 13, we computed the projection 
for this case. The results are shown in Figure 14. The projection for 
(P + S) and (P + S + VG) both become constant as the iodine concen­
tration becomes large. Including veiling glare makes the situation a little 
worse. As one might expect, the use of an X-ray grid somewhat improves 
the overall response. In the same figure, we show the primary projection 
which is degraded only by beam hardening. Finally, we show the projec­
tion data with a grid for all three cases in Figure 15, and include the linear 
extrapolation for each case, indicated by "mono." These straight lines 

II J 
Figure 12. Open field geometry to include veiling glare, scatter, and beam hardening. 
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Figure 13. Measured digital numbers versus iodine concentration. P, primary; P + S + 
VG, all degradations included. 

were obtained by fitting a straight line through the first two or three 
experimental points. A substantial deviation from linearity exists for all 
three cases. It is the nonlinearity projection data which cause errors in 
measurements. These errors are the subject of the next section. 

4. EFFECT OF DEGRADATION FACTORS ON 
VIDEODENSITOMETRIC VOLUME MEASUREMENTS 

An experimental investigation of the nonlinear behavior of X-ray 
projection as a function of object thickness was presented in Section 3. 
In these studies, we used a 2-cm-thick bottle filled with various concen­
trations of iodine and placed it behind a 15-cm-thick lucite block. By 
varying the experimental setup, we were able to measure the projection 
as a function of iodine concentration under various experimental condi­
tions. The projection data presented in Figures 14 and 15 were for a single 
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ray passing through the object. The experimental projection data were 
used in a mathematical simulation of a three-dimensional object filled with 
Renografin-76 under the same experimental conditions. The object chosen 
was an ellipsoid of revolution. The two minor axes were taken to be equal 
while the major-to-minor-axis ratio was assumed to be 2: 1. In the first 
simulation, the major axis was taken to be along the X-ray beam direction 
(a parallel beam geometry was also assumed). This situation is clinically 
similar to left ventricular imaging using the left anterior oblique (LAO) 
view with X-rays traveling along the long axis of the ventricle. In the 
second situation, we assumed the X-ray beam to be perpendicular to the 
long axis of the ellipsoid of revolution. This view clinically represents the 
right anterior oblique (RAO) imaging of the left ventricle. From here on, 
we will call these two different simulations LAO and RAO, respectively. 
The simulated volume of the ellipsoid was varied from 2 to 200 cm3 while 
keeping the ratio of the axes constant. All the different size ellipsoids 
were assumed to be filled with a 10% concentration of Renografin-76. In 
order to compute the gray levels within the simulated images, we first 
computed the cord length through the ellipsoid corresponding to a given 
pixel location within the image, and then assigned the experimental X­
ray projection corresponding to this specific cord length to that pixel. 
Since the cord lengths vary continuously from one point to another within 
the object, the simulation requires a knowledge of the X-ray projection 
as a function of object thickness continuously. This was accomplished by 
fitting a polynomial to the experimental projection data shown in Figures 
14 and 15. The specific function used is given by 

M 

Pr(x) = ~ alxY (21) 
i~ I 

where M is the order of the polynomial, x is the thickness of 10% 
Renografin-76, and ai are the coefficients obtained by a least-squares fitting 
of Eq. (21) to the experimental data. In all studies, it was sufficient to 
choose M = 4. Two examples ofthe simulated ellipsoid images are shown 
in Figure 16. In Figure 16a is shown a simulated RAO image of the ellipsoid 
of revolution. The LAO image, which is in a direction perpendicular to 
the circular cross section, is shown in Figure 16b. 

4.1. Absolute Volume Measurements 

By using the experimental projection data degraded by beam hard­
ening, scatter, and veiling glare, we studied the order of magnitude of the 
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Figure 16. (a) Simulated RAO-view ellipsoid of 50-cm3 volume (P + S with grid). (b) 
Simulated LAO-view ellipsoid of 50-cm3 volume with different magnification (P + S with 
grid). 
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errors introduced by various physical degradation factors. Once a simu­
lated image was generated, the total video densitometric signal was mea­
sured by integrating the gray levels within the object. Figure 17 illustrates 
the selection of a region-of-interest (ROI) around the object. The inte­
grated net signal within the ROI is supposed to be proportional to the 
volume of the object. We are now in a position to verify the correctness 
of this statement. In Figure 18, we show the videodensitometrically mea­
sured volume versus the actual ellipsoid volume. The monochromatic 
curve was obtained by fitting a straight line through the first few exper­
imental points. This curve was also used to normalize the measured vol­
ume so that it is given in units of cm3 • As a result of the normalization, 
Po represents the line of identity. In the same figure, we also show the 
curves for the primary beam and the realistic case when all the degradation 
factors were included. The measured volumes for the RAO view using 
the primary beam alone are slightly underestimated, maximum being at 
200 cm3 • This is due to additional beam hardening by the iodine within 
the ellipsoid. In the RAO view, the largest thickness is 5.8 cm for the 
200-cm3 volume (i.e., minor axis). When beam hardening, scatter, and 
veiling glare are all included, the deviation from the line of identity be­
comes larger. Notice that, in spite of this large departure from the line of 
identity, the curve is still fairly linear. The meaning of this observation 

Figure 17. Selection of an ROI around the object. 
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Figure 18. Measured volume ver­
sus actual one for the RAO view 
for various cases. 
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is that, while the absolute value measurements may be underestimated 
greatly, relative volume measurements such as ejection fraction would be 
underestimated less. Figure 19, representing the LAO view, shows what 
happens when we image the ellipsoid along the long axis. The notation 
is the same as for Figure 18. The underestimation of volumes obtained 
using the primary beam are larger than the previous (RAO) case. The 
largest thickness traversed in the LAO case is the major axis, 13 cm for 

Figure 19. Same as Figure 18 but 
for LAO view. 
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the 200-cm3 volume. Thus, we have a larger amount of beam hardening 
due to added iodine, and, hence, the larger deviation from the line of 
identity. If we study the curve obtained by using all the degradation 
factors, we see that it is also underestimated more as compared to the 
RAO case (Figure 18). However, a close examination of the curve indi­
cates that most of this deviation is due to a larger amount of beam hard­
ening. In other words, the separation between the primary and the full 
curves in Figure 19 is almost identical to that of Figure 18. 

4.2. Relative Volume Measurements 

In this subsection, we will define a quantity which is similar to the 
ejection fraction used in cardiology. It is given by 

(22) 

where V < and V> correspond to end-systolic and end-diastolic volumes, 
respectively. We will also define a percentage error (E) by 

E = 100[1 - EF(measured)/EF(actual)] (23) 

In Figure 20, we show the percentage error in EF for two different end­
diastolic volumes, i.e., for V> = 80 and 200 cm3 . These curves were 
obtained for the case when all the degradation factors were included. In 
the RAO view, the largest percentage error occurs for large end-diastolic 
volumes with small ejection fractions. Intermediate, end-diastolic error 

% Error In EF 
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20 
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Figure 20. Percentage error in EF as a function of actual EF and various end-diastolic 
volumes-RAO view. 
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curves lie in between the two shown in Figure 20. It is seen from Figure 
20 that for an ejection fraction of 70% and an end-diastolic volume of 200 
cm3 , the error is 8%. If the actual ejection fraction is 30% for the same 
end-diastolic volume, the error goes up to 14%. The results shown in 
Figure 20 were obtained for the RAO view. Similar results for the LAO 
view are shown in Figure 21. Here, the errors are slightly larger compared 
to the RAO case. 

5. TECHNIQUES FOR REDUCTION OF DEGRADATION FACTORS 

In this section, we will discuss and review some techniques for im­
proving the accuracy of measurements performed with digital fluoroscopic 
systems. The degradation factors which will be considered are the ones 
mentioned in the previous sections, namely beam hardening, X-ray scat­
ter, and veiling glare. 

5.1. Veiling Glare 

The equation which describes the relationship between the incident 
X-ray flux and the output video signal is given by 

V(x,y) = (3 If I D(x' ,y':E)T(x,y;x' ,y')N(x' ,y':E)dx'dy'dE (24) 

where we assumed that a plumbicon TV camera with 'Y = 1 is used. Using 
the Seibert model,04) we will expand T in terms of a function h, which is 
the stationary point spread function (PSF), 

T(x,y;x' ,y') = h(x - x' ,y - y') + b.h 

% Error in EF 
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Figure 21. Same as Figure 20 but for LAO view. 

(25) 
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where fJ.h represents higher-order nonstationary terms. We have shown 
earlier that fJ.h is negligible compared to h. (14) In other words, PSF depends 
only on the difference of and not on each variable separately. This allows 
rewriting of Eq. (25) as a convolution relationship which is given by 

V(x,y) = [h**U](x.y) (26) 

where ** is a two-dimensional convolution operation and U is the image 
which is not degraded by the TV-II system. It is defined by 

U(x,y) = f3 f N(x,y:E)D(x,y:E)dE (27) 

A derivation of the veiling glare PSF was outlined in a previous 
publication. (15) This derivation was based on the assumption of linear 
system response, circular symmetry, and spatial invariance ofthe II PSF. 
It was shown that the theoretical PSF can explain the experimental results 
to a high degree of accuracy. The analytical form of PSF is given(l2) as 

h(r) = (1 - p) 5 (r)/r + p exp( - rlk)/(2kr) (28) 

where p and k are the parameters describing the fraction of strongly 
scattered light and its mean propagation distance, respectively. The sym­
bol 5 in the above equation is the Dirac delta function. The relationship 
between the undegraded image, U(r,8), and the actual detected image, 
V(r,8), in polar coordinates is given by 

(29) 

Equation (29) mathematically represents the two-dimensional (2D) con­
volution of the II PSF [h] with the undegraded image [U] resulting in the 
detected image [V]. In this equation, ** represents the 2D convolution 
process, and (r,8) the polar coordinate system chosen with which to de­
scribe the process. The PSF [h] is represented as a linear and rotationally 
symmetric function. Thus, we neglect the higher-order terms expressing 
the nonlinear and non stationary system response based on our previous 
findings. (15) 

The 2D convolution in spatial domain given in Eq. (29) can be rep­
resented in the frequency domain by 

(30) 

where F 2 [o] is a 2D FT operation. The right-hand side of Eq. (30) is a 
multiplication of the frequency domain representation of the undegraded 
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image with the PSF on a point-by-point basis. Inverting F 2[h] in Eq. (30) 
and taking the inverse FT yields 

U(r) = V(r) ** Fi 1 
(31) 

where Fi l [.] is the inverse 2D FT operation. The undegraded image U 
can be obtained by direct 2D deconvolution on the acquired spatial domain 
image with an inverse filter(l6) if the PSF [h) is known. 

The spatial extent ofthe veiling glare PSF is considerable, as indicated 
by the magnitude of k. The mean value is typically 2-3 cm, while the 
pixel size has millimeter dimensions. In order to properly deconvolve the 
PSF, a large number of pixels becomes mandatory to fully describe the 
inverse filter. The long range of the filter prohibits the implementation of 
Eq. (31) in the spatial domain due to the excessive computation time 
required. Instead, the efficiency and speed of the fast Fourier transform(l7) 
permits rapid deconvolution to be carried out in the frequency domain 
by solving for F 2 [U] in Eq. (30) and inverse transforming the result: 

U = Fil[F2[V] {lIFih)}] (32) 

Since we know the analytical form of h, 1/F2[h] can also be analytically 
derived, with the tremendous benefit of avoiding singularities and oscil­
latory behavior present in a digital calculation caused by finite sampling 
width, truncation errors, and problems associated with noise. 

The veiling glare PSF can be transformed into the frequency domain 
by Fourier methods: 

(00 f27T 
H(j) = Jo Jo h(r) e - hid rdrd8 (33) 

In this equation, f is the spatial frequency (cm -I) and II is the frequency 
domain representation of h. Taking advantage of the circular symmetry, 
the Fourier transform becomes a Hankel transform, giving 

H(j) = 27T loo h(r)Jo(27Trf)rdr 

and substituting Eq. (28) results in 

A [p (00 
H(j) = 2 2k Jo e- rlk Jo(27Trf)dr 

+ (l-p) loo i) (r)Jo(27Trf)dr] (34) 

where Jo is the zero-order Bessel function and l) is the Dirac function. 
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Integrating and solving Eq. (34) results in the frequency domain PSF 

H(j) = n [ p + (1 - P)] 
VI + (27rkf)2 

(35) 

The form is illustrated in Figure 22. Only a profile along a radius is shown. 
The complete filter may be obtained by rotating about the z axis. 

Inversion of Eq. (35) gives the solution of the inverse frequency filter 

~ 1 [ V I + (27rkfF ] H- 1 (j) - -
- 7r P + (1 - p) VI + (27rkj)2 

(36) 

Its form is plotted in Figure 23. As illustrated, the filter is essentially high 
pass in nature; it retains higher frequencies, and selectively attenuates 
lower frequencies which contribute to the veiling glare degradation in the 
image. 

Multiplication of this filter on a point-by-point basis with the fre­
quency domain degraded image yields a product in the frequency domain 

.3~.-~~~~~~~~~~~ 
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Figure 23. Inverse filter in the fre­
quency domain. 
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that has the lower frequencies deamplified. Application of an inverse 2D 
FT with appropriate scaling factors results in an approximate estimate of 
the original undegraded image. The spatial domain representation of the 
inverse filter with values of p = 0.28 and k = 2.7 em is illustrated in 
Figure 24. The graph indicates the negative contribution of values to the 
point being deconvolved, counteracting the spread of light at adjacent 
pixels. The spatial extent ofthe filter is extensive, with significant negative 
weighting at large distances from the center pixel. 

5.1.1. Deconvolution of Lead Disk Images 

A lead disk of 1I8-inch thickness was placed on the II input phosphor 
cover (no grid) and a digital fluoroscopic image was acquired. The focal 
spot to input phosphor distance was 1.5 m. No scattering medium was 
present. The image is shown in Figure 25a. Notice that even though the 
lead disk was thick enough to stop any X-ray transmission through it, the 
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Figure 24. Normalized inverse filter in the spatial domain. 
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Figure 25. (a) A lead disk image and a diametric profile without deconvolution. (b) Same 
image after glare deconvolution. 
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video profile displayed in Figure 25a indicates a nonzero reading under 
the lead disk. This is due to the glare effect under discussion all along. 
The light produced within the open areas leads into the region which is 
covered by the disk. After applying the glare deconvolution technique 
discussed in Section 5.1, we obtained the deconvoluted image shown in 
Figure 25b. The signal under the lead disk is close to zero. If the decon­
volution process were to be totally accurate, we could have obtained a 
zero reading under the disk. 

5_ 1.2. Effects of Glare Deconvolution on Volume Measurements 

In Section 5.1.1, we studied the effect of veiling glare deconvolution 
in the absence of any scatter medium. We will now discuss what happens 
when a scatter medium is present. Furthermore, we will also investigate 
what happens to volume measurements. We used the images ofthe iodine 
bottle filled with different concentrations of Renografin-76 and placed 
behind a 15-cm-thick lucite phantom. As mentioned earlier, all three of 
the physical degradation factors we have been concerned with were pres­
ent in these images. We deconvolved each image (containing different 
concentrations of iodine) with the appropriate veiling glare filter and com­
puted the X-ray projection again. These results are shown in Figure 26. 
Here, the projections for the primary beam, primary plus scatter, and 
primary plus scatter plus veiling glare are shown. For comparison, we 
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Figure 26. Summary of projection versus concentration of Renografin-76 for primary (P). 
primary plus scatter (P + S), and primary plus scatter plus veiling glare (P + S + VG) 
polychromatic projections and their monoenergetic extrapolations. Also shown are the de­
convolved projection data using an inverse PSF: p = 0.241, k = 2.97 cm as measured for 
the II used in the experiments (small dashed curve, veiling glare corrected). 
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also indicate the projection obtained after deconvolution of the veiling 
glare PSF. The deconvolution process brings the (P + S + VG) projection 
curve almost on top of the (P + S) one. For perfect deconvolution, 
(P + S) and "VG corrected" curves should overlap. It is seen from Figure 
26 that the projection obtained after glare deconvolution does not contain 
much glare effect. 

We used deconvolved projection data and studied the effect of the 
glare reduction technique on videodensitometric absolute volume mea­
surements. In this investigation the "LAO" ellipsoid of revolution phan­
tom discussed in Section 4.1 was used. The results are shown in Figure 
27. It is seen that the experimentally obtained (P + S) curve and the 
mathematically obtained one, i.e., deconvolved (P + S + VG) curve, 
almost overlap. Thus, we conclude that the deconvolution technique dis­
cussed in Section 5.1 is quite good in reducing the errors introduced by 
veiling glare. 

5.2. X-Ray Scatter 

We saw in the last section that after the deconvolution of veiling 
glare, we are left with the system undegraded image U which was defined 
by Eq. (27). The function N used in Eq. (27) was defined in Eq. (2) as 

N(x,y:E) = P(x,y:E) + S(x,y:E) (2) 
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Figure 27. Measured volume versus actual one for the cases shown in Figure 26. 



IMAGE INTENSIRER-TELEVISION-BASED IMAGING 115 

where P and S are the primary and scattered photons incident on the II, 
respectively. 

As we have seen in Section 3.2 (Figure 10), some fraction of the 
scattered photon distribution may appear as a low-frequency version of 
the primary photon distribution, i.e., carries some information about the 
spatial distribution of attenuators within the object. Mathematically, we 
can express this as 

N(x,y:E) = f P(x',y':E)hs(x - x',y - y':E)dx'dy' (37) 

where the scatter PSF is defined by 

[ S(X,Y:E)] ( ) hs(x,y:E) = 5(x)5(y) + ( ) g X,Y:E 
PX,Y:E 

(38) 

In Eq. (38), 5(·) is a one-dimensional delta function and g(x,y:E) is a 
function to be determined later. We also notice that the quantity in brack­
ets is the scatter-to-primary ratio (SPR). We will now approximate the 
SPR by 

SPR = S(O,O:E)IP(O,O:E) (39) 

where E is the effective beam energy for the X-ray beam. We can now 
rewrite Eq. (38) as 

hs(x,y:E) = ii.(x,y:E) + tlhs (40) 

where 

iis(x,y:E) = 5(x)5(y) + SPR· g(x,y:E) (41) 

We also substituted E for E in g. As a first-order approximation, we will 
now assume that tlhs in Eq. (40) is small compared to iis • Thus, we can 
rewrite Eq. (38) as 

N(x,y:E) = f P(x',y':E)hs(x-x',y-y':E)dx'dy' (42) 

The last term in Eq. (41) is similar to the scatter PSF as defined by Barrett 
and Swindell.(lS) They have shown that in the single-scatter approximation, 

(43) 
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where a is an energy-dependent coefficient. If one takes mUltiple scat­
tering into account, Eq. (43) can be generalized into 

M 

gmulti(r:E) = exp[ - a(E)r2] L f3;(E)(r)2i (44) 
i=l 

where M is the number of terms in the expansion and f3i(E) are energy­
dependent coefficients. Equations (43) and (44) indicate that for a thin 
object (M = 0), the scatter PSF is a Gaussian. For thicker objects, multiple 
scattering becomes significant and one has to use the more general formula 
given in Eq. (44). The higher-order terms make the Gaussian function 
broader, indicating a less structured two-dimensional scattered photon 
distribution. This, of course, is intuitively correct since the directional 
information the scattered photons carry is lost as a result of multiple 
scattering. If we substitute Eq. (42) in Eq. (27), we obtain 

(45) 

where 

F(x,y) = I P(x,y:E)D(x,y:E)dE (46) 

Thus, if hs is known, we can compute P by deconvolving U with the 
inverse filter in a similar fashion to the veiling glare case. It should be 
noted that the overall video image V(x,y) can also be rewritten as 

(47) 

where hVG is the veiling glare PSF discussed in the previous section. Since 
the convolution operations commute, the equation can also be expressed 
as 

(48) 

The expression given in Eq. (48) indicates that if hVG and hs are known, 
they can be convolved to yield a two-dimensional overall PSF which can 
then be used to compute P(x,y), the image which is degraded by beam 
hardening alone. 

An earlier work performed by Shaw et alYo utilized an overall in­
verse filter which is given by 

j(x,y) = 8(x)8(y) - C 2II(ax,ay) (49) 
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where 2II(ax,ay) is a two-dimensional rectangle function(l9) which is de­
fined by 

2II(ax,ay) = {~ Ixl ,Iyl:s; 1I2a 
elsewhere (50) 

In Eq. (49), C is a constant to be adjusted. The application of the filter 
defined in Eq. (49) results in the high pass filtering operation of the de­
graded video image V(x,y). Even though the filter used by these investi­
gators(11) was quite arbitrary, it has been shown that the deconvolution 
of f linearizes the nonlinear videodensitometric volume curve quite 
successfully. 

To conclude this section, we will simply state that the deconvolution 
techniques appear to be promising for obtaining accurate videodensito­
metric data. Current research at the University of California, Irvine, is 
focused on the determination of hs and experimental validation of the 
approximations made in the development of the formalism. 

5.3. Beam Hardening 

In this subsection, we will assume that two correction techniques 
discussed in Sections 5.1 and 5.2 have been successfully applied to the 
acquired images. Thus, the processed images would only be affected by 
the beam-hardening artifacts discussed earlier. An obvious method for 
reducing the effect of beam hardening is to prefilter the X-ray beam heavily 
so that the X-ray beam becomes quasi-monoenergetic. The most common 
filters used for this purpose are aluminum or copper. Even though filtration 
of the X-ray beam reduces the beam-hardening effects, it also results in 
an increase in the quantum noise within the images. Thus, excessive 
filtration may prove to be undesirable since we cannot increase the X­
ray tube output indefinitely. The approach which will be discussed in this 
section is a combination of tube filtration and the use of a lookup table. 
Since both veiling glare and X-ray scatter have been reduced by the use 
of methods discussed in Sections 5.1 and 5.2, we will only be dealing with 
the polychromatic primary X-ray beam. The polychromatic video signal 
given in Eq. (17) can be rewritten more explicitly as 

V(x,y) = f3 f D(x,y:E)No(x,y:E)exp[ - f JL(x,y,z:E)dz]dE (51) 

where we assumed a parallel X-ray beam propagating along the z direction. 
The X-ray projection Pr at a location (x,y) can be written as 

Pr(x,y:LT,Lr) = In[V(x,y:LT,Lr = O)IV(x,y:LT - Lr,Lr)] (52) 
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In Eq. (52), it was assumed that we have a tissue thickness of LT and 
LT - LJ before and after iodine injection. The detailed form of Eq. (52) 
is given by 

(53) 

with 

(54a) 

and 

In Eqs. (53) and (54), we suppressed the dependence on (x,y) and ILT, ILl 
are the linear attenuation coefficients for tissue and iodine, respectively. 
In the monoenergetic limit, i.e., No(E) = N 08(E - Eo), Eq. (53) reduces 
to the more familiar form 

(55) 

In Figure 7, the polychromatic projection, Eq. (53), was plotted for two 
different tube filtrations. It should be noticed that in Eqs. (53) and (54), 
the constant amount of tissue along the beam acts as additional tube 
filtration, thus reducing the beam-hardening errors. This is similar to the 
constant-path water bath method which was used in the first-generation 
CT scanners.(20) We also notice that in the case of mask-subtracted vi­
deodensitometry, the projection given in Eq. (53) does not depend strongly 
on the tissue thickness LT. In the monochromatic limit, there is no de­
pendence on LT. In order to generate a lookup table, we measured the 
primary projection using 4-mm aluminum filtration, 20 rnA at 70 kVp. 
During various measurements, we used a different amount of "tissue" 
material and varied the concentration of 2-cm-thick Renografin-76. Some 
of the constant "tissue" materials experimentally used were: O-cm lucite, 
I5-cm lucite, and lO-cm lucite plus I-cm aluminum. The average poly­
chromatic projection as a function of percent iodine concentration is given 
in Figure 28. It is observed that use of different types of tissue background 
material does not cause a significant spread in the projection data, i.e., 
the error bars for various concentrations of Renografin-76. The dashed 
straight line in Figure 28 was obtained by connecting the first three points. 
It represents the monochromatic projection given in Eq. (55). In order to 
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Figure 28. Measured polychromatic average projection used in the lookup function and 
extrapolated monochromatic projection as a function of iodine concentration. 

make the experimentally measured projection data monochromatic, a 
transformation function was defined by 

M 

Pr(mono) L a;[Pr(poly)Y (56) 
j~l 

The coefficients aj were determined by a least-squares fitting of Eq. (56) 
to the data shown in Figure 28. When M = 5 was used, i.e., a fifth-order 
polynomial, the coefficients shown in Table 2 were obtained. The lookup 
function obtained by using the five coefficients given in Table 2 is shown 
in Figure 29. Any polychromatic projection measurement along the ab-

j 

2 
3 

TABLE 2. Coefficients of 
Lookup Function (Eq. 56) 

aJ 

1.375 
-0.828 

0.511 
4 -0.109 
5 0.774 x 10- 2 
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Figure 29. Monochromatic projection versus 
polychromatic one for 4-mm aluminum filtra­
tion, i.e., lookup function. 

scissa may be converted to a monochromatic one by using Eq. (56) or 
Figure 29. The deviation from linearity in Figure 29 occurs more often 
for large values of Pr(poly). We used the experimental primary projection 
data which were discussed in an earlier section, and mathematically sim­
ulated the ellipsoid images as before. Each image was corrected, pixel by 
pixel, using the lookup function defined in Eq. (56). The measured volumes 
before and after the correction for LAO-view ellipsoids filled with 10% 
Renografin-76 are shown in Figure 30. The application of the lookup 
function (Eq. 56) with the coefficients given in Table 2 seems to improve 
the accuracy of volume measurements substantially. We should empha­
size that the correction method discussed here is only applicable to volume 
measurements using a contrast agent since it is based on the presence of 
a constant thickness of background tissue and the displacement of blood 
by a contrast agent. The lookup function has to be precalculated using 
various thicknesses of tissue with the same amount of tube filtration that 
would be used in actual studies. Even though the correction appears to 
work well, the actual amount of correction would depend on the specific 
case under study. 

6. APPLICA TIONS 

It was shown in the previous sections that measurements performed 
using II-TV -based digital X-ray imaging suffer from various degrees of 
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errors due to the problems discussed earlier. In this section, applications 
regarding absolute and relative volume measurements without any cor­
rection techniques will be discussed. 

6.1. Relative Volume Measurements 

Here again, we will subdivide the subject into two areas. The first 
area will be the measurement of relative volumes of small objects. An 
important medical application is in the measurement of percent stenosis 
of vessels. The second application will be in the determination of larger 
relative volumes. In this case we will be concerned with the measurement 
of ejection fraction. The reason for dividing the applications into small 
and large volumes is shown in Figure 31. The actual volume of a balloon 
filled with 10% Renografin-76 is along the horizontal axis. The vertical 
axis is the videodensitometrically measured volumes in cubic centimeters. 
The normalization factor for actual volumes along the y axis was obtained 
by using the two lowest data points. The images were obtained at 70 kVp 
with 4-mm aluminum filtration and an X-ray grid. An interesting obser­
vation which can be made from Figure 31 is that even though the exper­
imental curve deviates from a straight line, in two asymptotic regions 
there appears to be some linear response. These are marked with dashed 
lines in the figure. A similar observation was made by Shaw et alYI) We 
notice that for small volumes (Region I), i.e., less than 40 cm3 , the curve 
appears to be a straight line with a zero intercept. However, in the second 
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Figure 31. Measured versus actual 
volume of balloons filled with 10% 
Renografin-76 solution. Regions I 
and II are discussed in the text. 

region, i.e., volumes larger than 80 cm3 , despite the fact that the curve 
seems to be a straight line, it has a nonzero intercept indicating that the 
measured volumes are systematically underestimated. As a result of these 
two linear regions, we predict that measurements done with small volumes 
would not suffer substantially from the errors mentioned earlier. The 
projection data presented in earlier sections also support this prediction. 
Thus, if one is interested in measuring small volumes such as vessels, 
one does not have to worry about applying the correction methods dis­
cussed in Section 5. However, if we were to perform measurements in 
Region II, the measured volumes would be underestimated by varying 
amounts. In order to determine the correct volumes, we would have to 
apply corrections to the acquired data. Even though we have identified 
two regions of linearity, it should be understood that the actual limits of 
these regions may vary depending on the experimental conditions. As a 
rule of thumb, for small volumes such as stenosis determination, one does 
not have to worry about corrections. On the other hand, the computation 
of ventricular ejection fraction (i.e., large volumes) would necessitate the 
correction of data prior to measurements. 

6.1.1. Measurement of Ventricular Ejection Fraction 

Percent of ejection fraction (EF) is defined as 

(57) 
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where VED and YES are the end-diastolic and end-systolic volumes. The 
computation of EF was done using the uncorrected images of balloons 
filled with 10% Renografin-76. The data collection was performed as fol­
lows. A mask image of the anthropomorphic chest phantom(21) was taken 
and stored in the computer memory. Another image was taken of a balloon 
filled with 10% Renografin-76 placed within the chest cavity. Two images 
were logarithmically subtracted without any other corrections. The pro­
cess was repeated for balloons of different volumes. A sample subtracted 
image is shown in Figure 32. An ROI covering the object was drawn and 
the gray levels within the ROI were summed. The integrated value of gray 
levels is supposed to be a number proportional to the value of iodine 
mixture within the balloon. The points in Figure 31 were obtained by 
using these data. In order to compute various values of EF, several end­
diastolic values were chosen and volumes smaller than that taken to be 
end-systolic volumes. The results for three different values of ED volumes 
are shown in Figure 33. As predicted earlier, most of the measured values 
are less than the actual ones. For comparison, we also show the line of 
identity in Figure 33. The amount of errors in this case appears to be less 
than that for the results presented in Section 4.2. The reason for the 
discrepancy is due to subtraction of a second background from logarithm­
ically subtracted images. The secondary background in this case was 
chosen to be the difference between ED and ES ROIs, e.g., see Figure 
34 for VED = 160 cm3 and YES = 80 cm3 . The second background sub­
traction results in the cancellation of some of the errors in an arbitrary 
way. Similar results were reported by us earlier. (6) 

Figure 32. Selection of an ROI around 160-cm3 balloon for volume measurement. 
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Figure 33. Measured versus actual 
percent EF using the balloon data. 

6.1.2. Stenosis Measurement 

The percent area stenosis is defined as 

(58) 

where As and Ap are the cross-sectional areas of the stenotic and patent 
vessels, respectively. The data collection was performed by acquiring a 

Figure 34. Selection of an ROI for secondary background subtraction. 
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mask image of the chest phantom. A second image containing the chest 
phantom and a Plexiglas block with drilled holes in it was taken. The 
holes had diameters ranging from 2 to 4.5 mm with 0.5-mm increments 
and were filled with 100% Renografin-76. The X-ray tube was operated 
at 75 kVp. After logarithmically subtracting the mask image from the one 
containing iodine, a rectangular ROI perpendicular to the midline of the 
patent section was chosen. The integrated digital numbers within the 
patent region Ip is given by 

(59) 

where k is a constant of proportionality, Hp and Ap are the height of the 
ROI and cross section of the patent segment, respectively. In writing Eq. 
(59), we used the fact that volume Vp = HpAp. Similarly for the stenotic 
region, the integrated stenotic signal Is is given by 

(60) 

The computation of SA is done by substituting Eqs. (59) and (60) in Eq. 
(58), thus resulting in 

(61) 

The computation procedure is shown in Figure 35. The measured versus 
actual percent area stenosis is shown in Figure 36. It is seen that the 
largest errors occur for small values of SA, i.e., normals where it is not 

Incident 
X·ray 
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Is = k Vs = kHsAs 

% AREA STENOSIS = Ap - As Ap x 100 

[ IsHp 1 = I - x 100 
IpHs 

Figure 35. Stenosis measurement. 
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Figure 36. Measured versus actual 
o 10 30 50 70 90 percent area stenosis. 

clinically significant. In any event, the measured values correlate quite 
well with the actual ones with a very small offset value. We thus conclude 
that the measurement of percent stenosis, i.e., relative volume of small 
objects, can be done videodensitometrically quite accurately without any 
corrections. 

6.2. Absolute Volume Measurements 

As we have seen before, the videodensitometric volume measure­
ments are performed by integrating the gray levels within an ROI which 
encompasses the two-dimensional projection of the volume under con­
sideration. Mathematically, the integration of gray levels within the ROI 
is expressed by 

I = r 1 [In Vm(x,Y) - In VJ(x,y)]dxdy (62) 
J(x.y) • ROJ 

where V m and VI are the digital X-ray images before and after the intro­
duction of the contrast agent into the volume of interest. We also point 
out that the mask image V m is logarithmically subtracted pixel by pixel 
from the iodinated one VI. The integrated signal I given in Eq. (62) actually 
is only proportional to the volume if the errors discussed in earlier sections 
are not serious. We can express this relationship as 

I = k· volume (63) 
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where k is a constant of proportionality. Thus, absolute volume mea­
surement using videodensitometric data (I) requires the determination of 
k. Kruger proposed a method(22) for the determination of k for small vessels 
by combining videodensitometric data with geometric assumptions about 
the object. A similar method was proposed by Henry and co-workers(23) 
which again utilized geometrical with videodensitometric information for 
the determination of ventricular volume. According to this method, it is 
assured that for the left ventricle, a region approximately two-fifths from 
the base has circular symmetry around the long axis of the ventricle. This 
is a less stringent assumption than the one which is used in the area-length 
method of left ventricular volume determination(24) where the ventricle is 
assumed to be an ellipsoid of revolution. If such a circular region exists, 
it may be used to determine k. This is done as follows. Let us assume 
that the circular region has a diameter D. If we pick a cylindrical slab of 
height H, then the geometrical volume of the slab is given by 

(64) 

We also need the videodensitometric signal from the same slab; let us 
call this 10. According to Eq. (63), we have 

10 = kVo (65) 

Figure 37. Subtracted Styrofoam cup filled with 10% Renografin-76 for absolute volume 
measurement. 
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Figure 38. Selection of calibration ROIs: (a) top; (b) middle; (c) bottom. 

which can be solved for k since we know both 10 and Yo. By integrating 
the gray levels within the whole left ventricle, we obtain hv which is 
related to the ventricular volume by Eq. (63). Thus, we have 

(66) 
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Figure 38. (continued) 

Assuming that the contrast material is uniformly distributed within the 
ventricle, i.e., same constant in Eqs. (65) and (66), we can eliminate k 
and solve for VLV • We obtain 

(67) 

Equation (67) yields the absolute volume ofthe ventricle. An experimental 
simulation of this method was undertaken by filling a Styrofoam cup with 
water first (mask image) and then with a 10% solution of Renografin-76.(25) 
The exposure was made at 75 kVp with 4-mm aluminum filtration. The 
mask image was logarithmically subtracted from the iodinated one and 
the difference image is shown in Figure 37. Even though the cup is per­
fectly symmetric and all the dimensions are known, where to pick the 
calibration ROI still remains ambiguous. In order to test the influence of 
the location of calibration ROI on the final result, we used three different 
calibration ROIs. These were top, middle, and bottom ofthe cup as shown 
in Figure 38a-c. As a final check, we also mathematically simulated a cup 
ofthe same dimensions using the experimental projection data which were 
discussed in earlier sections. The actual volume of Renografin-76 solution 
within the cup was 150 cm3 • The results are given in Table 3. Experi­
mentally determined absolute volumes vary from 168 to 140 cm3 depending 
on the location of the calibration ROI, representing a change of error from 
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TABLE 3. Videodensitometric Absolute Volume Determination 

Experimental Computer simulation 
Location of 

calibration ROI Volume (em') % error Volume (em') % error 

Top 167.8 +11.9 166.7 +11.1 
Middle 151.0 +0.7 149.0 -0.7 
Bottom 140.0 -6.7 131.4 -12.4 

+ 11.9 to - 6.7%. For this object, the calibration ROI location in the 
middle yields the most accurate result. The results obtained by simulation 
using the experimental projection data reflect a similar behavior. The 
conclusion is that for an object which has a variable thickness, the location 
of the calibration ROI is important. Of course, if the data had not suffered 
from the degradation factors discussed earlier, the location of the cali­
bration ROI would not have been important. This was tested by using the 
corrected projection data in the simulation. The calculated volumes were 
150.9 and 151.1 cm3 corresponding to the three calibration ROIs, indi­
cating the insensitivity of the location of calibration ROI as expected. The 
conclusion drawn from this experiment is that even though one may obtain 
accurate absolute volume measurements for large objects, accuracy strongly 
depends on the location of the calibration ROI. In a real case with a 
patient, one never knows how much error is made if the images are not 
corrected prior to performing measurements. In the case of small objects, 
i.e., vessels, the errors would be much smaller even without any correc­
tions, which is the same as before. 

7. SUMMARY 

In this chapter, we have discussed the various physical factors which 
cause the videodensitometric measurements performed with II-TV-based 
digital X-ray systems to be inaccurate. Experimental and simulation re­
sults demonstrating the contribution of each degradation factor were pre­
sented. We have shown that the degradation factors in increasing order 
of importance are beam hardening, veiling glare, and X-ray scatter within 
the patient. Various techniques for reducing the errors were introduced 
and discussed. In developing correction techniques, we avoided empirical 
methods such as background subtraction, lead disk placement on the 
object for scatter correction, and so on, since these methods work in 
limited situations and are not based on any sound physical principle. We 
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believe that empirical methods result in unpredictable results when the 
experimental conditions are altered. 

It was shown that the correction methods presented here are quite 
accurate in reducing veiling glare and beam-hardening artifacts. A new 
technique was also introduced for scatter correction. An important ob­
servation was that the measurements of small volumes was affected less 
by degradation factors as compared to larger volumes, e.g., small vessels 
versus the heart. As pointed out, this difference is due to two regions of 
linearity, one for small and the other for large volumes. In the small 
volume region, the offset value of the straight line response curve was 
quite small, resulting in accurate volume measurements. For the case of 
large volumes, in spite of the straight line response, a large offset appears, 
causing all the videodensitometric measurements to be systematically 
underestimated. Claims made by various authors regarding the good linear 
correlation between the measured and actual EF values seem to ignore 
the systematic underestimation and instead focus only on linearity. Fur­
thermore, when one attempts to confirm the accuracy of a method using 
patient data and other "gold standard" techniques, one can never be sure 
what the true value is. We believe that the accuracy of any method should 
be confirmed using realistic phantoms where many uncertainties are 
eliminated. 
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