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Categorization, Typicality, and Shape Similarity

Matthew A. Kurbat and Edward E. Smith
Department of Psychology, University of Michigan
330 Packard St
Ann Arbor, MI 48104
kurbat@cog.psych.lsa.umich.edu

Abstract

This work examines the contribution of shape features to
subjects’ judgments of typicality for visual categories.
Shape was found to make a strong contribution to
typicality, as evidenced by the strong correlation between
results on pictures and those on silhouettes of the same
pictures. Also, different measures of the contribution of
shape template overlap, compactness, and number of
parts - were shown to capture different aspects of that
contribution. As one of the fundamental problems in
category research is to determine the features used in
categorization (e.g., Medin, 1989), the current work is
important because it makes progress on this problem.

Introduction

The perceived world includes an indefinite number of
discriminable objects. While we could treat each object as
unique, often we do not - we categorize. Coding by category
is fundamental to mental life because it greatly reduces
demands on perception, reasoning, and memory (e.g.,
Medin, 1989; Smith, 1990).

One well-documented finding in categorization research
is that not all members of categories are created equal:
people perceive some members to be better or worse
examples of a category than others (e.g., Mervis and Rosch,
1981; Smith and Medin, 1981). For example, people tend
to think that a robin is a more typical bird than a chicken.
Typicality appears to be a major determinant of the
organization of memory, as evidenced by its ability to
predict results in a variety of tasks using semantic and visual
categories such as speed and order of learning category
members, and speed of verifying them as instances of a
category (e.g., Smith and Medin, 1981). Furthermore,
variations in typicality cannot be explained solely (or
largely) by familiarity (e.g., Malt and Smith, 1982).

A general interpretation of these findings is that the
typicality of an instance is a measure of its similarity to its
category, and categorization amounts to determining that an
itemn is sufficiently similar to the target category (Rosch and
Mervis, 1975; Smith, 1990). If typicality is really based on
similarity, then we ought to be able to predict typicality as
follows (Smith, 1990): (1) select a domain of instances; (2)
estimate features of the instances by subjects' listings; (3)
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compute similarity of each exemplar to its category by
using some explicit rule (such as Tversky's (1977) contrast
model); (4) see if this similarity estimatc predicts typicality.

While this method is clearly useful for semantic
categories, its relevance to visual categories is less clear.
Feature listings include few (if any) shape features; yet
objects are often visually categorizable from their shape
alone (Biederman, 1987; Rosch, Mervis, Gray, Johnson, and
Boyes-Braem, 1976), or even from silhouettes alone (e.g.,
Rosch et al., 1976). So, while shape features are clearly
important to visual categorization, categorization models
based on listed features do not explain why. Thus it would
be interesting to devise a model that accounts for the
contributions of shape features to perceived similarity,
typicality, and visual categorization.

It is not trivial to devise such a model, but one area of
research that is useful for this purpose is object recognition.
Researchers in objéct recognition have developed several
classes of models, the most popular being template, feature,
and structural description models (e.g., Pinker, 1984).
Structural description models represent objects by their parts
and relations between parts. While such structural
descriptions are thought to be more psychologically veridical
than feature or template representations (e.g., Pinker, 1984),
it is also more difficult to devise a structural-description
theory that is both broad in the scope of objects it can
recognize, and specific about the means by which objects are
represented and recognized (e.g., how objects are divided into
parts, how parts are represented). The RBC/JIM model
(Biederman, 1987, Hummel and Biederman, 1992) is
probably the best structural description approach to date, but
even it has severe limits on the gencrality of mechanisms
for dividing objects into parts and representing parts. For
parsing, RBC/JIM is limited for a number of reasons: its
parsing rule is based on a misinterpretation of Hoffman and
Richards (1984), it underdetermines parsing, it is overly
sensitive to noise, it parses hierarchical objects incorrectly,
etc.; for representing parts, RBC/JIM is also limited for
numerous reasons: some geon features are absent from
smooth objects or sithouettes, empirical evidence for some
geon features might actually be evidence for lower level
contour grouping mechanisms, algorithms for generating
axes of symmetry are incompatible with RBC/JIM's
representations of axes, etc. (Kurbat, 1994, discusses these
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and related points). Therefore we focus on template and
feature models below.

While templates may be less psychologically veridical
than structural descriptions, their recent resuscitation (¢.g.,
Ullman, 1989) is likely due in part to their being simpler
and easier to implement. Template models determine the
similarity between two shapes in two steps (e.g., Ullman,
1989). The first step is an alignment step: shapes may
differ in orientation, size, and location, so reorientation,
resizing, and translation of the shapes may be necessary to
align them. There are various methods for performing these
transformations. For example, for reorientation (in the
picture plane), one may first fit a line to the boundary of
each object minimizing the sum of squared distances from
the boundary, and then reorient all objects so each line has
the same orientation (e.g., horizontal); for size, objects may
be scaled to have the same area; for location, objects may be
translated to have the same center of area (for further
discussion, see Ullman, 1989). It is generally also
necessary to compensate for changes in depth orientation of
objects (e.g., a side view of a dog vs. a front view), but in
the work discussed below we are only concerned with one
possible depth orientation (i.e., side views of objects). The
second step in template matching is the matching step. One
simple method for this step is to count the number of pixels
common to both superimposed objects ("intersection™), then
count the number found in one or the other or both
("union"). Dividing intersection by union yields a shape
similarity score from O to 100 - the higher the score, the
greater the similarity in shape between the two shapes
matches.

Feature models of object recognition are much like
those in categorization, because they represent objects in
terms of features and recognize them via featural similarity.
Designers of such models must also confront the
categorization issue of "what are the features?" (e.g.,
Murphy and Medin, 1985). Numerous candidate shape
features exist (e.g., Ballard and Brown, 1982), but for
present purposes we will concentrate on two that capture
complementary aspects of the variability between shapes.
The first is the notion of compactness (e.g., Zusne, 1970).
the ratio of the square of the perimeter of an object to its
area. Shapes with low compactness scores are compact
(e.g., a circle), and those with high scores are not compact
(e.g., a pencil). A second shape feature is the number of
concavities in an exemplar's silhouette. Shape recognition
research suggests we divide shapes into parts at concavities
(Hoffman and Richards, 1984), so a count of the number of
concavities is one measure of the number of parts produced
by dividing at concavities. This measure may be
implemented on computer by fitting the boundary of a shape
with cubic spline curves, and then counting the number of
places where the splines become concave (i.e., curvature of
the spline becomes negative). We do not claim that these
two features sufficiently characterize shapes; we do suggest
that these features may capture some psychologically
important differences between shapes,
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As basic level categories are thought 1o be distinguished
primarily via differences in shape1 (e.g., Rosch et al, 1976;
Biederman, 1987), such categories ought to be a good
domain for testing shape-based models of similarity and
categorization, hence the template and featural measures just
discussed (while there is some question as to what is to
"count” as a basic level category (e.g., Mandler, Bauer, and
McDonough, 1991), we avoid this question here for sake of
simplicity and use categories termed basic level by Rosch et
al, 1976). For this test, 25 basic level categories were used
(from Estin, Smith, and Medin, 1994), and two or more
instances were selected from each category for a total of 66
exemplars (two instances were selected from 18 of 25
categories, and more than two were selected from the
remaining seven). Each of the 66 exemplars was compared
via template match. The template matching method used
was similar to the one described in the introduction - to
correct for differences in size, objects were scaled by
computer to have the same area; to correct for differences in
planar location, objects were translated by computer to have
the same center of area (i.e., same average x and y
coordinates for black pixels comprising each digitized
silhouette). The only difference between the method used
here and the one described in the introduction was that
correction for planar orientation was not used because all
objects were rotated in advance to have a horizontal
orientation in the picture plane. This method was used to
match each exemplar to every other exemplar to find the
single best matching exemplar; each exemplaf was classified
as belonging to the category of this best matching example.
For example, if car exemplar 1 matched another car exemplar
better than it matched all non-car exemplars, then it would
be classified (correctly) as a car - otherwise, it would be
classified incorrectly. Of the 66 total exemplars, 60 were
classified correctly, for an accuracy rate of over 90%; of the
25 categories, every exemplar in 20 of them was classified
correctly. (We are also working on a feature-based model -
using the feature types discussed above, and others - to
perform this same task).

Given that these shape measures make fairly accurate
predictions about basic level categorization, it is interesting
to examine how well they predict typicality - the issue with
which we began. It seems unlikely that shape would predict
typicality at all levels of abstraction - for example, relatively
superordinate categories like 'mammal’ and "beverage' are

1 There has been a controversy over whether shape is a
necessary requirement for basic level categories. For example,
Murphy (1991) presented results that he used to argue against
the necessity of shape. However, the interpretation of the
results presented by Murphy is less than clear - one problem is
that categories used in Murphy's experiments had defining (non-
shape) features at the basic level. This practice, which is
common in research using artificial categories, undermines the
idea that relevant structural properties of natural categories have
been incorporated into Murphy's artificial materials (e.g.,
Lassaline, Wisniewski, and Medin, 1992). A more expanded
version of the current paper will include further discussion of
this issue (including, e.g., the comments of Tversky and
Hemenway, 1991).



distinguished primarily by non-perceptual properties (Rosch
ct al., 1976). One interesting level at which to try these
measures is again the basic level. This level is interesting
because subordinate categories that are atypical within their
basic level categories are more distinctive in their physical
appearance than typical subordinates (Murphy and Brownell,
1985). In other words, the more distinctive something is in
physical appearance, relative to other members of the
category, the less typical it is. While Murphy and
Brownell's results are limited by the fact that 'distinctiveness
of appearance' is ambiguous, one obvious component of
appearance is shape. So it seems natural to suggest that
distinctiveness of appearance may be in part due to
distinctiveness in shape, and that atypical exemplars may
have more distinctive shapes than typical exemplars.

Experiment

This experiment had two purposes. The first was to
compare subjects’ typicality ratings of pictures with their
typicality ratings of silhouettes of the same pictures. A
high correlation betwecn results with pictures and
silhouettes would indicate a strong contribution of shape to
judgments of typicality, because silhouettes include only
shape information. The second purpose was to test different
measures of shape similarity as predictors of typicality. As
the shapes of members of different basic level categories
may vary in different ways, attempts to capture these
different sorts of variation may require different measures of

shape.
Method

Subjects. The subjects were 138 undergraduates at the
University of Michigan who participated as part of a course
requirement.

Materials. The stimuli were black and white digitized
pictures of exemplars of three basic level (according to
Rosch et al, 1976) categories - birds, dogs, and fish.
Pictures were side views of these animals chosen from
wildlife and pet shop books. Within each of these three
categories, subordinate categories were chosen to span the
typicality range and to be relatively well-known to college
students. For birds, 56 exemplars from 14 subordinate
categories were used; for dogs, 52 exemplars from 17
subordinate categories were used; and for fish, 83 exemplars
from 20 subordinate categories were used. Pictures were
chosen to be from comparable viewpoints - all were side
views. The pictures were digitized using an HP Scanjet II as
black and white binary images (75 pixels per inch - each
pixel either black or white). Pictures were normalized by
computer to a constant size. Silhouettes were generated by
computer for each picture. Silhouettes were created using an
algorithm that first traced the boundary of each depicted
object, and then made all pixels inside the boundary black.

Procedure and Design. Each subject generated data for
either (1) birds and dogs, or (2) dogs and fish, or (3) fish and
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birds, with half the subjects in each of these three groups
viewing pictures and half viewing silhouettes. An equal
number of subjects was assigned 1o each of these six groups
(for example, 23 subjects saw bird and dog pictures, 23
subjects saw dog and fish silhouettes, etc.). Each subjcct
first gave typicality ratings for all instances of the first type
of animal (presented in a random order), then for the second
type of animal. Subjects were asked to rate how typical the
pictured animal is of its basic level category (bird, dog, or
fish) on a 1-7 scale, with 1 being very atypical and 7 being
very typical.

Results and Discussion

Pictures versus silhouettes. Correlations between
typicality ratings for pictures and silhouettes were .93, .89,
and .96 for fish, dogs, and birds respectively (p<.0001 in all
cases). So, shape information played a major role in ratings
of typicality. This result is interesting in part because past
work by Rosch et al (1976) showed that the differences in
basic (not subordinate) level category were most correlated
with differences in shape. The result is consistent with the
suggestion of Murphy and Brownell (1985), that atypical
subordinate categories are more distinctive in their physical
appearance than typical subordinates, and our conjecture that
distinctiveness of appearance may be in part due to
distinctiveness in shape,

Several comments are in order on the generality of these
results. On the one hand, the results should be qualified by
the fact that the digitized images used in this experiment
were black and white binary images (75 pixels per inch -
each pixel either black or while), and so they lacked color
and fine detail. Also, scaling the stimuli to a constant size
led to a slight degradation of some pictures. Thus the
presence of color, greater detail, and elimination of
degradation due to scaling might have reduced the
correlations. On the other hand, of the three basic level
categories only birds have a great deal of color variation.
Also, silhouettes exclude some shape information included
in pictures, so silhouettes and pictures do not differ only in
terms of non-shape information. Thus some of the picture-
silhouette difference may be due to shape differences, and the
confributions of shape to typicality may be even greater than
indicated by our correlational results.

Shape measures versus typicality. Two versions of
the template measure were used: exemplar and prototype
(e.g., Smith and Medin, 1981). In the exemplar version,
each pictured exemplar was compared via template match to
all other instances of its basic level category; resulting
scores were averaged to get the shape similarity score for
that exemplar. In the prototype version, the subordinate
category with the highest mean typicality rating was chosen
as prototype for each of the three basic level categories (in
all three cases, this subordinate category also had the highest
or near highest score on the exemplar-based shape similarity
measure just discussed). For example, ‘labrador retriever'
was the dog with the highest typicality rating, so it served
as the dog prototype. Shape similarity scores were then



determined for each nonprototype exemplar by comparing
them via template match to each prototype exemplar. So,
10 again use dogs as an example, each nonprototype dog was
compared against each labrador retriever exemplar using the
template match. In both prototype and exemplar cases,
average scores for each exemplar were then averaged within
each subordinate category to get a mean score for that
subordinate category. These shape similarity scores were
then compared with typicality scores. For the exemplar
version, shape similarity was not significantly correlated
with typicality for pictures or silhouettes of fish, dogs, and
birds (note that this is evidence against one particular
exemplar model, not the class in general - see Smith and
Medin, 1981; another sort of exemplar model worth
investigating in this context is one that weights each
exemplar by frequency of instantiation, following Barsalou,
1985). For the prototype version, template shape similarity
correlated significantly with typicality for both bird pictures
(r=.70, p<.008) and silhouettes (r=.61, p<.03) and for both
fish pictures (r=.65, p<.003) and silhouettes (r=.58,
p<.009), but not for dogs (r=.35 for pictures and .28 for
silhouettes). Further improvements for birds were found by
adding a parameter for normal orientation of birds. Some
birds (i.e., penguins and owls) normally stand in a vertical
orientation (and were so pictured), so the parameter value
was set to 1 for these birds, but most birds stand in a more
diagonal or horizontal orientation, so the parameter value
was set to O for these birds. This parameter is sensible
because most birds do not stand vertically, making those
that do distinctive. Addition of this parameter increased
correlations to r=.87 and r=.85 for bird pictures and
silhouettes, respectively (p<.002 in both cases).

While the template measure yielded good results for
birds and fish but not dogs, the opposite pattern occurred
with the first of our feature-based shape measures, the
compactness measure; so the two measures seem
complementary.  Specifically, correlations between
compactness and typicality were not significant for birds and
fish, but were significant for dog pictures (.57, p<.02) and
silhouettes (.70, p<.002). The dog results make some
intuitive sense: breeds with lower compactness scores like
dachshunds and st. bernards were rated lower in typicality
than breeds with more slender, elongated body parts (hence
higher compactness scores), like retrievers.

A second feature measure used was number of parts in
an exemplar's silhouette, as estimated by number of
concavities. While this measure did not seem useful for
birds and dogs, as their part structures remain essentially
unchanged across subordinates, it did seem useful for fish, as
the number of fins varies widely between subordinates,
While number of parts per se did not correlate well with
typicality for fish (r=.08 for pictures and r=.03 for
silhouettes), a plot of parts versus typicality produced an
asymmetrical inverted U-shaped function. Taking M to be
the mean number of parts, the transformation Iparts -
Mi/parts is useful in this context. To justify the choice of
numerator (lparts - M), note that fish typically have 4-5
concavities on average, so those with fewer (e.g., eels) or
more (e.g., catfish - whiskers create concavities) seem less
typical. In other words, the numerator simply reflects degree
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of deviation of a given fish exemplar from the fish
prototype, as measured in terms of number of parts. The
choice of denominator was motivated by psychophysical
studies of magnitude estimation, Specifically, perceptions
of just noticeable differences in magnitude are commonly
proportional to the magnitude, a relationship commonly
known as Weber's law (e.g., Engen, 1972); so division by
magnitude (number of parts) serves as a normalizing factor
(one might argue that perhaps number of parts and mean
number of parts should be averaged as the normalizing
factor, but this linear transformation of the original
normalizing factor would not change the correlation of the
transformed predictor with typicality). In fact, the resulting
ransformed values correlated well with typicality of fish
pictures (r= -.74, p<.0003) and silhouettes (r= -.72, p<.003).
Finally, the transformed values corrclated poorly with the
template measure (r= -.17), so they seem to be capturing
different aspects of shape variation.

General Discussion

In summary, shape made a strong contribution to the
assessment of typicality for the pictures tested, as evidenced
by the strong correlation between results on pictures and
those on silhouettes. Also, we have several measures of the
contribution of shape - template overlap, compactness, and
number of parts - each of which appcars to capture a different
aspect of that contribution. Further, a more general test of
the template shape measure using approximately two dozen
basic level categories found that template-determined shape
similarity was significantly correlated with typicality for
most of the categories tested (Estin, Smith, and Medin,
1994). As one of the fundamental problems in category
research is to determine the features used in categorization
(e.g., Medin, 1989), the current work is important because it
makes progress on this problem.

A number of directions for future research on this topic
seem worth pursuing. First, it would be interesting to
further develop the shape feature approach by trying
additional feature measures, and ways to combine different
measures. Second, despite the reasonably good predictions
made by the template and feature models, they have clear
limitations (e.g., Pinker, 1984). Thus one of our goals is
to develop an improved structural description model that can
account for the results presented here (further developments
in shape feature measures might still be useful in that they
could provide constraints on a structural description model).
Third, we are interested in typicality because it can be used
to estimate similarity which in turn can be used to predict
category membership; but shape measures serve as direct
measures of similarity, so shape similarity ought to predict
categorization directly. Also, similarity as tapped by
speeded categorization may differ from similarity as tapped
by slower and perhaps more deliberative judgments of
typicality (for a related point, see Barsalou, 1987). As we
wish to account both for typicality and categorization, we
are also examining shape model-based predictions of speed
and accuracy of categorization. Our preliminary results
suggest that the current shape measures predict speed and



accuracy of categorization about as well as they predict
typicality. Such a convergence of results is consistent with
the claim that subjects did not determine typicality indirectly
via subordinate categorization (e.g., by saying "that is a
flamingo, and flamingoes are atypical”), because the
categorization task does not allow this sort of slow,
deliberative processing, and because the same measure
predicts the results of both tasks. Fourth, we are also
collecting ratings of familiarity and subordinate typicality to
control for possible effects of these variables - we plan to
assess contributions of these factors and different shape
measures on typicality and subordinate categorization using
multiple regression. Finally, as mentioned in the
introduction, some current models for categorization of
natural objects perform categorization via similarity as
determined by listed features. As a way to examine the
differences between verbal and visual categorization (and as
another way to check if subjects are using background
knowledge to perform typicality judgments), we plan to use
both visual and verbal categorization paradigms, and use the
feature-listing methods discussed in the introduction as well
as our shape measures, to generate predictions of typicality.
This would allow us to see the extent to which predictions
based on feature-listing models correlate with those produced
by the shape-based measures, and to examine relations
between verbal and visual categorization.
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