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Anatomically aided PET image reconstruction using deep neural 
networks

Zhaoheng Xie1, Tiantian Li1, Xuezhu Zhang1, Wenyuan Qi2, Evren Asma2, Jinyi Qi1,a

1Department of Biomedical Engineering, University of California, Davis, CA, USA

2Canon Medical Research USA, Inc., Vernon Hills, IL, USA

Abstract

Purpose: The developments of PET/CT and PET/MR scanners provide opportunities for 

improving PET image quality by using anatomical information. In this paper, we propose a 

novel co-learning 3D convolutional neural network (CNN) to extract modality-specific features 

from PET/CT image pairs and integrate complementary features into an iterative reconstruction 

framework to improve PET image reconstruction.

Methods: We used a pre-trained deep neural network to represent PET images. The network 

was trained using low-count PET and CT image pairs as inputs and high-count PET images as 

labels. This network was then incorporated into a constrained maximum likelihood framework 

to regularize PET image reconstruction. Two different network structures were investigated for 

the integration of anatomical information from CT images. One was a multi-channel CNN, 

which treated PET and CT volumes as separate channels of the input. The other one was multi­

branch CNN, which implemented separate encoders for PET and CT images to extract latent 

features and fed the combined latent features into a decoder. Using computer-based Monte Carlo 

simulations and two real patient datasets, the proposed method has been compared with existing 

methods, including the maximum likelihood expectation maximization (MLEM) reconstruction, a 

kernel-based reconstruction and a CNN-based deep penalty method with and without anatomical 

guidance.

Results: Reconstructed images showed that the proposed constrained ML reconstruction 

approach produced higher quality images than the competing methods. The tumors in the lung 

region have higher contrast in the proposed constrained ML reconstruction than in the CNN­

based deep penalty reconstruction. The image quality was further improved by incorporating 

the anatomical information. Moreover, the liver standard deviation was lower in the proposed 

approach than all the competing methods at a matched lesion contrast.

Conclusions: The supervised co-learning strategy can improve the performance of constrained 

maximum likelihood reconstruction. Compared with existing techniques, the proposed method 

produced a better lesion contrast vs. background standard deviation trade-off curve, which can 

potentially improve lesion detection.

aCorresponding author: Jinyi Qi, Department of Biomedical Engineering, UC Davis, One Shields Ave, Davis, CA 95616, USA. 
qi@ucdavis.edu. 
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I. Introduction

Positron emission tomography (PET) is a widely used clinical imaging modality for cancer 

diagnosis, staging and treatment response assessment1. Due to the potential radiation risk 

associated with the radioactive tracers, the injected activity in each PET scan is limited. As 

a result, PET data have low count statistics. Recent advances in PET instrumentation have 

focused on improving the photon detection sensitivity by measuring time-of-flight (TOF) 

information2 and extending the axial field of view (FOV)3.

Noise in PET data can be further amplified in the image reconstruction process, resulting 

in noisy reconstructed images. In order to improve image reconstruction performance, prior 

information has been introduced to regularize the reconstruction. Instead of maximizing 

the likelihood function directly, the algorithm maximizes the posterior distribution. A 

common prior model is Tikhonov regularization, which assumes the images are smooth 

and continuous and consequently blurs sharp edges during reconstruction. To address this 

issue, other penalty terms, such as total variation (TV)4 and patched based penalties5 have 

been proposed to reduce the extent of blurring. However, these techniques still have limited 

ability to distinguish an edge from noise.

Since the spatial distribution of a radioactive tracer should be associated with anatomical 

structures, anatomical information from a co-registered CT or MRI can be applied to build 

an appropriate prior model. One challenge in anatomy-guided PET reconstruction is the 

existence of mismatches between different modalities that measure different morphological 

or functional information. A variety of methods have been developed to solve the mismatch 

issues, such as segmentation based A-MAP6,7, Bowsher’s similarity method8, the joint 

entropy prior9, and level-set prior10. Hutchcroft et al11 applied the kernel method12 to 

anatomy-guided PET reconstruction using an anatomical image derived kernel matrix. This 

method has been extended to incorporate both PET and MRI derived kernel matrices based 

on the structural similarity metric13. Other interesting methods and comparisons between 

them can be found in14,15,16. All of the above methods try to find an appropriate similarity 

measure to weigh PET and MRI features differently. Users can also manually adjust hyper­

parameters, such as a predefined neighborhood size or the tolerance for relative differences, 

to emphasize modality-specific features. But the complexity of these adjustments introduces 

another new problem: lack of reproducibility.

Deep learning17, due to its unprecedented success in tasks such as image classification, 

segmentation, inpainting, and denoising, has found applications in medical image 

reconstruction. The convolutional neural network (CNN) is capable of implicitly fusing 

anatomical and functional features from multi-modality image data with proper training. 

Studies18,19 have shown that co-learning features from PET-CT significantly increase tumor 

segmentation accuracy, compared with the use of a single modality. For image denoising, 

Lei et al.20 proposed a deep learning architecture to estimate the high-quality PET images 

from the combination of low-count PET and T1-weighted MRI. Liu and Qi21 trained 

three modified U-Nets to improve the PET signal-to-noise ratio (SNR) with PET/MRI 

images. Similarly, Costa-Luis and Reader22 used a low-complexity CNN as an MR-aided 

image processing step to reduce noise and reconstruction artefacts. Subsequently, Cui et 
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al.23 presented a deep image prior24 denoising method to leverage CT/MR information 

without using a high-count PET label. The cycle consistent generative adversarial network 

(GAN) was also utilized in PET denoising to predict diagnostic quality PET images 

with25,26 and without anatomical aids27,28. The cycle GAN algorithm not only learns a 

transformation to synthesize high-count PET images using low-count images but also learns 

an inverse transformation to ensure that pseudo low-count PET images generated from 

synthetic high-count PET are close to the true low-count PET images. Despite the fact that 

these approaches improve the model’s prediction, pathological abnormalities and patient-to­

patient variations may reduce the robustness of these end-to-end denoising methods. Some 

instability phenomena have been reported in29.

In order to safely use deep learning methods in medical imaging, data consistency needs 

to be taken into account. Besides the post-processing reconstructed images, deep learning 

has emerged as a new tool in image reconstruction30,31,32. The various types of methods 

were introduced in a very short period of time, such as direct inversion33,34, image 

regularization35, and unrolling approaches36. The approach of using a deep image prior24 

has also been applied to anatomically aided PET reconstruction37.

Our aim in this paper is to improve the fusion of the complementary information in 

PET/CT or PET/MRI images for anatomy-aided reconstruction. In particular, we focus 

on the network-constrained image reconstruction method38,39, where a denoising CNN, 

trained by high-quality images, is used to represent feasible PET images in a constrained 

maximum likelihood reconstruction framework. The low-count PET and CT images are used 

as inputs to train a 3D denoising CNN with high-count PET images as labels. The unknown 

PET image during a reconstruction is represented as the output of a pre-trained CNN in 

a constrained maximum likelihood framework. We investigated two different co-learning 

strategies. One is a multi-channel input CNN20,40, which treats PET and CT volumes 

as two channels of the input. The other is a multi-branch CNN19,41, which implements 

separate encoders for PET and CT images to extract features and concatenates the latent 

features before the decoder. By using computer-based Monte Carlo simulations and two 

real patient datasets, we compared the proposed method with existing methods, including 

EM reconstruction with Gaussian filtering, kernel-based reconstruction, and the CNN-based 

deep penalty method with and without anatomical guidance.

II. Methods and materials

II.A. Theoretical framework

The data model used in this work considers the measured PET data y as a collection of 

independent Poisson random variables. For a typical PET system with M number of lines 

of response (LOR) and N number of image voxels, the expectation of measured counts, 

y ∈ ℝM × 1, can be expressed by

y = Px + s + r, (1)

where x ∈ ℝN × 1 is the unknown radioactive tracer distribution, and P ∈ ℝM × N is the 

detection probability matrix. The (i, j)th element of P, pi,j, represents the probability that an 
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emission originated in the jth voxel is detected by the ith LOR. s ∈ ℝM × 1 and r ∈ ℝM × 1

are the expected number of scattered and randoms coincidences, respectively. The Poisson 

log-likelihood function is given by

L(y ∣ x) = ∑
i = 1

M
yi log yi − yi − log yi! . (2)

Then the unknown image x can be estimated by the maximum likelihood estimator:

x = argmax
x ≥ 0

L(y ∣ x) . (3)

To improve the image quality and reduce noise, we adopt a constrained maximum likelihood 

estimation framework. Basically, the unknown PET image x is represented by the output of a 

pre-trained CNN with multi-modality images, such as PET/CT or PET/MRI, as the input:

x = CNN αCT , αPET orx = CNN αMRI, αPET , (4)

where CNN:ℝN × 1 ℝN × 1 denotes the pre-trained denoising neural network and α 
denotes the inputs to the network. Compared with previous work38,39, the network inputs in 

this study not only include a noisy PET image (αPET) but also a co-registered anatomical 

image (αCT or αMRI). Here we will focus on using CT images as an application example. 

Then the PET image is estimated by solving the following constrained maximum likelihood 

estimation problem:

x = argmax
x

L(y ∣ x), s . t . , x = CNN αCT , αPET . (5)

The network is trained off-line by using ML-EM reconstructions of high-count PET data 

as labels. When we only use PET images as the input to the network, the formulation 

of equation (5) simplifies to the previous method38. We apply the augmented Lagrangian 

method to the constrained optimization problem in (5) and obtain

Lρ = L(y ∣ x) − ρ
2‖x − CNN αCT , αPET + μ‖2 + ρ

2‖μ‖2, (6)

where μ ∈ ℝN × 1 represents the vector of Lagrange multipliers and ρ > 0 is a 

hyperparameter, which affects the convergence speed but does not change the final solution 

at convergence. When the algorithm is stopped before convergence, a larger ρ generally 

results in a smoother image. In this study, we empirically chose the value of ρ based on 

the reconstruction of the validation data. Equation (6) can be maximized by the alternating 

direction method of multipliers (ADMM) algorithm42 in three steps:

xn + 1 = argmax
x

L(y ∣ x) − ρ
2‖x − CNN αCT , αPET

n + μn‖2, (7)
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αPET
n + 1 = argmin

αPET
‖CNN αCT , αPET − xn + 1 + μn ‖2, (8)

μn + 1 = μn + xn + 1 − CNN αCT , αPET
n + 1 . (9)

We solve equation (7) by using the optimized transfer method5:

xj
n + 1 = 1

2 CNN αPET
n , αCT j − μjn − pj

ρ

− CNN αPET
n , αCT j − μjn − pj

ρ
2

+
4xj, EM

n + 1 pj
ρ ,

(10)

where pj = ∑i = 1
M pij and xj, EM

n + 1  is obtained by the MLEM update:

xj, EM
n + 1 =

xjn

pj
∑
i = 1

M pijyi
∑j = 1

N pijxjn + si + ri
. (11)

The subproblem (8) can be solved using a gradient ascent algorithm:

αPET
n + 1

j = αPET
n j − S ∑

m = 1

N ∂CNN αPET
n , αCT m

∂ αPET j
ρ

xmn + 1 + μmn − CNN αPET
n , αCT m ,

(12)

We use ‘tf.GradientTape’ API of TensorFlow for automatic differentiation. As the intensity 

of network input is normalized, once a proper step size S is found, it can be used for 

different datasets. In this work, we use S = 0.01 for all three different datasets. It should be 

noted that, there is no update on the anatomical input, i.e., αCT remains the same during 

iterations.

II.B. Network architecture

In this work, we investigated two co-learning strategies and compared the results with 

those from the single-modality (PET only) CNN. Fig. 1 shows the structure of the three 

networks. For combining functional (PET) image and structural (CT) images, we start with 

a multi-channel input CNN modified from the U-net43 as shown in Fig.1 (b), which treats 

PET/CT images as two separate input channels. Except the first convolutional layer, multi­

channel input CNN has the same architecture as the PET-only input CNN shown in Fig.1 (a). 

Specifically, the first convolutional layer contains 16 filters of support 3×3×3×c, where c is 

the number of input channels (with c=1 for PET-only CNN and c=2 for multi-channel input 

CNN), and 3×3×3 denotes the spatial size of the filter. The second co-learning architecture 

is a multi-branch CNN shown in Fig.1 (c), which implements separate encoders for PET 
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and CT images. The modality-specific features generated by two encoders are concatenated 

channel-wise. In this work, we also include a self-attention module to learn the optimal 

weights of features in the latent space44,45. Essentially, the self-attention module reweighs 

features in a certain layer of the network according to inter-dependencies of different 

features. Similar to a non-local means filter, the self-attention module tries to capture long­

range spatial dependencies. In our previous work46, we demonstrated that the U-net with 

a self-attention module outperforms the U-net without a self-attention module. For multi­

branch input network, the self-attention module enables to weigh modality-specific features 

at different locations, which is expected to efficiently fuse features from the two encoders. 

All three networks have the same decoder for synthesizing high-count PET images.

We train the networks using the adaptive moment estimation (Adam) optimizer47 with 

following loss function

L = ‖CNN αCT , αPET − x‖2orL = CNN αPET − x‖2 (13)

where αCT, αPET and x denote co-registered CT images, low and high count PET images, 

respectively. The training was implemented using the open-source library Keras 2.2.5 with 

Tensorflow backbone and trained on an NVIDIA GTX 1080 Ti GPU. Considering limited 

graphics processing unit (GPU) memory, 3D patches (64×64×48) from input images were 

extracted for training by sliding a window on each image with a stride of 32. We empirically 

set the mini-batch size to 8, the number of epochs to 1000, and the decayed learning rate 

schedule as follows: initial value was set to 0.004 and decay of rate 0.5 every 400 epochs. 

The L2 losses of the training and validation datasets for each epoch were saved and are 

shown in Fig. 2.

II.C. Data pre-processing

Prior to training, the CT image was downsampled using linear interpolation to match 

the PET pixel size and global registration was performed. In order to enhance soft-tissue 

contrast in CT images, we used the histogram equalization technique, which was performed 

using the function “histeq” in MATLAB. Essentially, the histogram equalization process 

finds a monotonic gray scale transformation such that the pixel intensities in the transformed 

image are uniformly distributed across the full gray scale. The image after histogram 

equalization would have a linearized cumulative distribution across the value range. Typical 

Hounsfield unit (HU) values of CT images are ranging from −1000 to 1000. In this paper, 

we add 1000 to the CT images and therefore the gray scale ranges from 0 to 2000. As shown 

in Fig.3, histogram equalization enhances soft-tissue contrast. Additionally, the intensity of 

CT and PET images are normalized by their own standard deviation. For a fair comparison, 

we use histogram equalized CT images in all anatomically aided reconstruction methods.

II.D. Reference Methods

In this study, we compared the proposed method with the kernel based reconstruction12, 

a state-of-the-art CNN-based regularized reconstruction48,49, and the iterative CNN 

constrained method published previously38.
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Kernel method: We used the CT image to generate a kernel matrix using a radial Gaussian 

function

KCT(i, j) = exp − ‖μi − μj‖2

2Nf
CTσ2 , (14)

where μi and μj are 3×3×3 local patches centered at voxel i and voxel j, respectively, in the 

CT image and Nf = 27 is the number of voxels in the patch. For efficient computation, all 

kernel matrices were constructed using a k-Nearest-Neighbor (kNN) search13 in a 7×7×7 

search window with k = 30. Before feature extraction, CT images were normalized so that 

the image standard variation (σ) was equal to 1. The reconstructed image is then obtained by

x = argmax
α

L y ∣ KCTα (15)

which is solved by the kernel-EM algorithm12. This method is referred to as KEMCT.

Non–local meanpost–filtering method: We applied non-local means (NLM) post­

filtering to MLEM reconstruction. The filter kernel was built using the histogram-equalized 

CT images as described in equation (14). This method is referred to as NLM.

Deep penalty method: We use the pre-trained CNN in the penalty function of a 

penalized ML reconstruction48,49. The reconstruction of the image x is formulated as the 

following optimization problem:

x = argmax
x

L(y ∣ x) − β‖x − CNN x0 ‖2
(16)

where x0 denotes an initial noisy reconstruction. The networks used in equation (16) are 

the same networks shown in Fig. 1 with either PET images only or PET/CT multi-modality 

images as the input. By using different networks, this method is denoted as DP-PET-only, 

DP-MC and DP-MB, respectively. Similar to equation (7), equation (16) with the quadratic 

prior can be solved by the optimization transfer method5.

Previous CNN constrained method: This method represents the unknown PET image 

x by the output of a pre-trained CNN with PET only input without using anatomical 

information:

x = argmax
x

L(y ∣ x), s . t . , x = CNN αPET (17)

Similar to our proposed method, equation (17) is solved by ADMM38. This iterative CNN 

constrained method is denoted as ADMM-PET-only.
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III. Experimental evaluations

III.A. Simulation Study

The computer simulation was used to evaluate the proposed method based on the geometry 

of a GE 690 scanner50. We simulated twenty XCAT51 phantoms (18 for training, 1 for 

validation and 1 for testing) with different organ sizes and genders. The image dimension 

and voxel size were 128 × 128 × 49 and 3.27 × 3.27 × 3.27 mm3, respectively. In the 

training datasets, 30 hot spheres were inserted in the lung region with diameters ranging 

from 12.8 mm to 22.1 mm. Similarly, we inserted two spherical lesions with diameters of 

12.8 mm in the test phantom. The tissue specific time-activity curves were obtained using 

a compartmental model with kinetic parameters mimicking an 18F-FDG scan. Details of the 

simulation setup were described in our previous work38. The neural networks were trained 

with low-count reconstructions (4-min scans) as inputs and high-count reconstructions (40­

min scans) as labels. Afterward, we quantitatively evaluated the performance of each method 

using the test phantom. The contrast recovery (CR) for the lesions vs. the background 

standard deviation (STD) curves were plotted. The CR was determined by

CR = 1
R ∑

r = 1

R l r

l true (18)

where l r is the uptake of the lung lesion in realization r, and l true is the true lesion uptake 

value. The total number of realizations is R = 10. The background STD was calculated as

STD = 1
Kb

∑
k = 1

Kb 1
R − 1 ∑r = 1

R br, k − bk
2

bk
, bk = 1/R ∑

r = 1

R
br, k (19)

where br,k is the average value of the kth background ROI in the rth realization and Kb = 

20 is the number of 2D circular ROIs in each image. The background ROIs were manually 

drawn in the liver region across multiple axial slices.

III.B. Real patient studies

III.B.1. Hybrid lesion datasets—The hybrid lesion dataset consisted of 6 female 

patients (5 for training and 1 for testing), who received one-hour 18F-FDG dynamic 

scans on the GE Discovery 690 TOF-PET/CT scanner50 (GE Healthcare, Waukesha, WI, 

USA). The study was approved by the UC Davis Institutional Review Board. More patient 

information can be found in our previous work39. We generated high-count data using 

the measured events from 20 to 60 minutes post injection. Ten realizations of low-count 

data were obtained by randomly down-sampling the high-count data to 1/10th events. The 

reconstruction image dimension and voxel size were 180 × 180 × 49 and 3.27 × 3.27 × 3.27 

mm3, respectively. For each realization, image augmentation was used by rotating the image 

with an angle randomly sampled between 0 and 90 degree39. The neural networks were 

trained with low-count reconstructions as inputs and high-count reconstructions as labels.
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For quantitative analysis, spherical lesions with diameters of 13.1 mm and 16.4 mm were 

manually inserted into the testing data, but not into the training data. Lesion CR vs. 

background STD curves were obtained using the procedure described in Section III.A..

III.B.2. Lung cancer datasets—The lung cancer dataset included seven 18F-FDG 

patient scans (5 for training, 1 for validation and 1 for testing) from a Canon 

Celesteion TOF-PET/CT scanner52 (Canon Medical Corporation, Tochigi, Japan). Two 

50% overlapping bed positions were acquired with 14 minutes per bed. The body weights 

distribution of patients was in a moderate range from 45 to 74 kg and the injected activity 

ranged from 160 to 250 MBq. The 14-minute scans were used as the high-count datasets 

and the low-count datasets were generated by downsampling the high-count datasets to 

1/7th events. The same image augmentation procedure described above was used39. The 

reconstructed image dimension and voxel size were respectively 272 × 272 × 141 and 2.0 

× 2.0 × 2.0 mm3. For quantitative analysis, liver ROIs were placed in a uniform area to 

calculate the STD. Although true lesion uptakes in real patient datasets were not known, we 

computed the CR based on the high-count reconstruction (100 MLEM iterations), which can 

serve as a reasonable surrogate of the ground truth.

IV. Results

IV.A. Simulation data

Fig. 4 shows transverse (top), coronal (middle), and sagittal (bottom) views of different 

reconstructed images through the lesion of interest. All of the methods are compared at a 

matched lesion contrast, indicated by the dashed black line in Fig. 5 (a). Both the NLM 

filter and the CT-aided kernel reconstruction demonstrated reduced noise and reduced partial 

volume effects (PVE), in comparison with the commonly used MLEM. Compared with the 

NLM filter, KEMCT can generate clearer myocardial structures with the help of the data 

consistency. Comparing images in fig 4(d)–(f) with those in fig 4(g,h,j), we can see that 

the results of CNN constrained reconstructions (ADMM-PET-only, ADMM-MC, ADMM­

MB) have lower noise in the uniform region compared to their deep penalty counterparts 

(DP-PET-only, DP-MC, DP-MB). Comparing Fig. 4(i) with Fig. 4(j), we found that with 

histogram equalization, the myocardium boundary is more continuous and the liver region is 

smoother. We also computed the mean squared error (MSE) of the reconstructed test image 

with respect to the high-count reference image (HC-MLEM) as a function of iterations. The 

MSE curves in Fig. 5 (b) indicated that ADMM-MB has the lowest MSE.

From the CR vs. STD curves shown in Fig. 5, we see that the proposed iterative CNN 

constrained reconstruction with the multi-branch input outperforms all other methods with 

the highest CR at any matched STD level. In contast to the NLM method, both KEMCT 

and deep learning based reconstruction can better preserve lesions uptake. We can also 

see that both multi-channel input and multi-branch input have lower liver STD than the PET­

only input result, although the difference between the CNN constrained reconstructions is 

relatively small. This finding indicates that the use of CT information in these methods can 

reduce noise in uniform soft-tissue regions. Including histogram equalization (ADMM-MB­
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histequ) also improves the convergence speed over using the CT image directly (ADMM­

MB).

IV.B. Hybrid lesion datasets

Fig. 6 shows three orthogonal views of different reconstructed images through the lesion 

of interest. Similar to the simulation test dataset, all of the methods were compared at a 

matched lesion contrast, as indicated by the dashed black line in the CR vs. STD curves 

(Fig. 7). The CT-aided kernel reconstruction reduced noise and partial volume effects 

(PVE), in comparison with the commonly used MLEM. Compared with the deep penalty 

approaches, the CNN constrained reconstruction framework can recover more image details. 

Fig. 6 (c), (d), and (e) show that the deep penalty methods resulted in lower lung lesion 

contrast due to an increased smoothing across the images. The multi-channel network loses 

some fine details around the spine, as shown in Fig. 6 (d) and (g). Similar to KEMCT, the 

high activity region inside the bone marrow cannot be successfully identified.

In comparison, the multi-branch CNN constrained reconstruction holds the best CR­

STD trade-off among all the methods. Fig. 7 demonstrates the proposed anatomy-aided 

CNN constrained reconstruction (ADMM-MB) can achieve better performance than 

KEMCT. After introducing histogram equalization, ADMM-MB-histequ converges faster 

and achieves a slightly better performance than ADMM-MB. Finally, compared with 

methods without using anatomical information, such as ADMM-PET-only and MLEM, our 

method can obtain 41% and 86% noise reduction, respectively, at matched CR levels.

IV.C. Lung cancer datasets

Fig. 8 shows the representative slices of reconstructed images and Fig. 9 shows the lung 

lesion contrast vs. liver STD curves for the test dataset. Using the KEMCT method (Fig. 

8(b)), the noise has been suppressed but the lesion contrast is reduced. This is due to the 

imperfect registration between CT and PET. From our observations, there are some local 

mis-registrations between the CT and the PET, possibly due to repiratory motion. Compared 

with the KEMCT method, CNN constrained reconstruction achieved a higher lesion contrast 

while keeping a lower noise level. Moreover, ADMM-MB produces higher lesion contrast 

and has better noise tolerance than ADMM-PET-only. Similar to the results of hybrid 

lesion dataset, we also find that the liver is smoother in the anatomy-aided reconstructions 

compared to PET-only results (indicated by the black arrow). By visual inspection, our 

proposed method (ADMM-MB) has similar texture pattern compared to the high-count 

ML-EM reference. For instance, we can see that tumor activity in the lung is more uniformly 

distributed in the ADMM-MB method (Fig. 8(e)) compared to the ADMM-MB-w/o-histequ 

image (Fig. 8 (d)) and the ADMM-PET-only image (Fig. 8(c)).

V. Discussion

In this paper, we investigated two co-learning strategies for regularized PET image 

reconstruction. Our experimental results showed that the ADMM-MB-histequ outperformed 

existing methods, such as PET-only CNN-based reconstruction38 and anatomy-aided kernel 

reconstruction11. Although the KEMCT method has demonstrated reduced noise and 

Xie et al. Page 10

Med Phys. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduced PVE properties, in practice, CT(only)-aided method is easily influenced by the 

mis-registration introduced by respiratory motion or the registration algorithm, as shown in 

the lung cancer dataset. In comparison, a deep network trained using real PET/CT images 

learns the mis-registration between low-count PET and CT inputs. Our experimental results 

demonstrated that the co-learning methods could compensate mismatch effects at least to 

some extent compared with KEMCT, as shown in Fig. 8.

Similar to previously reported methods16, the anato-functional methods which combine both 

anatomical and functional information, perform better than anatomy-aided only methods. It 

also should be noted that two co-learning strategies behave differently in terms of recovering 

small lesions, while both MC and MB have similar noise reduction ability. Without the help 

of modality-specific encoders, the multi-channel CNN combines both modalities in the first 

convolutional layer. However, as indicated by the metrics in Fig. 7 and the images in Fig. 

6, this co-learning strategy tends to prioritize information from CT images at the expense 

of information from the PET data. A clear example is in the bone marrow, and only part of 

the bone marrow can be separated in DP-MC and ADMM-MC, because the tracer uptakes 

in the bone marrow are better separated in the PET image than in the CT image. Also the 

multi-channel network may not be able to fully learn the correlation between features in 

PET and CT images. To show that the improvement in performance was due to the change 

in network architecture, not simply by increasing the number of trainable parameters, we 

also trained a multi-branch network with 0.54 million parameters (8 root features). The 

new multi-branch network still outperformed the multi-channel network with 0.8 million 

parameters.

Compared with deep image prior based37 regularized reconstruction, our pre-trained 

network is capable of incorporating both inter-patient information and intra-patient 

information by learning from high-quality training samples. Additionally, the deep image 

prior method requires early stopping and the optimal iteration number is difficult to 

determine. In this paper, we do not introduce an extra likelihood function that encourages 

the network input to be similar to the unregularized ML reconstruction as we did in39, 

because we observed monotonic increase of L(y|α)) after incorporating the anatomical 

information. This indicates that with the introduction of anatomical information, pre-trained 

networks are less likely to generate undesirable outputs.

Another popular way of deep learning based reconstruction is the unrolling approach, which 

unrolls an iterative image reconstruction algorithm into a layer-wise structure and replaces 

certain components by neural networks. It often results in better interpretability. An unrolled 

network consists of series of modules, each having a regularization and data consistency 

unit. The number of trainable parameters increases with the number of modules if the 

network parameters are not shared among the modules53, and the GPU memory usage of the 

whole unrolled network can be huge. Furthermore, because the forward and back projections 

are embedded inside each module, the computational cost for an end-to-end training is 

extremely high. In comparison, we incorporate a pre-trained network in a constraint iterative 

reconstruction framework. The GPU memory usage is independent of iteration number, so 

we can use a deeper network. Also because the training does not involve any forward and 

back projection operations, the computational cost for training is much lower. Compared 
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with unrolled methods, the performance of the ADMM in our method is sensitive to the 

hyperparameter ρ, which was manually adjusted in this work. How to address and alleviate 

this issue is of interest in our future studies.

One challenge in anatomically guided PET reconstruction is the potential mismatch between 

PET and CT images. We observed an example of a PET-unique lesion case in the validation 

data of the lung cancer dataset. As shown in Fig.10, the lesion can be barely identified in 

the CT image. Fig. 10(b) shows that KEMCT, which only uses CT information, has the 

worst lesion contrast. ADMM-PET-only performs better than ADMM-MB in terms of lesion 

contrast. However, ADMM-MB has a lower STD in the liver region at matched contrast 

level, which is mainly attributed to the much smoother background in CT images.

In this study, we trained two CNNs with datasets acquired on GE and Canon scanners 

separately. In a previous work54, we also tried to directly deployed the network trained 

using GE dataset to the Canon dataset. The results indicated a reasonable generalizability 

of the pre-trained network between inter-vendor scanners. Furthermore, integrating the deep 

neural network in iterative reconstruction can improve the image quality and reduce the 

variation between different networks. While we have only studied FDG PET scans so far, 

our reconstruction framework is applicable to other PET tracers. However, to achieve the 

best performance, additional fine tuning of the network parameters may be necessary for 

some PET tracers.

VI. Conclusion

In this work, we proposed an anatomy-aided PET image reconstruction method. By co­

learning PET/CT information, the pre-trained deep neural network is used to represent 

PET images and to incorporate inter- and intra-patient information into PET image 

reconstruction. Evaluations using computer simulations and real datasets indicated that 

the proposed reconstruction method improved image quality and produced a better lesion 

contrast vs. background standard deviation trade-off curve compared existing methods, 

such as ML-EM reconstruction, kernel-based reconstruction and CNN-based penalized 

reconstruction with and without anatomical guidance.
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Figure 1: 
The architecture of three 3D deep neural networks with (a) PET input only, (b) PET/CT 

multi-channel input and (c) PET/CT multi-branch input, respectively. The input to each 

modality-specific encoder is a 3D patch of the corresponding modality.
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Figure 2: 
The training and validation losses as a function of epoch.
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Figure 3: 
CT images and corresponding cumulative histogram (a) before and (b) after histogram 

equalization.
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Figure 4: 
Reconstructed low-count images using different methods for the simulated test dataset. 

ADMM-MB-histequ denotes our proposed method method that uses the multi-branch input 

CNN constrained reconstruction with histogram equalized CT image. HC-MLEM represents 

MLEM reconstruction of high-count data for reference. Our proposed method is marked in 

bold face.
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Figure 5: 
(a) The contrast recovery (CR) versus background standard derivation (STD) curves for the 

simulated test dataset. (b) The MSE as a function of iteration number for the simulated 

test dataset. Markers are plotted for every 10 iterations. Deep learning based methods were 

initialized with the 30th MLEM iteration.
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Figure 6: 
Reconstructed low-count images using different methods for the hybrid lesion test dataset. 

Our proposed method is marked in bold face. HC-MLEM denotes MLEM reconstruction of 

high-count data for reference.
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Figure 7: 
The contrast recovery (CR) versus background standard derivation (STD) curves for the 

hybrid lesion test dataset. Markers are plotted for every 10 iterations. Deep learning based 

methods were initialized with the 30th MLEM iteration.
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Figure 8: 
Reconstructed low-count images using different methods for the lung cancer test dataset. 

Our proposed method is marked in bold face. HC-MLEM denotes MLEM reconstruction of 

high-count data for reference.
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Figure 9: 
The contrast recovery (CR) versus background standard derivation (STD) curves for the lung 

cancer test dataset. Markers are plotted for every 10 iterations. Deep learning based methods 

were initialized with the 30th MLEM iteration.
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Figure 10: 
Reconstructed low-count images using different methods for the lung cancer validation 

dataset. Our proposed method is marked in bold face. HC-MLEM denotes MLEM 

reconstruction of high-count data for reference.
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Table 1:

The acronyms of different methods.

Methods Abbreviation Histequ preprocessing

Low count

High count MLEM HC-MLEM --

Low count MLEM MLEM --

Non-local mean post processing based on CT kernel NLM w/

CT kernel base reconstruction KEMCT w/

Deep penalty reconstruction base on PET-only input network DP-PET-only --

Deep penalty reconstruction base on multi-channel input network DP-MC w/

Deep penalty reconstruction base on multi-branch input network DP-MB w/

Deep penalty reconstruction base on PET-only input network DP-PET-only --

PET-only input network-based iterative reconstruction with input constrain ADMM-PET-only --

Multi-channel input network-based iterative reconstruction with input 
constrain ADMM-MC w/

Multi-branch input network-based iterative reconstruction with input 
constrain ADMM-MB w/

Multi-branch input network-based iterative reconstruction with input 
constrain ADMM-MB-w/o-hisequ w/o

-- : The inputs do not include CT.
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Table 2:

The summary of three datasets.

Dataset Scan time Numbers of subject Image
dimension Voxel size (mm3)

Simulation GE 690 geometry

Low count
(20th,

30th, 50th MLEM iteration)
4 min 20 phantoms:

18 for
training,

1 for validation,
1 for testing

128 × 128 × 49 3:27 × 3:27 × 3:27
High count

(50th MLEM
iteration)

40 min

Real patient

GE 690

Low count
(20th,

30th, 50th MLEM iteration)
4 min 6 patients:

5 for
training,

1 for testing

128 × 128 ×49 3:27 × 3:27 × 3:27
High count

(50th MLEM
iteration)

40 min

Canon Celesteion

Low count
(20th,

30th, 50th MLEM iteration)
2 min 7 patients:

5 for
training,

1 for validation,
1 for testing

272 × 272 × 141 2:0 × 2:0 × 2:0
High count

(50th MLEM
iteration)

14 min
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