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Abstract

The Go/No-Go paradigm is being used in various clinical
applications frequently. Besides, the sequential sampling
models have achieved much attention for modeling the
underlying processes of decision making. One of the most
successful sequential sampling models that is used also for
modeling the Go/No-Go paradigm is the drift diffusion model
(DDM). The major assumption of the drift diffusion model is
that the process of information accumulation is terminated by
reaching the boundaries. But this assumption has been argued
during the last years and some studies have confirmed that the
accumulation process continues after making a decision (i.e.
accumulator reaches the boundaries). The main constraint of
the drift diffusion model for modeling the Go/No-Go paradigm
is that it can not capture the ongoing information accumulation
after making a decision. This is important in the Go/No-Go
paradigm because when the participants decide to no-go they
should wait until finishing the trial and it is a good time for
continuing the information accumulation. In this paper, we are
going to develop a variation of the drift diffusion model which
is able to capture continuing the information accumulation
after making a no-go decision. The developed model is based
on substituting the lower boundary with a reflecting boundary.
This paper aims to introduce an alternative model for Go/No-
Go paradigm and after presenting a theoretical discussion on
the model behavior, mean first passage time, and the first
passage time distribution of the model, it is compared with the
previous DDM model.

Keywords: Sequential Sampling Models; Go/No-Go Task;
Reflecting Boundary; Drift Diffusion Model;

Introduction
There are many experiments in the clinical setup which are
based on Go/No-Go paradigm such as continues performance
task (Karalunas et al., 2018). The main difference of the
Go/No-Go paradigm with the 2-alternative forced-choice
paradigm (2-AFCP) is that in the 2-AFCP the participants
should do an action for both decisions (press a button for
each decision) but in the Go/No-Go paradigm the participants
should just do an action for the go decision and for the no-go
decision they should do nothing (Gomez, Ratcliff, & Perea,
2007). Therefore this paradigm provides a good framework
for diagnosing and rehabilitating impulsive behaviors, self-
control, and inhibitory control (Huang-Pollock et al., 2017).
Despite these clinical applications, the Go/No-Go paradigm
can not provide detailed information about the response time
distribution of No-Go decisions (Ratcliff, Huang-Pollock, &
McKoon, 2018). Thus, the main measurements of the Go/No-
Go paradigm are the go accuracy, no-go accuracy, and go

reaction time (Nejati, Salehinejad, Nitsche, Najian, & Javadi,
2020).

On the other hand, the sequential sampling models can
shed light on the underlying processes of the decision making
and provide additional information about what happens in
the brain during making a decision (Ratcliff, Smith, Brown,
& McKoon, 2016). There are various sequential sampling
models that can capture different underlying processes. For
example race diffusion model (pure parallel processing),
leaky competing accumulator model (lateral inhibition)
(Usher & McClelland, 2001), and drift diffusion model
(forward inhibition) (Ratcliff et al., 2016). But all models
have the same basic assumption which is starting sampling
from a random starting point z and continue the information
accumulation with a constant rate v until reaching the
threshold of the decision a (i.e. 0 and a in the DDM) (Ratcliff
et al., 2016). DDM has been also used for modeling the
Go/No-Go paradigm. In 2007, a DDM model has been
introduced for the Go/No-Go tasks (Gomez et al., 2007).
In this model, the researchers estimate the parameters of
the Go/No-Go DDM model based on the performance of
participants on 2-choice tasks. But this framework is not
suitable for clinical applications because the participants
should complete both 2-choice and Go/No-Go tasks and it
takes time. It is so important because usually, the Go/No-
Go paradigm is utilized for patients with some impulsive
behavior and also hyper activities. Thus, they can no
participate in many clinical experiments. So, a new DDM
framework has been introduced by Ratcliff et al. (2018)
which has the ability the estimating the parameters of the
DDM based on only the performance of the participants on
Go/No-Go tasks. There are several ways to model the Go/No-
Go paradigm using DDM. The simplest one is considering
only one threshold for the model (single boundary) (Gomez
et al., 2007). In contrast, there are some other ideas
for modeling the Go/No-Go paradigm that includes two
thresholds in the DDM (i.e. the no-go threshold is implicit)
and the model assumes the decision maker waits until the next
trial by hitting the no-go threshold. In these two threshold
models, the assumption is that there is a go bias in the
response pattern of the participants and the DDM should
capture this go bias. For this purpose, three assumptions have
presented: a) Starting point bias should be located closer to
the go threshold, b) A constant value should be added to the
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rate of accumulation for both go and no-go decisions which
cause an equal reduction in the no-go drift rate and increase in
go drift rate, and c) The reduction in the rate of accumulation
for no-go decision is greater than the increase for the rate
of accumulation for the go decision (Gomez et al., 2007;
Ratcliff et al., 2018). Additional to the mentioned patterns
which indicate the strategy of Go/No-Go is different from 2-
alternative forced choice, the non-decision time of these two
paradigms is different which is the result of the difference in
the execution time (Ratcliff et al., 2018).

Recently Evans, Dutilh, Wagenmakers, and van der Maas
(2020) have highlighted double responding phenomena as
a constraint of the sequential sampling models including
drift diffusion model. Based on this phenomenon, the
decision maker continues the sampling of information after
making a decision and may change his/her decision after
responding (Pleskac & Busemeyer, 2010; Rabbitt & Vyas,
1981). “Double responding” (Evans et al., 2020), “partial
error” (Burle, Spieser, Servant, & Hasbroucq, 2014), “error
correcting” (Rabbitt, 2002), and “change of mind” (Rabbitt
& Rodgers, 1977) are the keywords in the literature that
point to the same phenomenon which is continuing the
information accumulation process after making a decision.
This phenomenon is studied in 2-AFCP but it is reasonable
to explore it in the Go/No-Go paradigm. Because, in the
Go/No-Go paradigm, when the participants decide to no-
go they should do nothing for a while, and during this
waiting time, the accumulation process is still alive and can
accumulate more information. So, it is time for changing the
decision. Thus there is enough evidence for motivating us
to develop a model for Go/No-Go paradigm based on this
phenomenon. In other words, the main motivation of this
research is developing a sequential sampling model for the
Go/No-Go paradigm that has the ability to capture double
responses.

The rest of this paper is organized in the following order:
in the Model section, first, the lack of previous Go/No-Go
DDMs are discussed, and then a new DDM based on using
a reflecting boundary for the no-go threshold is presented.
After that, the mathematical properties of the model and
the parameter estimation of the model are presented in this
section. In the last parts of this section, the behavior of the
model in the parameter space and parameter recovery of the
model are illustrated. The Behavioral Data Analysis section
contains the fitting results of the model on a behavioral data
set. In the next section, a discussion on the model is presented
and finally, in the last section, a conclusion is presented.

Model
From the computational point of view, the difference between
the Go/No-Go paradigm and 2AFCP is that no data is
recorded for the no-go decision and it is considered that if
the button is not pressed during a finite time interval, the
decision is no-go. The assumption of DDM for the no-
go decision is that when the accumulator hits the lower

boundary, the decision maker decides to no-go and the
information accumulation process is finished (Ratcliff et al.,
2018; Gomez et al., 2007). But the no-go decision can be the
result of making no decision. Moreover, the go decision can
be the result of a double responding process (i.e. first decide
to no-go and then decide to go). Thus, some processes are not
captured by the DDM models of Go/No-Go.

One of the missing cases is the one that the accumulator
does not reach the go or no-go thresholds, and the decision
maker does not make any decision during the time interval.
In this case, the response which is recorded is no-go but
the DDM model assumes all the processes of the no-go
decision are hit with the lower boundary. Therefore, the
model should capture alive processes at the end of the time
interval and consider them as the no-go response. The other
missing process that should be included in the model is
mind changing. When the decision maker decides to press
the button (go decision), by pressing the button, the trial
is finished and the stimulus disappears from the monitor.
In this case, if the decision maker wants to change his/her
decision, any data is not recorded and we can not model
this case without additional information. But in the case
of the no-go decision, the decision maker should wait until
the end of the time interval. Thus, there is enough time
to continue the accumulation process. By continuing the
accumulation process, three scenarios are possible. The first
one is sampling for the benefit of the no-go decision and
the decision of the decision maker does not change. The
second one is sampling towards the go decision and there is
enough time to reaching to the go threshold and the decision
maker changes his/her decision. So, in this case, a double
responding phenomenon has occurred but no data is recorded
for the first decision. The last scenario is sampling toward
the go threshold but there is not enough time for reaching the
go threshold and the time interval finishes before the second
decision. In this case, the recorded data is the no-go response
but the decision maker is not confident about his/her decision
(Pleskac & Busemeyer, 2010). The confidence index can
be used as a measure of how often the double responding
phenomenon is occurred in a Go/No-Go paradigm. Thus, it
could shed light on the underlying process of decision making
in a Go/No-Go paradigm.

Reflected boundary drift diffusion model

The traditional drift diffusion models have two absorbing
boundaries (i.e. lower and upper threshold). These
absorbing boundaries cause terminating the process when
the accumulator hits to one of these boundaries. The main
idea behind the developing reflected boundary drift diffusion
model (RBDDM) is substituting the lower absorbing
boundary with a reflecting boundary. The difference between
the absorbing boundary and the reflecting boundary is that
the process does not stop by hitting the reflecting boundary.
Thus if the formulation of the standard diffusion process is as
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below:
X(0) = z,
X(t +∆t) = X(t)+ v∆t + e

√
∆t e∼N (0,1),

stop, X(t)≥ a or X(t)≤ 0
, (1)

where e is the noise of accumulation, and the parameters
‘z’ is the starting point bias, v is the rate of information
accumulation, and a is the threshold of making a decision.
Additional to these three parameters, a parameter t0 should
be added to the model for non-decision time (i.e. encoding
and motor time). Based on the mentioned formulation for the
traditional DDM, the RBDDM can be formulated as below:

X(0) = z,
X(t +∆t) = X(t)+ v∆t + e

√
∆t e∼N (0,1),

X(t) = 0, X(t)< 0,
stop, X(t)≥ a or t = tend

(2)

where tend is the termination time of the trial and it is
considered as input of the model. So, the RBDDM has
four free parameters (v, a, z, t0) and one input parameter
(tend). The reflecting boundary prevents from finishing the
process when the accumulator hits to it until termination
time. In other words, the reflecting boundary behaves like
a wall. Figure (1) gives a good intuition about the RBDDM.
Some sample paths of the main processes of the RBDDM is
illustrated in this figure. These processes include go decision
with and without double responding occurrence, and no-go
response with and without making no-go decision.

Figure 1: The graph of six sample paths of the various
processes that can be generated by the RBDDM. p1:
the process of go response without double responding
phenomenon, p2: the process of go response with a double
responding phenomenon, p3: the process of no-go response
without making a decision and positive drift rate, p4: the
process of no-go response after hitting to the no-go boundary
and reflecting, p5: the process of no-go response without
making a decision and negative drift rate, p6: the process of
the no-go response with no-go decision.

It is worth mentioning that the RBDDM could be
considered as a general form of the Go/No-Go DDM because

the previous models only generate the processes p1 and p6,
but the RBDDM not only generates them but also generates
some additional plausible processes such as p2, p3, p4,
and p5. Additionally, the RBDDM can also model the
aforementioned go bias using the staring point bias parameter.
On the other hand, the nature of using a reflecting boundary
for the no-go threshold and an absorbing boundary for the
go threshold makes a go bias. Because even the accumulator
starts accumulating from the lower boundary (z = 0) there
is a chance for reaching the upper boundary before the
termination time. This property of the RBDDM will discuss
in the next part more.

Mathematical properties
The aim of this part is to mention some mathematical
properties of RBDDM. The expected exit time from (0,a)
starting at 0 < z < a, is the first property which is mentioned.
T (z) denotes this mean first passage time of the process
starts for z, and it is the solution of the following differential
equation (Gardiner et al., 1985):

vT ′(z)+
1
2

T ′′(z) =−1, (3)

with respect to the following boundary conditions:

T (a) = 0, T ′(0) = 0. (4)

The solution of (3) subject to (4) is as follow:

T (z) =
1
v

(
a− z+

1
2v

(e−2va− e−2vz)
)
. (5)

Based on this solution, it is concluded that the mean first
passage time of the process starting from the lower boundary
is T (0) = 1

v

(
a+ 1

2v (e
−2va− 1)

)
, and if v > 0 then we can

conclude that T (0) > 0, which means there is a chance for
go response even z = 0. But in the DDM if z = 0, then there
is no chance for go response, so, it implies that the reflecting
boundary adds a go bias to the RBDDM. On the other hand,
by tending z to a (i.e. z−→ a), T (z) tends to zero.

The other important property of the RBDDM which should
be presented is the first passage time distribution of the
process. If the process starts from z, the probability that the
process be still alive after time t is denoted by G(z, t) and can
be obtained by (Gardiner et al., 1985; Grasman, Onno, et al.,
1999):

∂

∂t
G(z, t) = v

∂

∂x
G(z, t)+

1
2

∂2

∂z2 G(z, t), (6)

with the following initial condition,

G(z,0) =

{
1, 0 < z < a,
0, o.w

, (7)

and the following boundary conditions:

G(a, t) = 0,
∂

∂x
G(x, t)|x=0 = 0. (8)
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Since the process is homogeneous, so G(z, t) also determines
the first passage time the process starts from z. Thus, by
approximating the solution of this Fokker-Plank equation,
the first passage time distribution of the RBDDM could be
obtained. But it is important to mention that there is some
analytical solution for the first passage time. The analytical
form of survival probability of this process can is as follows
(Goel & Richter-Dyn, 2016; Dybiec, Gudowska-Nowak, &
Hänggi, 2006):

S(t) =
2
a

e
v(−2z−vt)

2

∞

∑
n=0

[
(2n+1)π

2a (−1)neva− v

v2 +( (2n+1)π
2a )2

×cos[
(2n+1)πz

2a
]× e−

(
(2n+1)π

2a

)2 t
2

]
.

(9)

So, by considering the survival probability distribution as
above, the cumulative first passage time distribution, F(t),
and first passage time density function, f (t), can be obtained
easily by:

F(t) = 1−S(t), f (t) =− d
dt

S(t).

Moreover, the probability of the go and no-go responses can
be define as follows. Figure (2) illustrates the proportion
of the go response as the function of tend . As it is obvious
the proportion of go response increases by increasing the
termination time, tend .

Pno−go = S(tend), Pgo = 1−Pno−go.

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
tend

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

P G
o

v = 1, a = 2, z = 1
v = 1.5, a = 2, z = 1
v = 1, a = 2.5, z = 1
v = 1, a = 2, z = 1.5

Figure 2: Plot of go proportion as a function of tend for
different parameter values.

Qualitative model comparison
Two main models which are used to model Go/No-
Go paradigm are DDM (Ratcliff et al., 2018) and also
single accumulator race diffusion model (RDM) (Trueblood,

Endres, Busemeyer, & Finn, 2011). Figure (3) illustrates the
behaviors of these models besides the RBDDM. RBDDM
behaves similarly to the DDM when it has high drift rate
values or high boundary separation values. But it tends to
the behavior of the RDM when the relative the starting point
approaches to the lower boundary.
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Figure 3: Behavior of first passage time distribution of
RBDDM, DDM, and RDM for different parameter values.

Parameter recovery
Parameter recovery is one of the important parts of a cognitive
model. If the parameters of a model do not recover well,
the psychologists can not inference based on the obtained
values for the parameters (i.e the obtained values are not
interpretable). Thus, the parameters of a good model should
recover well. Various procedures of the parameter recovery
have been developed for the sequential sampling models
such as the maximum likelihood (Heathcote, Brown, &
Mewhort, 2002), Chi-squared (Ratcliff & Tuerlinckx, 2002),
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PDE method (Voss & Voss, 2008), hierarchical Bayesian
computing (Wiecki, Sofer, & Frank, 2013), and Monte-
Carlo simulation (Chandrasekaran & Hawkins, 2019). But
by the growth of the model complexity, obtaining the exact
likelihood function for the models becomes harder and the
previous methods can not be utilized and some more powerful
methods are needed. Recently, deep learning algorithms have
been used for estimating the parameters of the sequential
sampling models and several network architectures have been
developed by the researchers (Fengler, Frank, Govindarajan,
& Chen, 2020). The foundation of utilizing a deep learning
method for estimating the parameters of a model is simulating
the behavior of the model in the parameter space and
constructing a training data-set based on sampled data. Then,
the networks learn the behavior of the model in the parameter
space and map it to the parameter values of the model. The
developed networks consist of a part for feature extraction
which could be an auto-encoder (Radev, Mertens, Voss,
Ardizzone, & Köthe, 2020) or several convolutional layers
(Radev, Mertens, Voss, & Köthe, 2020). In our case, we have
utilized a deep inference neural network (Radev, Mertens,
Voss, & Köthe, 2020) with six convolutional layers for
estimating the parameters of the model. The training data
set includes 99000 sample data consist of 99000 RBDDM
experiments with 100 trials and 35640 sample data consist of
35640 RBDDM experiments with 200 trials. These numbers
of trials are chosen because the minimum number of trials for
the most of Go/No-Go paradigms in the clinical setup is 100.
But there are some clinical experiments such as CPT that need
much more trials. The simulated experiments have different
parameters that are sampled with the following priors:

v∼H N (1,3),

a∼ Gamma(2,2),

zr ∼Uni f orm(0,1),

t0 ∼H N (0.3,0.3),

where zr is the relative starting point bias and defines zr = z
a .

Moreover, the number of go trials varies between 50 to 100
and is obtained by 100×Uni f orm(0.5,1). The go trials
are simulated with a positive drift rate (v) and the no-go
trials are simulated with a negative drift rate (−v). Also,
the response time for the no-go responses is considered equal
to the termination time and the conditions of each trial are
stored too (+1 for go trials and−1 for no-go trial). Therefore,
the accuracy of each trial can be obtained by comparing the
response time and the condition. For the simulation of the
training data set, the time step is considered ∆t = 0.001,
and all simulations are done with termination time tend = 3.
Each convolutional layer of the deep inference network has 2
channels and the filter size of the layers are 64, 64, 128, 128,
128, 216 respectively. Figure (4) and Figure (5) illustrate the
quality of parameter recovery of the model with 100 and 200
trials.

Figure 4: The plot of precision of parameter recovers for
RBDDM with 100 trials.

Figure 5: The plot of precision of parameter recovers for
RBDDM with 200 trials.

As you can see, the drift rate, non-decision time, and the
relative starting point bias parameters can be recovered very
well in both data. Additionally, the recovery precision of the
threshold parameter is acceptable with 100 but it improves
when the number of trials increases.
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Behavioral Data Analysis
In order to test the performance of the RBDDM on behavioral
data, it is fitted on the collected data from twenty-four
children, between 7–12 years old (M = 9.25, SD=1.53) who
participated in a stop-signal task. All participants were
diagnosed with ADHD symptoms by a professional child
psychiatrist according to the fifth version of Diagnostic and
Statistical Manual of Mental Disorders (Edition et al., 2013).
In the stop-signal task, a plane appears at the middle of the
screen in one of the four possible orientations (up, down,
left, and right), as the go stimulus. The participants are
instructed to press corresponding arrow keys on the keyboard
as quickly and accurately as possible. In 50 out of 100 trials,
a beep sound is presented which serves as the stop signal,
and participants have to deny the response. Both DDM and
RBDDM have been fitted on this data set which resulted as
reported in Table (1).

Table 1: Estimated parameters for DDM and RBDDM.
Model a vgo vno−go zr t0 BIC
DDM 1.74

(0.24)
0.94
(0.52)

0.35
(0.26)

0.60
(0.08)

0.62
(0.23)

10722

RDDM 2.92
(0.87)

0.53
(0.19)

– 0.59
(0.10)

0.24
(0.06)

4484

The obtained BIC for the DDM and RBDDM yields that
the RBDDM is fitted on this data much better than the
RBDDM. The fitting procedure of the DDM is as same as
(Ratcliff et al., 2018) and the RBDDM is fitted by the mention
convolutional neural network in this paper.

Discussion
There are several discussion points about the RBDDM. The
processes that it captures, go bias modeling, fitting procedure,
and separate drift rate for go and no-go responses are the main
discussion points.

The type of processes that the model can capture is the
first discussion point. The presented model can generate
several processes that are not generated by traditional Go/No-
Go DDM. The main three processes that are not generated by
the DDM and the RBDDM has the ability to generate them
are a) the accumulator approaches the upper boundary but
it does not reach to the upper boundary b) the accumulator
approaches the lower boundary and it does not reach to lower
boundary c) the accumulator reaches the lower boundary
and reflects. On the other hand, the previous Go/No-Go
DDMs assume that the no-go decision is made whenever the
accumulator hits the lower boundary but in RBDDM, all alive
processes at the end of the time interval are considered as the
no-go response.

The second point of discussion is the way to model the
go bias. Previously three strategies have been introduced for
capturing the go bias in the model including starting point
bias, the bias in the drift rates, and bias and reduction in the
drift rates. But here, we have used only one drift rate for both

go and no-go decisions and the go bias is captured by adding
a reflecting boundary to the model and also locating starting
point bias closer to the go threshold.

The third point of discussion addressed the fitting
procedure. The previous fitting procedure that was used for
fitting DDM on Go/No-Go data, is the quantile chi-squared
method. By utilizing this framework, all the no-go responses
represent by one quantile and the go responses are presented
by five or nine quantiles. It is important to mention that
the fitting procedure can add some ad-hoc assumptions to
the model. For example in the case of using the quantile
chi-squared method for the Go/No-Go data, considering
only one quantile for the no-go responses yields the no-go
responses have a uniform distribution which is not a realistic
assumption. In contrast, the RBDDM considers all alive
processes at the termination time as the no-go response and
represents them by termination time, which does not add an
ad-hoc assumption to the model. Because the assumption is
the decision maker should persist on his/her no-go decision
until the termination time. As illustrated in this paper, the
RBDDM can be fitted better than the DDM model on the
behavioral data.

The last thing that should be discussed, is considering the
same drift rate for go and no-go responses. As mentioned
before, for capturing the go bias, the Go/No-Go DDMs use
separate drift rates for the go and no-go decisions. In fact,
the Go/No-Go DDMs include two separate drift rates in the
model and estimate them simultaneously. But in RBDDM, it
is assumed that the go drift rate is negative of the no-go drift
rate. This assumption adds one limitation to the model which
is the conclusion of the estimating problem in the no-go
drift rate in RBDDM. One of the solutions for this issue that
provides a possibility for overcoming this problem is utilizing
joint modeling. For example, it is possible to estimate the no-
go response time distribution by using eye-tracking or EEG
techniques which are out of the scope of this study and could
be the topic of some future researches (Turner, Forstmann,
Steyvers, et al., 2019).

Conclusion
In this paper, a new drift diffusion model for the Go/No-Go
paradigm was introduced which is based on substituting the
lower absorbing boundary of the traditional drift diffusion
model with a reflecting boundary. The model can be
considered as the general form of the previous Go/No-Go
DDMs. Moreover, the mathematical properties of the model
were discussed. A formulation for the mean first passage
time and a partial differential equation for the first passage
time distribution of the model were presented. Finally, the
parameter estimation of the model based on simulation study
was illustrated and it was shown that the parameters of the
model can recover well.

Code and Data Availability
All codes and the data of this paper are available online at
https://osf.io/chvqm/
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