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Abstract

Three-dimensional (3D) helical mesostructures are attractive for applications in a broad range of 

microsystem technologies, due to their mechanical and electromagnetic properties as stretchable 

interconnects, radio frequency antennas and others. Controlled compressive buckling of 2D 

serpentine-shaped ribbons provides a strategy to formation of such structures in wide ranging 

classes of materials (from soft polymers to brittle inorganic semiconductors) and length scales 

(from nanometer to centimeter), with an ability for automated, parallel assembly over large areas. 

The underlying relations between the helical configurations and fabrication parameters require a 

relevant theory as the basis of design for practical applications. Here, we present an analytic model 

of compressive buckling in serpentine microstructures, based on the minimization of total strain 

energy that results from various forms of spatially dependent deformations. Experiments at micro- 

and millimeter-scales, together with finite element analyses (FEA), were exploited to examine the 

validity of developed model. The theoretical analyses shed light on general scaling laws in terms 

of three groups of fabrication parameters (related to loading, material and 2D geometry), including 

a negligible effect of material parameters and a square root dependence of primary displacements 

on the compressive strain. Furthermore, analytic solutions were obtained for the key physical 

quantities (e.g., displacement, curvature and maximum strain). A demonstrative example 

illustrates how to leverage the analytic solutions in choosing the various design parameters, such 

that brittle fracture or plastic yield can be avoided in the assembly process.

Graphical abstract

Analytic models, finite element analyses and experiments are presented to capture all 

quantitative aspects of buckling-guided formation of 3D helical mesostructures. The resulting 
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scaling laws include negligible roles of cross-sectional and material parameters on the 3D 

configurations, enabling predictions of physical quantities with analytic solutions. These findings 

can serve as design references for assembly of structures optimized for device applications.

Keywords

Three-dimensional Assembly; Buckling; Helix; Serpentine Structures; Modeling

1. Introduction

Three-dimensional (3D) helical mesostructures hold great potential for a broad range of 

applications in microsystem technologies, such as microelectromechanical systems 

(MEMS),[1,2] electrodes for lab-on-a-chip systems,[3,4] and stretchable electronics.[5,6] To 

form 3D architectures of helical and other relevant topologies at micro/nanoscale, several 

classes of fabrication/assembly approaches have been developed by exploiting different 

working mechanisms.[2,6–35] Representative approaches include microcontact printing,[15,16] 

MEMS lithography/electroplating techniques,[17–19] manual winding,[20] residual-stress-

induced self-rolling of thin films/belts,[21–24] controlled mechanical buckling,[6,32] and 3D 

additive printing based on direct ink deposition,[2,25–29] or direct laser writing,[30,31] 

(sometimes in combination with liquid metal paste filling[29] or the electrochemical 

deposition and plasma etching[31]). Most of these approaches, such as lithography/

electroplating techniques,[17–19] manual winding,[20] and 3D additive printing,[2,25–31] apply 

directly only to certain classes of materials, e.g., metals and/or polymers, and generally not 

to high-performance semiconductors (e.g., single-crystal silicon) that are widely adopted in 

modern high-quality electronics and optoelectronics. Although the methods based on 

residual-stress-induced self-rolling[21–24] are naturally compatible with modern planar 

technologies and offer yields and throughputs necessary for practical applications, they 

provide access to certain classes of hollow polyhedral or cylindrical geometries, with the 

upper length scales limited, to certain extent, by the achievable level of residual stresses. In 

comparison, approaches that rely on buckling in thin 2D ribbons/membranes[6,14] provide 

access to a broader range of 3D topologies, while offering a natural compatibility with 

essentially all modern planar technologies, thereby suggesting many possibilities in building 

sophisticated classes of 3D electronic, optical, and electromagnetic devices. A powerful 

feature of this approach[6,14] is the versatility in the applicable materials, ranging from soft 

polymers, to brittle inorganic semiconductors, to plastic metals, and length scales, ranging 

from nanometer, to micrometer, to centimeter length scales. Recent work includes 

demonstrations of silicon and/or metallic helical mesostructures in various topologies, 

including straight helices with different chiralities, double helices, nested helices, toroids 

and conical spirals,[6] by using variants of filamentary serpentine microstructures as the 

initial 2D patterns. The underlying relations between the 3D configurations, fracture-induced 

failure and fabrication related parameters (e.g., prestrain level, the geometric parameters of 

the serpentine microstructures) require a relevant theory as the basis for the design of 

structures for specific applications. The mechanics of buckling and postbuckling that govern 

the 2D-3D transformation are, however, complex, since the deformation of the ribbon-type 

structures involves not only planar bending deformations, but also twisting and general 
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spatial bending deformations. Previous theories developed either for postbuckling of straight 

ribbons,[36–40] or critical buckling of curvy ribbons,[41,42] cannot be used in the analyses of 

postbuckling for serpentine microstructures. This paper introduces an analytic model of 

compressive buckling that is capable of predicting not only the full 3D geometry of helical 

mesostructures, but also the strain level, of relevance to structural reliability. Systematic 

finite element analyses (FEA) and experimental measurement on 3D helical mesostructures 

with different geometries validate the utility of the model. The results provide theoretical 

insight into the scaling laws of deformation and strain with various parameters, including a 

negligible effect of material parameters and a square root dependence of curvature on the 

compressive strain. Furthermore, analytic solutions were obtained for the key physical 

quantities, including the displacement, twist angle, curvature and strain, which can facilitate 

design optimization in practical applications.

2. An analytic model for the compressive buckling of serpentine 

microstructures

Figure 1a presents a schematic illustration of the process for forming three chains of helices 

with different geometries guided by compressive buckling. The initial 2D precursors 

correspond to thin serpentine microstructures (as shown in the left, bottom panel of Figure 

1b) that are strongly bonded, at certain locations (red circles), with a prestrained elastomeric 

substrate. Releasing the prestrain imparts compressive forces on the serpentine 

microstructures, thereby lifting the non-bonded locations out of the plane and into 3D 

configurations. A theoretical model is introduced below to analyze such postbuckling 

processes, and to determine the full 3D configuration as well as the strain distribution for 

different initial geometries and prestrain levels.

2.1. Geometry, displacement and curvature

Due to the structural periodicity, we focus on the analyses of a representative unit cell in the 

serpentine microstructure, which consists of two identical arcs, each with a radius of R and 

top angle of θ0, as shown in Figure 1b (top). The top angle must be smaller than 5π / 3 to 

avoid self-overlap of the microstructures, and in practical applications, this parameter is 

typically in the range of [0, 5π / 4]. To facilitate the buckling, the serpentine microstructure 

usually adopts an ultra-thin geometry, in which the thickness (t) is much smaller than the 

width (w), corresponding to a large cross-sectional aspect ratio (e.g., w / t > 20). This class 

of serpentine microstructures has been widely explored in various stretchable bioelectronic 

devices as a key design strategy to achieve system-level stretchability.[43–52]

A Cartesian coordinate system (X,Y,Z) has its origin at the joint of two arcs, where the X 
and Z axes correspond to the out-of-plane and axial direction of the serpentine 

microstructure. The unit vectors in such coordinates (X,Y,Z) before deformation are Ẽi (i = 

1,2,3). A parametric coordinate θ (corresponding to the arc length S=Rθ) denote the location 

along the central axis of the arcs, such that θ ∈ [0, θ0] and [θ0, 2θ0] represent the first and 

second arc, respectively. The initial configuration of the central axis, r0(θ) = X0(θ)Ẽ1 + 

Y0(θ)Ẽ2 + Z0(θ)Ẽ3, can be represented by the following parametric equation,
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(1a)

(1b)

In the deformation analyses of curvy ribbons, a local coordinate system is usually required 

to characterize the location of central axis, as illustrated in Figure 1b (top). Before 

deformation, the corresponding unit vectors are denoted by Ei (i = 1,2,3), where E3 is the 

tangential direction; E1 and E2 lie in the cross-sectional plane, with E1 (or equivalently Ẽ1) 

along the out-of-plane direction, and E2 the radial direction of the arcs. During the 

postbuckling, out-of-plane deformations are induced, thereby transforming the central axis 

into a spatial curve. A material point of this central axis denoted by r0 before deformation 

moves to r = r0 + U = XẼ1 + YẼ2 + ZẼ3 after deformation, where U is the displacement. The 

unit vector along the tangential direction of deformed central axis is e3 = dr/ds, as shown in 

the right, bottom panel of Figure 1b, where s denotes the arc length after deformation. The 

other two unit vectors, e1 and e2, involve twisting of the cross section along the central axis, 

and remain in the cross-sectional plane according to Kirchhoff assumptions. Their 

derivatives are related to the curvature vector κ by Love:[53]

(2)

where ( )′ = d( )/dS; λ = ds/dS is the stretch along the central axis; κ1 and κ2 denote the 

curvatures in the (e2,e3) and (e1,e3) surfaces; and the twisting curvature κ3 is related to the 

twist angle ϕ of the cross section by κ3 = ϕ′/λ. The unit vectors before and after deformation 

are related by the direction cosine (aij, See Supporting Information for details): ei = aij Ej, (i 
= 1,2,3, summation over j).

(3)

According to the finite-deformation beam theory,[39] the displacement U of the central axis 

and the twist angle ϕ of the cross section can fully characterize the deformation of a curvy 

beam. For the serpentine microstructure shown in Figure 1b (top), only the left arc is studied 

in the following, considering its anti-symmetric geometry in both the un-deformed and 

deformed configurations. Release of prestrain (εpre) in an elastomeric substrate induces a 
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compressive strain, εappl = εpre / (1+εpre), to the serpentine microstructure, leading to its 

buckling. During the postbuckling, the displacement (Ũ2) of serpentine microstructures 

along the Y axis is negligible,[6] since the compression is applied along the Z axis and the 

buckling mainly induces out-of-plane displacements (along the X axis). This characteristic 

indicates the displacement vector can be simplified as U = Ũ1Ẽ1 + Ũ3Ẽ3 = Ũ1Ẽ1 + Ũ2Ẽ2 + 

Ũ3Ẽ3, in which Ũ1= U1. During postbuckling, the equilibrium requires that the out-of-plane 

displacement U1 and twist angle ϕ have the same order, while the in-plane displacements U2 

and U3 have the same order as the square of U1 (or ϕ),[39] i.e., ϕ ~ U1 and U2 ~ U3 ~ (U1)2. 

Since the axial displacement (Ũ3) induced by the external compression scales with the 

applied strain εappl, an approximate scaling between the general displacements (Ui and ϕ) 

and applied strain can be obtained,

(4)

The above relations show remarkable agreements with FEA results (Figure S1, Supporting 

Information). Consistent with the intuitive expectations, an approximate proportional 

relation between the twist angle (ϕ) and parametric coordinate (θ) is observed in FEA 

(Figure S2a, Supporting Information), indicating that the twist angle can be given by 

, with the parameter a to be determined. FEA results (Figure S2b, Supporting 

Information) show that the normalized displacement [U1(θ)/U1(θ0)] is approximately a 

single-variable function of θ/θ0, and the distribution of U1 can be well characterized by (See 

Supporting Information for details)

(5)

where b is a dimensionless parameter to be determined. It should be noticed that the 

boundary conditions pose additional considerations on the selection of displacement 

functions in the energy approach. The axial displacement (Ũ3) is comprised of two parts, a 

uniform part [Ũ3uniform = −εapplZ0(θ)] due to the global compression from two ends, and a 

non-uniform part (Ũ3nonuniform) due to local bending and twisting. Since the boundary 

conditions are expressed directly in terms of the displacement components in the local 

coordinate system (See Supporting Information for details), the constructions of 

displacement functions for U2nonuniform and U3nonuniform are more straightforward. Together 

with FEA calculations on a wide range of serpentine geometries (Figure S3, Supporting 

Information), a set of functions that can both satisfy the boundary conditions and fit well the 

FEA results are adopted, which read

(6a)
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(6b)

where c1 and c2 are two dimensionless parameters to be determined by the energy 

minimization detailed in Section 2.2. As shown by Su et al.,[39] the work conjugate of 

bending moment and torque is κ̂ =λκ, which can be given in terms of Ui and ϕ by

(7a)

(7b)

(7c)

where the terms higher than the 3rd power of displacement components are neglected. 

Insertion of Eqs. (5), (6), and  into Eq. (7) then gives the distribution of 

curvature components along the 3D helical mesostructures (See Supporting Information for 

details).

2.2. Energy approach

Due to the ultra-thin geometry of serpentine microstructures, the local strain usually stays at 

a low level, such that the linear elastic constitutive relations can be adopted. As such, the 

total strain energy (Πtot) that mainly consists of in-plane bending energy, out-of-plane 

bending energy, and twisting energy, can be written as

(8)

for a unit cell of the serpentine microstructure, where EI1 = (Ew3t)/12 and EI2 = (Ewt3)/12 

are the in-plane and out-of-plane bending stiffness, respectively, GIp ≈ (Gwt3)/3 is the 

twisting stiffness for thin ribbons, and ν is the Poisson ratio. Since the serpentine 

microstructures are highly flexible, the membrane energy is neglected in Eq. (8), which can 

be introduced as a constraint during the energy minimization. Such constraint can be written 

in the following form:
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(9)

For any prescribed geometries (w / t, w / R, and θ0) and external strain (εappl), minimization 

of the total energy by searching over a reasonable range for each dimensionless parameter 

(a, b, c1 and c2) then gives solutions for the four unknowns. The process can be implemented 

numerically (e.g., using commercial software MAPLE or MATLAB). After the 

determination of displacement components (ϕ, U1, U2 and U3), the coordinates of every 

material point in the serpentine microstructure can be obtained, thereby giving the full 3D 

helical configuration during postbuckling. Equation (8) indicates that the change of in-plane 

bending curvature should be much smaller than the counterpart of out-of-plane bending and 

twisting, for ultra-thin (i.e., w / t > 20) geometries of 2D precursors, because of the huge 

coefficient (w2 / t2) in the corresponding energy term.

2.3. Validation of the model by experiments and FEA

Two different sets of experiments (see Experimental Section for details) using both the 

microscale epoxy (SU8) and millimeter-scale plastic, as well as 3D FEA were carried out to 

validate the above analytic model. Figure 2a and Figure S4 (Supporting Information) present 

the model predictions, FEA calculations and experimental results on the deformed 

configurations under three different levels of applied strain, for a wide range of serpentine 

geometries (with the arc angle from 30° to 210°). The extent of twisting increases evidently 

with the arc angle increasing from 30° to 210°. Good agreements can be observed among the 

results of different approaches, for all of the different geometries and loading levels. Figure 

2b–d illustrates the distribution of dimensionless displacement components (ϕ/θ0), (Ũ1/L 
and Ũ3/L), with L = Rθ0 denoting the arc length) for a representative 3D helical 

mesostructure (with θ0=150°) under different levels of applied strain, which provides 

quantitative evidence on the accuracy of analytic model. Both the out-of-plane displacement 

(Ũ1/L) and twist angle (ϕ/θ0) reach their maximum magnitudes at the center of 3D helical 

mesostructures. The distribution of dimensionless in-plane displacements (U2/L and U3/L) 

in the local coordinate system appears in Figure S5 (Supporting Information).

3. Results and discussions

After validating the analytic model, this section utilizes the model to analyze the effects of 

various geometric and material parameters on the 3D helical mesostructures, aiming to 

establish useful scaling laws that can facilitate the design optimization in practical 

applications.

In general, the final 3D helical configurations might be affected by three groups of 

fabrication-related parameters: 1) loading parameter (εappl); 2) material parameters (E and 

ν); 3) geometric parameters (w / t, w / R, and θ0). The theoretical analyses in Section 2.1 

already reveal the dependence [Eq. (4)] of displacement components on the applied strain. 

Furthermore, the expression [Eq. (8)] of total strain energy indicates that the modulus (E) 

has essentially no effect on the minimization process, and hence, makes no difference on the 
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3D configurations. While the Poisson ratio (ν) comes into play in the twisting energy in Eq. 

(8), both analytic and FEA results show that this material parameter has negligible effects on 

the primary displacements (ϕ/θ0 and U1/L) during postbuckling, as shown in Figure 3a and 

Figure S6a (Supporting Information), for ν varying in a wide range of [0, 0.5]. This feature 

is also in accordance with the experiment results in Figure 2a, where two different types of 

materials (epoxy and plastic) result in nearly the same helical configurations. For thin, 

slender serpentine microstructures, e.g., with w / t > 20 and w / R < 0.3, the cross-sectional 

geometric parameters (w / t and w / R) also play negligible roles on the primary 

displacements (Figures S6b,c and S7), in accordance with our intuitive expectations. The 

relatively large discrepancy between analytic and FEA results for relatively wide serpentine 

precursors (e.g., w / R ~ 0.4) is attributed to the neglect of transverse shear effect in the 

current analytic model. Based on the above analyses, it can be deduced that the 

dimensionless parameters (a, b, c1 and c2) are merely dependent on a single geometric 

parameter (θ0) for thin, slender serpentine microstructures. As such, approximate solutions 

to the parameters (a and b) related to the primary displacements (ϕ and U1) can be obtained 

by fitting the analytic results for a wide range of arc angle (θ0) as

(10)

Thereby, approximate solutions of ϕ and U1 are given by

(11)

The predictions of Eq. (11) agree reasonably well with the precise model calculations 

(according to energy minimization) and FEA results, as shown in Figure 3b,c and Figure 

S6d,e (Supporting Information). Taking the limit θ0 → 0 by fixing L = Rθ0, the 2D 

serpentine precursor degenerates into a straight ribbon, and the resulting out-of-plane 

displacement (U1 / L) and twist angle (ϕ) approaches the counterpart of buckled structure 

from a straight ribbon [Figure 3c and Figure S6e (Supporting Information)].

Since the 3D helical mesostructures studied above are formed from compressive buckling 

that relates to both the bending and twisting deformations, a physical quantity, namely, the 

mode ratio (ρ), is introduced as a metric to classify the resulting 3D mesostructures into two 

different groups, i.e., the bending dominated and bending-twisting mixed modes.[6] This 

quantity is defined by the ratio of the average twisting curvature (|κ̂
3|avg) to the average out-

of-plane bending curvature (|κ̂2|avg), noticing the negligible change of in-plane bending 

curvature for ultra-thin (i.e., w / t > 20) 2D precursors. For the serpentine microstructures 

used as 2D precursors, the out-of-plane bending and twisting curvatures can be solved by 

inserting Eq. (11) into Eq. (7), leading to
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(12a)

(12b)

The mode ratio can be obtained accordingly as

(13)

which is a single-variable function independent on the applied strain. Equations (12a) and 

(12b) show that the twisting curvature keeps almost unchanged in the helical mesostructures, 

while the bending curvature varies evidently, reaching its peak at the inner region of the 

mesostructures. This captures well the distribution features of both curvature components 

(Figure S8, Supporting Information). Figure 4 presents the variations of dimensionless 

average curvatures (R|κ̂
3|avg and R|κ̂3|avg) and mode ratio with two key parameters (applied 

strain εappl and arc angle θ0). These results confirmed the square root scaling of average 

curvatures with the applied strain, as well as the strain-independent feature of mode ratio. 

With the increase of arc angle (θ0), the twisting curvature decreases almost in a linear 

manner, while the bending curvature decreases much faster (Figure 4d,e). Both FEA and 

theoretical results (Figure 4f) indicate a nearly proportional dependence of mode ratio on the 

arc angle, i.e., ρ ≈ 0.41θ0, in which the coefficient of proportionality is determined from the 

Taylor expansion of Eq. (13). Therefore, the use of a large arc angle for the serpentine 

precursor can enhance the contribution of twisting deformation evidently. Figure S9 

(Supporting Information) presents additional results of FEA and model predictions for the 

curvatures and mode ratio, which illustrate the negligible effects of Poisson ratio, cross-

sectional aspect ratio, and normalized width for the geometries of our current interest.

The curvatures decide not only the mode ratio, but also the maximum strain in the helical 

mesostructures that is directly related to material failure (e.g., brittle fracture for silicon or 

plastic yield for metals). In specific, the maximum normal strain εbending and shear strain 

γtwisting of a certain cross section correlate with the curvature components by εbending = t|
κ̂

2|/2 and γtwisting = t|κ̂3|. According to FEA and model calculations, the maximum strain 
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typically occurs at the center of the helical mesostructures. Hence, the maximum magnitude 

of principal strain in the helical mesostructure can be obtained as

(14a)

where F2 is a function given by

(14b)

Equation (14) shows the maximum strain (εM) is decided by the applied strain (εappl), arc 

angle (θ0), and normalized thickness (t / R), and is independent on the other parameters 

(Poisson ratio ν and normalized width w / R), which is in accordance with FEA results 

(Figure S10, Supporting Information). Figure 5a–c demonstrates that the predictions of 

analytic solution [Eq. (14)] exhibit reasonable agreement with the FEA and precise model 

calculations, with both in support of the proportional scaling of maximum strain with the 

square root of applied strain and the normalized thickness. Here, the discrepancy of 

theoretical predictions and FEA can be mainly attributed to the overestimate of bending 

curvature (Figure S8, Supporting Information). The increase of arc angle results in a 

substantial reduction in the maximum strain, e.g., by ~ 0.6 times from θ0 = 90° to 180°, 

suggesting an effective route to enhancing the compressibility of helical mesostructures.

As mentioned previously, the buckling guided fabrication of helical mesostructures relies on 

the release of prestrain in the elastomeric substrate to provide the compressive forces to the 

serpentine precursors. An excessively large prestrain can, thereby, lead to possible failure in 

the constituent material. Here, a failure criterion based on the maximum principal strain is 

adopted for simplicity, in which the threshold (εthreshold) is assumed to be independent of 

thickness. Based on Eq. (14a), the applied strain-prestrain relation, εappl = εpre/(1+εpre) and 

the failure criterion of εM = εthreshold, the maximum prestrain ( ) that can be used to 

avoid material failure is determined as

(15)

When εthreshold≥tF2(θ0)/R, there is no upper limit for the prestrain, and any level of prestrain 

would not lead to material failure. In the following analyses, the threshold strain (εthreshold) 

is taken as the fracture limit for brittle materials (e.g., 2% for silicon), or the yield strain for 
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metallic materials (e.g., 0.3% for gold). Figure 5d shows the predicted maximum prestrains 

for silicon and gold helical mesostructures with a representative normalized thickness (t / R 
= 0.001) and a broad range of arc angles. Both the analytic and FEA results show a higher 

 at a larger θ0, and hence, corresponding to a more compact helical mesostructures that 

can be achieved (Figure 5e). When the arc angle is sufficiently large, e.g., > 192° 

(corresponding to the vertical dashed line in Figure 5d), such that εthreshold≥tF2(θ0)/R holds 

true, the silicon helical mesostructures are always safe for any level of prestrain.

Due to the mechanical and electromagnetic properties, the helical mesostructures can be 

exploited as stretchable interconnects or functional components (e.g., inductors or antennas), 

which could yield a stretchability higher than the prestrain (εpre) used in the assembly, in the 

condition without any use of solid encapsulation. When a helical mesostructure is under an 

axial stretching (εstretch ≤ εpre), the out-of-plane displacement, the curvature components as 

well as the maximum principal strain still follow a similar square root scaling:

(16)

This scaling agrees well with the FEA results in Figure S11 (Supporting Information).

4. Conclusion

The work presented here represents systematic studies toward buckling-guided formation of 

3D helical mesostructures, through combined analytic modeling, FEA, and experiment. The 

analytic models, validated by FEA and experiment, suggest negligible roles of material 

parameters (E and ν) and cross-sectional geometric parameters (w / t and w / R), with 

dominant roles of applied strain (εappl) and arc angle (θ0), on the final 3D configurations. 

The resulting scaling laws enable predictions of key physical quantities, including 

displacement, curvature, mode ratio and strain, using approximate analytic solutions. A 

demonstrative example based on the analytic solutions illustrates how to select key design 

parameters (e.g., the prestrain of substrate and geometry of serpentine microstructures), such 

that brittle fracture or plastic yield can be avoided. Further work could follow by extension 

of the scaling laws to 2D precursors with membrane configurations. These results can be 

used as design references for future optimizations in practical applications.

5. Experimental Section

Preparation of 3D helical mesostructures began with thermal oxidation to form a layer of 

silicon dioxide (SiO2, 500 nm in thickness) on a silicon wafer. Next, spin casting and 

photolithography formed patterns of photodefinable epoxy (SU8, 7 μm in thickness) on the 

SiO2. Immersion in hydrofluoric acid (HF) removed the buried SiO2 layer from the exposed 

regions and also slightly from under the edges of the SU8. Spin casting and 

photolithography created patterns of photoresist (AZ 5214, 4 μm in thickness) on top of the 

SU8 layers to define the bonding sites. Immersion in HF eliminated the remaining SiO2 by 

complete undercut etching. The techniques of transfer printing enabled retrieval of the 2D 
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precursors and their delivery to a piece of water soluble tape (polyvinyl alcohol, PVA). A 

thin sheet (~ 0.5 mm) of silicone elastomer (Dragon Skin, Smooth-On) served as the 

substrate, stretched to well-defined levels of prestrain using a customized stage. Exposing 

the prestrained elastomer and the 2D precursors (on PVA) to UV-induced ozone (UVO) 

yielded hydroxyl termination on their exposed surfaces. Laminating the tape onto the 

elastomer substrate with the exposed SU8 side down, followed by baking in an oven at 

70 °C for 10 min yielded strong covalent bonds via condensation reactions of surface-

enriched hydroxyl groups between the elastomer substrate and the exposed regions of 2D 

precursors. Washing with hot water and then acetone dissolved the PVA tape and the 

photoresist. Slowly releasing the prestrain completed the assembly process of 3D helical 

mesostructures.

Preparation of helical mesostructures in plastic films began with mechanical cutting of a thin 

layer (~ 75 μm in thickness) into desired serpentine patterns, followed by cutting of bonding 

locations in a thin sheet of paper (~ 90 μm in thickness). The pattern of bonding locations 

corresponds to a certain level of compressive strain applied to the serpentine microstructure. 

Adhering this paper layer onto a rigid plastic substrate through thin, double-coated tape 

(9080A, 3M, Minnesota, USA) exposed adhesive bonding locations for purposes of 

assembly. Sticking the 2D serpentine microstructure at the exposed bonding locations 

yielded the corresponding 3D helical mesostructures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Illustration of the buckling-guided formation of 3D helical mesostructures and 
mechanics model
(a) Schematic illustration of the compressive buckling process for the 2D serpentine 

microstructures with three different geometries; (b) Illustration of the mechanics model and 

coordinate system, showing the undeformed and deformed configurations. The red dots 

denote the sites of strong bonding with an elastomeric substrate in fabrication. A 

representative unit cell of the serpentine microstructures consists of two identical arcs, each 

with the radius of R and top angle of θ0.
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Figure 2. Experimental, numerical and analytical studies of the buckling deformations
(a) Modeling, FEA, optical images (millimeter-scale experiment), and colorized scanning 

electron microscope (SEM) (microscale experiment) of 3D helical mesostructures with 

different arc angles (30°, 90°, 150° and 210°) under different levels of compressive strains 

(0, 20%, 40% and 60%). The color of FEA results represents the magnitude of maximum 

principal strain. All of the scale bars in the micro- and millimeter-scale experiments are 500 

μm and 5 mm, respectively. (b)~(d) Analytic and FEA results on the distribution of 

dimensionless pop-up displacement, axial displacement and twist angle for the helical 

mesostructures (with θ0 = 150°) under different levels of compressive strains. The geometric 
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parameters include (w / R = θ0 / 17, t = 75 μm and w = 900 μm) for modeling, FEA and 

millimeter-scale experiment, and [w / R = θ0 / 17, t = 7 μm and w ≈ 61 μm for θ0 = 30°, 90° 

and 150° (or w ≈ 65 μm for θ0 = 210°)] for microscale experiment.
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Figure 3. Influence of various geometric and material parameters on the out-of-plane 
displacement
Results of precise model calculation, approximate solution and FEA for the dimensionless 

maximum out-of-plane displacement versus the Poisson ratio (a) and applied strain (b) for 

helical mesostructures with three different arc angles (θ0 = 90°, 150° and 210°). (c) 

Dimensionless maximum out-of-plane displacement versus the arc angle for helical 

mesostructures with three different applied strains (εappl = 10%, 20% and 30%). The 

parameters adopted in the calculations include w / R = 0.05, w / t = 50 and εappl = 20% for 

(a), and w / R = 0.05, w / t = 50 and ν = 0.27 for (b) and (c).
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Figure 4. Influence of geometric parameters on the curvature and mode ratio
Results of precise model calculation, approximate solution and FEA for dimensionless 

average curvatures (a,b) and mode ratio (c) versus the applied strain for helical 

mesostructures with three different arc angles (θ0 = 90°, 150° and 210°). Dimensionless 

average curvatures (d,e) and mode ratio (f) versus the arc angle for helical mesostructures 

with three different applied strains (εappl = 10%, 20% and 30%). The parameters adopted in 

the calculations include w / R = 0.05, w / t = 50 and ν = 0.27.
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Figure 5. Strain analyses for avoiding failure of helical mesostructures during postbuckling
Results of precise model calculation, approximate solution and FEA for maximum principal 

strain of material versus the applied strain (a), normalized thickness (b) and arc angle (c). (d) 

Maximum prestrain that can be used in the elastomeric substrate, so as to avoid brittle 

fracture in the silicon helical mesostructures (according to εM = 2%), or to avoid plastic 

yield in the gold helical mesostructures (according to εM = 0.3%). (e) Deformed 

configurations of six different helical mesostructures when the maximum strain reaches the 

corresponding failure threshold, in which the color of FEA results represents the magnitude 

of maximum principal strain. The parameters adopted in the calculations include t / R = 

0.001 for (a), (c), (d) and (e), and εappl = 20% for (b).
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