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Abstract

AUTOMATED RESONANCE ASSIGNMENT VIA BOOLEAN

SATISFIABILITY AND QUADRATIC PROGRAMMING

by

Benjamin C. Sherman

The community of researchers using nuclear magnetic resonance (NMR) spec-

troscopy to study the structure and dynamics of proteins are interested in solving the

following problem. Let G and H be undirected graphs such that H is isomorphic to

at least one subgraph of G. For each vertex v ∈ V (H), compute the set of vertices

to which v is mapped by a subgraph isomorphism from H to a subgraph of G. This

thesis introduces variations of this problem, reviews prior work, and proposes algorith-

mic and heuristic methods that outperform the incumbent state of the art on published

benchmarks.
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Chapter 1

Introduction

Nuclear magnetic resonance spectroscopy (NMR) is a methodology for measur-

ing magnetic properties of nuclei. NMR is widely used in structural biology to identify

the three-dimensional structure and dynamics of proteins by measuring the magnetic

resonances of nuclei [11]. Roughly speaking, protein NMR experiments consist of plac-

ing a protein in a strong magnetic field and measuring the magnetic resonance of the

entire protein as a decaying waveform. This waveform can then be transformed into

a frequency spectrum, which will contain peaks at the resonant frequency of distinct

nuclei. In this way, NMR is capable of easily identifying the set of nuclear resonances in

a protein, but before these data can be used to draw conclusions about a protein, the

observed resonances must be attributed to specific nuclei. The difficulty of this task,

which is called the resonance assignment problem, is arguably the principal limitation

of NMR in protein studies. The difficulty of the problem is suggested by the mere fact

that a protein may contain hundreds or thousands of nuclei and, naively, there are n!

explanations for the generation of n resonances from n nuclei, and it is not obvious that
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one can confidently discriminate among assignments.

One of the main considerations for the design of experimental protocols in

protein NMR is the ease of the resulting resonance assignment problem. Recently,

there has been a shift within the protein NMR community towards a strategy known

as methyl labelling. In a methyl-labeled NMR experiment, only the nuclei residing

in molecular compounds called methyls can make a non-negligible contribution to the

NMR spectra. This serves to significantly de-noise the spectra and decrease the num-

ber of nuclei involved in the assignment problem while still measuring enough nuclear

resonances to be valuable. This thesis is concerned with the automation of the so-called

methyl assignment problem, i.e., the problem of assigning the resonances measured in

a methyl-labeled NMR experiment to the methyl-nuclei of a protein.

In addition to the set of resonances, there are other types of information avail-

able to aid in the methyl assignment process. A rough model, or template structure of

the protein in question is typically available, allowing for the identification of the set

of methyl-nuclei that may contribute to the spectra. This can be obtained via X-ray

crystallography, wherein a protein is studied in a crystallized form. Additionally, the

methyls of a protein may be partitioned according to the type of residue in which they

appear, which is typically either alanine (ALA), isoleucine (ILE), leucine (LEU), or va-

line (VAL). Moreover, the range in which a nucleus resonates is determined by the type

of residue in which it resides. Therefore we can restrict the assignment of resonances in

certain regions of the spectrum to methyls residing in a specific type of residue. Finally,

NMR can measure the transfer of magnetization between nuclei, a phenomenon known

as a nuclear Overhauser effect (NOE). An NOE is only possible when the nuclei are
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Figure 1.1: X-Ray structure of ubiquitin, used as the template structure for assigning
the resonances of the same molecule. Methyls are shown in red.

close in space, so NOE data allow us to infer that specific pairs of methyl-resonances

must have been generated by a pair of methyls that are close to each other in our tem-

plate structure. The methyl assignment is now constrained as follows: each resonance

should be assigned to a methyl residing in a residue that is consistent with the position

of that resonance in the spectrum, and pairs of resonances exhibiting an NOE should

be assigned to methyls that are near each other in the template structure.

In order to fully appreciate the difficulty of the methyl assignment problem,

it is necessary to adopt a computational perspective, which arises naturally from the

following graph theoretic description. Let the graph G represent a crude estimation of

the protein’s structure; the vertices of G are the methyls in the protein and the edges of

G connect any two methyl-vertices that are close enough to exhibit an NOE during the

experiment. Let the graph H represent a model of the experimental data; each H-vertex

is a spectral peak and there is an edge between every pair of spectral peaks between
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Figure 1.2: Number of possible methyl assignments for each of the molecules in the
dataset outline in Table 5.1. Values were obtained by invocation of sharpsat [21], a
tool that counts satisfying assignments to CNF formulas.

which there was an NOE observed. This description of the problem implies the following:

the correct assignment of peaks to methyls corresponds to an isomorphism between H

and the subgraph of G that arises by deleting an edge between any two methyls in

G between which no NOE is experienced. Unfortunately, the problem of determining

whether G contains a subgraph isomorphic to H is NP-complete [7], suggesting that

such isomorphisms can not be found efficiently. Even worse, in difficult instances of

methyl assignment, there are far too many subgraphs of G that are isomorphic to H to

enumerate, even after restricting vertex assignments using residue-type information (see

Figure 1.2). At this point, it may seem that, even given a computational engine capable

of detecting subgraph isomorphisms, the methyl assignment problem is dramatically

under-constrained.
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1.1 Previous Work

In practice, most resonance assignment problems are solved manually. The

typically process is to guess an assignment for a single resonance, consider the immediate

consequences of that guess, and then make another guess. If it becomes clear that a

mistake has been made, start to backtrack. In some sense, postdoctoral researchers are

performing a version of the David-Putnam procedure by hand, a process which typically

takes a matter of weeks to months. The way practitioners of methyl NMR have made

this work is with the aid of secondary experiments, most notable an experiment known as

mutagenisis [19, 20]. Mutagenisis in this case is the process of mutating a specific methyl

out of the protein in study, then rerecording the NMR spectra to observe which peak

has vanished, thus discovering the assignment of a single resonance. After performing

some number of mutagenisis experiments, a human will be able to easily determine the

assignment for an H-vertex given the assignments in its neighborhood. The problem

with mutagenisis is that each vertex assignment purchased requires the preparation of

another sample.

Early work on automation of the methyl assignment problem did not fit exactly

within the graphical paradigm used herein. The earliest notable tool for automating

the methyl assignment was MAPXS [27]. MAPXS was the first of many variations on the

following monte carlo method: initialize a random assignment of methyls to resonances,

and swap pairs of assignments to improve the score of your assignment according some

objective function before terminating arbitrarily. Later modifications of this include

MAPXS-II [28], FLAMEnGO [1], and FLAMEnGO2.0 [2], with each development essentially
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constituting a new choice of objective function. These methods do, in one way or

another, penalize assignments which do not correspond to a subgraph isomorphism, but

none enforce subgraph isomorphism as a requirement for the final assignment. The tool

MAGIC [13] represents a development from prior works in that it successfully optimizes

its objective function in all its benchmarks.

The first method to operate in the graphical paradigm is MAGMA [14]. MAGMA de-

fines the graphs H and G as in this work, but asserts that the correct assignment must

correspond to a maximum-common-edge subgraph (MCES) between the graphs rather

than a subgraph isomorphism. The significance of this distinction is that it accounts for

the case where no G-subgraph is isomorphic to H, which is possible only in the event

of an error in the construction of H. As it turns out, such errors are both common

and very difficult to detect. MAGMA automates the problem by computing the set of

G-vertices to which each individual H-vertex is assigned by any MCES. The fact that

such sets may be computed in a reasonable amount of time should be surprising, since

there are a vast number of MCESes, and the computation of any one is NP-hard.

1.2 The Contribution of This Thesis

The contribution of this thesis is a SAT-based method which computes the

same sets as MAGMA, i.e., the possible assignments for each vertex over all MCESes.

The issue of erroneous edges will be overcome with the use of MARCO [10], a tool that

can compute minimal sets of constraints whose removal from an unsatisfiable formula

causes the formula to become satisfiable. The method presented will be shown to
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terminate much faster MAGMA on the most difficult benchmarks. Moreover, this thesis

presents a method for exact optimization over the set of MCESes using integer-quadratic

programming, where the definition of optimality is directly motivated by the physics

of the NMR experiment. The list of possible assignments may be thereby restricted to

assignments occuring in a near-optimal MCES. This leads to a boost in the number of

uniquely assigned vertices in most benchmarks, without losing the correct assignment

for a single vertex in any of the benchmarks.
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Chapter 2

Finding Methyl Assignments

2.1 Preliminary Definitions

The foundation of this work is a graph theoretic description of the methyl

assignment problem. While the basic concept of a graph is assumed, a few definitions

will be stated in the interest of establishing consistent notation.

Definition 1. For any graph G, let V (G) denote the vertices of G, and let E(G) denote

the edges of G.

Definition 2. The neighborhood of a vertex v in a graph G is defined as

NG(v) := {u ∈ V (G) | {u, v} ∈ E(G)}

Definition 3. The degree of a vertex v in a graph G is defined as

dG(v) := |NG(v)|
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Definition 4. Let G be a graph such that V (G) is the set of methyls in a protein and

E(G) is the set of pairs of methyls in V (G) that are close enough to experience a NOE.

Definition 5. Let H be a graph such that V (H) is the set of methyl resonances in an

NMR spectra and E(H) is the set of pairs of resonances in V (H) that have experienced

a NOE.

Definition 6. Let γ : V (H) ∪ V (G) → {ALA, ILE,LEU, V AL} be a function which

maps each methyl to the type of residue in which it resides, and maps each resonance

to the spectral residue who’s spectral region it lies within.

The object of desire in the methyl assignment problem is the correct methyl

assignment, i.e., a function π∗ : V (H) � V (G) such that π∗(h) = g if and only if h is

the magnetic resonance of the nucleus in the methyl g. Unfortunately, it seems likely

that there is no algorithm for determining π∗. The definition of the problem allows

for the rejection of assignments, but not for discrimination between assignments which

cannot be rejected. The goal of the method can thus be described as the determination

of π∗(h) for as many h ∈ V (H) as possible, using a mixture of algorithmic and heuristic

methods.

Definition 7. A one-to-one function π : V (H) � V (G) is said to be a methyl assign-

ment if and only if

∀h ∈ V (H) : γ(h) = γ(π(h))

Definition 8. A methyl assignment π is said to be a valid if and only if

∀{i, j} ∈ E(H) : {π(i), π(j)} ∈ E(G)

9



The principal concern of this chapter is the means for the discovery of valid

methyl assignments. This requires a formal introduction of the Boolean satisfiability

problem (SAT), since modern SAT solvers are the computational workhorse of this

method. Again, basic definitions will be restated in the interest of establishing consistent

notation.

Definition 9. A Boolean formula in conjunctive normal form (CNF formula) is defined

as follows

1. A Boolean variable can be any symbol.

2. The negation of a Boolean variable X is the syntactic expression ¬X

3. A literal is either a Boolean variable or a negation of a Boolean variable.

4. A clause is a set of literals.

5. A CNF formula is a set of clauses.

Definition 10. A CNF formula F over the Boolean variables B is said to be satisfiable

if and only if there exists a satisfying assignment A : B → {True, False} such that every

clause clause of B contains a variable x such that A(x) = True or a negation ¬x such

that A(x) = False.

2.2 Using SAT for Methyl Assignment

The problem of determining whether a CNF formula is satisfiable is among the

most studied problems in modern mathematics, serving as the canonical NP-complete
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problem [7]. A problem being NP-complete typically suggests that large instances can-

not be solved efficiently. However, modern SAT solvers based on the conflict-driven-

clause-learning (CDCL) algorithm [17] are capable of deciding the satisfiability of CNF

formulas with millions of clauses in a reasonable amount of time [5].

In light of the emergence of practically effective SAT solvers, encoding instances

of NP-complete problems as CNF formulas and then translating the output of a SAT

solver to derive a solution to the original problem has become a popular strategy. SAT

is widely used as an encoding system for hardware verification [3], operations research

[6], and automated theorem proving [12]. In all such applications, a CNF formula is

defined such that the satisfiability of the formula is equivalent to some statement about

the original problem.

In this work, a CNF formula F will be used to encode the methyl assignment

problem in a way such that F is satisfiable if and only if a valid methyl assignment

exists. Moreover, if F is satisfiable, every satisfying assignment to F will correspond to

a distinct valid methyl assignment. After encoding the problem in this way, valid methyl

assignments can be obtained by a quick invocation of a SAT solver. The main influence

of the encoding used herein is [23], which gives a SAT encoding for the Hamiltonian cycle

problem. The Hamiltonian cycle problem, like subgraph isomorphism, is NP-complete.

A few modifications to the ideas presented in [23] yield an effective encoding for subgraph

isomorphism, and thereby an effective encoding for valid methyl assignments.

Definition 11. Let Xhg be a Boolean variable informally denoting the proposition that

vertex h ∈ V (H) is assigned to vertex g ∈ V (G).
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The methyl assignment encoding will be written in terms of the Boolean vari-

ables Xhg. Clauses will be added to the encoding formula to enforce that the following

is true of any satisfying assignment A to the Xhg variables:

1. ∀h ∈ V (H) :
∣∣{Xhg | A(Xhg = True}

∣∣ = 1

2. ∀g ∈ V (G) :
∣∣{Xhg | A(Xhg = True}

∣∣ ≤ 1

3. ∀h ∈ V (G), ∀g ∈ V (G) : γ(h) 6= γ(g) =⇒ A(Xhg) = False

4. ∀h, h′ ∈ E(H) : A(Xhg) ∧A(Xh′g′) =⇒ {g, g′} ∈ E(G)

Constraint 1 enforces that every resonance receives exactly one assignment,

and constraint 2 enforces that no methyl has more than one resonance assigned to it;

1 can be restated as saying that each resonance receives at least one one assignment

and at most one assignment. To force at least one Xhg to be true, simply create a

clause containing all Xhg variables for a specific h or g. The at-most-one constraint is

much trickier. The naive method for encoding the at-most-one constraint for a set of

literals X is to add a clause {¬x,¬y} for all {x, y} ⊆ X. This naive encoding results in

O(|V (G)|3) clauses being added to the formula.

A more efficient encoding of the at-most-one-constraint is the commander en-

coding [8]. The commander encoding entails partitioning X into several sets, and cre-

ating a Boolean variable called the commander for each set. Clauses are then added

such that each commander variable is True if and only if exactly one of the variables

in the set it commands is true. Then an at-most-one-constraint is recursively added to

the set of commander variables using the commander encoding. The base case for this

12



recursion is that there are few enough variables that performing the naive at-most-one

encoding is relatively cheap. At the cost of introducing O(|V (G)|) commander variables,

the commander encoding reduces the number of clauses introduced to enforce 1 and 2

from O(|V (G)|3) to O(|V (G)|2), and dramatically improves the performance of a SAT

solver in deciding the satisfiability of methyl assignment formulas. Pseudocode for the

commander encoding is given in Algorithm 1.

Constraint 3 can be enforced implicitly by simply not instantiating the vari-

able Xhg where γ(h) 6= γ(g). Constraint 4 can be enforced with the addition of

|E(H)|O(|V (G)|2) clauses.

A few comments on Algorithm 2 are due. Observe that the variables Xhg are

only instantiated and used for g in the set Dh, defined on line 3. The set Dh ⊆ V (G)

is defined so that Dh is guaranteed to contain every methyl g such that h is assigned

to g by a valid methyl assignment. The two filters used to extract Dh from V (G) are

the residue type information and vertex degree. Both optimizations cause a dramatic

speedup in the construction of formulas and the performance of the solver.

Definition 12. Let F be the formula returned by Algorithm 2, given the graphs H and

G.

Theorem 1. F is satisfiable if and only if there exists a valid assignment π. Moreover,

every satisfying assigning to F corresponds to a unique valid methyl assignment π.

Proof. It will be shown that one can construct a valid assignment π from a satisfying

assignment A to the formula, and vice versa.

(I) Given a satisfying assignment A to F , define a methyl assignment π so that π(h) =

13



Algorithm 1 Commander variable encoding
1: function Commander(L) . L is a set of literals
2: F ← {}
3: L1, L2, . . . , Lk ← partition L into sets of size ≤ 3
4: c1, c2, . . . , ck ← create k Boolean variables
5: for i = 1, 2, . . . , k do
6: F ← F ∪ {{¬ci} ∪ Li} . Commander implies group
7: for l ∈ Li do
8: F ← F ∪ {{¬l, ci}} . Every literal implies commander
9: end for

10: for x, y ∈ Li do
11: F ← F ∪ {{¬x,¬y}} . At most one in group
12: end for
13: end for
14: if k ≤ 3 then
15: for ci, cj ∈ {c1, c2, . . . , ck} do
16: F ← F ∪ {{¬ci,¬cj}}
17: end for
18: else
19: F ← F ∪Commander({ci}ki=1)
20: end if
21: return F

22: end function

14



Algorithm 2 Construction of a SAT Formula
1: F ← {}
2: for h ∈ V (H) do
3: Dh ← {g ∈ V (G) | γ(h, g) ∧ dH(h) ≤ dG(g)}
4: F ← F ∪Commander({Xhg | g ∈ Dh})
5: F ← F ∪ {{Xhg | g ∈ Dh}}
6: end for
7: for g ∈ V (G) do
8: F ← F ∪Commander({Xhg | Dh 3 g})
9: end for

10: for i ∈ V (H) do
11: for j ∈ Di do
12: for i′ ∈ NH(i) do
13: C ← {¬Xhg} ∪ {Xi′j′ | j′ ∈ NG(j) ∩Di′}
14: F ← F ∪ {C}
15: end for
16: end for
17: end for
18: return F
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g if and only if A(Xhg) = True. Assuming the correctness of Algorithm 1, it is

clear that π is a one to one function respecting methyl type constraints. Therefore

π is not a valid methyl assignment only if there exists an edge {h, h′} ∈ E(H)

such that {π(h), π(h′)} /∈ E(G). Assume this is true. Per line 13 of Algorithm 2,

F contains a clause

C = {¬Xh,π(h)} ∪ {Xh′g′ | g′ ∈ NG(π(h)) ∩Dh′}

Because h′ is assigned to a vertex not in NG(π(h)), C is unsatisfied. Therefore

F is not satisfied by A, which is a contradiction. Therefore π is a valid methyl

assignment.

(II) Given a valid methyl assignment π, define A so that A(Xhg) = True if and only

if π(i) = j. The assignment made by A to the variables introduced by the

commander encoding may be safely ignored, as these will have a value implied

by the assignment to the Xhg variables. By the definition of a valid methyl

assignment, it is clear that, conditioned on the correctness of Algorithm 1, the

clauses introduced to force exactly one Xhg to be true for each h at most one to

be true for each g will be satisfied by A. Therefore A does not satisfy F only if

one or more clauses of the form

C = {¬Xhg} ∪ {Xh′g′ | g′ ∈ NG(g) ∩Dh′}

is not satisfied. Every such clause such that π(h) 6= g is satisfied because A(Xhg)

16



= False. If π(h) = g, then for the clause to not be satisfied by A it must be

that π(h′) /∈ NG(g), in which case π is not a valid methyl assignment, which is a

contradiction. Therefore A satisfies F .

From this point on, the notion of satisfying assignments will largely be ignored.

Instead, the output of a SAT solver will be either a valid methyl assignment π, or UNSAT

if the formula is unsatisfiable.
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Chapter 3

Navigating Methyl Assignments

The SAT solver has been established as a search engine for valid methyl assign-

ments. When the solver returns a valid methyl assignment π, one may like to conclude

that π = π∗, i.e., that for each vertex h ∈ V (H), π(h) is the correct assignment to h.

The fact that π is a valid methyl assignment says only that π is consistent with the

data. This does not mean that π is the only valid methyl assignment.

Definition 13. For every h ∈ V (H), let the set S(h) be defined as

S(h) = {π(h) | π is a valid methyl assignment}

A key discovery of MAGMA [14] is that |S(h)| is typically 1. In other words,

one does not need to introduce any heuristic in order to determine a provably correct,

unique assignment for most vertices of H. The details of how MAGMA computes S(h)

are unknown, a SAT solver can be used to compute these same sets in the following

way. Consider a single Boolean variable Xhj . If F ∪ {{Xhg}} is unsatisfiable, it can

18



be concluded that there does not exist a valid methyl assignment π : π(h) = g. By

naively iterating over all Xhg variables and testing the satisfiability of F ∪{{Xhg}}, the

set of possible assignments for every individual vertex can be determined O(|V (G)|2)

invocations of the solver.

3.1 Enumerating Possible Assignments

Algorithm 3 computes the sets S(h) for every vertex of H through iterative

use of a SAT solver. The idea of the algorithm is to progressively build the sets S(h)

as more satisfying assignments are witnessed. At every step, the algorithm selects a

vertex h at random and adds temporary clauses to the formula to forbid h from being

assigned to any vertex to which it has been assigned previously. If the solver concludes

that this formula is unsatisfiable, then we can conclude that every possible assignment

of h has been witnessed and recorded. Otherwise, the solver returns a new satisfying

assignment which will witness new assignments for at least one vertex.

Though SAT solvers are good at finding valid methyl assignments, it is the

ability of a solver to conclusively discredit theories about π∗ rather than its ability to

produce candidates for π∗ which make it truly valuable in this setting. Observe that

it is the capacity of the solver to prove the unsatisfiability of a formula which allows

for the conclusion that every assignment of a vertex has been witnessed, which truly

demonstrates the power of the SAT solver: a person may be able to find a single valid

methyl assignment in a matter of hours if they are lucky, but if a person was asked to

prove that there does not exist any valid methyl assignment in which h is mapped to g,
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they would be utterly hopeless.

Algorithm 3 Enumeration of Possible Assignments
1: F ← Invoke Algorithm 2
2: U ← V (H)
3: for h′ ∈ V (H) do
4: S(h)← {}
5: end for
6: while U 6= ∅ do
7: h← random selection from U

8: T ← {{¬Xhg} | g ∈ S(h)} . Forbid previous assignments
9: π ← Solve(F ∪ T ) . Get methyl assignment from solver

10: if π = UNSAT then . S(h) is complete
11: U ← U − {h}
12: F ← F ∪ {{Xhg | g ∈ S(h)}} . Help the solver
13: else
14: for u ∈ U do
15: S(u)← S(u) ∪ {π(u)} . Update all sets S(h)
16: end for
17: end if
18: end while
19: return S

Line 12 of Algorithm 3 is an optimization. A clause is added to F which

enforces that one Xhg variable is true for g ∈ S(h). Because every literal Xhg such that

g /∈ S(h) is by definition falsified by every satisfying assignment, these clauses do not

affect the set of satisfying assignments; they merely help the solver reach its subsequent

conclusions faster.
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3.2 NOE Probability

The physics of a methyl NMR experiment actually suggest that some valid

methyl assignments more likely than others. While the mere definition of a valid methyl

assignment suffices to force a unique assignment for most resonances, there are still

resonances with more than one possible assignment. A reliable way to discriminate

among these assignments can be obtained by using the physics of the experiment to

formulate a maximum likelihood problem.

The possibility of a credible maximum-likelihood approach comes from the

following fact: the probability of two nuclei experiencing an NOE is a decreasing function

of the distance between those nuclei. In other words, edges of H of more likely to appear

between a pair of resonances that were generated by methyls close in space. Roughly,

the probability of an NOE being observed between two methyls m1,m2 can be defined

as

p(m1,m2) ∝ ∆(m1,m2)−6 (3.1)

where ∆(·, ·) is specifically defined to measure the distance between methyl nuclei.

Though it is not strictly true, assume that H is generated in the following way. Let

V (H) be the set of methyl resonances. The edges of H are formed by the following

sequence of independent trials: for every pair of vertices h, h′ ∈ V (H), place and edge

between h, h′ with probability ∝ ∆(π∗(h), π∗(h′))−6. Under this generative model, the
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following statement becomes true:

Pr[H = H] ∝
∏

{u,v}∈E(H)
∆(π∗(u), π∗(v))−6 (3.2)

Though this generative model is not physically accurate, it is an essential piece of every

heuristic approach to methyl assignment [27, 28, 1, 2], and its reliability will be demon-

strated in the experimental section of this work. This generative model suggests the

following maximum-likelihood problem, which defines πopt, the optimal methyl assign-

ment.

πopt = arg min
π

∏
{u,v}∈E(H)

∆(π(u), π(v))−6 (3.3)

= arg min
π

∑
{u,v}∈E(H)

log
[
∆(π(u), π(v))−6

]
(3.4)

3.3 Quadratic Programming

The maximum likelihood problem can be formulated as a integer-quadratic

program (IQP). In fact, the problem can be written as an integer-linear program (ILP),

which should in general be easier to solve than the quadratic counterpart. However, the

complexity of the linear encoding appears to make the ILP more difficult to solve than

the IQP for an industry grade solver.
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Definition 14. Let the weight of {x, y} ∈ E(G) be defined as

w({x, y}) := ∆(x, y)−6

Definition 15. Let Yhg be a variable taking values in {0, 1}, informally denoting the

proposition that h ∈ V (H) is assigned to g ∈ V (G).

Definition 16. Let Zuv be a variable taking values in {0, 1}, informally denoting the

proposition that u ∈ E(H) is assigned to v ∈ E(G).

Definition 17. An assignment A : {Yhg} → {0, 1} is a feasible solution to the methyl

assignment IQP if and only if all of the following are true:

1. ∀h ∈ V (H) :
∑

g∈S(h)
A(Yhg) = 1

2. ∀h ∈ V (H) :
∑

g/∈S(h)
A(Yhg) = 0

3. ∀g ∈ V (G) :
∑

h:S(h)3g
A(Yhg) ≤ 1

4. ∀{i, j} ∈ E(H),∀{i′, j′} ∈ E(G) :

A(Z{i,j}{i′,j′}) = A(Yii′)A(Yjj′) +A(Yij′)A(Yij′)

5. ∀e ∈ E(H) :
∑

e′∈E(G)
Zee′ = 1

Definition 18. The cost of a feasible solution A to the methyl assignment IQP is defined

as

c(A) :=
∑

e∈E(H)

∑
e′∈E(G)

log(w(e′))× Zee′
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c(π) will be used to refer to c(A) where A is the feasible solution corresponding to the

valid methyl assignment π.

It is clear that, in the same way as for the SAT encoding, every feasible solution

to the methyl assignment IQP corresponds to a unique valid methyl assignment. At this

point, it may seem as though SAT is irrelevant, given that an IQP can express the same

constraints as SAT. While the constraints are expressible by an IQP, on many datasets

the IQP solver cannot optimize the objective function c(A) in a reasonable amount of

time if it is not provided the sets S(h) to restrict the search space. When given the sets

S(h) as input, each optimization is almost instantaneous. Of course, the maximum-

likelihood methyl assignment is not guaranteed to be the correct assignment, nor is it

in fact the correct assignment in any of the benchmarks on which this method has been

tested.

While the optimal assignment may be incorrect, the correct assignment is near-

optimal. Moreover, across the benchmarks tested, every resonance is assigned to its true

methyl by at least one valid methyl assignment which is very nearly to optimal. This can

be exploited by recomputing an analogue of the sets S(h): after of computing possible

assignments for each resonance over the set of valid methyl assignments, compute the

set of possible assignments for each resonance over the set of near-optimal valid methyl

assignments.

Definition 19. For ε > 0, h ∈ V (H), let

Sε(h) = {π(h) | π ∈ Π, c(π) ≤ (1 + ε)c(πopt)}
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The sets Sε(h) can be computed as follows. Invoke the IQP solver to find

c(πopt). Add a constraint to the IQP enforcing that c(A) ≤ (1+ε)c(πopt). At this point,

valid methyl assignments that are not nearly optimal will not correspond to feasible

solutions of the IQP. Therefore, the set of assignments being considered by the solver

of the IQP has been restricted to those which are nearly optimal. The algorithm for

computation of S(h) can be naturally translated for enumeration of possible assignments

in this restricted domain expressed by the IQP, which is done in Algorithm 4

As on line 12 of Algorithm 3, line 16 of Algorithm 4 is an optimization. The

added constraints do not change the set of feasible solutions.
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Algorithm 4 Enumeration of near-optimal assignments
1: πopt ← Solve IQP
2: for h ∈ V (H) do
3: Sε ← {πopt(h)}
4: end for
5: Add constraint c(A) ≤ (1 + ε)c(πopt) to IQP
6: U ← {h ∈ V (H) | |S(h)| > 1}
7: while U 6= ∅ do
8: h← random selection from U

9: for g ∈ Sε(h) do
10: Temporarily add constraint Yhg = 0 to IQP
11: end for
12: π ← Get methyl assignment from IQP solver
13: Remove temporary constraints
14: if π = INFEASIBLE then . Sε(h) is complete
15: U ← U − {h}
16: Add constraint

∑
g∈Sε(h)

Yhg = 1 to IQP

17: else
18: for u ∈ U do
19: Sε(u)← Sε(u) ∪ {π(u)} . Update all sets Sε(h)
20: if Sε(u) = S(u) then . All assignments have been witnessed
21: U ← U − {u}
22: end if
23: end for
24: end if
25: end while
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Chapter 4

Maximum Common Edge

Subgraph

4.1 Mostly Valid Assignments

As mentioned previously, MAGMA accounts for the possibility that H is not

isomorphic to any subgraph of G, i.e., that no valid methyl assignment exists. This can

only happen if an edge of H is placed between two vertices that did not in fact exhibit

an NOE. Call such an edge fake. On an input containing fake edges, the SAT-based

method described thus far is useless, as the SAT solver will simply return UNSAT. The

idea deployed effectively by MAGMA is to enumerate vertex assignments over the set of

invalid methyl assignments that respect as many edges of H as possible.

Definition 20. The edge score of a methyl assignment π is defined as

e(π) :=
∣∣{{u, v} ∈ E(H) | {π(u), π(v)} ∈ E(G)

}∣∣
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Definition 21. A methyl assignment π is mostly valid if @π′ : e(π′) > e(π).

Definition 22. For every v ∈ V (H), let

M(v) := {π(v) | π is a mostly valid methyl assignment}

The output of MAGMA on instances where no valid methyl assignments exists

are the sets M(h) for every H-vertex, which can be described as an analogue of the sets

S(h), only defined over the set of mostly valid assignments rather than the set of valid

assignments. The SAT-based method can be adapted to compute M(h) using a tool

called MARCO [10], which can compute sets of clauses whose removal from an unsatisfiable

CNF formula causes the formula to become satisfiable.

4.2 Minimal Correcting Sets

Definition 23. A correcting set of an unsatisfiable CNF formula F is a set M ⊂ F

such that F −M is satisfiable.

Definition 24. A minimal correcting set of an unsatisfiable CNF formula F is a cor-

recting set M of F such that no proper subset of M is a correcting set of F .

MARCO was designed principally to compute minimal unsatisfiable subsets (MUS)

of CNF formulas, also known as minimal unsatisfiable cores, but MARCO is also capable

of computing minimal correcting sets (MCS). In this case, MARCO be employed to find

minimum sets of edges of H whose removal allows for valid methyl assignments, but

this cannot be accomplished by a direct use of MARCO to compute MCSes of the methyl
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assignment CNF formula. While the aim is discover minimal subsets of E(H) whose

removal makes the problem satisfiable, any MCS of the formula may include clauses

responsible for enforcing the unique assignment of vertices, and the removal of such

a clause should not be entertained. The solution is to rewrite the CNF formula as a

group-oriented CNF (GCNF) formula.

Definition 25. A group-oriented CNF (GCNF) formula is a tuple

Γ = (F, J1, J2, . . . , Jk)

where F , Ji are CNF formulas. A GCNF formula (F, J1, J2, . . . , Jk) is satisfiable if and

only if F ∪ J1 ∪ J2 ∪ · · · ∪ Jk is satisfiable.

Definition 26. A correcting set of a GCNF formula (F, J1, J2, . . . , Jk) is set M ⊆ [k]

such that

F ∪

 ⋃
i/∈M

Ji


is satisfiable.

Definition 27. A minimal correct set (MCS) of a GCNF formula Γ is a correcting set

M of Γ such that no proper subset of M is a correcting set of Γ.

In order to determine minimal subsets of E(H) whose removal makes the

problem satisfiable, we will construct a GCNF formula Γ = (F, J1, J2, . . . , J|E(H)|), where

F will be the set of clauses responsible for enforcing a one-to-one vertex assignment,

and each Ji will be the clauses responsible for enforcing that a particular edge of H

is mapped to an edge of G. Algorithm 5 is an adaption of Algorithm 2 which does
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precisely this.

Given a GCNF formula constructed using this encoding, MARCO is able to

quickly enumerate the MCSes of Γ of minimum size, that is, all MCSes of Γ that are

the size of the smallest MCS of Γ. The output of MARCO will from this point be viewed

as a series of edge sets, E1, E2, . . . , Ek, with each Ei ⊆ E(H); each Ei is a minimal set

of edges such that there exists a valid methyl assignment from H − Ei to G.

Algorithm 5 Construction of a GCNF Formula
1: F ← {}
2: for h ∈ V (H) do
3: Dh ← {g ∈ V (G) | γ(h) = γ(g) ∧ dH(h) ≤ dG(g)}
4: F ← F ∪Commander({Xhg | g ∈ Dh})
5: F ← F ∪ {{Xhg | y ∈ Dh}}
6: end for
7: for g ∈ V (G) do
8: F ← F ∪Commander({Xhg | g ∈ Dh})
9: end for

10: i← 0
11: for h, h′ ∈ E(H) do
12: i← i+ 1
13: Ji ← {}
14: for g ∈ Dh do
15: C ← {¬Xhg} ∪ {Xh′g′ | g′ ∈ NG(g) ∩Dh′}
16: Ji ← Ji ∪ {C}
17: end for
18: end for
19: return (F, J1, J2, . . . , J|E(H)|)
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4.3 Combining Maximum Subgraphs

Definition 28. For E ⊆ E(H), h ∈ V (H)

SE(h) = {π(h) | π is a valid methyl assignment from H − E to G}

Theorem 2. Let E1, E2, . . . , Ek be the output of MARCO. For h ∈ V (h),

M(h) =
⋃
Ei

SEi(h)

Proof. It suffices to show that every mostly valid methyl assignment π is also a valid

methyl assignment from H −Ei to G, for precisely one Ei, and vice versa. Let E(π) ⊆

E(H) be the set of edges that π maps to edges of G. Because E(π) is of maximum size,

E(H) − E(π) = Ei for some i. Therefore π respects all edges in E(h) − Ei, meaning

that π is a valid methyl assignment from H − Ei to G. The converse follows in much

the same way.

Definition 29. Let E1, E2, . . . , Ek be the output of MARCO. For ε > 0, h ∈ V (H),

Mε(h) :=
⋃
Ei

SEi
ε (h)

Theorem 2 means that the sets M(h) can be computed by enumerating the

sets Ei, then computing SEi for all such sets. Moreover, in all benchmarks considered,

for every h ∈ V (H), π∗(h) ∈ SEi
ε for at least one Ei and a choice of ε small enough

increase the number of uniquely assigned vertices.
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Algorithm 6 Enumerating possible assignments over all MCES
1: for h ∈ V (H) do
2: Mε(h)← {}
3: end for
4: (F, J1, J2, . . . , J|E(H)|)← Invoke Algorithm 5
5: E1, E2, . . . , Ek ← Invoke MARCO

6: for i = 1, 2, . . . , k do
7: SEi ← Invoke Algorithm 3 on H − Ei, G
8: SEi

ε ← Invoke Algorithm 4 on H − Ei, G
9: for h ∈ V (H) do

10: Mε(h)←Mε(h) ∪ SEi
ε (h)

11: end for
12: end for
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Chapter 5

Comparison With MAGMA

The publication of MAGMA [14] contains results on a series of benchmarks

[9, 22, 1, 24, 25]. The method presented herein has been run on the same set of

benchmarks. The experiments were run on a 2017 Dell XPS 13 9350, with an Intel

Core i5-6200U processor and 8GB RAM. MAGMA was rerun on the same benchmarks on

the same machine for comparison. The SAT solver used for testing purposes in every

case was cryptominisat [18]. The IQP solver used for the enumeration of near op-

timal assignments was Gurobi [4]. For every target, the ε used for the definition of

near-optimality was 0.002.

Figures 5.1 and 5.2 report the precision and runtime of the method proposed

in this thesis compared to those of MAGMA. Note that all of the molecules in MAGMA’s

benchmark contain fake edges except for Ubiquitin. For ATCase R2, EIN1, MBP,

MSG, and MsrB, Algorithm 6 was used to compute near optimal assignments over the

minimal correcting sets of F . For Ubiquitin, since F has no minimal correcting sets,

Algorithm 3 and 4 were invoked successively.
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Protein |V (G)| |E(G)| |V (H)| |E(H)| |MCS| No. MCS

ATCase R2 [24] 36 156 34 91 9 3

EIN1 [25] 100 391 84 145 1 3

MBP [9] 73 254 70 144 4 10

MSG [22] 159 491 141 230 1 1

MsrB [9] 22 60 21 37 1 1

Ubiquitin [1] 27 45 18 20 0 0

Table 5.1: List of datasets in the MAGMA benchmark. For each dataset, the number
of vertices and edges of H and G are given, as well as the size of the minimum size
minimal correcting set and the number of such minimal correcting sets.
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Figure 5.1: Fraction of vertices uniquely assigned by using SAT to compute possible
assignments, using MAGMA to compute possible assignments, or using Gurobi to compute
near optimal assignments.
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Figure 5.2: Runtime of MARCO, SAT, MAGMA, and Gurobi.

One thing that may seem strange is that there is actually a discrepancy in the

fraction of vertices uniquely assigned by SAT and by MAGMA in the cases of EIN1, MBP,

and MSG, though the output for both methods purports to be the sets M(h). While

the details of MAGMA are unknown, it seems likely that the discrepancy can be attributed

to the fact that MAGMA runs on the connected components of H and G individually to

derive restricted lists of assignments for each vertex before solving the global methyl

assignment problem. For some molecules, MAGMA cannot derive the sets M(h) for the

global problem without performing this first step. Of course, the lists derived from the

problem after splitting by connected component may differ from the sets M(h), which

would likely explain the minor discrepancies here.

This method uniquely assigns more vertices than MAGMA in every case except
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EIN1 and Ubiquitin, which is a tie. The most staggering boost is in the case of AT-

Case, where this method uniquely assigns nearly twice as many vertices as MAGMA. This

method also terminates faster than MAGMA on all molecules except MsrB and Ubiquitin.

The speedup factor is over 100x for ATCase. This method terminates on MSG in less

than half the time of MAGMA. Given that MSG is the largest molecule in the bench-

mark, and ATCase is the molecule with by far the most fake edges, it appears that

SAT scales better in general. Additionally, this method is not operating on connected

components of the graphs individually, but rather solving the global problem in one

go, which MAGMA cannot do for some targets. Observe that MAGMA terminates an or-

der of magnitude faster on the two smallest molecules, MsrB and Ubiquitin; it appears

that SAT, MARCO, and Gurobi may in some sense be overkill for these molecules seeing

as the number of (mostly) valid methyl assignments for those molecules are 4 and 2

(see figure 1.2), respectively, and this method will perform O(|V (G)|2) invocations of

cryptominisat and Gurobi regardless.
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