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1  Editorial Introduction

In 2011 a specialist meeting on the “Future Directions in Spatial Demography” was 
held in Santa Barbara, California (Matthews, Goodchild, & Janelle, 2012).1 This spe-
cialist meeting was the capstone to a multi-year National Institutes of Health training 
grant that had supported workshops in advanced spatial analysis methods increas-
ing used by population scientists.2 Early-career scholars who had participated in the 
training workshops and senior demographers and geographers drawn from across 
the United States participated in the specialist meeting.3 The application process to 
attend the 2011 meeting, required that each of the forty-one attendees submit a state-
ment that reviewed challenges and identified new directions for spatial demography, 
including gaps in current knowledge regarding innovations in geospatial data, spatial 
statistical methods, and the integration of data and models to enhance the science of 
spatial demography in population and health research. Reading again some of the 

1 The R25 Training Grant was funded through the Eunice Kennedy Shriver National Institutes of Child 
Health and Human Development (NICHD 5R-25 HD057002; Principal Investigator: Stephen A. Mat-
thews). The specialist meeting was held in Santa Barbara, California, USA and convened by the Center 
for Spatial Studies at the University of California, Santa Barbara in conjunction with the Population 
Research Institute at the Pennsylvania State University. Attendees at the 2011 meeting all provided short 
statements (see: http:// ncgia. ucsb. edu/ proje cts/ spati al- demog raphy/ parti cipan ts. php) and a Final Report 
is available at: http:// ncgia. ucsb. edu/ proje cts/ spati al- demog raphy/ docs/ Future- Direc tions- in- Spati al- 
Demog raphy- Report. pdf).
2 The workshop series had focused on topics including point pattern analysis, spatial econometrics, geo-
graphically weighted regression, and multi-level modeling (Matthews and Parker, 2013).
3 Whereas the majority of attendees were demographers and geographers, many disciplines were repre-
sented, including anthropology, economics, epidemiology, health economics, and political science. Most 
participants were driven by their interests in demographic research questions.
 The geographical coverage limited to the United States was unfortunate. In this collection of short com-
mentaries, we have tried to rectify the limited geographical coverage though the N of contributors is 
inevitably small. We have reached out to additional researchers and we hope to include additional com-
mentaries in a future issue of the journal from Central and South America and from Europe.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40980-021-00084-9&domain=pdf
http://ncgia.ucsb.edu/projects/spatial-demography/participants.php
http://ncgia.ucsb.edu/projects/spatial-demography/docs/Future-Directions-in-Spatial-Demography-Report.pdf
http://ncgia.ucsb.edu/projects/spatial-demography/docs/Future-Directions-in-Spatial-Demography-Report.pdf
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ruminations of these scholars is an interesting exercise in its own right. The level 
of optimism back in 2011 was high, and especially regarding anticipated changes 
in computational capacity, leveraging big data (including volunteered geographic 
information), developments in data systems (including new data high resolution data 
products and online resources such as multi-scale map interfaces and dashboards), 
and in methods such as time–space models, agent-based models, microsimulation, 
and small-area estimation. There were also several challenges identified including, 
but not limited to, study designs, data integration, data validation, confidentiality, 
non-representative data, historic data, definitions of place, residential selection and 
mobility as well as two overarching challenges related to the role and contribution of 
spatial demographers in interdisciplinary population and health research, and many, 
many comments on training issues. Substantively the attendees research focused 
on all forms of interaction between people and place (and the reciprocal relations 
between the people in social, built, and physical environment contexts) covering the 
gamut of demographic processes from reproductive health to mortality, though with 
perhaps an overrepresentation of researchers in areas related to population and envi-
ronment research, racial and residential segregation, and migration.

A decade later, it is useful to look back on this meeting and reflect on recent past 
achievements in the field of spatial demography4 and to look forward to emergent and 
new developments and the challenges we might expect in the next decade through 2031. 
We recognize that researchers can have different perspectives, thoughts, and opinions 
on “progress” and the future “prospect” for field of spatial demography. To help identify 
past achievements, research priorities and gaps, and emerging themes we reached out to 
several members of the Spatial Demography’s editorial board who attended the 2011 
meeting as well as to other members of the journal’s editorial board who did not.5 We 
wrote to each contributor asking them to write a short commentary on their thoughts 
and insights, with requests to identify some of the publications, software, methodologi-
cal developments, and data products that may influence the field going forward.

Included here are seven short commentaries. While there are differences in empha-
sis across the commentaries, all, in one way or another, look for greater integration of 
theory, concepts, and method, and more attention on data, sampling, and measurement 
issues. They celebrate and anticipate new software developments (including ease of 
access) and they echo the ongoing concern over training in spatial thinking in general 
and not just the narrower provisioning of training in the handling of complex spatial 
data and application of sophisticated spatial methods. Connecting all commentaries are 
theoretical and modeling based discussions of spatial interaction and spatial networks, 
spatial dependence, spatial heterogeneity, nonstationarity, uncertainty, place, and scale 

4 One of the developments of the past decade was the launch of this journal by Frank Howell and Jeremy 
Porter (Howell and Porter, 2013). Frank was an invited participant at the special meeting, and during the 
meeting spent time sowing the seeds of the journal and recruiting people to be editorial board members.
5 Deborah Balk presented at the meeting and both Katherine Curtis and David Wong attended. TC Yang 
and Daniel Parker both attended the specialist meeting too; at the time, both were very earlier career 
scholars. The other commentators and several co-commentators did not attend.
 The editor welcomes additional comments related to the theme of “looking back, looking forward” 
from scholars from across the globe. Please contact Stephen A. Matthews at sxm27@psu.edu.
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… and time or dynamics … all as they apply to contemporary and anticipated demo-
graphic questions. These shared connections between commentaries are important as 
even ubiquitous concerns regarding “training” can include similar but different mean-
ings or priorities. For example, on the one hand, opportunities for training in spatial 
methods are often limited or centralized, especially in African and SE Asian contexts 
(see commentaries by Gayawan and by Saita, Tun and Parker). On the other hand, train-
ing deficiencies for demographers also can have implications more generally around 
their participation in big ideas/big challenge research topics and for how the field as 
a whole engages in critical studies of people in places and time. Indeed, while sub-
stantive demographic topics weave through all commentaries it is worth highlighting 
the commentaries by Balk, Leyk, and Montgomery, and, by Curtis. The former express 
their dismay at the lack of engagement by demographers—relative to other social sci-
entists—in the urban systems research, especially in middle and low-income countries 
and the latter calls for a critical evaluation of our dominant frames, and the need for a 
more critical reorientation of the field of spatial demography.

Collectively, these commentaries are generally optimistic about the collective 
achievements in the past decade and they all identify opportunities for growth. There 
is also a strong sense of there still being much to be done to raise the visibility of 
spatially informed demographic research and thereby demonstrate the relevance 
of spatial demography. As you will read below, several commentaries are calls to 
action. Are spatial demographers up for it?

2  Future of Spatial Demography

James  Raymer

In this short commentary, three aspects of spatial demography are discussed: its unique 
distinction and importance in relation to other fields of spatial enquiry, current chal-
lenges, and future directions. The ideas expressed below reflect a recent paper I co-
authored with Frans Willekens and Andrei Rogers on this topic (Raymer et al., 2019).

2.1  What is Spatial Demography and Why Do We Need It?

Early developments in spatial demography connected populations through the pro-
cesses of origin–destination-specific migration and allowed populations to simulta-
neously evolve (Rogers, 1968, 1975; Rogers & Willekens, 1976; Wilson, 1974; Wil-
son & Rees, 1974a, 1974b, 1975). This analytical framework greatly enhanced our 
understanding of how populations interact across space and change over time, and is 
one that should be revisited now that we have much better data, computing power, 
and models for capturing spatial dependency.

Fundamentally, spatial demography is the study of how populations and their 
compositional structures change and interact across space. At the individual level, 
the timing and location of demographic outcomes are linked to transitions in the 
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individual life course (Willekens, 2014). For instance, the loss of a job or comple-
tion of education or training in one place may trigger migration to another place or, 
conversely, a migration may result in family separation or unemployment in the des-
tination location. While related, spatial demography can be distinguished from both 
population geography and demography (Raymer et al. 2019). Population geography 
focuses on locational aspects of places and their influence on populations. Demog-
raphy focuses on the mechanisms of population change but traditionally treats each 
population independently from other populations distributed in space.

A spatial demographic perspective is critical for understanding many complex 
social processes that are occurring. For example, populations living in cities and 
rural areas are struggling to adapt to major demographic developments occurring 
worldwide: longer and healthier lives, low and postponed reproduction, large and 
diverse immigration streams, increasing attractiveness of state capital cities as places 
to live and work, and declining propensities to migrate within developed countries 
(Champion et al. 2018). However, despite these trends, people are not working for 
considerably more years and are worried about who will support their pensions as 
they age. Young adults, and especially women, are struggling to balance building 
successful careers and raising children. Governments and individuals are concerned 
about the pressures of large numbers of migrants on social cohesion and urban infra-
structure, including traffic and housing costs. On the other hand, regional towns are 
worried about their future prospects of finding labor and keeping their populations 
from disappearing. And, employers are having to seek labor from around the world 
for both low-skilled and highly specialized jobs.

To address the above issues and the interplay between demographic and societal 
change, spatial demographic research is needed so that we may develop theories of 
spatial population change, produce more robust local population forecasts, and to 
develop sound policies for assisting areas that are experiencing change. Key to this 
is the notion that populations are intricately connected to each other across space 
and time (Bell, 2015), and that movements between subpopulations affect both pop-
ulations simultaneously, but in profoundly different ways. Spatial demography offers 
such possibilities.

2.2  What are the Current Challenges?

Data availability represents a key challenge for spatial demography, especially when 
the interest is in understanding a large number of interacting populations and how 
they change over time. When disaggregated by age and sex, often the population 
counts and demographic events become small, which increases the effects of both 
random behavior and the chances of disclosure (identification). Many statistical 
offices are not allowed to release detailed spatial data for reasons of data confiden-
tiality, which limits analyses. Furthermore, as shown in my recent paper published 
in Spatial Demography (Raymer et al. 2020), data on age-specific rates of fertility, 
mortality and migration (interregional and international) for subnational populations 
may not be available or measured appropriately for demographic accounting; they 
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come from different sources (censuses, vital registers, administrative sources). Indi-
rect estimation methods, such as combining data from multiple data sources, may 
be used to overcome some of these problems. They may also be used to estimate 
detailed components of demographic change for small areas or subpopulations (for 
example, by citizenship status or skill level).

2.3  What Should We Focus on in the Future?

We need to further advance our models for spatial demography. Ideally, this would 
involve integrating recent developments in spatial dependency modelling into the 
multiregional demography framework (see, e.g., Rogers, 1995, 2020). While fixed-
rate multiregional models have been useful for understanding the mechanisms of 
interacting subpopulations and the implications of particular rates within a system, 
they are often considered unrealistic or impractical for planning. Thus, we also 
require flexible models that account for uncertainty. This is a challenging issue but 
an important one, especially when estimating the demographic components of popu-
lation change for small population areas (Bryant & Zhang, 2019; Swanson & Tay-
man, 2012, p. 235). Accounting for the large number of correlations present in the 
data can make spatial demographic models complex and difficult to estimate. The 
correlations include those across ages, cohorts, over time and space. Moreover, with 
migration, there are often correlations in the counter flows—that is, migration from i 
to j is related to migration from j to i.

In conclusion, I believe we need invest in research that brings together spatial 
thinking and demographic thinking. Too often we analyze the spatial patterns but 
not the underlying mechanisms of spatial change. This needs to change for us to 
truly understand spatial demographic processes and how they evolve over time.

3  Advances in Global and Local Spatial Methods during the Past 
Decade and Future Needs

Tse-Chuan  Yang

Since the specialist meeting in 2011 several developments in spatial econometrics 
and geographically weighted regression (GWR) have occurred. However, challenges 
remain for spatial demographers. In this commentary, I first discuss the advances in 
both global and local spatial statistical methods and then elaborate on areas I hope 
will improve in the decade ahead.

A global spatial analysis perspective aims to tackle spatial dependency embed-
ded in ecological data by including a spatial lag or spatial error term in a model. 
Spatial econometrics models are, arguably, the most popular methods (LeSage & 
Pace, 2009) but their heavy focus on a continuous dependent variable is a major 
shortcoming. While the Bayesian modeling approaches and software programs (e.g., 
WinBUGS) allow discrete dependent variables (Lunn, 2000), the analysis is often 
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time-consuming and not compatible with other statistical software. Nonetheless, the 
development of integrated nested Laplace approximations (INLA) (Rue et al. 2009) 
in the past decade not only improves computational efficiency of Bayesian mode-
ling but also facilitates the applications of spatial econometrics (i.e., spatial autore-
gressive model) to non-Gaussian dependent variables (e.g., Poisson and Negative 
Binomial distributions). The R-INLA package (Martins, 2013; Rue, 2017) is well 
integrated with other spatial modeling libraries in R (R Core Team, 2014) and pro-
motes generalized spatial econometrics modeling with an emphasis on random and 
spatially structured errors across space (Krainski, 2018). As many health or popula-
tion outcomes do not follow a Gaussian distribution, such as infant deaths or con-
firmed coronavirus disease (COVID) counts, empowering spatial demographers to 
specify a model that fits the distribution of the dependent variable should minimize 
the potential bias in parameter estimation and statistical inference.

Another advance in spatial econometrics is the examination of the belief that spa-
tial regression results are sensitive to the choice of spatial weight matrix (W). Using 
simulations, LeSage and Pace (2014) argue that this common belief is a myth, for 
two reasons. First, researchers are reluctant to attribute the changes in spatial regres-
sion results to their model misspecification and the choice of W becomes an easy 
target. The second reasons is the misinterpretation of spatial econometrics models 
with a spatial lag term (e.g., spatial lag or spatial Durbin models). Most research 
using these models has interpreted the coefficient estimates as if they are partial 
derivatives reflecting the net impacts of other independent variables on the depend-
ent variable. However, this interpretation is incorrect (LeSage & Pace, 2009) and 
only recently has this issue been discussed in empirical papers (Mussa et al. 2017; 
Yang et al. 2015). LeSage and Pace’s work does not provide a definitive conclusion 
but it serves as an important step in helping spatial demographers to carefully think 
about the meaning of W.

A local spatial analysis perspective aims to investigate spatial heterogeneity, 
which refers to the unequal relationship between an independent and a dependent 
variable across space (Fotheringham et al. 2003). GWR has served this aim, despite 
criticisms about multiple testing and multicollinearity among local estimates (Grif-
fith, 2008; Wheeler & Páez, 2010). Some advances in GWR are notable. First, sem-
iparametric GWR allows both global and local independent variables to co-exist in 
a model (Nakaya, 2015). And, Multiscale GWR (MGWR) removes the restriction 
that all independent variables must share the same bandwidth (Fotheringham et al. 
2017), which offers the flexibility to examine if the impact of one independent vari-
able on the dependent variable is more localized than that of another independent 
variable. Second, quantile regression has been integrated into the GWR framework 
(Chen et al. 2012), which is known as the geographically weighted quantile regres-
sion (GWQR), and the bootstrap approach to statistical inference minimizes the con-
cerns about multiple testing and statistical inferences (Chen et al. 2020). GWQR is 
particularly relevant to demographic and health research because the mean value of 
a distribution may not be of researchers’ interest. For example, with GWQR, obesity 
researchers can answer the question of how an independent variable is associated 
with body mass index (BMI) ranging between 25 and 30 (i.e., overweight), rather 
than the mean value, across the study region.
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Although both global and local spatial statistical methods have experienced sig-
nificant improvement since 2011, several challenges in spatial demography remain. 
First, and foremost, methodological advancements seem to outpace theoretical 
developments, specifically the lack of theory from an ecological perspective (How-
ell, Porter, & Matthews, 2016). Most theories related to demographic and health 
outcomes are based on individual perspectives and directly applying these theories 
to an ecological analysis is problematic (i.e., the ecological fallacy). It becomes crit-
ical for spatial demographers (and more broadly social scientists) to develop spatial 
theories based on the ecological data. Some actions may help overcome this chal-
lenge, such as encouraging the publications of descriptive findings and engaging in 
a discourse on how collective individual behaviors/relationships could be reasonably 
translated to ecological associations. Second, compared to a decade ago, longitudi-
nal ecological data have become more readily available. However, relatively little 
effort has been made to improve the analysis of spatial panel (or spatiotemporal) 
ecological data (cf. Millo & Piras, 2012). While many sociodemographic variables 
may not change rapidly from one year to another, bringing the temporal dimension 
into spatial analysis should offer a better understanding of spatiotemporal dynamics, 
which goes beyond the descriptive trends across space and time, respectively.

Third, as discussed previously, the generalized spatial econometrics models are mainly 
for spatially structured errors, there is a need to develop software programs (and methods) 
that can implement the generalized spatial econometrics models with a spatial lag term 
under the Bayesian statistics framework, such as spatial Durbin model for discrete vari-
ables. Should this gap be filled, spatial demographers will have an extensive toolbox for 
global spatial analysis. Last, but not the least, spatial demographers should consider how 
to meaningfully define W, instead of using the conventional geographical adjacency or 
distance. For example, in light of the ongoing COVID pandemic, the flows of essential 
workers among areas (e.g., from their residential to working areas) should provide more 
information about how the disease transmits across space than the conventional first-order 
Queen or nearest-K neighbors. More is needed from spatial demographers to justify or 
even theorize on the use of W.

Spatial demography has benefitted from developments in spatial statistical methods in 
the past decade. Should the four areas or gaps discussed above be filled in the next ten 
years, spatial demographers will create a stronger connection between theory and method 
and be in a better position to advocate the importance of space and time in the field.

4  The Future of Spatial Demography: Advances in Statistical Models 
that Support Spatial Demography Inquiry

Ezra  Gayawan

Interests in the field of spatial demography has grown rapidly, largely due to the avail-
ability of spatial and spatiotemporal data, advances in methodology, and in com-
putational tools. Researchers in a wide range of fields increasingly work with geo-
referenced data and there are now a growing number of applications examining 
spatial processes in fertility, mortality, migration, health, and their determinants 



 S. A. Matthews et al.

1 3

in developed and developing countries. Regional disparities in developmental pro-
grams across developed and developing nations have also been of concern to ana-
lysts interested in spatial modeling. This is because when developmental measures 
are placed on maps, they reveal opportunities for identifying location-specific inter-
vention programs, making them appealing. In Africa, the use of spatial methods in 
demographic and health studies has started to take root.

Most of the statistical methods underlying spatial models are extensions of the 
familiar statistical techniques including regression and time series models. Except 
in some cases where the models are allowing for the classical inferential methods, 
the estimation procedures are often based on Bayesian techniques; due to advances 
in speed and algorithm development particularly the further development of Markov 
chain Monte Carlo (MCMC). The MCMC method allows for flexibility in fitting 
hierarchical models, thus, giving room for different approaches of conceptualizing 
spatial patterns and processes. Further, most of these techniques are implemented in 
code-oriented software such as R. Some demographers and social science research-
ers with little background on statistical and computational methods tend to shy away 
from these methods (rather than confront their fears). However, there are an exten-
sive catalog of useful texts with practical examples that allow interested research-
ers to link statistical theories to data problems especially those pertaining to spa-
tial modeling. Most texts come with R-code that can easily be modified or serve as 
building blocks for modeling real life spatial data, thus aiding our understanding 
of phenomena of interest. Books I have found to be extremely useful in this regard 
include Blangiardo and Cameletti (2015), Fahrmeir et al. (2013) and Moraga (2020).

African researchers’ involvement in spatial demography and disease mapping has 
seen the publications of several useful contributions. In particular, the publication, 
in 2014, of the edited book, “Advanced techniques for modelling maternal and child 
health in Africa” (Kandala & Ghilagaber, 2014) combines both theoretical meth-
odologies and empirical applications of hierarchical spatial models to demographic 
and health data from several African countries, covering a range of models from 
both classical and Bayesian techniques. Several chapters discuss model formulation 
using geoadditive predictors, which embrace regression models such as generalized 
additive models (GAM), generalized additive mixed models (GAMM) and stepwise 
regression model. The majority of the authors reside and work in Africa and have 
continued to advance the methods presented in the book through their teaching and 
research. The book itself has continued to serve as a reference point for spatial mod-
eling by African scholars.

My journey into spatial demography was motivated by Fahrmier and his col-
leagues, who made extensive contributions to statistical methods generally described 
as “structured additive regression models (STAR)” (Fahrmeir et al. 2004; Henner-
feind et  al. 2006; Kneib & Fahrmeir, 2006). These methods extend the classical 
regression model by offering a comprehensive approach that enables the simulta-
neous modeling of predictor variables of different types including nonlinear effects 
of metrical covariates, spatial correlation, and heterogeneity, and the linear fixed 
effects of categorical variables while the response variable of interest can take on 
one of several distributions especially those commonly encountered in demography 
and health studies, thus, encompassing different kinds of regression models. The 
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initial method development has seen applications in estimating the levels of differ-
ent demographic and health phenomenon of interests. However, recent extensions 
allow the estimations of more interesting spatial attributes of the data such as the 
variances, standard deviations or other parameters of interest as seen in some recent 
applications (Gayawan, Fasusi, and Bandyopadhyay, 2020; Somo-Aina & Gayawan, 
2019). Though, as with other methods, the estimation procedures are based on fully 
Bayesian approaches. There are textbooks aimed at readers with average statistics 
backgrounds to understand these concepts and their applications (see Fahrmeir et al., 
2013; Fahrmeir & Kneib, 2011 and the reference list). These authors have made 
available data and code to illustrate their methods and this should enhance knowl-
edge dissemination among demographers seeking to apply regression-based models 
to spatial data. Though there are R packages such as R2BayesX and BayesX that 
enable easy implementations of STAR models in R, the software BayesX – Bayesian 
Inference in Structured Additive Regression Models (Belitz et al., 2015) freely avail-
able at www. bayesx. org, not only implements the methods but also provides easy-to-
understand examples in its tutorial manual.

The approximate Bayesian inference for latent Gaussian models, a subset of the 
STAR model as implemented through the integrated nested Laplace approximation 
(INLA), a deterministic algorithm proposed by Rue et  al. (2009) is another inter-
esting statistical methodology that may appeal to demographers interested in spa-
tial applications. A useful feature of this method is that it lessens computation bur-
den especially when the estimation involves models with high spatial and temporal 
resolution. Unlike the Bayesian inference through MCMC that sometimes leads to 
several days of computing time, the INLA approach, implementable through the R 
package R-INLA (www.r- inla. org) provides accurate and fast results. The method is 
exceptionally suitable for both areal and point reference data. The later applications 
arise when observations are measured at finite set of specific points in a given region 
and the interest is to generate a continuous spatial field and also to predict values at 
unobserved locations or in identifying areas where the risks of exceeding potentially 
harmful threshold is higher.

With the growing advancement in methodological and computational tools cou-
pled with the increasing georeferenced data, it behooves one to note that the field of 
spatial demography is continually evolving. Its future will be written by those who 
take early advantage of available resources and get involved. Rigorous training in the 
form of workshops and short courses seldom organized for African researchers are 
now needed than ever before. These would supplement the rare in-depth demogra-
phy training offered by the few institutions with the in-house capacity, though these 
usually do not included adequate syllabi on spatial analytical techniques (Matthews, 
2016). There are many evolving areas of future applications of spatial demography 
that could help in monitoring and evaluation of developmental programs particularly 
the Sustainable Development Goals (SDGs) at more localized levels as this would 
provide evidence for multi-sectorial policies.

http://www.bayesx.org
http://www.r-inla.org
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5  The Past, Present, and Future of Spatial Demography in Southeast 
Asia

Sayambhu  Saita, Sai Thein Than  Tun, Daniel M.  Parker

Demographers have been considering elements of geography since the onset of 
demographic research (Voss, 2007). However, formal training in spatial analy-
ses in demography has expanded in recent years; likely a result of newly available 
data, computational and statistical capabilities, and general growing interest among 
demographers (Matthews & Parker, 2013). In this short commentary we briefly 
explore the history of demography in Southeast (SE) Asia. We aim to be inclusive of 
the region, but our experiences and knowledge have largely been centered on main-
land SE Asia (including Myanmar, Thailand, Lao People’s Democratic Republic, 
Cambodia, and Vietnam) and so we admittedly draw most heavily on these places in 
our examples and discussions. We close by discussing the current state of data col-
lection and analytic training that is available in the region. We argue for the collec-
tion and distribution of better demographic data as well as for equity in the training 
of spatial demographic analytic approaches.

5.1  Demography and Spatial Demography in SE Asia

SE Asia is home to diverse populations, geographies, cultures, and environments 
and has experienced immense change over the last century. Demography, including 
collection and use of geographically referenced population data, has a long history 
in SE Asia. The bulk of this demographic work has historically been for practical 
purposes and with an “applied” emphasis. The ancient kingdoms of the region kept 
census data and occasionally sent reconnaissance teams to report on populations in 
less well-documented regions (frequently in buffer zones between kingdoms) (Wil-
son & Hanks, 1985). Western experts in demography and statistics came with impe-
rialism and colonialism in much of SE Asia.

In 1950–1955 total fertility for SE Asia was approximately 5.93, with Viet Nam 
having the lowest Total Fertility Rate (TFR) (5.4) and the Philippines having the 
highest (7.4). Today the situation has changed drastically, with the region having 
an estimated TFR of 2.22, the lowest in Singapore (1.2) and highest in Timor-Leste 
(4.1). The TFR decline has been heterogeneous across the region (World Popula-
tion Prospects, 2019). Singapore experienced the decrease in TFR quicker than other 
nations, followed by Thailand and Malaysia while Lao People’s Democratic Repub-
lic (PDR) and Cambodia experienced a lag in the fertility transition. Extreme subna-
tional heterogeneity (especially between rural and urban areas) also exists in fertility.

Declining fertility and increasing life expectancy have led to an overarching 
change in the population structure, and to major changes in leading causes of dis-
ease, delayed marriage, changes in frequency of cohabitation, postponement of par-
enthood, high divorce rates, and the size of the working age population (Prasartkul 
et  al., 2019). For example, young skilled workers have been considered to be an 
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essential component of regional plans for a rapid economic catch-up process over 
the last three decades. However, with an aging population it becomes increasingly 
necessary to depend on labor from high fertility areas; including nations that have 
not yet fully transitioned or subnational areas with continued high fertility (i.e. rural 
areas). Migration is therefore a major spatial demographic attribute of the Southeast 
Asia region (Rigg, 2013), with migrants from nations with lower economic oppor-
tunities moving toward wealthier nations, and those from poorer rural areas moving 
into urban areas.

All of these standard demographic processes (birth, death, migration) exhibit spa-
tial and temporal heterogeneity, as well as spatial dependencies, at multiple spatial 
scales: regionally, nationally, and sub-nationally. Spatial demography is therefore 
crucial for understanding historical and current demographic patterns, for estimating 
demographic indicators and phenomena in poorly sampled subregions, and for peer-
ing into the future of the SE Asian demographic landscape.

Two major spatial demographic needs should be addressed for SE Asia: data and 
capacity.

5.2  Collection of Demographic Data

Thailand has one of the longest ongoing population census programs in the region. 
In 1905 a population census was undertaken, during the reign of King Rama V and 
under the administration of the Ministry of the Interior, though it covered only 12 
precincts out of a total of 17 administrative precincts. Some colonial authorities car-
ried out population censuses, though quality was frequently of questionable nature 
(French Indo-China, 1945; Hirschman & Bonaparte, n.d.). After independence, most 
nations established their own offices of statistics with one goal being to undertake 
and maintain population censuses. The United Nations has been instrumental in aid-
ing the collection, analysis, and dissemination of census data. However, regional 
and civil conflict, lack of resources, and difficulties in reaching some populations 
have meant that gaps remain in the data. In some cases, demographic health sur-
veys (DHSs) (U.S. Agency for International Development n.d.) or other targeted sur-
veys have been helpful in filling some data gaps (Corsi et al., 2012; Mutunga et al., 
2020). DHSs have been conducted in Cambodia, Indonesia, Lao PDR, Myanmar, 
Philippines, Thailand, Timor-Leste, and Vietnam. DHS programs tend to be limited 
in their spatial and temporal coverage, but often offer data that are collected at high 
spatial resolution that is useful for micro-level spatial demographic analyses.

Increasingly, mathematical modeling and geostatistical approaches have been 
used to estimate population distributions across the SE Asia landscape, including 
in areas where empirical data are scarce. Such estimates are extremely valuable, but 
are not a substitute for high quality census data. Some estimated population distri-
butions are at granular scale (Gaughan et al. 2013) but have several limitations. For 
example, where these datasets fill in important gaps in the data, validation of these 
estimates in remote areas and conflict zones is frequently not possible. Working 
with individuals from these areas can help to address some of these gaps, perhaps 



 S. A. Matthews et al.

1 3

especially with regard to data validation. As political and civil stability can be quite 
fluid, working with people from affected areas can also be useful for planning on-
the-ground data collection when it is feasible.

This importance of high-quality demographic data with granular spatial attributes 
cannot be overstated. There are no adequate demographic or epidemiological indica-
tors in the absence of proper denominators. Furthermore, given the age- and gender-
specific risks that are characteristic of many health outcomes, more detailed data are 
necessary (Leyk et al. 2019). Recent gridded data (from WorldPop, etc.) do include 
age and gender breakdowns (Tatem, 2017). However, even more disaggregated data 
are needed for application. Nation, province, and district level are far from sufficient 
for programs (family planning, public health, or otherwise) that ostensibly operate at 
more disaggregated units. Community-based clinics, for example, need population 
estimates (including age and gender) at the community scale.

While high quality population estimates exist for SE Asia, they should not be 
the default approach to demographic data. SE Asia has drastically changed in recent 
years and it is now possible to collect empirical data in places that were not pre-
viously reachable (Parker et  al., 2017). These data also need to be consistently 
updated, ground-truthed, and need to be usable at different geographic aggregations. 
Population registries with data that are continuously updated, similar to those in the 
Nordic countries (United Nations Economic Commission for Europe, 2007), could 
be a goal for which SE Asian nations aim.

5.3  Capacity Building for Spatial Demography in SE Asia

Examples of sophisticated spatial demographic work in SE Asia are numerous; too 
numerous to be adequately presented in a short comment. Included in this body of 
literature are research programs that were and continue to be cutting edge, including: 
detailed studies of the interactions between population settlements and environment 
(Walsh et al., 2005, Entwisle et al., 2008, Kermel-Torrès, 2020, Schönweger, 2012), 
sophisticated analyses of migration movements and settlements (Shao et al., 2008), 
novel approaches to measuring access to family planning services (Entwisle et al., 
1997, Rittirong et al., 2013), detailed work on changing fertility patterns in places 
where data are scarce (Schuster et al., 2019), and the generation of gridded popula-
tion estimates across the region (Gaughan et al., 2013.) This list is not exhaustive, 
but rather is meant to illustrate the wealth of spatial demographic work that has been 
done in this region.

Nevertheless, shortcomings remain. While high resolution data are available for 
some nations (e.g. village level for Lao PDR), the data are much more course in 
other, neighboring nations (e.g. only region or state level for Myanmar). The factors 
that drive the heterogeneity in the granularity and even quality of data across the SE 
Asian landscape are numerous, fluid, and complex. Economic capacity is a major 
driver, with limited funds limiting laborious data collection, cleaning, and manage-
ment. Conflict and difficulties in accessing some locations also drives these prob-
lems. Concerns with regard to confidentiality and other political sensitivities may 



1 3

Looking Back, Looking Forward: Progress and Prospect for Spatial…

also lead to the diminished availability of demographic data for small geographic 
units.

Furthermore, much of the sophisticated spatial demographic research in SE Asia 
has been led by researchers who are neither from, nor based in, SE Asia (though 
typically at least including SE Asian authors). This issue is echoed in other fields 
where international work is common, and has recently gained much attention in 
Global Health (Iyer, 2018; Sheikh et al., 2017). While this issue is often framed as 
one that exists between high income nations and low- or middle-income nations, 
disparities in spatial demographic research capacity also exist between and within 
SE Asia nations. As an example, Thailand has a well-established system to record 
demographic data and celebrated the 100th anniversary of the official census in 
2010 (National Statistical Office: Thailand, n.d.) while Myanmar restarted its census 
in 2014 after 30  years of hiatus (Population Censuses in Myanmar, n.d.). Several 
population research and training centers exist in the region, including: the Institute 
for Population and Social Research, Mahidol University, Thailand; the College of 
Population Studies, Chulalongkorn University, Thailand; the Singapore Population 
Health Studies, Saw Swee Hock School of Public Health, Singapore; Population 
Studies Unit, University of Malaya, Malaysia; Biostatistics and Population Stud-
ies, University of Indonesia; and the Population Institute at University of the Phil-
ippines. These centers tend to be located in relatively wealthy nations in SE Asia. 
Even within nations that have high capacity for collecting and analyzing spatial 
demographic data, research programs tend to be centered in major metropolitan 
areas, with occasional research programs that focus on rural populations but often 
fail to include rural people as researchers.

Likewise, training programs, including workshops that focus on sophisticated 
spatial analytic approaches, do exist and occur in the region. They are often located 
in major institutes in urban centers, with the bulk of trainees also coming from large, 
prestigious institutes and from urban centers. While high quality, open source and 
free analytic software are now widely available—many of these training programs 
continue to use proprietary and frankly expensive software systems. This practice 
puts trainees without sufficient financial resources, or without ties to institutions that 
can pay the needed fees for such software, at a major disadvantage. Whereas it once 
could be argued that these expensive software systems were necessary for conduct-
ing more sophisticated analyses, at this point it is more likely to be based on trainer 
preferences. Free software systems such as the R statistical software system (R Core 
Team, 2014), Quantum GIS (QGIS.org, 2021), GeoDa (Anselin et  al., 2010), and 
CrimeStat (National Institute of Justice, 2019) (and more that we have not listed) 
are together capable of most sophisticated analytic approaches. Training of spatial 
demographers in low and middle-income nations and regions should now use these 
types of systems.

Ultimately, what is needed are training programs and systems that offer to train 
students in sophisticated analytic approaches, are accessible to all, and which use 
statistical and geographic information systems software platforms that do not require 
fees (which only exacerbate the problem in economically poor regions and subre-
gions). We recommend an equitable approach to spatial demography in SE Asia, for 
a variety of practical and moral reasons. Training for the next generation of leaders 
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in spatial demography of SE Asia should be inclusive of folks from SE Asia, and 
importantly from parts of SE Asia that have historically been underrepresented in 
the literature and field. Doing so will likely lead to stronger research output, with 
deeper understandings of the contexts of places, with an enhanced ability to prob-
lem solve data collection and the interpretation of complex analytic results, and for 
ensuring that strong data collection and analysis continues well into the future.

Figure 1 Responsive organization and data available for the national censuses in 
SE Asia.

6  Revitalizing Urban Research: What Is The Future Role 
of Demographers?

Deborah  Balk, Stefan  Leyk, Mark  Montgomery

Over the foreseeable future, a steadily rising proportion of the world’s population 
will be coming to live in geographically small, high-density communities—that is, 
in cities and towns. Urban places are not only clusters of high population density: 
They exhibit similar densities in physical and human capital, educational and health 
facilities, and the levels and units of government. If access to beneficial resources 
could be measured by geographic distance alone, then urban residents would 
enjoy a decided advantage. But especially in large cities, neighborhoods range 
from the comfortably advantaged to the distressingly disadvantaged; the residents 
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of disadvantaged neighborhoods can be socially and economically excluded from 
resources that may be no more than a stone’s throw away. Urban spaces are also 
crisscrossed by a great variety of social, economic, and transport networks that con-
nect people inhabiting different neighborhoods, workplaces, and residences. The 
possibilities for social linkage thus depend on resources situated across an array of 
physical sites.

Viewed in this way, cities and towns of various sizes and forms offer multiple 
opportunities for the fine-grained, multi-level analyses at which demographers excel. 
And yet, apart from the Chicago School demographers who have mainly studied the 
cities of high-income countries, very little of the field’s attention has been directed 
to urban communities elsewhere in the world. This is, frankly, inexplicable. The vast 
majority of the world’s upcoming population growth is projected to take place in the 
cities and towns of low- and middle-income countries. Spatially-detailed empirical 
measures of the urban–rural continuum and connectivity have been flooding into 
the literature over the past decade, enriching the possibilities for understanding and 
modeling behavior across the full range of rural and urban landscapes. In poor coun-
tries, large within-urban and urban–rural differentials have already been documented 
in demographic behavior and outcomes, including age at marriage, fertility, use 
of contraception and unmet need, rates of abortion, children’s education, and both 
infant and child health and mortality (Montgomery et  al., 2003). Across all these 
dimensions, the situations of the urban poor more closely resemble those of rural-
dwellers than the urban non-poor.

Little is yet known, to be sure, of the roles that might be played by neighborhoods 
and social networks in these demographic domains. The prominence of migrants 
and the residentially mobile in the urban scene—people whose ideas and resources 
are drawn from life-experiences in multiple places—adds to the analytic challenge. 
Perhaps as many as half of those forcibly displaced by civil strife or environmental 
disruption eventually make their way to slums and poor urban communities (Forced 
Migration Review, 2020), and from them there is doubtless much to be learned 
about shocks, adaptation, fragility, resilience, and mental health. From a demogra-
pher’s point of view, it is hard to survey this panorama of issues and imagine a more 
inviting scientific prospect. Yet to date, demographers seem to have declined the 
invitation.

In 2015, in the introduction to a special issue in this journal echoing many of 
the same themes (Balk & Montgomery, 2015), we called on demographers and 
allied social scientists to reappraise their concepts, methods, and data in order to 
improve the fit between our disciplines and the emerging demographic realities 
(Montgomery & Balk, 2011). While some positive changes have occurred—nota-
bly in the improvement of sampling frames in major survey programs to capture 
slum-dwellers, and the continued commitment to providing geospatial data on both 
survey respondents (albeit with intentional dislocation that compromises analytical 
use in urban areas) and small census units—the major changes of the past decade 
have taken place outside demography proper. Geographers, remote-sensing experts, 
geophysicists, and ecologists have made great progress in improving models and 
data on the spatial extents of the human built-up environment and its interactions 
with non-human environmental processes (Leyk et al., 2020; McDonald et al., 2011; 
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Pesaresi et al., 2016; Small, 2020; Small et al., 2018; Montgomery et al. in press). 
Epidemiologists have drawn on mobile-phone and social media data to trace out 
social networks and approximate short-term migration flows (Tatem, 2014). It is 
now far easier than it was a decade ago to describe within-urban environments using 
resources such as OpenStreetMap (e.g., Barrington-Leigh & Millard-Ball, 2020; 
Boeing, 2020). These new data enable the shifting boundaries of urban spaces to be 
delineated in far greater detail than was previously possible, and shed much-needed 
light on the interior organization of these spaces.

Apart from the use of mobile-phone data, less has been accomplished with 
regard to social and economic networks, and little progress is evident on migration 
and residential mobility. Clearly, much remains to be done. In our view, however, 
the first-order priority is to establish the spatial frame within which urban demo-
graphic behavior takes place. In an earlier commentary (Balk, 2011), we argued 
that the demographic study of urbanization requires that demographers and allied 
fields adopt spatial tools and methods as their own, beginning by integrating key 
geographic concepts in their thinking. While spatial approaches are becoming more 
widespread (Balk et  al., 2018; Donaldson & Storeygard, 2016; Henderson et  al., 
2012), especially in studies on the interactions of population and the environment 
(Kugler et al., 2019; Liu & Balk, 2020), they remain far from commonplace and are 
mostly implemented by researchers from allied social science disciplines.

With respect to studying urbanization, not only have great strides been made 
outside the population sciences on the spatial delineation (and change thereof) of 
the built-environment (Corbane et al. 2019; Gao & O’Neill, 2020; Uhl et al., 2021), 
but because demographers have largely been quiet in this domain, core concepts, 
data resources and models are evolving with limited benefit of demographic think-
ing (Leyk et al., 2019). It is something of a mystery why demography—a field that 
prides itself on its interdisciplinarity—has engaged in so few collaborations with the 
geographic, environmental and data sciences.

Given the above arguments, we propose the following:

1. Demographic training simply must cover and integrate spatial concepts, methods, 
data, and tools.

2. Demographers should engage with place-based constructs and processes, and 
make room in their thinking for urbanization alongside conventional demographic 
concerns such as aging, fertility, children’s education, migration, and mortality.

3. Demographic data collection for the twenty-first century needs to be re-imagined: 
sampling frames need to consider the full urban continuum, and be capable of 
disaggregation to the neighborhood level, so as to systematically address inequal-
ity, segregation and vulnerability within cities.

a. Ideally, the sampling frames of the twenty-first century should also align with 
and thus represent the natural environments (such as watersheds or coastal 
zones, which are expected to be under substantial change during this century) 
that are disproportionately home to or influenced by city dwellers (McGrana-
han et al., 2007).
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4. Demographic data along the urban continuum must be spatially rendered at appro-
priate scales, using best-practice methods to ensure consistency in their spatial 
and thematic properties, regardless of whether these data come from censuses, 
surveys, surveillance systems, or administrative records.

5. Recognizing that the study of urbanization is informed by both population and 
land-use perspectives, demographers working in this domain must go further than 
other population scientists in making spatial methods and data part of their craft 
and engage with the scientific communities now making tremendous progress in 
integrating remote sensing and population data (along with other ‘big data’).

There is some urgency to this call. Those engaged in work on the urban–rural 
continuum will continue to work without the full benefit of demographic insights 
so long as the demographic community continues to stand aloof. The potential for 
mutual gain is obvious: demographers would benefit from access to data more rel-
evant to urban well-being and urban structure and from the integration of spatial 
urban concepts; non-demographers would benefit from a fuller understanding of 
demographic processes and from the rigorous application of demographic analytic 
techniques to a wider array of accessible data. If such engagement can finally take 
place, it will surely produce a much richer and deeper understanding of our collec-
tive urban future.

7  Future Spatial Demography—A Critical Moment

Katherine J  Curtis

Spatial thinking and spatial analysis play a central role in most questions principal 
to demography. Many a scholar has convincingly asserted the inherent and explicit 
spatial nature of the events and processes studied by demographers (e.g., Entwisle, 
2007; Voss, 2007; Weeks, 2004). These phenomena are among the most socially 
relevant and, at times, highly political issues confronting populations and the par-
ticular places in which they are embedded, all around the globe. Now is clearly one 
of those times. Currently, we are confronting the global pandemic of COVID-19 
and, not unrelatedly, the on-going pandemic of systemic racism and the unjust vio-
lence it provokes. Demographers have much to say about both. My concern centers 
on what we demographers have to say, the means through which we generate our 
contributions, and precisely to which arguments we are contributing. I am calling for 
a critical evaluation of our dominant frames, and a critical reorientation of our field. 
Spatial demographers are uniquely positioned to lead this charge.

A decade ago, as a collective of specialists we spatial demographers identified 
the need to integrate spatial training into basic, required demographic coursework. 
Without such integration, advances in spatial demography will be stymied if not 
marginalized, pursued by a small choir who mostly sings to itself. The final report 
noted that the issue of training emerged in nearly every plenary and breakout ses-
sion, and highlighted the necessity of institutional level cooperation and investment 
for meaningful change in training (Matthews et al., 2012).
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I am among those in the choir who has worked to integrate spatial thinking and 
spatial analysis into demography. Taking a broad view on training, my efforts range 
from formal semester-long courses and several-day workshops, to on-going work-
ing groups and one-off seminars, to directing or contributing to graduate master’s 
and doctoral committees, to publishing in field journals. In each of these pursuits, I 
see a need for more theoretical development in spatial thinking, and I see push back 
and barriers to such development. It is among these needs and the obstacles to meet-
ing them that give rise to my broader concern about a lack of critical perspective in 
demography.

In my experience, at the core of the obstacles to spatial training is the dimin-
ishment of place-based questions and an instilled yet irrational fear of the ecologi-
cal fallacy. As a result, our field falls short in several, connected detrimental ways. 
First among them is that we fail to seriously engage in critical perspectives of place-
making and place-meaning. Consequently, our field perpetuates a scientific literature 
that pathologizes and stigmatizes places and populations systematically marginal-
ized by oppressive forces (i.e., those of the racist, classist, gendered, and heteronor-
mative types).

Second, and relatedly, we fail to identify appropriate and meaningful spatial units 
and scales. Consequently, we conflate the census tract or other arbitrary adminis-
trative units with socially or politically meaningful places. And, we do this despite 
continued work demonstrating the relevance of alternative units at different, related 
scales (e.g., Fowler et  al., 2016). We generate work that emplaces populations in 
statistically relevant polygons or centroids that do not readily translate into social 
landscapes within which power relations play out.

Third, we engage in implicitly spatial work as opposed to explicitly spatial work. 
Using the word “spatial,” spatial units of analysis, or robust standard errors does not 
equate spatial thinking, spatial theorizing, or spatial analysis. This issue is more than 
pedantic. It is an issue of study perspective, which determines the questions asked 
and the answers found.

Fourth, and closely linked to the previous failing, we have not taken seriously 
spatial heterogeneity as a conceptual centerpiece. As a result, we perpetuate univer-
salist assertions that mask systematic and predictable spatial differences in outcomes 
and their contributing forces. In doing so, we ignore diverse experiences, outcomes, 
and relationships.

Each of these failings amounts to a limited if not potentially harmful science. 
They have generated a science myopic in its understanding of the complex social 
world and, in turn, its capacity to address the problems confronting myriad and dis-
tinct places and their populations.

There is a way forward, and I am suggesting that it is through adopting a criti-
cal spatial demographic lens.6 This suggestion is neither new nor even radical, but 
rooted in the foundational work of scholars outside of demography. In my discipli-
nary home of sociology, critical race scholars have emphasized the work of W.E.B. 
Du Bois, which positions the color line as global, place-specific, and entrenched 

6 Earlier proposals for critical demography can be found in Horton (1999) and Massey (1999).
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in unequal power relations resulting from colonialism (Itzigsohn & Brown, 2020). 
Importantly for spatial demographers, Du Bois’s approach emplaces people in their 
historical and spatial contexts.

Du Bois’ work, and that by scholars informed by him (e.g., Zuberi & Bonilla-
Silva, 2008), works against the discipline’s normative treatment of Black people as 
problems. While not all demographers are sociologists, demographers are equally 
habituated in problematizing Black populations (and other populations of color) and 
the places they reside, even when the research is intended to address racial inequal-
ity. An example of this is the pathologizing narrative that dominates the literature 
addressing neighborhood effects on health. It is within Du Bois’s approach to com-
munity and urban studies that a potential pathway for spatial demographers exists. 
Here, guiding principles include studying local areas rather than national aggregates 
in order to capture heterogeneity in social environments and embedding populations 
within (historical) networks that make a place, its opportunities and its constraints 
(Itzigsohn & Brown, 2020).

Du Boisian ideas about heterogeneity and historical contexts draw parallels with 
the instrumental work of geographer Doreen Massey who similarly emphasizes spa-
tial heterogeneity and temporal dynamism, but challenges the gendered systems of 
meaning underlying scientific practice. Massey’s work reveals how particular ways 
of thinking about space and place are tied up with particular social constructions of 
gender relations, which can be extended to race relations, class relations, and other 
relations derived from social relations (Massey, 1994). Drawing from Massey, we 
can understand spatial relations and spatial processes as social relations taking a 
particular geographical form (see Neely & Samura, 2011). Massey argues for the 
consideration of the local, specific, concrete, and descriptive, which is opposite of 
the universal, abstract, and generalizing science. She asserts the former approach 
is coded feminine while the latter is masculine, and this symbolic association gives 
rise to the devaluation of the former. This devaluation is among my list of our field’s 
failings.

Part of the way forward for spatial demography can be found in these founda-
tional sociological and geographical perspectives. Another part of the way forward 
is reconciling the ongoing influence and limiting perspective of the Chicago School 
in spatial demography. Each of the failings I identify are linked to this school of 
thought and practice. I, myself, was trained under the Chicago School doctrine, yet 
I come from a place that cannot be adequately represented through this lens. This 
doctrine promotes an ahistorical, universalist perspective that excludes differences, 
agency, and delegitimizes alternative standpoints (Itzigsohn & Brown, 2020). What 
we need is a framework shift that incorporates the socio-historical forces that make 
and give meanings to place, reflects on appropriate spatial units and scales, is explic-
itly spatial in its theory and methods, and builds from a spatial heterogeneity orien-
tation. Such a pathway might lead us to answering questions that matter for the pop-
ulations and places we spatial demographers presume to understand and empower.
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8  Measuring the Patterns of Segregation: A Decade of Progress

David W. S.  Wong

In “Perspective on Future Directions for Spatial Demography” written for the 2011 
Specialist Meeting, I proposed future research directions in three intersecting areas 
in spatial demography-population geography: measuring spatial segregation, spatial 
pattern analysis related to scale, and the use of American Community Survey (ACS) 
data. This commentary provides a casual assessment on the progress made in these 
areas in the past decade.

Two recent reviews of segregation measurement I was involved in focus on the 
technical aspects in measuring segregation from a spatial perspective (Oka & Wong, 
2019; Yao et al., 2019). They did not touch upon Phillips’s call for “a critical look at 
how geographers and others have conceptualized, measured and interpreted patterns 
of segregation.” (Phillips, 2007, p. 1139). In another review focusing on spatializing 
segregation measures (Wong, 2016), I questioned the validity of existing conceptual 
foundations of segregation measurement, which has been dominated by the three-
decade-old segregation dimensions proposed by Massey and Denton (1988). While 
we have been trying to develop more effective measures to differentiate the spatial 
arrangements of different population groups, the meanings of segregation need to 
be interrogated further. What does the term “segregation” really mean despite being 
used in various contexts? Among all the dimensions, clustering seems to be closest 
to people’s perception of segregation. A concept related to clustering is spatial auto-
correlation (SA) and segregation studies have employed SA measures (e.g., Brown 
& Chung, 2006). Do all these measures, spatial and aspatial, based on multiple con-
cepts really reflect segregation or something else? Segregation is often regarded 
as undesirable because when people are separated spatially, they are assumed to 
be unequal (Goldsmith, 2003). But what if separated but equal? Would it be more 
effective to focus directly on the unequal outcomes rather than on segregation—a 
surrogate? We occasionally raised these substantive questions, but we have not made 
much progress in sorting them out.

On the other hand, the research community gradually recognized the multi-fac-
eted nature of segregation. Measuring segregation in a single geographical or social 
context such as residential, work or school space only is no longer sufficient. The 
importance of residential space should not be undermined but nonetheless, it is just 
one of many sociocultural spaces, and exposure to other population groups beyond 
the residential space should be accounted for (Wissink et al., 2016; Wong & Shaw, 
2011). After 2011, many segregation studies adopted an activity-space approach, 
considering the mobility patterns of individuals beyond the residential space (e.g., 
Farber et al., 2015; Kwan, 2013; Wang & Li, 2016). We now have a view of segre-
gation more comprehensive than decades ago, and research is no longer confined to 
the ecological or areal-based approach. Instead, more studies have relied on individ-
ual-level data.

Individual-level data come from at least two major sources of different nature. 
Due to the release of historical census data, individual census records are available, 
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supporting historical and temporal population and segregation studies at very high 
spatial resolutions (Logan et  al., 2011, 2015; Páez et  al., 2014). Another type of 
individual-level data are mobility data, including geo-referenced social media and 
mobile phone data (e.g., Blumenstock & Fratamico, 2013; Silm & Ahas, 2014). As 
these data often include time stamps, the temporal dimension can be ingested into 
measuring segregation (van Ham & Tammaru, 2016). These individual-level spa-
tiotemporal trajectory data also play a role in stimulating research to address the 
stubborn geographical scale issue in measuring segregation, part of the MAUP. 
Measuring segregation also has taken the multi-level modeling approach (Fowler, 
2016; Harris, 2017; Jones et al., 2015; Manley et al. 2015), although some general 
ideas may be dated back to decades ago (Moellering & Tobler, 1972; Wong, 2003a, 
2003b). A closely related approach is the variable scale approach, which may be 
exemplified by the bespoke method supported by relatively fine-scale population 
data available in certain countries or through estimations (Clark et al., 2015; Östh 
et  al., 2014, 2015). To a large degree, these are sensitivity analyses depicting the 
changes in segregation level when size of neighborhood changes (Wong, 2005). 
Recognizing the scale-sensitivity of measuring segregation, coherent frameworks 
are needed to connect multiple geographical levels.

Adding to these methodological challenges has been the data quality issues. 
ACS has been the main source of socioeconomic and housing data in the U.S. since 
2004. Considering the estimate reliability is a major challenge in spatial analysis 
when using data from ACS and other population and health surveys, such as the US 
Census’s Current Population Survey (CPS), the US Center for Disease Control and 
Prevention’s Behavioral Risk Factor Surveillance System (BRFSS) data and the US 
National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) 
Program. During the past decade, researchers have made some headway in incorpo-
rating estimate error in geovisualizing estimates statistically (Kronenfeld & Wong, 
2017), determining class breaks in choropleth maps using simple statistical concepts 
(Sun et al., 2015, 2017) or sophisticated optimization methods (Koo et al., 2017; Mu 
& Tong, 2019; Wei & Grubesic, 2017), and measuring spatial autocorrelation (Jung 
et al., 2019; Koo et al., 2019). Therefore, we currently have some tools to analyze 
population survey data spatially with more honesty by considering error associated 
with estimates (Koo et al. 2018).

One development in the past decade is worth mentioning. Before 2010, applying 
the more sophisticated and spatial segregation measures was challenging as some 
measures required spatial operations not supported by generic tools (Wong, 2003a, 
2003b). After 2010, a series of effort relying on open-sourced tools has improved 
the situation. Apparicio upgraded his C#-based Segregation Analyzer to the R-based 
Geo-Segregation Analyzer (Apparicio et  al., ). Other R-based tools included the 
“seg” package developed by Hong et  al. (2014), and more recently the ambitious 
attempt by Tivadar (2019) with OasisR. On the Python track, a segregation mod-
ule was implemented in PySAL (Cortes et al., 2020). Now, we have no shortage of 
computational tools for measuring segregation. However, reliability of these tools 
should be tested thoroughly as in the case of testing spatial statistical tools (Bivand 
& Wong, 2018).
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Applying computational and data mining tools has been a major trend in the past 
decade, and some segregation studies also have taken on the data mining-analytics 
approach, letting data to drive the inquiries. It is important to ask if those studies are 
merely exercises to rehash the knowns or do they really advance our understanding 
of segregation.
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