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MINI-REVIEW

Cannabis and the Gut–Brain Axis Communication
in HIV Infection
Natalie L. Wilson,1,* Scott N. Peterson,2 and Ronald J. Ellis3

Abstract
People living with HIV infection (PWH) disclose that cannabis is an effective strategy for alleviating symptoms
associated with HIV disease. However, some medical providers feel ill-informed to engage in evidence-based
conversations. HIV leads to alterations in the gut microbiome, gut–brain axis signaling, and chronic inflammation.
The endocannabinoid system regulates homeostasis of multiple organ systems. When deficient, dysregulation of
the gut–brain axis can result in chronic inflammation and neuroinflammation. Cannabis along with the naturally
occurring endocannabinoids has antioxidant and anti-inflammatory properties that can support healing and res-
toration as an adjunctive therapy. The purpose of this literature review is to report the physiologic mechanisms
that occur in the pathology of HIV and discuss potential benefits of cannabinoids in supporting health and re-
ducing the negative effects of comorbidities in PWH.

Keywords: endocannabinoids; cannabis; gut–brain axis; HIV; microbiome

HIV and Cannabis
People living with HIV infection (PWH) often search
for ways to manage symptoms to improve their qual-
ity of life. Cannabis is an effective strategy for alleviat-
ing symptoms associated with HIV disease and with
other conditions such as cancer (i.e., nausea, sleep dis-
orders, musculoskeletal and neuropathic pain, anxiety,
and depression).1–7 Indeed, several meta-analyses of
clinical trials have established the effectiveness of can-
nabis for HIV-related neuropathic pain and nausea,1,8

although dosing and administration routes have varied
widely. Some studies suggest that titrating dosing to
effectiveness and side effects is a useful strategy for
dose selection.5

PWH disclose, to their health care providers and in
unpublished qualitative interviews (N.L. Wilson, C.
Ott, unpublished data), using community-acquired
cannabis to self-manage symptoms such as poor appe-
tite, gastrointestinal (GI) and sleep disorders, pain, or
to improve adherence to antiretroviral therapy (ART)
food intake requirements by increasing appetite (N.L.
Wilson, C. Ott, unpublished data).9,10 However, some

medical providers feel ill-informed to engage the pa-
tient in evidence-based conversations regarding can-
nabis selection, beneficial effects, adverse effects, and
harm reduction.10,11 Yet, due to federal restrictions, it
is difficult to run clinical trials to address better in-
formed evidence-based conversations.

Medicinal cannabis is rapidly becoming an accept-
able and state-level authorized form of symptom and
disease management.12,13 Health care providers under-
stand the potential benefits of cannabis for symptom
management. However, clinicians feel hindered by a
lack of information to make recommendations and
have an informed discussion of risk reduction, poten-
tial dependence, or possible adverse effects with their
patients currently using or desiring to use cannabis.10,11

Among 71 clinicians that had authorized medicinal
cannabis for their patients in Washington State,
56.4% had limited knowledge of available products
and where to get them, and 70% were uncertain of dos-
ing.11 An improved understanding of the strategic use
of cannabis would support clinicians in their discus-
sions with patients. Compounding this, research on
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the effects of cannabis in PWH are generally lacking
and as such fail to provide clinicians with reliable
data for cannabis use recommendations.

Cells throughout the human body express a network
of receptors and enzymes referred to as the endocanna-
binoid system for the synthesis and sensing of endoge-
nous lipid ligands. The overarching function of the
endocannabinoid system is to mediate regulation of en-
ergy utilization and substrate metabolism to maintain a
relative state of equilibrium or balance in the body’s
physiological and interdependent processes, for exam-
ple, homeostasis.14–16 Endocannabinoid system signal-
ing pathways have been pursued as a target for future
pharmacotherapy to reduce inflammation and provide
therapy in pathological conditions.15,17 Components of
cannabis bind to endocannabinoid receptors, modulat-
ing the function of the endocannabinoid system.

The endocannabinoid system is particularly impor-
tant in HIV infection for a number of reasons. For ex-
ample, cannabis use is associated with a reduction in
systemic inflammation and immune activation,18 and
there is a more rapid decline of HIV DNA among can-
nabis users taking ART than with those not using can-
nabis.19 Reductions in inflammation and more rapid
declines in HIV DNA might contribute to lower viral
loads and higher CD4 T cells in PWH cannabis
users.20,21 We recently reported that more recent use
was associated with significantly lower Interleukin
(IL)-16 levels in cerebrospinal fluid (CSF) and lower
soluble tumor necrosis factor (TNF) receptor type-II
and inducible protein (IP)-10 levels in plasma.22

This review will outline the endocannabinoid sys-
tem and phytocannabinoids (e.g., cannabis) and their
effect on the gut–brain axis (GBA) in the context of
HIV infection.

HIV and the Gut
HIV infection is associated with systemic CD4 + T cell
depletion, gut dysbiosis, gut epithelial barrier dysfunc-
tion, chronic inflammation, and consequential poor
health outcomes,23–26 even when well controlled by
antiretroviral therapy.27 Gut barrier dysfunction per-
mits the translocation of inflammatory microbial prod-
ucts such as a lipopolysaccharide (LPS; a cell wall
component).23,25,27 In particular, following viral con-
trol with ART, CD4 + T cells do not return to normal
levels in the gut, and gut epithelium defects are highly
correlated with this persistent gut CD4 + cell depletion.
Increased apoptosis, chronic inflammatory signals, and
reduced proliferation and repair of epithelial cells all

contribute to compromised gut barrier function. Altered
tryptophan metabolism and deficits in butyrate produc-
ing microbes in PWH have been reported and likely also
contribute to increased gut permeability.28–30 Barrier de-
fects render HIV + individuals susceptible to increased
local and systemic exposure to pro-inflammatory li-
gands produced by gut microbiota.31–33 Together these
alterations lead to poor HIV disease outcomes, including
HIV-associated neurocognitive disorders (HAND).24 In
this article, we present possible physiologic influence of
cannabis on gut barrier integrity in PWH (Fig. 1).

Gut Microbiome and HIV
The gut microbiota regulates and maintains functional
activities of the gut mucosal barrier integrity, the gut
associated lymphoid tissue (GALT), immunomodula-
tion, and protection against pathogenic organisms.34

The diverse bacterial community comprising the gut
microbiota contains both beneficial and detrimental
microorganisms.35 Beneficial species interact with the
host immune system in a mutualistic manner.36 One
of the main functions of the gut microbiota is to com-
municate with and regulate immune functions that im-
pact immune cells in close proximity, for example,
GALT, residing basolaterally to the monolayer of gut
epithelium,37 as well as distal immune responses. The
GALT represents 70–80% of the cellular immune com-
partment and is the largest immune reservoir in the
human body. Early in infection, HIV establishes a
high titer in the GALT. Ongoing HIV replication is re-
sponsible for the depletion of GALT CD4 + T cells and
subsequent alterations of the gut microbiota.38,39 Even
in the context of antiretroviral treatment and virologic
suppression, patients continue to show increased in-
flammation and immune cell activation, as well as ele-
vated gut permeability and dysbiotic microbiota.24,40

While normal commensal flora contribute to tolerance
and balance between T helper subset pattern recogni-
tion receptor signaling,37 loss or replacement of these
beneficial flora leads to loss of T-helper cell type 1
(TH1) function, amplifying GALT dysfunction in
HIV infection. Depletion of Th17 cells in the GALT
leads to reduced IL-22 production diminishing epithe-
lium repair processes and maintenance of tight gap
junctions. Such barrier defects create a pathway for mi-
crobial products to escape the gut lumen and enter the
systemic circulation. The entry of microbial products
into the blood triggers the innate immune response
and release of pro-inflammatory cytokines, such as
IL-1b, TNF-a, and others26,27 (Fig. 1).
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Microbial dysbiosis is associated with numerous ad-
verse effects, including impaired function of the gut
barrier and translocation of microbial products into
the bloodstream causing systemic inflammation.23,41,42

PWH develop a dysbiotic gut microbiota—that is, the
gut microbiota displays alterations in the diversity,
types, and relative proportions of bacteria that nor-
mally inhabit the GI tract.28 Furthermore, dysbiosis

creates a vicious cycle with chronic inflammation pro-
moting an environment abundant in pro-inflammatory
species.24,28,43 Changes include a greater proportion of
gram-negative bacterial family, Enterobacteriaceae,44

increased abundances of Prevotella particularly, Prevo-
tella copri, and Erysipelotrichaceae,40 and depletion of
Bifidobacterium and Bacteroides.24 Intriguingly, numer-
ous taxa considered aerotolerant and generally part of

FIG. 1. The effects of endocannabinoids and phytocannabinoids in HIV infection. HIV has a detrimental
effect on the immune and gastrointestinal systems leading to immune activation and chronic inflammation
of the CNS. *Abnormalities persist despite ART. The homeostasis role of endocannabinoid system provides a
mechanism for temporary restoration of balance within these systems. Cannabis has anti-inflammatory and
antioxidant properties, which serve in the place of endocannabinoids when deficient. ART, antiretroviral
therapy; CNS, central nervous system; CSF, cerebrospinal fluid; GALT, gut associated lymphoid tissue.
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the oral microbiota, not normally present in the gut, are
elevated in PWH (Scott N. Peterson and Ronald J. Ellis,
unpublished observation). Chronic oxidative stress in the gut
may increase O2 levels in the gut enabling aerobic species
to flourish in a normally strictly anaerobic environment.

The shift in gut microbiota to a Prevotella enriched
composition is consistent with reports that a complex
carbohydrate dominant diet also enriches for Prevotella.
The extent to which Prevotella spp. versus P. copri, in
particular, contribute to HIV-associated comorbidities
remains unclear. The relative abundance of Prevotella
is positively correlated with CXCL10/IP-10, a pro-
inflammatory and antiangiogenic chemokine, levels
and anti-correlated with CD4 + T cells.45 Another
study demonstrated that P. copri levels were positively
associated with colonic CD1c + myeloid dendritic
cells.46 Increased Prevotella has been implicated as a po-
tential initiator to disturbance of GBA signaling.43 This
change has significant consequences to cognitive func-
tion and neurological outcomes. The abundance of
P. copri and Prevotella stercorea in PWH has been eval-
uated in numerous studies and found to be associated
with sexual behavior rather than solely HIV status.47

A few studies examining HIV microbial dysbiosis
have been conducted with a majority of men who
have sex with men (MSM). In these studies, there
has been an association with sexual orientation and
an abundance of Prevotella enterotype in contrast
to men who have sex with women who are rich in
Bacteroides.48 However, this is independent of HIV
status and more likely due to sexual behavior of
anal intercourse and somewhat is ameliorated with
ART initiation.49 Nevertheless, sexual behavior of
anal intercourse has been shown to be a confounder
in the link of HIV-related gut dysbiosis; studies in-
volving microbiota in HIV should control for sex be-
havior with MSM status.50 This dysbiosis has been
suggested to play a role in driving immune activation
as opposed to previously suspected microbial trans-
location alone.51,52 However, a more recent study
demonstrated that treatment with ART will have an
effect on the microbiome that pervades sexual behav-
ior but is correlated with.47

The impact of cannabis on gut microbiota has not
been significantly reported in human populations to
date or PWH. One study assessed sexual practice and
drug use in PWH, including cannabis on gut microbiota
composition noting normalization of taxa commonly
observed as dysbiotic in PWH.53 A decline in Prevotella
abundance was associated with cannabis use53 (Table 1).

Another study examined the impact of cannabis on
the gut microbiota and diet-induced obesity in mice.
A limited number of taxa were quantified by quantita-
tive polymerase chain reaction, and changes in some
taxa were observed; however, interpretation of these re-
sults should be taken with caution as cannabis admin-
istration induced increased short-term hyperphagia.54

It is hypothesized that the effect of cannabis on gut
microbiota is likely to occur in an indirect manner as
the result of altered gut inflammation and homeostasis.

Gut bacteria control the differentiation and function
of immune cells in the intestine, periphery, and
brain.55–57 There is increasing evidence that gut micro-
biota and the immune system are critical factors in the
pathogenesis of neurodevelopmental, psychiatric, and
neurodegenerative disease as microbiota immunomo-
dulation orchestrates communication between the gut
and brain.58 Some of the cognitive domains are subject
to immune-mediated central nervous system (CNS)
injury from HIV induced microglial activation and
contributing to HIV-related cognitive dysfunction.59

Furthermore, microglia is exquisitely responsive to
the gut microbiome and commensal bacteria support
the maintenance of microglia in normal homeostasis
conditions. When microbiota is absent, microglia
loses the ability to mature, becoming defected in dif-
ferentiation, and function.55 In a study with germ-
free mice, severely-defected microglia led to impaired
innate immune responses. Recolonization with a com-
plex microbiota environment resulted in partial resto-
ration of normal microglial features.55 LPS activates
microglial cells leading to neuroinflammation and,
when chronic, is a likely contributor to CNS patholo-
gies, through a leaky gut–brain barrier (Fig. 2).

The GBA
The GBA encompasses bidirectional communication
between the central and the enteric nervous systems
(ENSs), linking emotional and cognitive centers of
the brain with intestinal functions (Fig. 2).60 The auto-
nomic nervous system, the ENS, and the hypothalamic
pituitary adrenal axis mediate the communication of
the GBA. Enteroendocrine signaling through enteroen-
docrine hormones (i.e., peptide YY [PYY], glucagon-
like peptide-1 [GLP-1], and cholecystokinin, released
into the serosa and systemic circulation) activates neu-
ronal pathways, including extrinsic afferent neurons,
sending messages to the CNS. These pathways mediate
not only behaviors associated with food intake but
also cognition and mood. Cannabis has been associated
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with significant increases in ghrelin and leptin, and de-
creases in PYY, consistent with the modulation of ap-
petite hormones mediated through endocannabinoid
receptors.61

The Endocannabinoid System
The endocannabinoid system encompasses a key inter-
face between the gut microbiota, the immune system,
and homeostasis of the human host. Two main endog-
enous cannabinoids, or endocannabinoids, are the
brain-derived arachidonoyl ethanolamide, known as
anandamide (AEA), and 2-arachidonoylglycerol (2-
AG) derived from lipid precursors, such as arachidonic
acid, that are synthesized on demand.15,62 2-AG has
been isolated from both gut and brain tissue.62 Endo-
cannabinoids in the postsynaptic neuron are released
into the synaptic cleft and travel retrograde to the pre-

synaptic neuron, where they inhibit neurotransmitter
release; then they are rapidly metabolized by lipoxyge-
nase, cyclooxygenase, and epoxygenases, enzymes in-
volved in eicosanoid metabolism. AEA and 2-AG can
also be degraded by hydrolysis into arachidonic acid
and glycerol/ethanolamine by serine esterases.63

The cannabinoid receptors type-1 (CB1) and -2 (CB2)
are located throughout the periphery and are concen-
trated in the GI tract. CB1 receptors are most abundant
in the brain, where they function in neurotransmi-
sion.15,16,62 The CB1 receptors are predominantly located
in the nociceptive areas of the CNS, the cerebellum, hip-
pocampus, limbic system, and the basal ganglia. These
receptors have a limited concentration in the substan-
tia nigra and periaqueductal gray matter, but are not
observed in the medullary respiratory centers. CB1 re-
ceptors can also be expressed on immune, cardiac, and

Table 1. Taxa Alterations by HIV and Cannabis

Taxa altered by HIV infection
Vujkovic-Cvijin et al.24 [published

correction appears in Sci Transl
Med. 2017 Nov 8;9(415)]

Proteobacteria [
Bacteroides Y

PWH displayed microbiota with increased potential for tryptophan catabolism
through kynurenine pathway. The HIV-infected dysbiotic composition correlated
with disease progression, higher levels of immune activation in the blood and
gut, and higher levels of tryptophan metabolism and inflammatory plasma
markers than in HIV uninfected. Greatest degrees of dysbiosis had elevated
markers of chronic inflammation and disease progression seen by high levels of
kynurenine production and IL-6. HIV altered microbiota has increase in potential
for kynurenine-tryptophan catabolism. Host–microbiome interaction with HIV
infection does not recover in ART effectiveness. A HIV-infected nonprogressor
participant displayed similar microbiota to that of uninfected participants.

Dillon et al.28 Proteobacteria [
Firmicutes Y
Prevotella [
Bacteroides Y

Colonic biopsies measured mucosal associated microbiota; Prevotella was
associated with T cell and mDC activation in the gut. Dysbiosis in untreated PWH is
dominated by an increased abundance of Prevotella and a proportional decrease
of anti-inflammatory bacteria that support epithelial barrier integrity with
untreated HIV. The proportional increase in Prevotella-Bacteroides ratio is
associated with increased mucosal DC and immune activation and a systemic
microbial translocation highlighting an existing relationship between the
microbiota community, intestinal inflammation, and systemic immune activation.

Vázquez-Castellanos et al.105 Prevotella [
Succinivibrio [
Bacteroides Y
Faecalibacterium Y

Metagenomic analysis of fecal samples revealed shifts in microbiota functional
distribution, including LPS, energy production, and translocation. Prevotella was
7.8 times higher in HIV infected than those without HIV. Interactions between the
microbiota and bacterial translocation could occur indirectly by cytokine
signaling. Abundance of Gram-negative bacteria in dysbiosis in PWH may
contribute to the burden of translocated abacterial antigens and immune
activation.

Ling et al.40 Prevotella [
Megamonas [
Proteobacteria [
Faecalibacterium [
Bacteroides Y

In this Chinese cohort, examination of fecal samples The Firmicutes/Bacteroidetes
ratio remains high even with ART despite control of viral load by ART. Individuals
with HIV infection have dysbiosis, which remains unchanged but alters the
taxonomic composition with phylogenetic strains associated with inflammatory
cytokines.

Taxa altered by cannabis
Fulcher et al.53 Ruminococcus [

Clostridium cluster IV [
Solobacterium [
Fusobacterium [
Acidaminococcus Y
Prevotella Y
Dialister Y
Anaerostipes Y
Dorea Y

Study examines sexual practice and drug use in PWH microbiome.
Cannabis was associated with abundance of Fusobacterium and Anaerotruncus and

a decrease in Prevotella, Acidaminococcus, Anaerostipes, and Dialister
abundances.

Methamphetamine and recent receptive anal intercourse use is associated with
increased pro-inflammatory taxa and cytokines.

Recent and frequency of receptive anal intercourse were associated with and
presence of gonorrhea and/or chlamydia, associated with dysbiosis.

ART, antiretroviral therapy; LPS, lipopolysaccharide; PWH, people living with HIV infection.
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testicular cells.64 In the GI tract, CB1 agonists are in-
volved in feeding behavior, GI motility, satiety signaling,
and energy balance.65 CB1 peripheral activity includes
lipogenesis and inhibition of adiponectin found at ele-
vated levels in obese and diabetic individuals. CB1 signal-
ing has been linked to increased levels of free fatty acids,
low HDL, high triglycerides, and insulin resistance.

CB2 receptors are expressed mainly on membranes
of immune and hematopoietic cells in the periphery.62

CB2 receptors are densely located in immune tissue
and organs, expressed by diverse cell types, including
macrophages, splenocytes, microglial, monocytes, and
T cells resident in the thymus, spleen, and bone mar-
row and tonsils.65,66 CB2 receptors located in the pe-
riphery have an immunomodulatory function playing
an important role in pain reduction, inflammation,
and physiological immune defense.64 CB2 activation
mediates a regulatory or suppressive anti-inflammatory

effect but in some cases stimulation of CB2 stimulates
tissue destruction and apoptosis, such as in cancer
cells.67,68 Agonists of this receptor do not have psycho-
active properties and are effective in mediating immuno-
suppression, preventing fibrosis or other organ scarring
or in certain diseases triggering tissue damage.64

Antagonistic ligands for the endocannabinoid recep-
tor (CB1) signaling in the gut have an anti-inflammatory
effect with an attenuation of inflammatory cytokines,
an increase in Akkermansia muciniphila, and decreases
in Lachnospiraceae and Erysipelotrichaceae diversity in
the gut.36 CB1 signaling is TLR4 dependent and
known to be influenced by at least A. muciniphila.69 In
one study, A. muciniphila administration increased the
intestinal levels of endocannabinoids that control in-
flammation, the gut barrier, and gut peptide secretion.70

CB1 activation is anti-inflammatory in the gut.71

The dysbiotic gut environment and GALT are set up
for an augmented cycle of inflammation and increased
permeability of the gut epithelial barrier. The gut
microbiota sends signals to the brain while affecting
many functions through several pathways that com-
prise the GBA, including emotion and cognition
(Fig. 2). HIV infection may, therefore, lead to the desta-
bilization of the GBA through alterations of the immune
system and gut, a possible consequence of ongoing gut
epithelial barrier abnormalities and viral replication in
the GALT persisting despite ART effectiveness in sup-
pressing peripheral virus.39

HIV infection and associated gut inflammation dis-
rupt the gut-endocannabinoid-brain interface, and
these disturbances adversely affect brain function. Sev-
eral lines of evidence suggest protective effects of can-
nabinoids on gut barrier function. While interactions
between the gut microbiota and the endocannabinoid
system are complex, there are likely to be opportunities
to develop therapeutics targeting this axis. Binding of
the plant-based cannabinoid THC to presynaptic can-
nabinoid receptors, in the CNS, principally CB1, mim-
ics the biological properties of AEA, acting like a mood
enhancer and stimulant of joy and happiness or eupho-
ria.62 Cannabis administration is associated with signif-
icant increases in ghrelin and leptin and decreases in
hormones that modulate appetite (e.g., PYY) mediated
through endogenous cannabinoid receptors.61

Phytocannabinoids
One of the main cannabinoids, THC (Fig. 3a), was
identified by Israeli physician, Dr. Raphael Mecholam,
in the 1960s.14 THC is the principal psychoactive

FIG. 2. Cannabis and the gut–brain axis. HIV
infection leads to depletion of CD4 cells in the
GALT, dysbiosis, and microbial translocation.
These effects occur even in the context of
successful antiretroviral therapy.
Endocannabinoids and Phytocannabinoids
modulate gut inflammation and the microbiota
stabilizing the blood–brain barrier pathway and
reducing neuroinflammation.
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component of cannabis. CB1 agonists such as terpenes
and CBD in low doses can mitigate the psychoactive ef-
fects of THC. CBD (Fig. 3b) and CBN (Fig. 3c) act in-
directly on CB1 and CB2 receptors. There are many
more phytocannabinoid molecules that have an effect
on the endocannabinoid system. Together they pro-

duce an ‘‘entourage’’ or synergistic effect based on the
ratios of these compounds that vary based on multiple
factors, including plant strain and growing condi-
tions.72 This phenomenon may explain why isolated
compounds derived from cannabis appear inert or
only capable of exerting a limited effect.

FIG. 3. Structure of (a) CBD, (b) CBN, (c) THC, (d) Capa Harley sativa-hybrid cultivar with indica-like effects
due to high CBD component. A cultivar blend of sativa strains Harlequin and Green Crack with high CBD
creating a balanced hybrid that acts like an indica dominant strain. Effect will alleviate pain and decrease
stress yet creates a happy, ultra-relaxed feeling. Produces a cerebral euphoria as opposed to a high feeling
with small amounts of inhalations. Smells earthy and woody (as described by Amsterdam Marijuana Seeds
website).
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Medicinal and recreational cannabis comes in at
least two species, Cannabis indica and Cannabis sativa,
and in a variety of cultivars and formulations with dif-
ferent reported efficacies for treatment of various con-
ditions. ‘‘Cultivar’’ is short for ‘‘cultivated variety’’ and
represents not a taxonomic category, but a horticul-
tural one, describing different plants that have been
bred and selected by humans (Fig. 3d).73 Examples of
cultivars include Acapulco Gold and Charlotte’s Web.
Acapulco Gold is a golden-leafed C. sativa strain orig-
inally from the Acapulco area of southwest Mexico.
Charlotte’s Web is a high-CBD, low-THC cannabis va-
riety and extract marketed as a dietary supplement
under federal law of the United States. More than
2,000 cultivars are available to consumers, but their
chemical constituents and consistency have not been
systematically characterized. This highlights the im-
portance of providing consumers with consistent prod-
uct information. CBD/THC extracts are reported to be
more effective at treating pain compared to THC alone
both in rodents and in human cancer-related pain. Spe-
cies and cultivar differences in effects on the micro-
biome have not been studied.

There is also the chemovar referring to the different
chemical varieties rather than the strain.74 Each of the
chemovars will have variations in the cannabinoids iso-
lated from the strain in various concentrations of CBD,
THC, cannabivarins, CBN, cannabigerol, and other
chemicals such as terpenes. Each of them has specific
functions and is able to elicit unique pharmacological
actions and effects.74

Modes of administration are also important with re-
spect to effect of cannabis and its therapeutic uses.
Whether mode of administration differentially influences
the gut microbiome is unknown. For example, one might
expect orally administered cannabis to have more potent
effects on the gut microbiome given high local concen-
trations than inhaled cannabis. But this has not been
studied. Modes of administration will vary in time to
onset of effects. Inhaled versions have a rapid onset of ef-
fect based on inhalations, whereas ingestion has a longer
time to onset due to the transit to digestive processing
and absorption. Finally, it is difficult to ascertain the dos-
ing due to individual effects on physiology and tolerance.

The low systemic bioavailability of orally adminis-
tered cannabinoids has led to exploration of other
routes, including intranasal, transdermal, and transmu-
cosal. These are possible because of the highly lipophilic
nature of cannabinoids. Additional approaches to for-
mulation that may influence bioavailability include

salt formation (i.e., pH adjustment), co-solvency (e.g.,
ethanol, propylene glycol, PEG400, and so on), micelli-
zation (e.g., polysorbate 80, Cremophor� ELP, and so
on), (nano)-(micro)-emulsification, complexation (e.g.,
cyclodextrins), and encapsulation in lipid-based formu-
lations (e.g., liposomes) and nanoparticles.75–77

The U.S. Federal Drug Administration has approved
three synthetic cannabinoids and one plant-derived can-
nabinoid. Marinol� (dronabinol) is approved for an-
orexia and nausea related to HIV and chemotherapy;
Cesamet� (nabilone) is approved to treat chemotherapy-
induced nausea and chronic pain; and Epidiolex� is a
plant-derived CBD indicated for the treatment of sei-
zures associated with Lennox–Gastaut syndrome or
Dravet syndrome in patients 2 years of age and older.

Cannabinoids in the Brain and Gut
Emerging findings suggest that cannabinoids can mod-
ulate the gut microbiota and inflammatory states by
stabilizing blood–brain barrier function and reducing
neuroinflammation.78 Neuroinflammation related to
chronic immune activation, oxidative stress, and micro-
bial translocation by a leaky gut barrier could affect the
CNS through enteroendocrine signaling and the vagus
nerve.79,80 These routes may interact with the better un-
derstood link between LPS translocation and chronic in-
flammation in the CNS due to microglial activation.81

Since inflammation and immune activation are believed
to contribute to neurocognitive impairment in HIV,59

the antioxidant and anti-inflammatory properties and
possible effects on gut barrier integrity of cannabinoids
may favorably impact neurocognitive function.82

Medicinal Phytocannabinoid Effects
When THC and other exogenous cannabinoids inter-
act with the endocannabinoid system, they can relieve
pain as a result of neuromodulatory actions on both af-
ferent pain signals and brain processing of pain. Several
other potential therapeutic interventions have not been
rigorously studied in randomized, controlled clinical
trials. There is substantial evidence that THC stimu-
lates appetite and reduces nausea. CBD is not psycho-
active, acting as a serotonin 5-HT1A receptor agonist,
and also has antioxidant and anti-inflammatory prop-
erties.83 In addition, although CBD has a low binding
affinity for CB1 and CB2 receptors, it modulates several
noncannabinoid receptors and ion channels and delays
the ‘‘reuptake’’ of endogenous neurotransmitters such
as anandamide and adenosine, by altering the binding
of ligands to certain G-protein coupled receptors.
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Reports suggest that CBD may be effective for managing
multiple anxiety based disorders, such as panic attacks,
post-traumatic stress disorder, generalized anxiety, ob-
sessive–compulsive disorders, and some cancers.84,85

Endocannabinoid signaling is known to influence
gut barrier integrity,86 providing a highly relevant con-
text for the study of the effects of cannabis. The endo-
cannabinoid system in the large intestine interacts with
the gut microbiota to regulate epithelial barrier perme-
ability.87 The endogenous cannabinoid AEA, acting
through CB1 and CB2 receptors, plays a pivotal role
in maintaining immunological homeostasis and health
in the gut. AEA contributes to the process by which the
gut immune system actively tolerates microbial anti-
gens.16 The bioactive lipid agonists and antagonists of
cannabinoid receptors are known to have a direct effect
on gut barrier function. Some CB1 and CB2 ligands are
considered ‘‘gate openers,’’ promoting inflammation
due to increased permeability of food antigens and
pathogen-associated molecular patterns (e.g., LPS).
Other CB1 and CB2 ligands promote increased barrier
function (‘‘gatekeepers’’) and reduce inflammation.88

Enteroendocrine L cells are innervated by enteric glial
cells and afferent neurons.89 Enteroendocrine L cells ex-
press endocannabinoid receptors (e.g., CB1 and CB2).

SIV infection was associated with gut epithelial bar-
rier disruption, markers of increased inflammation/
immune activation (miR-150 downregulation and in-
creased T cell activation), disrupting the translational
control of IRAK1, and facilitating persistent GI inflam-
mation.90 Previously published animal model studies
support our focus on gut barrier permeability in the
context of HIV and cannabis. One study demonstrated
that chronic THC was associated with anti-inflammatory
Th2 cytokine expression and reduced apoptosis among
animals infected with SIV with markers of increased in-
flammation and immune activation in epithelial crypt
cells.90 These THC-mediated gut alterations were asso-
ciated with reduced neuroinflammation measured as
lower levels of TNFa, IL1b, IL6, and MCP1 in the stria-
tum of SIV-infected rhesus macaques.91 These results
may possibly translate to PWH; however, there were
notable sex-specific differences in THC outcomes in
SIV infected macaques.

While THC mediated clinical differences in male
rhesus macaques, reducing morbidity and mortality,
as well as attenuation of SIV disease progression, female
macaques did not demonstrate those protective benefits
at similar doses.92,93 Male rhesus macaques had a re-
duction in plasma viral levels, decreased expression of

tissue pro-inflammatory cytokines, and a decrease in
intestinal apoptosis.92 Female macaques did not have
protective benefits with alterations in SIV viral load
and CD4 + /CD8 + ratio, with chronic daily THC ad-
ministration.93 These contrasting effects may be due
to endocrine hormonal differences, requiring more re-
search to investigate the mechanisms for differences.
Given these findings and the numerous studies
reviewed and cohorts, the field of HIV-related gut dys-
biosis is biased toward males and particularly MSM.
Future studies should consider of purposively including
adequate sampling of HIV-infected cis-females espe-
cially in examining the effects of phytocannabinoids.

Recently, studies have determined that cannabis is
associated with reduced markers of immune activation
and inflammation in CSF. This reduction was based on
previous research demonstrating that selective stimula-
tion of CB2 receptor leads to neuroinflammation and
microglial activation.94–96 Thirty-six PWH and 21 HIV
negative participants underwent lumbar puncture and
provided estimated days since their last cannabis use
(median [range] 304 [1, > 1000]). More recent use of
cannabis was associated with significantly lower CSF
levels of IL-16 and C-reactive protein (CRP). These find-
ings are consistent with the notion that CNS anti-
inflammatory effects of cannabinoids may be mediated
directly through the microglial CB2 receptors or indi-
rectly, for example, through cannabis-mediated alter-
ations in gut microbiota composition, improved gut
barrier function, or reduced translocation of pro-
inflammatory bacterial products (Fig. 4).

Clinical Endocannabinoid Deficiency Syndrome
Over time, internal and external factors such as pro-
longed stress, environmental factors, poor nutrition,
and overuse of cannabis may influence the ability to pro-
duce endocannabinoids. Clinical endocannabinoid defi-
ciency syndrome (CEDS) has been linked to migraines,
neuromuscular pain, and GI disorders.97 Specific symp-
toms and symptom clusters have been linked to a defi-
ciency in the endocannabinoids, AEA and 2-AG. The
symptom cluster with substantial evidence of CEDS is
present for migraine, fibromyalgia, and irritable bowel
syndrome.97 The endocannabinoid system regulates
gut function, the CNS, and has a communicative rela-
tionship with the microbiome. Therefore, many other
disorders and diseases are linked to a deficiency and dys-
function of the endocannabinoid system.97 Dysregula-
tion of the endocannabinoids and CB2 receptors lead
to many disorders affecting the liver, kidneys, CNS,
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neuromuscular, GI, immune system, lungs, bone, and
mental health.62,98 Deficiency of endocannabinoids dis-
rupts homeostasis. This provides an opportunity for the
additional assessment of the therapeutic potential of
phytocannabinoids, naturally-occurring cannabinoids
in the cannabis, or hemp plants. These phytocannabi-
noids interact with the endocannabinoid system in the
same way as endocannabinoids.

The GI microbiome recently was identified as a
modulator of BBB integrity. There was a reduction
in expression of the tight junction proteins occludin
and claudin-5 on brain microvascular endothelial
cells in germ-free mice (i.e., lacking a gut microbiota).
Expression of these proteins and BBB integrity was
restored after gut colonization with the butyrate pro-
ducing species, Clostridium tyrobutyricum or by ad-
ministration of butyrate.95

Probiotics improved gut integrity and enhanced
endocannabinoid signaling. Zebrafish were treated
with a probiotic formulation (VSL#3; Lactobacillus
spp., Bifidobacterium spp., and Streptococcus thermo-
philus) for 30 days.99 Compared to untreated animals,
histological analysis of gut tissue from treated animals
showed an intact epithelial barrier with increases in
enterocyte length, villus length, and crypt depth.
There was a reduction in epithelial and mesenchymal
apoptotic cells, confirming molecular level changes of

the pro-apoptotic factors casp3 (caspase3) and BCL2
associated X (baxa), and an increase in antiapoptotic
signals such as B cell lymphoma 2 (bcl2a). Probiotics
also decreased the gene expression for fatty acid
amide hydrolase (faah) and monoacylglycerol lipase
(mgll), which are involved in the degradation of endo-
cannabinoids AEA and 2-AG. One must take into con-
sideration these metabolism pathways. Thus, probiotic
treatment improved gut integrity and enhanced endo-
cannabinoid signaling.99

Discussion
The influence of cannabis on host tissues, particularly
gut permeability and its subsequent indirect effects
on the gut microbiome, suggests significant potential
therapeutic applications in HIV. Cannabis has been
used for its medicinal properties for thousands of
years in ancient cultures.100,101 Being a novice to can-
nabis use can be an intimidating issue for providers
making recommendations to their patients. There are
hundreds of strains that have names that are not
based on structured nomenclature that clinicians are
normally familiar with.102 Only recently, in the 1960s
have scientists begun to explore the properties of can-
nabis and even more recently the medicinal application
in conjunction with Western medicine. Understanding
the general physiological mechanism of endocannabi-
noids will support the framework in forming strategies
to strain selection for symptom management.

Despite suppressive ART, PWH maintain a high
symptom burden with GI disorders, HAND, depression/
anxiety, pain, and fatigue. In addition, CD4 + T cell de-
pletion and gut microbiota dysbiosis promote dysfunc-
tion of the gut epithelial barrier, resulting in a positive
feedback loop sustained by increased microbial translo-
cation of pro-inflammatory antigens such as LPS and
subsequent immune activation and chronic inflamma-
tion. Consequences of these events in PWH are associ-
ated with poor health outcomes, including organ
damage, cognitive decline, and decreased quality of life.

Phytocannabinoids may be a viable supplement
to accommodate for deficiencies in the endocannabi-
noid system. Components of cannabis have an anti-
inflammatory and antioxidant effect addressing
problems on a molecular and cellular level. Responsi-
bly used, cannabis can be given as an antidepres-
sant and for relief of post-traumatic stress disorder,
sedative, and anticancer benefits and relief of obses-
sive behaviors. Benefits extend to symptomatic relief
for symptoms like fatigue, poor appetite, depression,

FIG. 4. Model of the blood–brain barrier
before and after cannabis. HIV leads to increase
in permeability and neuroinflammation through
the increase in plasminogen activation system
(uPAR), microbial translocation (sCD14), CXCL10/
IP10, and albumin levels across the blood–brain
barrier. After administration of cannabis, there is
a decrease in these markers, decreasing
permeability and neuroinflammation.
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anxiety, insomnia, pain, nausea/vomiting, and cogni-
tive changes. Clinicians will find confidence in educat-
ing themselves on the effects of cannabis to support a
conversation with patients during office visits.

One caveat to widespread adoption by the medical
community is that as of 2019, the Department of Justice
Drug Enforcement Agency holds that cannabis is a
controlled substance with no evidence of medical ben-
efit and high potential of abuse, even with 33 of 50
states and the District of Columbia currently having
state-legislated approval to dispense cannabis for med-
ical purposes.103 Furthermore, the federal government
enforces barriers and restrictions on studies investi-
gating the benefits of cannabis due to federal restric-
tions.104 Regardless of the discordance of laws
between federal and state governments, patients are
in fact using or interested in using cannabis to manage
aspects of their health. Providers should have a work-
ing understanding of cannabis and its various effects
on the body, including benefits and potential risks.

While effects of cannabis on gut barrier function
have been studied in pre-clinical models, the transla-
tion to humans is uncertain. Evaluation of the gut
microbiome in both PWH and HIV transgenic animals
exposed to chronic cannabis is necessary to begin to
test beneficial effects to correct gut permeability and
dysbiosis. The additive effect of probiotics and canna-
bis may result in synergistic effects in terms of support-
ing healing of the gut and also the reduction of
inflammation, immune activation, and neuropsychiat-
ric disorders within the context of ART.
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Abbreviations Used
2-AG¼ 2-arachidonoylglycerol
AEA¼ arachidonoyl ethanolamide
ART¼ antiretroviral therapy
CB1¼ cannabinoid receptor type-1
CB2¼ cannabinoid receptor type-2
CBD¼ cannabidiol
CBN¼ cannabinol

CEDS¼ clinical endocannabinoid deficiency syndrome
CNS¼ central nervous system
CRP¼C-reactive protein
CSF¼ cerebrospinal fluid

ENSs¼ enteric nervous systems
GALT¼ gut associated lymphoid tissue

GBA¼ gut–brain axis
GI¼ gastrointestinal

GLP-1¼ glucagon-like peptide-1
HAND¼HIV-associated neurocognitive disorders

IL¼ interleukin
IP¼ inducible protein

LPS¼ lipopolysaccharide
MSM¼men who have sex with men
PWH¼ people living with HIV infection

PYY¼ peptide YY
TH1¼ T-helper cell type 1
THC¼D9-tetrahydrocannabinol
TNF¼ tumor necrosis factor
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