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DEDICATION 

 

This dissertation is dedicated to all children between the ages of 4 and 30 months, regardless of 

whether they are learning American English or have been diagnosed with a developmental 

disorder. 
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EPIGRAPH 
 
Lo cierto es que vivimos postergando todo lo postergable; tal vez todos sabemos 
profundamente que somos inmortales y que tarde o temprano, todo hombre hará todas las 
cosas y sabrá todo. 
 
The truth is that we live out our lives putting off all that can be put off; perhaps we all know deep 
down that we are immortal and that sooner or later all men will do and know all things.  
 
Jorge Luis Borges. Funes el Memorioso, 1942. 
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 Infants and toddlers typically hear words accompanied by a variety of direct and indirect 

cues to their meaning. To name just a few, words are embedded in frequently repeated 

linguistic constructions, they tend to co-occur with specific objects that they refer to, and they 

tend to be used in different social-interaction routines and activity contexts. Whereas children 

are capable of detecting several different types of cues and using them to facilitate word 

learning, we are only beginning to uncover the developmental processes by which words come 

to be embedded in multimodal, dynamic contexts that mark them as items to be learned and 

help children to discover their meaning. 

 In this dissertation I address two broad questions. First, how do infants and caregivers 

co-construct interaction sequences in which words are accompanied with useful cues? In a 

series of observational studies of infant-mother dyads observed longitudinally from the age of 4 

months to 12 months, I describe how infants’ increasing motor abilities enable them to elicit 
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contingent caregiver responses containing object-naming and predictable sequences of other 

informative utterances.  

Second, what can we learn about what matters for word learning by using the contextual 

distributions of words to predict how early and in what combinations they will be learned? In 

these studies, I use a corpus of child-directed speech to construct a representation of each 

word’s distribution over syntactic and thematic usage contexts. Then, using a large open 

dataset of children’s parent-reported word production and comprehension, I show that both 

types of context distribution contribute over and above previously described factors in predicting 

both the age of acquisition of words and the degree to which word pairs tended to be learned 

together versus randomly.  

Taken together, the studies in this dissertation support a view of early word learning in 

which (1) multiple layers of social, linguistic, and sensorimotor contextual cues jointly facilitate 

word learning, (2) infants learn to participate actively in the responsive interactions that produce 

high-quality word exposures, and (3) although these processes are too complex to be replicated 

with full experimental control, they leave identifiable traces in the structure of children’s lexicons.  
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INTRODUCTION 

Language acquisition takes place in an environment of remarkable richness and 

complexity. Of particular interest are the ways in which the child’s environment supports the 

early stages of word learning. Researchers have long noted that the task of mapping word 

forms with meanings presents numerous difficulties for learners. The sets of candidate word 

forms and meanings are unknown, word-referent associations are noisy and ambiguous, and 

word meanings can be multiple, complex, and overlapping. Nevertheless, much of the existing 

research on word learning in infants and toddlers treats word-meaning (often, word-object) 

associations as the “atom” of the lexicon. In light of the phenomenon of rapid vocabulary 

acquisition (Benedict, 1979; Goldfield & Reznick, 1990), several theories have been proposed to 

explain how some particular factor or set of factors constrain and support word learning. Three 

main trends can be identified: 

Social theories, based on observational studies and individual differences research, treat 

the environment as a set of social experiences in which infants’ active participation and parents’ 

responsiveness are central. Studies of this type have identified patterns of infant-parent 

interaction that are associated with individual differences in language development, but do not 

provide explicit models of how these patterns of interaction modulate the learning process itself. 

Information-oriented theories, based on corpus analyses and statistical learning studies, 

treat the environment as an input stream of linguistic information, and emphasize the learnability 

of linguistic patterns. These studies have demonstrated the feasibility of acquiring linguistic 

structures by various algorithms, but rarely address the social coordination required to provide 

the learning algorithms with the necessary inputs. 

Knowledge-oriented theories, based on studies of the implicit biases in children’s word 

learning process, as well as studies relating the set of words in a child’s existing vocabulary to 

further vocabulary growth, emphasize the structured knowledge available at a given point in 
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developmental time as a key factor in further word learning. Interdependencies among words 

and generalized strategies for learning words in a particular class provide evidence that word 

learning is best understood in the context of an existing lexicon. 

Each of the three approaches has provided robust findings that give valuable insights 

into the mechanisms of language acquisition. However, existing studies typically demonstrate 

how some particular factor facilitates word learning above mere word-referent association. 

Instead of viewing social, informational, and knowledge theories as competing 

conceptualizations of the role of environmental support for word learning, the growing body of 

evidence for each suggests that a full understanding of word learning requires studying the 

mutual effects of all three sets of factors. Word learning events occur in a context involving 

social support, probabilistic information, and past experiences with language, and the role and 

effectiveness of each set of factors likely depends on the others. Each instance of word usage is 

multiply embedded across perceptual, cognitive, and behavioral modalities.  

The studies described in this dissertation take a step toward integrating our 

understanding of the multiple interacting environmental supports for word learning. The first 

series of studies integrates social and information-oriented factors. Using observational 

microbehavioral analysis of infant-parent interaction, we describe how parental contingent 

responses modulate cross-modal correlations between parental speech content and infants’ 

visual and haptic experience at different ages. We then expand this analysis to slightly older 

infants and describe how different types of parental speech acts are differentially structured by 

parental contingent responsiveness and by predictable multi-utterance sequences. The second 

series of studies integrates information- and knowledge-oriented factors. Using large-scale 

corpora of transcribed infant-directed speech, we derive distributional representations of the 

embedding of words into local linguistic contexts. Then, using a database of children’s 

vocabularies, we characterize how the probability of learning each word is determined both by 

its usage and its relation to other known words in the child’s lexicon. 
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In the remainder of this introduction, I will first review previous research on social, 

information-oriented, and lexicon-oriented theories of language acquisition. I will then outline 

several key open questions regarding how multiple factors identified by different theoretical 

approaches to word learning relate to each other, and how they are addressed by the studies in 

this dissertation. 

Social theories: Parent-infant interaction, responsiveness, and shared attention 

Studies of the influence of the social environment on language acquisition are rooted in 

the bioecological model of development (Bronfenbrenner, 1979; Bronfenbrenner & Morris, 

2006). This framework posits that development takes place within nested environmental 

systems. The most distal systems include broad cultural contexts and values. These shape the 

specific environments and situations infants experience, which in turn determine their language 

development. Most proximal to the mechanisms of language acquisition are social 

environmental factors relating to parent-infant interaction--when, how, and how much language 

is used with infants (Hart & Risley, 1995; Hoff, 2003). A large body of research indicates that 

parents respond contingently and appropriately to infants’ communicative actions and focus of 

attention. Parental responsiveness to infant actions, both communicative and non-

communicative, begins at an early age: for example, infants and parents mutually coordinate 

their looking, smiling, and vocalizing by 1 to 3 months (Kärtner et al., 2008; Kaye & Fogel, 

1980). Mothers respond contingently to infants’ object exploration (Bornstein, Tamis-LeMonda, 

Hahn, & Haynes, 2008, Wu & Gros-Louis, 2014, Yu & Smith, 2012, Tamis-Lemonda, Kuchirko, 

& Tafuro, 2013) and gesture (Goldin-Meadow, Goodrich, Sauer, & Iverson, 2007), and take 

turns vocalizing (Snow, 1977). Moreover, this social embedding of language appears to “gate” 

acquisition (Kuhl, 2007). Children exposed to a second language through television do not 

acquire that language (Snow et al., 1976), and neither do children in the rare circumstance of 

exposure to a first language only by television (Sachs, Bard, & Johnson, 1981). In a more 

controlled setting, English-learning infants exposed to Mandarin via live storytelling sessions 
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retained the ability to discriminate Mandarin phonetic distinctions, whereas those exposed via 

pre-recorded sessions did not (Kuhl, Tsao, & Liu, 2003). Thus, it seems that responsive 

interaction is necessary for infants to learn from at least some kinds of linguistic input. 

However, comparisons of live versus televised language models conflate a number of 

differences, making causal inferences difficult. Another approach is to test how infant-parent 

interaction styles that vary in their degree of responsiveness relate to infants’ rates of language 

acquisition. In several studies, parents’ contingent and appropriate responses to infants’ actions 

have been counted and summarized as a quantitative measure of “responsiveness.” Although 

precise definitions vary from study to study, parent responsiveness by various metrics is 

typically a strong positive predictor of children’s language development (Tamis-LeMonda, 

Kuchirko, & Song, 2014, Tamis-LeMonda, Bornstein, and Baumwell, 2001, McGillion et al., 

2013, Gros-Louis, West, & King, 2014, Wu & Gros-Louis, 2014). 

Furthermore, several related lines of evidence suggest that infants are sensitive to 

temporal contingency. At two months of age, infants notice when a mobile moves in response to 

their own head movements, and begin to direct social actions toward the mobile (Watson, 

1972). Ten-month-olds readily detect the contingent responses of a robot and use this 

information to determine its orientation of “attention” based on the direction it faces when 

contingently responding to the infant (Movellan & Watson, 1987). In the linguistic domain, 

Goldstein and Schwade (2008) found that adults’ contingent, but not random, responses to 

infants’ vocalizations, caused infants’ vocalizations to become more advanced and incorporate 

phonological elements from the adult’s responses. Twelve-month-olds’ object name learning 

was also facilitated by presenting object names contingently on infants’ vocalizing while looking 

at the object (Goldstein, Schwade, Briesch, & Syal, 2010).  

A related hypothesis about the nature of “responsiveness” is that, rather than temporal 

contingency between infant actions and parent responses, reponsiveness primarily reflects 

coordination of joint attention between the infant and parent. Tomasello & Farrar (1986) studied 
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mothers’ speech to 15- and 21-month-old children during episodes of joint attention. They found 

that mothers’ references to objects that were the children’s target of attention before the 

utterance positively predicted vocabulary scores. In the same paper, an experiment showed that 

17-month-olds were more likely to learn words presented in response to their current focus of 

attention than words presented in an attempt to redirect their attention. As early as 9 months, 

caregivers’ contingent comments about objects that were the focus of the child’s attention 

predict infants’ subsequent language comprehension (Rollins, 2003). Similarly, at 13 months, 

mothers’ directive language following, but not leading, the child’s focus of attention correlated 

positively with later vocabulary (Akhtar, Dunham, & Dunham, 1991). Moreover, infants’ ability to 

follow an experimenter’s gaze or gestures to establish joint attention predicts their later 

receptive vocabulary (Mundy & Gomes, 1998). 

Recently, a growing number of researchers who focus on social theories have 

recognized that children’s experience with language arises from mutual interaction between the 

child and the physical and social world (Hockema & Smith, 2009). The primary linguistic data 

are not merely an input to the developmental system; rather, children’s exposure to language is 

both a cause and an effect in the multi-person developmental system. Thus, measures of social 

interaction, such as responsiveness, simultaneously capture variance in parents’ tendency to 

respond to children’s behaviors, and children’s production of behaviors that readily elicit 

contingent responses. This latter, endogenous variance can have clinically relevant 

consequences: for example, infants at high risk for autism spectrum disorder (ASD) produce 

fewer speech-like vocalizations, fewer consonant types, and fewer canonical syllables than low-

risk controls, and these differences predict the later appearance of ASD symptoms (Paul, 

Fuerst, Ramsay, Chawarska, & Klin, 2011). Thus, deficits in language and attention to social 

contingencies in ASD might be partially caused by affected infants’ initially impoverished vocal 

repertoire, which in turn gives them fewer opportunities both to learn from contingent responses 

and to experience their reward value. In addition to differences between individuals and over 
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time in vocal behavior, gross motor skills are related to language development (Oudgenoeg-

Paz, Volman, & Leseman, 2012; Walle and Campos, 2014; He, Walle, & Campos, 2015; 

Libertus and Violi, 2016). Motor behaviors shape children’s language environment (Iverson, 

2010). At 13 months, infants who carry an object to their mother by walking elicit more action 

directives than do infants who do so by crawling (Karasik, Tamis-LeMonda, & Adolph, 2014), 

and 8-month-olds who have begun crawling hear more prohibitions than non-locomoting infants 

(Zumbahlen, 1997). Furthermore, infants who have recently begun walking show changes in the 

types of social interactions they engage in (Clearfield, 2011; Karasik, Tamis-LeMonda & Adolph, 

2011). Onset of walking is also associated with increases in infant following of parents’ joint 

engagement cues, parents’ perception of the infant as an individual, and receptive and 

productive language (Walle, 2016). Thus, the characteristics of the child’s learning environment 

such as quality of speech input and responsiveness cannot be considered independently of 

individual differences and developmental changes in the child’s motor repertoire and 

interactions between the child, parent, and physical environment. 

Overall, researchers have identified a broad range of factors that account for individual 

differences in word learning. The common thread is that infants benefit from linguistic input that 

is embedded in rich, responsive and meaningful exchanges with the social and physical world. 

However, the pathways by which social environmental factors impact and influence children’s 

word learning at the cognitive level are poorly understood. The next two sections review 

research on environmental influences on word learning from perspectives with more cognitive 

detail. 

Information-oriented theories: Corpus analysis and statistical learning 

In contrast to the social influences reviewed above, information-oriented theories of 

language acquisition focus on specific learnable regularities in the linguistic environment. These 

theories emphasize that language acquisition is fundamentally a learning problem; the main 

questions therefore revolve around what information is available in the environment to be 
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learned, and what types of information (e.g. statistical structure in a sound sequence) children 

are able to detect. Research on the statistical patterns in the environment typically involves 

corpus-level analyses of natural infant-directed speech; by contrast, research on children’s 

capacity to learn those patterns typically involves experiments on children’s statistical learning, 

conducted on small-scale “toy” tasks in the laboratory. 

Any mechanistic theory of word learning, and language acquisition more generally, must 

consider the nature of the input: the range of sets of experiences from which children will 

eventually learn their native language. If children have powerful general-purpose statistical 

learning abilities that are tuned–through early social and perceptual learning, or intrinsic biases, 

or both–to process incoming linguistic information, it is essential to know what types of patterns 

could hypothetically be learned. This has been addressed by analyzing corpora of child-directed 

speech, transcribed at various levels of granularity, to extract statistical regularities.  

One of the most basic tasks faced by a language learner is to identify words. Is there 

sufficient information in fluent speech to identify word boundaries, which are typically not 

marked with audible pauses? To test this, a connectionist model was trained to discover word 

boundaries based on a corpus of phonetically transcribed child-directed speech, using the 

phoneme sequence, stress patterns, and utterance boundaries as cues. The model segmented 

word boundaries with over 70% accuracy and completeness, far from perfect but nevertheless 

showing that a meaningful segmentation of speech into words can be computed from bottom-up 

processing of the statistical structure in natural child-directed speech (Christiansen, Allen, & 

Seidenberg, 1998). A more recent word segmentation model shows that a model that assumes 

that words predict subsequent words learns a more complete segmentation than one that 

assumes that words are independent (Goldwater, Griffiths, & Johnson, 2009). This last finding 

illustrates a more general point: additional knowledge or assumptions about linguistic structure 

might enable the extraction of more patterns than are learnable by the most basic models. 
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Once words are identified, learners must discover that words have categorical structure: 

some words are nouns, some are verbs, and some are closed-class function words. Several 

studies have examined the degree to which a word’s phonological properties predict its lexical 

class; e.g. in English, nouns tend to have stress on the first syllable, whereas verbs tend to have 

stress on the second (Kelly & Bock, 1988). Shi, Morgan, and Allopenna (1998) classified 

Turkish and Mandarin words as closed-class or open-class based on a combination of 

phonological features.  

Another source of information about word class comes from distributional properties of 

words--that is, which other words a given word tends to co-occur with. Distributional information 

in the form of counts of a word’s co-occurrence with other common words provide a reasonably 

strong cue to word class, especially for nouns (Redington, Chater, & Finch, 1998). Combining 

phonological and distributional cues leads to even higher performance, as the two sets of cues 

provide complementary information: distributional cues are more useful for frequent words and 

for identifying nouns, whereas phonological cues are more predictive of the class of infrequent 

words and for identifying verbs (Monaghan, Chater, & Christiansen, 2005; Monaghan, 

Christiansen, & Chater, 2007). Distributional cues also provide fine-grained information within a 

word class, e.g., the types of relations that can be expressed by a verb can be determined from 

the context words it occurs with (Hare, McRae, & Elman, 2004). Notably, it may be possible in 

some cases to learn word categories from distributional information even with a small sample of 

child-directed speech. Mintz (2003) performed an analysis of child-directed speech in terms of 

frequent frames: patterns of the form you X the, in which a variable word is flanked by a specific 

pair of words. Frequent frames generally consist of function words, and words that appear within 

them generally belong to the same class. Using corpora derived from single parent-child dyads–

contrasting with studies using a million or more words pooled over many recordings –Mintz 

showed successful identification of nouns and verbs. Furthermore, frequent frames generalize 

to French and outperform similar analyses using contextual elements consisting of two words 
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preceding or following the target word (Chemla, Mintz, Bernal, & Christophe, 2009). Cameron-

Faulkner, Lieven & Tomasello (2003) found that 51% of utterances directed to 2-year-old 

children started with one of 52 common phrases), suggesting that a relatively manageable 

number of specific item-based constructions constitute a large fraction of child-directed speech. 

Thus, early language acquisition could uncover abstract structure despite operating on relatively 

small samples of specific elements. 

Modeling the learnability of linguistic structures from corpus data has also yielded 

demonstrations of the learnability of specific syntactic structures, including some previously 

used as justification for the Poverty of the Stimulus argument (Reali & Christiansen, 2005), 

although the learning model was not completely unconstrained. Nevertheless, the level of 

constraint imposed by these and similar models is consistent with the model of language-brain 

coevolution proposed by Christiansen and Chater (2008). According to their language evolution 

hypothesis, languages evolve over generations of transmission to adapt themselves to the 

peculiarities of the brains they inhabit. Computer simulations of the coevolution of languages 

and brains suggest that the higher rate of change of language structure dominates the relatively 

slow rate of change of brain structure. The result of this diachronic process of language shaping 

is that languages possess apparently arbitrary structure that is well-matched to the domain-

general cognitive abilities human brains possess. Thus, researchers who select models whose 

constraints ensure good performance may be implementing something analogous to the 

mechanisms by which human children come to have an apparent predisposition to detect and 

correctly learn linguistic patterns. 

A second thread of research has used small-scale experimental studies to demonstrate 

that infants have the ability to detect a wide range of probabilistic regularities relevant to 

language. These processes are referred to collectively as statistical learning. At the phonetic 

level, prelinguistic infants can learn boundaries between two phonemic categories from the 

distribution of a linguistic feature: bimodal distributions suggest the presence of two categories 
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to be distinguished, whereas unimodal distributions suggest a single category, the members of 

which should be treated alike (Maye, Werker, & Gerken, 2002). Another influential finding shows 

that 9-month-old infants can track conditional transition probabilities between syllables (Saffran, 

Aslin, & Newport, 1996, Aslin, Saffran, & Newport, 1998). Because the conditional probability of 

a syllable given the previous syllable is usually high within words and low across word 

boundaries, this type of learning is a potential mechanism by which children could learn to parse 

a continuous stream of sound as a sequence of words.  

In addition to the low-level elements described above, infants also use statistical or 

distributional information to acquire higher-order elements of language structure, i.e. “grammar.” 

In one study, 12-month-olds were exposed to an artificial language consisting of strings 

conforming to the patterns aX and bY, where X and Y elements were distinguished both by 

phonetic features and by their respective co-occurrence with a and b elements. At test, infants 

heard strings that either conformed to the familiar pattern or the opposite pairing. Infants 

discriminated familiar from unfamiliar patterns even when the X and Y elements were novel at 

test (Gómez & Lakusta, 2004). Using patterns from natural language as stimuli, Gerken, Wilson, 

and Lewis (2005) found that 17-month-olds were capable of distinguishing grammatical from 

ungrammatical combinations of Russian noun stems and gender endings after brief exposure to 

a set of Russian words in which gender was correlated with phonetic properties of the stem.  

Statistical learning has also been studied in the context of learning word meanings. The 

problem of assigning words to their correct referents is in principle difficult and highly 

indeterminate (Quine, 1960, Trueswell et al., 2016). Nevertheless, children do succeed in 

acquiring specific vocabulary items. Word learning may rely at least in part on children’s 

integration of word-world associations that are individually ambiguous and probabilistic. To 

demonstrate this, Smith & Yu (2008) exposed 12- and 14-month-old infants to training trials in 

which they viewed pairs of objects and heard pairs of words, such that the specific word-object 
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pairings were ambiguous on each trial. Nevertheless, infants were capable of learning the word-

object pairings, as evidenced by above-chance performance on a looking-time task.  

It should be noted that these and similar studies exposed infants to the statistical 

regularities for brief periods ranging from a few minutes to tens of minutes. In the real world, 

accumulated weeks and months of experience could, in principle, provide a much stronger 

signal, although infants may be less sensitive to dispersed everyday experience with statistical 

regularities compared to the concentrated blocks of input they receive in typical statistical 

learning studies. 

Regarding whether infant statistical learning is a domain-general or a language-specific 

mechanism, some studies have been conceptually replicated using non-language-like stimuli, 

e.g. pictures of dogs (Saffran, Pollak, Seibel, & Shkolnik, 2007) and shapes (Kirkham, Slemmer, 

& Johnson, 2002), although performance on non-language stimuli can be facilitated by prior 

learning of the same patterns instantiated in speech (Marcus, Fernandes, & Johnson, 2007). 

Similarly, 4- and 5-year-olds are able to form associations between objects and facts or 

pictograms as well as or better than words (Deák & Toney, 2013). Statistical learning has also 

been used to argue against the modularity of the language faculty: individuals with “specific 

language impairment” perform worse than controls on both linguistic and non-linguistic tests of 

sequential-statistical learning (Evans, Saffran & Robe-Torres, 2009, Tomblin, Mainela-Arnold & 

Zhang, 2007), and language ability is also correlated with statistical learning performance in 

normal undergraduates (Misyak & Christiansen, 2012).  

Overall, information-oriented theories of language acquisition have been useful in that 

they have made it clear that an abundance of structured information is available in children’s 

experience, and that children have mechanisms for detecting at least some of that structure. 

Nevertheless, these theories provide an idealized and incomplete picture of the real processes 

of language acquisition, which take place neither in controlled lab contexts nor solely by means 

of decontextualized transcribed corpora. It is also unclear which of the many available patterns 
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in the input are causal drivers of acquisition. Furthermore, statistical learning is a cumulative 

process where the knowledge accumulated as a result of previous learning events forms the 

basis of future ones. Past experience can influence the learning process by helping children to 

focus on relevant aspects of the input, and by providing conceptual structures to incorporate 

newly learned items. Explaining these processes requires viewing language acquisition as a 

prolonged developmental process in which children progressively acquire a lexicon and 

grammar, and world knowledge, with the different developing parts inextricably linked. This is 

the subject of the next section. 

Knowledge-oriented theories: biases, lexicons, and inter-word dependencies 

Children are not simply general-purpose learning machines who encounter structured 

information in the language input. Rather, their inferences about word meaning are enabled by 

knowledge about how words tend to be used in general, and by generalizing from already-

known words. Intuitive support for this view comes from the fact that word learning is initially 

slow and laborious: although infants’ recognition of common words is first detectable around 6 

to 9 months (Bergelson & Swingley, 2012; 2015; Tincoff & Jusczyk, 2012), their vocabulary 

growth is initially slow until the “vocabulary spurt,” a dramatic acceleration of word learning that 

typically occurs in the second year (Bloom, 1973; Ganger & Brent, 2004; Bloom, 2000).  

Researchers have proposed several conceptual or representational advances that might 

account for the vocabulary spurt. For example, the “naming insight,” where infants discover that 

word-forms are names for object types, has been suggested as an explanation (Dore, Franklin, 

Miller & Ramer, 1976; Reznick & Goldfield, 1992; Kamhi, 1986). A related hypothesis is that 

infants shift from an associationist strategy (matching words and meanings) to a referential 

strategy (inferring what people intend to communicate) around the time of the vocabulary spurt 

(Nazzi & Bertoncini, 2003). Armed with this basic insight, it becomes possible for toddlers to 

learn an array of further principles that guide word learning. Toddlers have been found to 

disambiguate words on several such grounds. For instance, the taxonomic constraint implies 
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that words apply to objects of the same type, rather than those that are thematically related – 

even though thematic relations are highly salient to children (Markman & Hutchinson, 1984). 

Children also assume that a novel label is more likely to apply to a category without a known 

name than one with a known name (Markman & Wachtel, 1988; but see Deák & Maratsos, 

1998). One study suggests that this last effect depends on the degree to which the child’s 

existing lexicon approximates a one-to-one correspondence between words and meanings, as it 

was observed in 18-month-old Chinese-English bilingual children who knew few translation 

equivalents, but not those who knew many translation equivalents (Byers-Heinlein & Werker, 

2013). 

 Moving up the conceptual hierarchy, children use higher-level knowledge about relations 

among words in an utterance to disambiguate meaning. For instance, children assume that a 

count noun should refer to a class of objects defined by a common shape, whereas a mass 

noun should be a category defined by a common substance (McPherson, 1991; Smith, 1999). 

According to the syntactic bootstrapping hypothesis, children infer the meanings of novel verbs 

by assigning meanings that fit the set of grammatical roles in the verb phrase (Gleitman, 1990). 

Naigles (1990) obtained experimental evidence for this effect by presenting 2-year-old children 

with either transitive (e.g. the duck is gorping the bunny) or intransitive (the duck and the bunny 

are gorping) sentences accompanied by videos demonstrating both transitive and intransitive 

actions. In a subsequent test phase, the children were prompted to look at “gorping” and were 

shown separate videos of the two actions, and looked longer at the action consistent with the 

phrase structure they heard during training, even though both sentences contained the same 

set of focal nouns and verbs. Another example is the distinction between count nouns and 

proper names. In one paradigm, children are shown a novel doll that is introduced either as a 

count noun (e.g. this is a Zav) or as a proper noun (e.g. this is Zav). The children are then 

shown two identical dolls, one of which is the same exemplar from the labeling phase, and are 

asked to either find “a Zav” or “Zav,” respectively. 24-month old children, but not 20-month-olds, 
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preferred to select the same individual in the proper name condition (Hall, Lee, & Bélanger, 

2001). Crucially, in all these situations the cues to meaning are not inherent to the naming 

event, but rather require children to have preexisting knowledge of linguistic usage. 

Furthermore, two-year-old children’s inferences can also operate across utterance boundaries: 

children prompted by an utterance such as I’m thirsty subsequently were more likely to assign a 

novel word to the drinkable item in an array (Sullivan & Barner, 2016). 

 Nativistic theories represent a different perspective that explains word learning as a 

result of structured knowledge. For instance, Pinker (1994a) proposes that children’s learning of 

word meanings is facilitated by constraints on the range of possible meanings that can be 

represented in the brain’s language-specific circuitry, which he calls Universal Lexical 

Semantics. Pinker and other theorists suggest that the inductive abilities reviewed above are 

best explained by a combination of children’s inherent linguistic endowment and rational 

inferences based on limited, ambiguous inputs, rather than by learning probabilistic structure 

from large amounts of previous language exposure (Pinker, 1994b; Bloom, 1999; Markman, 

1994). Attributing specific knowledge items to inherent constraints as opposed to learning is 

conceptually problematic, as learning mechanisms might play important roles in most or all 

developmental trajectories, and all learning processes are biologically canalized to varying 

degrees (Deák, 2000). Nevertheless, researchers with different theoretical orientations agree 

that syntactic and semantic knowledge are important factors in word learning. 

 Finally, the knowledge context that children bring to word learning can be described in 

terms of the set of words they already know. Known words can be relevant if they are either 

phonologically similar or semantically related to the target word. Most simply, a word can be 

characterized in terms of its neighborhood density, i.e. the number of known related words. On 

the phonological side, neighbors are typically defined as word forms that differ in only one 

phoneme. 14-month infants can discriminate such pairs, but are inhibited from mapping them to 

different objects (Stager & Werker, 1997), and this inhibitory effect persists at least up to 18 
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months of age (Werker, Fennell, Corcoran, & Stager, 2002; Hollich, Jusczyk, & Luce, 2002; 

Swingley & Aslin, 2007). Nevertheless, words with higher phonological neighborhood densities 

are learned earlier on average (Storkel, 2009), suggesting that population-level vocabulary 

trends fail to capture the interdependence of items within an individual child’s developing 

lexicon. On the semantic side, knowledge of semantic neighbors (i.e. same-category nouns) is 

associated with better performance in word learning and lexical and sentence processing 

(Borovsky, Ellis, Evans, & Elman, 2016a, 2016b). Whereas neighborhood density effects 

describe only the influence of a word’s immediate neighbors, higher-order local and global 

relationships can be studied using network models, unlocking a further layer of complexity. 

In a network, nodes represent words and edges represent phonological or semantic 

connections between words. Network measures can provide more complex measures of a 

word’s local “neighborhood,” which can then be evaluated as a predictor of word learning. Hills, 

Maouene, Maouene, Sheya, & Smith (2009) used word co-occurrences to define a semantic 

network, and then used normed age-of-acquisition data to model the normative growth of that 

network with age. They tested the ability of three local growth models to explain the trajectory of 

vocabulary acquisition: preferential attachment (enhanced learning of words that connect to 

well-connected known words), preferential acquisition, (enhanced learning of words with many 

connections to other words in the language), and lure of the associates (enhanced learning of 

words that connect to many known words). The preferential acquisition model best explained 

the growth of the normative network, a finding that was recently replicated using data from ten 

different languages (Fourtassi, Bian, & Frank, 2018). However, a recent study (Beckage & 

Colunga, 2019) applied the same models to networks constructed from individual children’s 

vocabularies over time and found that lure of the associates was the strongest predictor; that is, 

children tend significantly to learn words that are related to groups of words they already know. 

 Networks can also be described in terms of their global structural properties, which can 

be related to individual differences in vocabulary development. Notably, vocabulary networks 
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exhibit small-world structure (Watts & Strogatz, 1998; Ferrer i Cancho & Solé, 2001). Networks 

using adult free association to link words also show scale-free structure, in which a few “hub” 

words have many neighbors, and the overall number of neighbors per node (degree) follows a 

power law distribution (Steyvers & Tenenbaum, 2005). Following these descriptive findings in 

normative vocabulary networks, researchers have begun investigating global network properties 

as potential markers of individual variability in learning mechanisms. For example, in one study 

children whose lexical networks were more centered around hub words were more likely to 

show a "mutual exclusivity" assumption about novel word meanings (Yurovsky, Bion, Smith, & 

Fernald, 2012), suggesting that network structures might emerge in parallel with and as a 

signature of particular word learning strategies. In another study, late-talking children (i.e. 

children with small productive vocabularies for their age) were found to show less small-world 

structure in their vocabulary networks as compared to typically developing children (Beckage, 

Smith, & Hills, 2011). However, this pattern failed to replicate in a larger sample of children 

(Jimenez & Hills, 2017). So far, whereas network measures of vocabulary structure have shown 

promise as sensitive measures of an individual child’s learning history, more work remains to be 

done toward resolving the apparent contradictions by understanding how network measures 

depend on the particular methods used to construct and describe each child’s network. 

Overall, knowledge-oriented theories provide a powerful framework to analyze lexical 

development as a process that occurs within a cognitive system and over a developmental 

timescale. Although the research reviewed above lacks a unified theoretical framework, the 

various studies identify areas of complexity in the developing mind that control how children can 

make use of their word-learning opportunities.  

Integrating perspectives 

 The preceding sections demonstrate that social interaction, statistical learning, and 

structured knowledge each provide relevant support for word learning. For each type of theory, 

a range of evidence supports its role in facilitating the task of word learning to make it tractable 
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and guide its trajectory along normative paths. To date, however, explanations of word learning 

have only just begun to address the mechanisms by which multiple factors interact to support 

word learning in complementary and potentially mutually reinforcing ways. Of particular interest 

is the possibility of complex dynamics in which infants first learn about language by association 

from environmental statistics, but gradually construct a suite of word-learning processes that all 

act to promote and constrain each other’s development (Hockema & Smith, 2009). This type of 

dynamics might explain how relatively simple learning mechanisms guided by coarse, 

ambiguous inputs could lead to remarkably powerful and robust lexical acquisition. To begin 

understanding word learning at this level, it is therefore necessary to understand how social, 

informational, and knowledge factors work in combination.  

Social and information-oriented theories could be unified if learnable patterns in 

language input emerge out of the structure of infant-parent interaction. Social interaction might 

facilitate language acquisition by combining speech with correlated cues in other modalities to 

form cohesive multimodal “packages,” which might be more salient and provide cues to 

meaning. Parents in multiple cultures embed object-naming utterances in such multimodal 

packages of synchronous speech and object motion (Gogate, Bahrick, & Watson, 2000; 

Gogate, Maganti, & Bahrick, 2015; Matatyaho & Gogate, 2008).  In one study, mothers taught 6- 

to 8-month-old infants two novel object words. Only infants who attended to their mothers’ 

synchronized speech and object motion showed a higher proportion of anticipatory or first looks 

to the named object after a 3-minute teaching period (Gogate, Bolzani, & Betancourt, 2006). 

Speech about actions is also packaged by temporal alignment with the onsets and offsets of 

those actions (Meyer, Hard, Brand, McGarvey, & Baldwin, 2011). Thus, parents provide a 

parallel stream of information that might help constrain and supervise learning from the stream 

of speech sounds. Social interaction might also generate structured inputs for children by 

guiding their focus of attention. Microbehavioral analyses of infant-parent toy play show that 

infants strongly prefer to look at handled objects compared to faces or other objects, and this 
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tendency leads to episodes of sustained joint attention (Yu & Smith, 2013; Deák, Krasno, 

Triesch, Lewis, & Sepeta, 2014), which in turn might contain sustained verbal reference to 

specific objects (Frank, Tenenbaum, & Fernald, 2013). Thus, rather than a static property of the 

ambient language, statistical properties of the language input can be understood as a result of 

interactive social and embodied processes (Smith, Jayaraman, Clerkin, & Yu, 2018). 

Efforts to integrate information-oriented and knowledge-oriented theories involve models 

of statistical learning that incorporate linguistic knowledge rather than assuming a strictly 

associationist "blank slate." Even within a single experimental session, infants can use a 

previously learned statistical pattern to learn a new one. For instance, Saffran and Wilson 

(2003) exposed infants to an artificial language, presented as a continuous stream of syllables 

in which transitional probabilities over syllables defined the words, and a finite-state grammar on 

the words defined grammatical sentences. Although the grammar was only evident after words 

were identified, infants successfully discriminated grammatical from ungrammatical sentences.  

Similarly, previous statistical learning might also help infants learn statistical patterns 

that are analogous to those they already know. In one study, 12-month-olds who were pre-

trained on an artificial language with adjacent word dependencies were subsequently able to 

learn non-adjacent dependency rules (i.e. patterns of the form aXb, where element a predicts 

element b with a variable intervening element X) that infants typically cannot detect until 15 

months of age (Lany & Gómez, 2008). Learning one pattern can thus facilitate learning of 

similar but more complex patterns, suggesting a cumulative mechanism for statistical learning. 

Within the domain of word learning, Yu (2008) used a computational model to show how initial 

knowledge of word-object mappings helps constrain the search space for new mappings. In this 

study, the model was trained on naturalistic data derived from recordings of parents reading 

books to their 20-month-old children. The basic model learned words by forming associations 

based on co-occurrences between words and objects. After the first round of learning, the 

model was augmented using the results of the preceding session: previously identified function 
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words (i.e. frequent words that occurred with all objects) were ignored, previously learned 

mappings were excluded from the input, and weakly associated word-object pairs were given a 

higher prior probability. This cumulative model learned more correct mappings per session as it 

used its existing knowledge to narrow the search space for new words. Overall, these studies 

show that statistical learning is a cumulative process in which the learner’s construal of new 

inputs depends crucially on past exposure to related inputs. So far, however, we have just 

scratched the surface of how structured knowledge might interact with statistical learning. 

Finally, social and knowledge-oriented theories interact because children’s knowledge 

relevant to word learning extends beyond knowledge about language itself. Rather, children 

learn how to expect people to behave and this impacts their ability to use learning opportunities. 

As a simple example, 18-to-20-month-old infants selectively map novel words to objects that are 

consistent with the speaker’s gaze direction (Baldwin, 1995). Infants form expectations about 

actions long before first words. By 4 months, infants learn to expect turn-taking during “peek-a-

boo” games such that infant gazing and smiling triggers an adult turn (Rochat, Querido, & 

Striano, 1999). Again at 4 months of age, infants engage in smiling exchanges in which the 

timing of infants’ similes is optimized to elicit smiling reactions (Ruvolo, Messinger, & Movellan, 

2015). At 3 months of age, parents accompany speech acts with overt bodily actions during 

diaper-changing, a routine and stereotyped activity (Nomikou & Rohlfing, 2011). Associations 

between dyadic action patterns and speech could facilitate learning by “bootstrapping” in either 

direction: linguistic patterns might help infants discover structure in social interaction, and 

patterned interactions might help infants discover structure in language. 

In sum, multiple contextual factors interact to form the context of children’s word learning 

opportunities. The research trends reviewed above provide initial examples of how favorable 

conjunctions of factors emerge during everyday interactions, and how developmental changes 

in one domain or modality might potentiate or accelerate the development of a different domain. 



 20

Moving forward, our understanding of how children solve the problem of word learning must rely 

on explaining the interactions between diverse contextual factors.  

The studies in this dissertation explore children’s word learning with an emphasis on 

these interactions. In one set of studies, we used a micro-level observational approach to 

investigate infants’ exposure to object-labeling utterances within the context of dynamic infant-

parent interaction. These studies help illustrate some types of multimodal, interactive contextual 

supports that we hypothesize might underlie some of the predictive value of word usage 

patterns. For example, we found that object-naming utterances were embedded in characteristic 

discourse sequences, and that parents produced them in response to infants’ object exploration. 

By embedding informative utterances in predictable and interactive protoconversational 

sequences, parents thus supported not only infants’ mapping of the correct words to the correct 

meanings, but also the act of meaning itself. By experiencing (and helping to construct) many 

word-learning opportunities within a similar interactive context, children might gradually become 

more efficient learners of groups of words whose usage patterns share a family resemblance. 

In a second set of studies, we used a macro-level, data-mining approach to search for 

effects of words’ usage patterns on the order in which children learn them. To do this, we used a 

corpus of child-directed speech to characterize the distributional usage of each word, and a 

separate database of children’s vocabulary data to investigate regularities in the order in which 

children acquire words. If multimodal, interactive contextual embedding is important for word 

learning, we would expect that words that are used in similar contexts should have similar 

learning profiles beyond those predicted by e.g. frequency or shared semantic features. 

Consistent with this, we find that words that occur with similar context words and in similar 

sentence frames tend to have similar normative ages of acquisition, and they tend to be learned 

together more often than expected by chance. We also found that children with large 

vocabularies for their age learned sets of words with different network structure than did children 



 21

with small vocabularies. Thus, macro-level patterns in children’s word learning could be 

predicted based on the specific usage contexts of each word.  

These two lines of research hint at a synthesis in which early word learning is facilitated 

by the statistical structure of the inputs generated through children’s contingent and embodied 

interaction with the physical and social world, and is constrained and biased by principles and 

patterns induced from the child’s past experience. In this way, parent-child dyads might 

gradually develop fluency in enacting habitual routines in which novel words can be embedded, 

contributing to the observed acceleration in children’s word learning and leaving traces in the 

structure of each child’s lexicon. 

Outline of the dissertation 

Infants’ and toddlers’ linguistic environments are rich in learnable associations and co-

occurrences, but these are not limited to purely linguistic patterns, or to word-referent links. 

Instead, the entire stream of linguistic and paralinguistic behavior to which a child is exposed is 

a source of probabilistic structure, and the child’s access to and interpretation of the stream is 

conditioned on their developmental stage, learning history, and prior knowledge. To understand 

the computational learning problems faced by infant language learners, it is necessary to 

characterize the multiple layers of contextual embedding of each word learning event: the 

linguistic context of the target word, the multimodal interactive behavioral context of the episode, 

and the conceptual context of the child’s relevant knowledge. The studies in this dissertation 

each inform our understanding of word learning by characterizing aspects of this multiple 

embedding.  

Chapters 1 and 2 use detailed behavioral observations of infants and parents engaging 

in a structured play task with toys to elucidate learnable patterns of probabilistic co-occurrence 

of speech events with linguistic and non-linguistic contexts, and how they emerge from 

responsive social interactions. In Chapter 1, we address how infants’ developmental status and 

parents’ contingent responsiveness jointly determine infants’ exposure to word learning 
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opportunities. In a longitudinal sample of infants aged 4 to 9 months, we show how, as infants’ 

object handling becomes more developmentally advanced, they elicit both more object-naming 

utterances from parents, as well as more opportunities for parents to produce those object-

naming utterances contingently on infant actions. In Chapter 2, we investigate how different 

types of speech content in infant-directed speech are embedded in both linguistic contexts 

(multi-utterance sequences) and nonlinguistic contexts (cross-modal associations between 

speech, visual attention, and manual object exploration). Together, these studies inform our 

understanding of the learnable patterns in children’s language exposure not as a given input, 

but as an emergent product of interacting developmental systems.  

Chapters 3 and 4 use data mining techniques to study how the large-scale usage 

patterns of words predict children’s observed patterns of word learning. In Chapter 3, we 

introduce a novel distributional semantic representation of words. In our method, words are 

represented based on their patterns of usage in a large corpus of child-directed speech. From 

these patterns, we extract two semantic vectors: one based on a word’s adjacent, ordered co-

occurrences with context words (“frames”), which reflects primarily the role of the word in the 

sentence; and one based on a word’s non-adjacent, unordered co-occurrences with context 

words, which reflects primarily thematic information. We use the principal components extracted 

from these distributional-semantic vectors to predict the normative age of acquisition of each 

word. The results reveal how embedding of words both in utterance contexts and activity 

contexts supports learning, and extend previous studies using simpler and more subjective 

features to predict age of acquisition. In Chapter 4, we investigate the tendencies of certain 

words to be learned together more than expected under independence. We measure these 

word-word dependencies on a large sample of children’s vocabularies and use them to define 

networks of related words. We show that children who are precocious talkers have vocabularies 

with more related words and more small-world structure than do late talkers. We also show that 

overlap in the distributional-semantic representations introduced in Chapter 3 are highly 
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correlated with the tendency of words to be learned together. Together, these studies show in 

detail how word learning involves multiple layers of context, including the utterance, the activity 

context, and the rest of the child’s lexicon.  
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CHAPTER 1:  Contingencies Between Infants' Gaze, Vocal, and Manual Actions and 

Mothers' Object-Naming: Longitudinal Changes From 4 to 9 Months 

Abstract 

Infants’ early motor actions help organize social interactions, forming the context of 

caregiver speech. We investigated changes across the first year in social contingencies 

between infant gaze and object exploration, and mothers’ speech. We recorded mother–infant 

object play at 4, 6, and 9 months, identifying infants’ and mothers’ gaze and hand actions, and 

mothers’ object naming and general utterances. Mothers named objects more when infants 

vocalized, looked at objects or the mother’s face, or handled multiple objects. As infants aged, 

their increasing object exploration created opportunities for caregiver contingencies and 

changed how gaze and hands accompany object naming over time. 

Introduction 

To acquire language, infants must solve the word-to-world mapping problem, associating 

the language they hear with concurrent nonlinguistic experiences. Previous work has shown 

that features of parents’ speech to infants, including total number of word tokens and mean 

length of utterance, predict their vocabulary as toddlers (Hart & Risley, 1995; Hoff, 2003). In 

addition to speech quantity, the timing and nonverbal context of caregiver speech are features 

that correlate with early language development. Critically, infants are not merely passively 

exposed to a stream of words and percepts. Rather, infants’ self-generated exploratory activity 

directly and indirectly affects the structure of their experience with language. Specifically, some 

actions might elicit different amounts or types of caregiver speech. That is, caregivers might 

help structure the infant’s language input by monitoring infants’ activity and producing speech 

contingent on infant’s engagement with objects and people. Over the course of development, 

therefore, infants’ developing motor abilities might influence their language development by 

shaping the non-verbal context that accompanies caregiver speech or by giving caregivers 

increasing opportunities to respond to infant actions. In the current report, we examine the 
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temporal dynamics of caregiver speech, and accompanying non-verbal actions, during 

unscripted mother-infant interactions. By following infants and mothers longitudinally from 4 to 9 

months, we describe changes in these dynamics during the first year. Specifically, we examine 

how infants’ actions elicit maternal speech in general, and object naming in particular, because 

object nouns dominate infants’ first word-world associations (Gentner, 1982; but see Tardif, 

1996) which for many common objects are established by 9 months (Bergelson & Swingley, 

2012). In the following section, we detail what is known from previous studies regarding the 

features of mother–infant interaction that shape infants’ language experience and development. 

Contingent responsiveness 

An important feature of infants’ early interactions with caregivers is the timing and 

appropriateness of caregiver actions relative to infant actions. This has been described in the 

literature as caregiver sensitivity, responsivity or contingency. Caregivers respond contingently 

to infants’ behaviors from very early in infancy: for example, infants and caregivers engage in 

sequences of mutually contingent patterns of looking, smiling, and vocalizing by 1 to 3 months 

or earlier (Kärtner et al., 2008; Kaye & Fogel, 1980).  

Many previous studies have described caregiver responsiveness in qualitative terms, 

with features such as “appropriateness” or consistency with the infants’ ongoing activity or 

attention (e.g., Kochanska & Aksan, 2004). Others have characterized the frequency and timing 

of specific responses to infants’ actions. For instance, infants and mothers engage in vocal turn-

taking (Snow, 1977), and mothers also respond contingently to infants’ object-exploratory 

actions (Bornstein, Tamis-LeMonda, Hahn, & Haynes, 2008). By 1 year of age, infants can elicit 

object naming from parents by object exploration (Wu & Gros-Louis, 2014b, Yu & Smith, 2012) 

and by explicit gestures (Goldin-Meadow, Goodrich, Sauer, & Iverson, 2007; Olson & Masur, 

2011, 2013). At 14 months, Tamis-LeMonda, Kuchirko, and Tafuro (2013) observed that 

mothers contingently responded to infants’ object exploration actions by handling the objects 

themselves and by producing more referential language. Such specific caregiver responses to 
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infants’ actions might impact specific developmental outcomes, including language development 

(Tamis-LeMonda, Kuchirko, & Song, 2014).  

A large body of evidence suggests that infants learn from contingently presented 

information. Two-month-olds will direct social actions to a mobile that moves in response to their 

head movements (Watson, 1972), and even by 2 weeks infants can learn to modify their 

sucking rate around their mother’s activity during breastfeeding (Kaye & Wells, 1980). 

Caregivers’ contingent responses to their infants also matter specifically for language learning. 

For example, Tamis-LeMonda, Bornstein, and Baumwell (2001) found that maternal 

responsiveness at 9 and 13 months positively predicted toddlers’ language development. 

Similar correlational findings have been reported elsewhere (McGillion et al., 2013, Gros-Louis, 

West, & King, 2014, Wu & Gros-Louis, 2014a, 2014b). Certain patterns can specifically facilitate 

prelinguistic vocal production and word learning. For example, Goldstein and Schwade (2008) 

found that if adults vocally responded to 9-month-olds’ vocalizations, the infants’ vocalizations 

became more advanced, incorporating phonological elements from the adults’ responses. 

Moreover, 12-month-olds tended only to learn object names that were presented contingent on 

the infant vocalizing while looking at the object (Goldstein, Schwade, Briesch, & Syal, 2010). In 

addition, if mothers respond contingently to infants’ manual gestures by “translating” the 

gestures into words, infants are more likely to learn to produce those words (Goldin-Meadow et 

al., 2007; Masur, 1982; see also Dimitrova, Özçalışkan, & Adamson, 2016). Other research has 

focused on caregivers’ responses that match or “follow in” to infants’ focus of attention 

(Tomasello & Farrar, 1986). For example, caregivers’ tendency to produce speech acts related 

to infants’ focus of attention at 9 months predicted infants’ subsequent language comprehension 

(Rollins, 2003).  

In the current study, we investigated potential longitudinal changes in the action 

contingencies that shape infants’ language input across the first year. Bornstein et al. (2008) 

longitudinally followed mothers’ verbal responses to infants’ vocalizations and object exploration 
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at 10, 14, and 21 months, and found specificity between infant behaviors and maternal 

response types, as well as changes in overall frequencies of infant behaviors and maternal 

response types with age. However, mothers’ rates of response to infant behaviors were 

generally stable across ages. We extended this approach to a younger age group, describing 

contingencies between infants’ gaze, hand, and vocal actions and mothers’ speech between 4 

and 9 months. Specifically, we investigated the frequencies of different infant behaviors and 

maternal responses over that period, and any changes in the contingent relations between 

them. 

Infant motor development 

Infants’ motor activity directly and indirectly affects the structure of their experience with 

language (Iverson, 2010). Infants’ object manipulation and gaze directly influence their sensory 

experience during caregiver speech (Yoshida & Burling, 2013). Additionally, infants’ actions—

looking, handling, and vocalizing, among others—can indirectly influence their experience by 

eliciting caregiver actions. Therefore, advances in infants’ motor skills are likely to change their 

language experience in two ways: by shaping their sensory (especially visual and haptic) 

experience during speech, and by eliciting different speech from caregivers. For example, 13-

month-olds who have begun walking elicit more action directives in response to their object bids 

than do crawling infants (Karasik, Tamis-LeMonda, & Adolph, 2014). At 8 months, crawling 

infants elicit more prohibitions than noncrawling infants (Zumbahlen, 1997). During the first year, 

infants’ growing motor proficiency in manipulating objects might also trigger changes in 

caregiver speech. Coordination of gaze and manual activity changes rapidly during the first year 

as infants become more proficient at reaching, manipulating objects, and flexibly directing their 

gaze and hands to things in the world (Fagard & Lockman, 2010; Rochat, 1989; Ruff, 1984; von 

Hofsten, 1991) and coordinating manual and vocal activity (Iverson & Fagan, 2004). Previous 

work in our lab has shown that in dyadic toy play interactions, infants decrease their object gaze 

time and increase object handling across the first year (de Barbaro, Johnson, Forster, & Deák, 
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2016). Additionally, infants increasingly manipulate two objects simultaneously (de Barbaro et 

al., 2016) and in more complex ways (de Barbaro, Johnson, & Deák, 2013). We hypothesize 

that these and other changes in object manipulation and other motor skills will affect the 

language that infants hear by increasing how often they produce behaviors that elicit contingent 

speech. Opportunities to learn language through social contingencies might thereby expand as 

infants’ behavioral skills develop and diversify. 

Correlates of caregiver speech 

In addition to being produced contingently on infant actions, caregiver speech is also 

“packaged” with regularities in ongoing sensorimotor activity (Meyer, Hard, Brand, McGarvey, & 

Baldwin, 2011). Infants’ experiences unfold in social exchanges in which both partners structure 

the visual and auditory scene through multiple behavioral modalities, including vocalizations, 

gaze, and manual activity (Deák, Krasno, Triesch, Lewis, & Sepeta, 2014; de Barbaro et al., 

2016; Yu & Smith, 2013). Mapping words to referents is likely to be facilitated by concurrent 

sensory and motor experiences around the times when objects are named. For example, 18-

month-old children’s learning of a novel object word is predicted by the size of the object in their 

visual field when it is named (Yu & Smith, 2012).  

Some of the regularities in activity around caregiver speech are provided by caregivers’ 

paralinguistic actions. During infants’ first year, caregivers’ object-name productions are 

embedded in multimodal behavioral complexes featuring synchronous speech and object 

motion (Gogate, Bahrick, & Watson, 2000; Gogate, Maganti, & Bahrick, 2015; Matatyaho & 

Gogate, 2008). In one study, mothers taught 6- to 8-month-old infants two novel object words. 

Only infants who attended to their mothers’ synchronous speech and object motion showed a 

higher proportion of anticipatory or first looks to the named object after a 3-minute teaching 

period (Gogate, Bolzani, & Betancourt, 2006). Thus, production of multimodal communicative 

actions by caregivers contributes to early word learning. However, such studies of caregivers’ 

object naming with infants under a year of age have not addressed how infants’ actions might 
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contribute to the “packaging” of speech with ongoing activity. We therefore investigated, across 

the age range studied, associations between caregiver speech and either infant or caregiver 

actions occurring before, during, or after speech. We expected that these associations would 

increasingly involve infants’ manual activity at the expense of mothers’ as infants became more 

active participants in the interaction. 

Present study 

The present study documents changing contingencies between infant exploratory and 

social behaviors from 4 to 9 months, and their mothers’ vocal responses including utterances 

about objects, recorded within a longitudinal sample of unscripted toy-play interactions. We 

focused on the following questions: What infant gaze, hand, and vocal actions predict maternal 

speech in general, or object naming in particular? Do age-related changes in infants’ object 

exploration lead mothers to produce more predictable object-naming or overall speech? Across 

the age range studied, what sequences of infant and mother manual or visual engagement with 

objects tend to accompany object naming? We predicted that mothers’ verbal responses to 

infants’ behaviors would be specific and relatively stable. We also predicted that, with increasing 

age, object naming would become more strongly associated with infants’ own manual activity 

rather than that of the mother. Finally, we predicted that infants’ increasingly differentiated 

manual activity would strengthen contingencies by giving mothers of older infants more 

opportunities to respond. 

Methods 

Participants 

Participants were 42 mother–infant dyads (20 female) from a longitudinal study of infant 

social development (Deák, Triesch, Krasno, de Barbaro, & Robledo, 2013). Participants were 

recruited as a sample of convenience from the greater San Diego area. Mothers’ mean age 

upon recruitment was 32.1 years (range = 21–42) and they had completed a mean of 16.1 

years of formal education (range = 12–21). Twenty-nine infants were Caucasian, 2 were Asian, 
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4 were Hispanic, 5 were other or multiple races, and 2 did not report their ethnicity. None of the 

infants had any neurological, cognitive, or sensory deficits, according to parental report. Six 

additional participants dropped out of the longitudinal study. An experimenter visited the 

participants’ home each month between 4 and 9 months, and again at 12 months (participants 

also visited the laboratory to complete various tasks every month; those data are reported 

elsewhere, e.g., Deák, 2015; Ellis, Gonzalez, & Deák, 2014). Data from the 4, 6, and 9-month 

home sessions were analyzed for this study. Participants were observed within 2 weeks of the 

infant’s 4, 6, or 9-month birthday (five sessions had to be rescheduled; these were completed 

before the infant’s next month’s birthday. Infants’ mean age was 125 days at the 4-month 

session (range: 113–142), 186 days at the 6-month session (range: 175–211), and 277 days at 

the 9-month session (range: 260–300). Due to infant fussiness or equipment failure, one dyad 

did not complete the 4-month session, two did not complete the 6-month session, and one did 

not complete the 9-month session; however, these dyads’ data from the remaining sessions 

were included in analyses. In addition, for several sessions one or more specific variables could 

not be coded because of video recording problems or because the mother predominantly used 

a non-English language. Therefore, the number of participants whose complete data were 

analyzed was 35 at 4 months, 38 at 6 months, and 39 at 9 months. 

Procedure and coding 

During each session, infants were seated in a modified walker with a tray, and mothers 

were seated on a pillow facing the infant (Figure 1.1). This arrangement controlled for 

differences in postural stability, distance between the participants, and the angle between the 

infant and mother. In this position, mothers could keep their infant’s face and hands within their 

visual field when facing forward. Three cameras mounted on tripods recorded the interaction 

from different angles: one was centered on the infant’s head and upper body, one on the 

mother’s face and upper body, and one was further away, positioned lateral to the dyad, and 
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zoomed out to capture both participants and their nearby environment. Videos were digitized 

and synchronized post-production, to facilitate coding (described in the following section).  

At each session, the dyad interacted with three novel toys (mothers verified the novelty 

of all toys before the first session). The toys were the same for all participants, but different at 

each month. The toys were: a box with buttons, a caterpillar with rings, and a wobbling wolf doll 

at 4 months; a plush soccer ball, a light-up ring-shaped toy, and a wobbling chicken doll at 6 

months; and a plush football, a light-up rattle, and a wobbling doll at 9 months. At the start of the 

session, two toys were placed in wells at the sides of the walker tray. Mothers were instructed to 

“play as they normally would” with their infants, but to try to leave one toy on the tray at a time 

and return the others to the wells (this was intended to facilitate coding); however, toys in the 

wells were visible to infants and within their reach, and infants could (and did) freely retrieve 

toys from the wells. Additionally, for purposes of a study to be described elsewhere, mothers 

were instructed to occasionally draw infants’ attention to two targets located out of reach in 

specific locations; thus, mothers freely chose times (at least once per target) to punctuate the 

object-play interaction with a brief bid to re-direct the infant’s attention. This activity was 

designed to represent the common situation of a caregiver interrupting an interaction to call an 

infant’s attention to something. Mothers spent an average of 8% of the interaction time engaged 

in this secondary attention-directing task. Excluding those intervals had no significant effect on 

our results; therefore, here we report analyses of the entire session including the attention-

directing intervals. The first three minutes of each session were analyzed because most 

sessions included at least three minutes of interaction during which the infant remained 

attentive. Mean session duration was 171.8 seconds at 4 months, 178.8 seconds at 6 months, 

and 177.0 seconds at 9 months.  

We have previously reported data on changes in infant and mother gaze patterns and 

hand-object contact in a subsample of 26 mother–infant dyads (randomly selected) from this 

dataset (de Barbaro et al., 2016). For the current study, we expanded this dataset to include the 



 41

entire sample (42 dyads). Additionally, for all dyads we coded all utterances, defined as bouts of 

meaningful speech separated by nonvocalizing periods of ≥200 ms. Nonlinguistic maternal 

vocalizations (e.g., sound effects, gasps, emotive sounds, etc.) were not included in the current 

analyses. Utterances were additionally classified as naming (i.e., containing a conventional label 

for one of the toys) or non-naming. In addition, we coded infant prelinguistic vocalizations, 

excluding cries, grunts, burps, and other organic sounds. For all dimensions coded, coders 

(blind to specific hypotheses) annotated the videos frame-by-frame at 10 Hz. The set of 

behaviors coded and reported here is detailed in Table 1.1. Figure 1.2 shows a sample time 

series of data from one session. 

For reliability purposes, a second coder independently annotated infant gaze in 37% of 

the entire sample, mother gaze in 22%, infant hands in 33%, and mother hands in 37% of the 

sample (reliability samples were quasi-randomly chosen and age-stratified). Reliability was 

calculated separately for each variable. Intercoder agreement was 83% for infant gaze, 85% for 

mother gaze, 89% for infant hands, and 95% for mother hands. Cohen’s kappa (Cohen, 1968) 

was .79 for infant gaze, .78 for mother gaze, .85 for infant hands, and .92 for mother hands. A 

second coder also independently transcribed maternal speech and infant vocalizations for 30 

sessions. Agreement for the timing of vocalization onsets was calculated as the average 

proportion of all vocal events with onsets matching within 200 ms. Agreement averaged 90% for 

mother utterances and 68% for infant vocalizations. 

Statistical analysis 

Our analytic approach was as follows: We first report overall age-related trends in 

behavior. Next, we describe contingencies between infant actions and mother speech. Finally, 

we present the detailed time course of dyadic gaze and hand activity preceding and following 

naming utterances.  

Repeated measures ANOVAs (rmANOVA) were used to test for age-related trends in 

the overall rates of all maternal utterances, maternal naming utterances, infants’ and mothers’ 
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gaze to objects, and infants’ and mothers’ handling of objects. Conditional probability models 

were then used to examine rates of maternal utterances—all utterances, and specifically 

naming utterances—as a function of infants’ gaze, manual behaviors, and vocalizations. 

Separate probability models were computed for all utterances and naming-utterances, relative 

to each type of infant behavior. Infant behaviors included the infants’ gaze target, and each 

possible shift in gaze targets (seven types: object to object, object to face, face to object, object 

to other, other to object, face to other, or other to face); infants’ object handling (i.e., number of 

objects handled: zero, one, or multiple), and each possible shift in object-handling (five types: 

zero to one, one to zero, one to multiple, multiple to one, and one to one). To model 

contingencies to gaze and object handling shifts, we compared the rate of utterances within 2 

seconds after the shift to the rate over all other times1. Contingencies to infant gaze targets and 

object handling states were modeled directly using the rates of utterances at times infants were 

in each state.  

Models were estimated using mixed-effects Poisson regression. This procedure tests for 

differences in the rates of a random point event (e.g., utterance onsets) across defined periods 

of time (infants’ behavior states). It is a suitable analytic approach because other measures 

(e.g., proportion of actions that elicit a response) are sensitive to differences in base rate, and 

because the relative rate statistic can be interpreted as the magnitude of the signal available to 

the infant (Coxe, West, & Aiken, 2009). Models included age as a within-subjects continuous 

predictor, subject identity as a random effect, and infant behavior states (e.g., gaze at mother’s 

                                                
1 The 2-second window was chosen based on previous reported results showing that a 3-second window 
is optimal for detecting contingencies between infant actions and caregiver responses (Van Egeren, 
Barratt, & Roach, 2001); however, because we are considering more fine-grained and frequent behaviors 
(e.g., gaze shifts), we adopted a shorter window to minimize spurious contingencies. Nevertheless, to 
ensure that the results do not depend narrowly on our use of the 2-second criterion, we repeated all 
analyses with 1.5-and 2.5-second windows. The results using those windows were all qualitatively similar 
to those reported in the text. Contingencies to infant gaze targets and object handling states were 
modeled directly using the rates of utterances at times infants were in each state. 
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face vs. objects vs. other) as a within-subjects factor. Age and subject identity were included in 

the models to control for individual and age differences in the base rate of maternal speech; 

however, for conciseness, only the effect of the infant behavior variable is reported. Whenever 

this effect was significant, we also report a model that includes the infant behavior X age 

interaction term, to show whether the contingency differed in strength with age.  

Because we found a significant, novel effect in which infants’ object-handling shifts from 

one to multiple objects (or vice versa) predicted mothers’ naming utterances, we further 

investigated those shifts using rmANOVA to test for age-related changes in frequency, as well 

as session-wise correlations between the frequency of such shifts and mothers’ naming rates.  

We then characterized the time course of infants’ and mothers’ allocation of visual and 

manual attention to named objects before and after naming utterances. At each age, we 

computed the probabilities that each of these four modalities was engaged with the named 

object at different times relative to naming utterances. For each modality, all naming events 

were aligned (i.e., utterance onset time = 0) and, for every 0.1 second time step (between −10.0 

and +10.0 sec), the proportion of events during which that modality (i.e., gaze or hands of 

mother or infant) was focused on the named object was calculated. Each modality is thereby 

represented as a time series of proportions (i.e., that the modality was focused on the named 

object at given time step over a window of ± 10 sec from naming utterance onset). At each time 

step, the probability of modality-engagement was compared to a baseline defined as the 

proportion of the entire session during which that modality was engaged with the object. The p-

values of t-tests were thresholded at p = .05. 

Results 

Descriptive statistics 

The average rates per minute of all maternal utterances, and of naming utterances 

specifically, at each age, are presented in Table 1.2. rmANOVAs with age as a within-subjects 

factor revealed significant effects of age on rate of total utterances, F(2,67) = 3.59, p < .05, and 
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on rate of naming utterances, F(2,67) = 11.31, p < .001. Post hoc tests comparing the 4 and 6 

month sessions and the 6 and 9 month sessions were computed, using critical p = .025 to 

correct for multiple comparisons. These showed that rate of total utterances decreased from 6 

to 9 months, t(35) = −2.94, p < .01, but the rate of naming utterances increased marginally from 

4 to 6 months, t(32) = 2.13, p < .05, and significantly from 6 to 9 months, t(35) = 2.82, p < .01. 

 Table 1.3 shows the mean proportions of time that the mother or infant, respectively, 

either looked at or handled at least one object, at each age. These analyses replicate our 

previous findings (de Barbaro et al., 2016) in the current larger dataset. Specifically, rmANOVAs 

with age as a within-subjects factor revealed a significant effect of age on prevalence of infant 

gaze, infant handling, and mother handling (ps < .001), but not on mother gaze, p = .39. Post 

hoc tests showed that infant gaze to objects decreased from 4 to 6 months, t(40) = −3.11, p 

< .005, and from 6 to 9 months, t(40) = −4.82, p < .001. Infant object handling increased from 4 

to 6 months, t(40) = 7.21, p < .001, and showed an increasing trend from 6 to 9 months, t(41) = 

1.84, p = .07. Mothers’ object handling decreased from 4 to 6 months, t(38) = −6.20, p < .001, 

and from 6 to 9 months, t(41) = −2.87, p < .01. 

Verbal responses to infants’ gaze 

We investigated maternal responsiveness to infant gaze patterns by testing whether 

mothers’ utterance rate or naming rate differed as a function of either infants’ current gaze 

target or recent changes in infants’ gaze target. Infants’ gaze target was classified as one of 

three types: Face, Object, or Other. Rates of maternal speech contingent on infants’ gaze target 

are shown in Table 1.4. Mothers produced fewer total utterances when the infant looked at 

objects (p < .001) and more utterances when the infant looked at her face (p < .001), than at 

other locations. In contrast, mothers produced more naming utterances when the infant looked 

either at objects (p < .001) or at her face (p < .01). Thus, when infants looked at their mother’s 

face, mothers talked more overall, but when infants looked at objects, mothers named objects 

more and talked less overall.  
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Next we examined whether maternal utterance rates were contingently related to any of 

seven types of infant gaze shifts: object-to-other, other-to-object, object-to-face, face-to-object, 

face-to-other, other-to-face, and object-to-object. Applying a Bonferroni correction to each set of 

seven tests, the significance level was set at p = .007.  

The results, summarized in Table 1.5, are generally consistent with the analyses of gaze 

targets. Mothers’ total utterances were significantly more frequent after infants’ gaze shifts from 

objects to face, other to face, and face to other (ps < .001). Naming utterances were 

significantly more frequent after infants’ shifts from face to objects (p < .005) and from other to 

objects (p < .005). 

To test whether contingencies between infant gaze and maternal speech changed as a 

function of infant age, we repeated the regressions that showed significant effects, with the 

addition of age X infant gaze interaction terms. The interaction was not significant in any case 

except for a positive interaction between age and gaze to objects on naming utterances, β 

= .147, p < .005. That is, as infants got older, mothers responded more contingently to infants’ 

object-gaze by naming objects. 

Verbal responses to infants’ hand activity 

We investigated maternal responsiveness to infants’ hand activity by testing whether 

mothers’ utterance rate or naming rate differed as a function of either infants’ number of objects 

handled or recent changes in object handling. Infants’ object handling was divided into times 

when infants handled no object, one object, or multiple objects. No significant relations were 

found between number of objects handled, and either naming or total utterances (Table 1.6).  

Next we examined whether maternal utterance rates were contingently related to any of 

five types of shifts in infants’ object handling: from no object to one object, one object to no 

object, one object to multiple objects, multiple objects to one object, or one object to another 

object. Applying a Bonferroni correction to each set of 5 tests, the critical significance level was 

set at p = .01. Results are summarized in Table 1.5. Mothers’ total utterances were not 
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significantly contingent on object-handling shifts. However, naming utterances were significantly 

contingent on two shift types: from one object to multiple objects and multiple objects to one 

object (ps < .01).  

To test whether maternal contingent vocal responsiveness to infant hand actions 

changed as a function of the infant’s age, we repeated the regressions that showed significant 

effects, adding age X infant behavior interaction terms. None of the interaction terms reached 

significance (ps > .2). Therefore, maternal vocal responsiveness to infants’ manual shifts did not 

change with age, although the low frequency of shifts involving multiple objects at 4 months 

limited our ability to detect an age interaction. 

Verbal responses to infant vocalizations 

We investigated maternal responsiveness to infants’ prelinguistic vocalizations by testing 

whether mothers’ utterance rate or naming rate were predicted by infants’ vocalizations (Table 

1.5). The 2-second window defining contingent responses started at the offset of infant 

vocalizations rather than the onset because vocal turn-taking tends to avoid overlap (Sacks, 

Schegloff, & Jefferson, 1974). As expected, mothers’ total utterances were significantly 

contingent on infant vocalizations (p < .01). However, naming utterances were not contingently 

related to infant vocalizations (p = .58). 

Relations between multiple-object handling and naming utterances 

The foregoing analyses confirmed our prediction that mothers’ speech is contingent on 

their infant’s manual activity. Specifically, naming utterances were predicted by infants’ shifts 

from handling one object to multiple objects or vice versa. In addition, naming utterances 

increased in overall frequency as infants aged. Previous work in our lab indicates that infants 

increasingly manipulate multiple objects simultaneously from 4 to 6 months and from 6 to 9 

months (de Barbaro et al., 2016). This suggests a potential developmental pathway whereby 

changes in the language infants hear—specifically naming— are mediated by developmental 

changes in their manual activity. To evaluate whether that pathway is consistent with our current 
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results, we first investigated whether infants’ multiple-object handling shifts indeed increased 

with age. Second, we investigated whether, at each age, those shifts correlate with the overall 

rate of naming utterances.  

The rmANOVAs with age as a within-subjects factor revealed that infants’ multiple-object 

handling shifts increased with age, both as a rate per minute, F(2,80) = 11.9, p < .001, and as a 

proportion of handling shifts, F(2, 76) = 27.1, p < .001 (Figure 1.3). Post hoc tests showed that 

the rate of multiple-object handling shifts increased significantly from 4 to 6 months, t(40) = 

3.22, p < .005, and marginally from 6 to 9 months, t(41) = 2.21, p < .05. Similarly, the proportion 

of handling shifts that involved multiple objects increased from 4 to 6 months, t(39) = 4.62, p 

< .001, and from 6 to 9 months, t(40) = 3.23, p < .005. The partial correlation between infants’ 

multiple-object handling shifts and mothers’ rate of total and naming utterances, controlling for 

the infant’s age in days, was calculated at each month (Table 1.7). Applying a Bonferroni 

correction to each group of 3 tests (across ages), the significance level was set at p = .017. As 

expected, infants’ rates of multiple-object handling shifts were not significantly related to 

mothers’ total utterances (ps > .06). However, multiple-object shifts were significantly positively 

correlated with mothers’ rate of naming utterances at 4 months (p = .01) and at 6 months (p 

= .01), though not at 9 months (p > .3). This pattern is consistent with the hypothesis that 

developmental changes in infants’ manual coordination influence not only the timing but also the 

content of mothers’ speech: not only did infants’ multiple-object handling shifts increase with 

age in parallel with mothers’ increasing rate of naming, but in addition, at 4 and 6 months 

individual differences in multiple-object handling predicted mothers’ rate of object naming. 

Time course of activity before and after naming utterances 

We next described the time course of infants’ and mothers’ allocation of visual and 

manual attention to named objects before and after naming utterances, computing, for each of 

four modalities (infant gaze, infant hands, mother gaze, mother hands), time series of 

proportions representing the probability that the modality was engaged with the named object at 
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each time relative to the onset of a naming utterance. Infant gaze and hands time-series are 

shown in Figure 1.4, and mother gaze and hands time-series are shown in Figure 1.5. At each 

time step, we tested whether each modality was engaged with the named object significantly 

more than a baseline defined as the proportion of the entire session during which that modality 

was engaged with the object.  

At 4 months, infants frequently directed gaze to the named object briefly before naming, 

and for a more prolonged period after naming, whereas their hands were not differentially 

directed to the named object around naming. At 6 months, both gaze and hands were 

significantly more often directed to the object for the entire window. However, the shape of the 

temporal profile changed from 4 to 6 months in that at 6 months, infant gaze peaked around the 

time of naming, and handling was more frequent after naming than before. At 9 months, the 

shapes of the temporal profiles were similar to those at 6 months, but infants’ gaze and hands 

were significantly directed to the named object during a more precise window of time relative to 

naming.  

Mothers’ gaze and object handling around naming utterances also changed with infant 

age. Notably, at 6 months, associations between naming and both maternal modalities also 

robustly exceeded chance across the entire 20 s window, whereas the associations were more 

temporally precise at 9 months. Because mothers’ visuomotor skills presumably did not change, 

this suggests that mothers adapted their sensorimotor patterns to infants’ increasingly fluid 

exploration. However, the temporal profile of mothers’ handling of named objects differed from 

that of infants. Specifically, at all ages, mothers’ handling peaked in synchrony with naming 

onset, whereas infants, with age, increasingly handled the named object after naming onset. 

Discussion 

Although recent research demonstrates the importance of contingency detection in infant 

learning, we are only beginning to understand how structured social contingencies change 

during the first year and contribute to infants’ experience with language, people, and objects. 
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We examined relations between occurrences of mothers’ speech acts, and object-naming 

utterances in particular, and infants’ and mothers’ looking and object-handling actions. The 

results reveal regularities in the patterning of speech and exploratory actions that could support 

infants’ word learning across the first year. Mothers’ speech was contingent on infants’ gaze, 

manual actions, and vocalizations. These contingencies are potential cues that could help 

infants learn not only specific object names, but also how their own actions influence caregivers’ 

speech. In addition, contingencies were specific to speech content and changed with age as 

infants produced different sets of actions.  

Some contingencies involve simply infant’s visual attention: mothers were more likely to 

speak when their infant looked at them, and less likely to speak when their infant looked at 

objects. This pattern is consistent with Lloyd and Masur’s (2014) report that mothers responded 

less to 13-month-olds’ object initiatives than social initiatives. Notably, there is evidence that 

contingencies between infant gaze and maternal speech emerge quite early: Lavelli and Fogel 

(2005) found that mothers spoke more to infants as young as 1 month when their infant was 

looking at them, although the effect became stronger by 3 months, when infants’ social gaze is 

more expressive and differentiated (see also Henning, Striano, & Lieven, 2005). The current 

data did not reveal change in mothers’ contingent responses to their infant looking at them, 

suggesting that the contingency is well established by 4 months.  

The results also indicate that the content of maternal speech is related to the infant’s 

gaze. In particular, mothers’ naming utterances were contingent on infants looking at the 

mother’s face, or shifting gaze to objects. As infants got older, the timing of mothers’ naming 

utterances became more tightly contingent on infants’ gaze to objects. These results are 

consistent with previous reports: Penman, Cross, Milgrom-Friedman, and Meares (1983) found 

higher proportions of maternal speech about external referents when infants looked at objects at 

3 and 6 months, and at 4 months, joint attention predicts lexical content in maternal 

vocalizations (Brousseau, Malcuit, Pomerleau, & Feider, 1996). In a cross-cultural study of 
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American and Japanese 3-month olds, the distribution of speech act types and referents 

differed based on infants’ gaze targets, although the specific contingencies differed between 

cultures (Morikawa, Shand, & Kosawa, 1988). The current study thus confirms that mothers 

adapt their distribution of functional utterance types in response to infants’ gaze and extends 

that evidence to object-naming utterances.  

Maternal speech was also contingent on infants’ manual activity. Although total speech 

rate did not differ in response to infants’ object handling, mothers’ production of object-naming 

utterances was contingent on infants’ shifts from handling one object to multiple objects, and 

from multiple objects to one object. Because we were interested in the effect of developmental 

changes in infants’ manual activity on their contingent caregiver speech, we further investigated 

age-related changes in infants’ shifts in handling multiple objects. From 4 to 9 months, infants 

increased their object-handling shifts involving multiple objects, both per minute and as a 

proportion of total object-handling shifts. 4- and 6-month-olds who produced more multiple-

object shifts heard more object-naming utterances. By 9 months, when most infants can 

effectively manipulate multiple objects, there were no significant individual differences in 

mothers’ object naming, although the moment-to-moment contingencies between infants’ 

multiple-object shifts and maternal speech remained robust. Thus, changes in infants’ motor 

coordination are related to increased exposure to naming utterances.  

These results build on those of de Barbaro et al. (2016), who described nonverbal 

dynamics of object play in a randomly selected subset of the sessions reported in the current 

study. Those results suggest that development of infants’ ability to distribute their attention 

during play, as reflected by infants’ “decoupling” of gaze and hands (i.e., looking at one object 

while handling another, or handling multiple objects simultaneously), has implications for social 

interactions. Notably, decoupling is linked to emerging social behaviors such as turn-taking and 

imitation (de Barbaro et al., 2013). The current results suggest that increased object naming 

represents another aspect of social routine maturation accompanying infants’ advances in 
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object exploration and attention. One possible interpretation is that changes in maternal speech 

occur because infants produce more of the actions that tend to elicit object naming. However, it 

is also possible that infants’ advances in object handling influence maternal speech by changing 

mothers’ perceptions of their infants. Mothers’ perceptions of their 4- and 8-month-old infants’ 

intentionality correlate positively with mothers’ sensitive interaction style (Feldman & Reznick, 

1996), and between 10 and 13 months, parents’ perception of their infant as an individual 

positively predicted receptive vocabulary (Walle, 2016). Future research could therefore 

investigate the relationship between infants’ object-handling development and caregivers’ 

perceptions of their cognitive maturity.  

Why might mothers disproportionately name objects when infants pick up or put down a 

second object? One possibility is that at these moments mothers simply perceive infants to be 

more attentive to the objects. However, it is also possible that these handling-switches are 

adaptive times for object naming because they highlight contrasts between objects. At these 

times infants are likely focusing attention on one object, but the other is still available and 

represented in working memory. Object names in utterances that occur at those times can be 

associated with features that distinguish the new focal object from the previous one. To clarify 

whether mothers used object-handling shifts specifically to highlight the new object, we 

computed the proportion of naming utterances contingent on one-to-multiple shifts that named 

each of the two objects. Out of these, 58% named the newly handled object, whereas 32% 

named the previously handled object. Highlighting new objects around shifts is consistent with 

evidence that comparisons facilitate children’s learning of words and categories (Gentner, 

Loewenstein, & Hung, 2007; Gentner & Namy, 1999). By producing naming utterances when 

infants start or stop handling multiple objects, rather than during prolonged episodes of handling 

one or more objects, mothers increase the probability that the object label will be associated 

with contrastive features of one object versus the other, rather than irrelevant properties such as 

an object’s location or motion. If caregivers regularly distribute naming utterances in such 
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informative ways, it might not only help infants build associations between object labels and 

referents, but also guide their inferences about which object features to assign to nouns, which 

are otherwise highly indeterminate (Quine, 1960).  

Mothers’ utterances were also more frequent following infants’ vocalizations. There is 

ample evidence that mothers spontaneously impose turn-taking rhythm in vocal response to 

infants’ preverbal vocalizations (e.g., Papoušek & Papoušek, 1989). Such adult-imposed 

contingent input ostensibly socializes infants for discourse conventions that show culturally 

predictable temporal parameters (Stivers et al., 2009). Accordingly, by 4 months infants actively 

participate in vocal turn-taking (Stevenson, Ver Hoeve, Roach, & Leavitt, 1986). Notably, 

however, we found that infant vocalizations predicted mothers’ utterances in general, but not 

naming utterances in particular. This suggests that contingencies between infant behaviors and 

maternal speech have differentiated functions: some might highlight the responsive nature of 

verbal interactions in general, whereas others might help infants associate maternal speech 

types or specific words with external referents.  

We also observed different time courses of infants’ and mothers’ gaze and hand 

engagement with named objects, relative to the onset of naming utterances. At all ages, 

mothers’ gaze and hand engagement both tended to peak around the onset of naming. The 

time course of infants’ gaze and hand engagement relative to naming, however, showed a more 

complex developmental trajectory. Infants tended to look at the named object at all ages, but as 

they got older their looks peaked closer to the onset of naming. Infants handled named objects 

more by 6 months, and their handling increased after the onset of naming utterances. This 

increase suggests either that mothers name objects in anticipation of infants’ activity, or that 

infants use mothers’ naming utterances as a cue to sustain attention to objects. The latter 

possibility would create a positive feedback loop that might help infants maintain joint attention 

with caregivers; however, controlled experiments are necessary to determine whether caregiver 

speech affects infants’ subsequent attention in naturalistic contexts. Similar to the present 
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results, Yu and Smith (2012) found that older (18-month-old) infants held named objects more 

than did parents after naming events; however, in that study, infants’ object holding peaked at 

the time of naming, while in the present study infants’ object holding peaked later. Nonetheless, 

the time courses of modalities in both studies indicate that object naming does not simply 

overlap with infants’ object gaze and handling, but is embedded in temporally structured 

sequences of co-exploration of potential referents. Often, for example, infants watched as their 

mother held, looked at, and named an object, and then retrieved the object themselves. 

Consistency in these sequences might help infants associate naming utterances with patterns of 

sensorimotor experience in order to ground the possible meanings of object names within those 

utterances.  

Underlying the process of learning words, infants’ multimodal experiences may 

contribute to the formation of neural networks that process language jointly with ongoing manual 

action. In adults, inferior frontal cortex is activated in language production as well as action 

production and recognition tasks (Hamzei et al., 2003). Language processing networks also 

integrate speech with manual activity in the form of co-speech gesture. In fMRI experiments, 

inferior frontal gyrus (Broca’s area) showed greater metabolic response when co-speech 

gesture conveyed additional information than when it reiterated information present in speech 

(Dick, Mok, Beharelle, Goldin-Meadow, & Small, 2014). Co-speech gesture also elicited a 

stronger response than speech without gesture in cortical regions associated with language 

comprehension, both in adults (Dick, Goldin-Meadow, Hasson, Skipper, & Small, 2009) and in 

children aged 8–11 years (Dick, Goldin-Meadow, Solodkin, & Small, 2012).  

Relatedly, a form of multimodal experience with language and manual activity also 

seems to influence mothers’ integration of speech and manual sensorimotor activity. Mothers 

showed differential N1 and P2 ERP components (relating to selective attention and 

discrimination) following mismatches between tactile cues and tactile-related words, whereas 

nonmothers did not show such responses, presumably because tactile-lexical associations were 
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more salient to mothers, who spend more time explicating such associations with infants and 

toddlers (Tanaka, Fukushima, Okanoya, & Myowa-Yamakoshi, 2014). Thus, mothers’ cortical 

networks might develop speech-action integration in an activity-dependent manner. We 

speculate that a similar process may occur in infants as a result of experience with associations 

between speech and motor and/or haptic experience.  

Although it is difficult to determine whether changes in integration of sensorimotor and 

speech processing in infants are a result of experience or maturation, at least one study (Imada 

et al., 2006) shows that such integration does develop during the first year. Neonates showed 

MEG responses to speech sounds only in temporal auditory areas, but at 6 and 12 months 

activation was observed in both temporal areas and inferior frontal gyrus (Imada et al., 2006). 

However, it is not known whether such early-developing cross-modal processing is limited to 

direct, temporally precise links such as those between mouth movements and speech sounds, 

or whether it also encompasses less deterministic associations such as the social contingencies 

we observed.  

Word-referent associative learning is unlikely to account for the entirety of early lexical 

development (Waxman & Gelman, 2009). Nevertheless, contingencies between infant actions 

and maternal speech suggest that associative learning plays a broader role in language 

acquisition. One way action contingencies could facilitate learning is if infants associate their 

own actions with expectations of informative input from caregivers. For example, Rochat, 

Querido, and Striano (1999) found that from 2 to 6 months infants learn to expect a turn-taking 

action pattern during “peek-a-boo” games–including the expectation that the infant’s own action 

will elicit a particular kind of response, within a certain interval, from the adult. This illustrates 

that infants can learn to anticipate that their own actions will elicit specific communicative acts 

from adults. These expectations can then cue infants’ attention in the service of word learning 

(Smith, Colunga, & Yoshida, 2010). Indeed, by 9 months, infants attend more to novel visual 

stimuli in the presence of novel words (Balaban & Waxman, 1997). Contingent responses to 
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infants’ self-generated actions are optimal for developing such expectations, both because 

infants seem predisposed to detect the causal force of their own actions (Bahrick & Watson, 

1985; Bigelow, 1999; Watson, 1972), and because infants can generate the eliciting signal at 

times and contexts when they are receptive to input.  

In addition to effects on word learning, social contingencies could potentially facilitate 

infants’ understanding of others’ attention or other mental states. Caregivers’ responsiveness 

depends on their being attentive to the infant. Therefore, infants might become sensitized to 

caregivers’ attention once they have detected the social contingencies that joint attention 

affords. If so, then participation in increasingly sophisticated social contingencies may form a 

foundation for infants to imbue their caregivers’ attention and actions with meaning (Baldwin, 

1991; Carpendale & Lewis, 2004, 2010; Rązczaszek-Leonardi, Nomikou, & Rohlfing, 2013; 

Reddy, 2001).  

Taken together, our results underscore that no unitary construct such as 

“responsiveness” can precisely capture the various ways caregivers act contingently on infant 

behavior. Instead, dyadic multimodal speech-and-sensorimotor contingencies provide a rich 

source of event-sequential information for infants. That information is available to young infants, 

but it changes as infants mature and acquire new behavioral capacities. At each point in 

development, an infant’s social environment emerges differently from the set of contingent 

responses that are active at that time.  

The current data set has several limitations. The infant behaviors that appeared to 

generate contingent responses might be correlated with unobserved behaviors that mediate the 

mother’s response. It is also likely that combinations of infant behaviors, such as object handling 

while vocalizing or looking at the caregiver’s face, interact to elicit contingent responses that 

cannot be captured by independent contingencies to individual infant behaviors. However, the 

current dataset did not have enough statistical power to test for all possible interactive effects of 

multiple infant behaviors on maternal speech.  
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The current study involved observations of play in dyads in an urban, primarily English-

speaking community in the United States. Practices of playing and speaking with infants vary 

widely across cultures and across contexts within a culture (e.g., Altınkamış, Kern, & Sofu, 

2014; Bornstein, Toda, Azuma, Tamis-LeMonda, & Ogino, 1990). Therefore, the observed 

patterns cannot be assumed to generalize to other populations. However, in studies of early 

mother-infant interaction across several cultures, caregivers have been observed to respond 

contingently to infants’ vocalizations, even in cultures with low overall levels of infant-directed 

speech and toy play (Bornstein, Putnick, Cote, Haynes, & Suwalsky, 2015; Kärtner et al., 2008). 

Thus, infants’ self-generated activity might play a role in many cultures in driving the micro-

behavioral structure of their language environment by shaping caregivers’ infant-directed 

speech across the first year. However, it is likely that the specific behaviors that contribute to 

this structure differ somewhat from culture to culture; for example, Fogel, Toda, and Kawai 

(1988) found that whereas American mothers verbalized in response to their 3-month-olds’ 

vocalizations and gaze, Japanese mothers responded with facial expressions rather than 

speech, and did not respond contingently to their infants’ vocalizations.  

The analyses presented in this paper are exploratory in nature and would benefit from 

confirmatory replication. Nevertheless, these results show that the occurrence and object-

naming content of maternal speech are contingent on infants’ gaze and hand actions, and that 

the precise pattern of contingencies, and of infants’ object exploration, evolves from 4 to 9 

months. Future research should investigate contingent responsiveness at a similar level of 

granularity in additional contexts and cultures, and measure both the theoretical learnability and 

infants’ actual learning of the information made available in these social interactions. 
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Figure 1.1. Example of frames from three video angles taken from home session at six months. 
Objects can be seen on tray and in wells on sides of tray. Because observations were recorded 
in participants’ homes, sessions vary in background visual scene characteristics. 
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Figure 1.2. Example time series of data from part of one session. First row: Bars represent 
times when the infant vocalized. Second row: Bars represent times when the mother was 
speaking, and colors indicate naming utterances for the respective objects. Remaining rows: 
Colored bars represent times when the modality was directed to a specific target (objects or 
partner’s face). Portions of bars split into two colors represent periods of simultaneous contact 
with multiple objects. 
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Figure 1.3. Increase in multiple-object handling shifts with age. A: multiple-object handling shifts 
per minute at each age. B: multiple-object handling shifts as a proportion of total shifts at each 
age. 
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Figure 1.4. Infant behavior around naming utterances at each month. Lines represent average 
proportions of instances in which, at that time, infants’ hands or gaze were focused on the target 
object, time-locked to onsets of naming utterances. Shaded regions represent the standard 
error of the mean. Bars at the top of graphs represent times when the naming-association index 
was greater than chance at p < .05. 
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Figure 1.5. Mother behavior around naming utterances at each month. Lines represent average 
proportions of instances in which, at that time, mothers’ hands or gaze were focused on the 
target object, time-locked to onsets of her naming utterances. Shaded regions represent the 
standard error of the mean. Bars at the top of graphs represent times when the naming-
association index was greater than chance at p < .05. 

  



 63

Table 1.1. Behavioral coding scheme 

 

 

 

 

 

 

Table 1.2. Average number of naming and total utterances per minute at each month. SD in 
parentheses. 

 
 
 
 
 
 

Table 1.3. Mean proportion of time infants or mothers were looking at, or handling, at least one 
object. 
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Table 1.4. Poisson regressions for the contingencies between infant gaze targets and mothers’ 
utterances. 

 
 
 
 
 
 
 
 
Table 1.5. Poisson regressions for the contingencies between infant actions and mothers’ 
utterances. 
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Table 1.6. Poisson regressions for the contingencies between infant hand states and mothers’ 
utterances 
 

 
 
 
 
 
 
 
Table 1.7. Partial correlations between rate of infants’ multiple-object handling shifts and 
maternal speech rates, controlling for infant’s age in days 
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CHAPTER 2:  Maternal discourse continuity and infants’ actions organize 12‐month‐olds’ 

language exposure during object play 

Abstract 

Infant language learning depends on the distribution of co‐occurrences within language–

between words and other words–and between language content and events in the world. Yet 

infant‐directed speech is not limited to words that refer to perceivable objects and actions. 

Rather, caregivers’ utterances contain a range of syntactic forms and expressions with diverse 

attentional, regulatory, social, and referential functions. We conducted a distributional analysis 

of linguistic content types at the utterance level, and demonstrated that a wide range of content 

types in maternal speech can be distinguished by their distribution in sequences of utterances 

and by their patterns of co‐occurrence with infants’ actions. We observed free‐play sessions of 

38 12‐month‐old infants and their mothers, annotated maternal utterances for 10 content types, 

and coded infants’ gaze target and object handling. Results show that all content types tended 

to repeat in consecutive utterances, whereas preferred transitions between different content 

types reflected sequences from attention‐capturing to directing and then descriptive utterances. 

Specific content types were associated with infants’ engagement with objects (declaratives, 

descriptions, object names), with disengagement from objects (talk about attention, infant's 

name), and with infants’ gaze at the mother (affirmations). We discuss how structured discourse 

might facilitate language acquisition by making speech input more predictable and/or by 

providing clues about high‐level form‐function mappings. 

Introduction 

Infant-directed discourse 

From the earliest ages, infant‐directed speech (IDS) constitutes a rich discourse 

including interconnected utterances of varied syntactic and semantic content. These utterances 

include but are not limited to object‐naming, descriptive comments, attention‐directing, 
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imperatives, questions, and stereotyped routines such as greetings and games. Caregivers’ 

varied utterance types have interactive functions including regulating infants’ affective state and 

attention (e.g., Fernald, 1993; Ninio & Snow, 1996; Papoušek, Bornstein, Nuzzo, Papoušek, & 

Symmes, 1990). Distinct functions can be at least partially discriminated using low‐level 

acoustic features (Fernald, 1989) and by linguistically naive observers (Bryant & Barrett, 2007). 

Yet, most research has focused on how infants’ environment supports learning object words 

(e.g., Pruden, Hirsh‐Pasek, Golinkoff, & Hennon, 2006; Suanda, Smith, & Yu, 2016; Trueswell, 

Lin, Armstrong, Cartmill, Goldin‐Meadow, & Gleitman, 2016). The diversity of utterance types in 

natural discourse, however, exacerbates the inherent difficulty of mapping words to meanings: 

for example, there are frequent opportunities for spurious associations not only between words 

and objects, but between words or phrases and varied social purposes ranging from action‐
imperatives such as “don't touch that!” to non‐referential utterances such as “Hi, baby!” 

Despite this potential difficulty, the amount of complex and diverse speech heard by 

infants predicts their vocabulary growth (Akhtar, Dunham, & Dunham, 1991; Bornstein, Haynes, 

& Painter, 1998; Hart & Risley, 1995; Hoff, 2003; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 

1991; Pan, Rowe, Singer, & Snow, 2005). This appears to be true even though a richer 

discourse environment would potentially complicate the task of a learner who relies on co‐
occurrences of words and referents to construct a lexicon (Yu & Ballard, 2007; Yu & Smith, 

2012). Perhaps, however, infants also start to detect and discriminate patterns of occurrence of 

different discourse content types, even as they are learning their first object words. Different 

functions of IDS utterances such as attention‐getting, prohibition, encouragement, and 

comforting might be indicated not only by prosodic differences (e.g., Fernald, 1989; Katz, Cohn, 

& Moore, 1996), but also by the frequency of utterance contexts or frames that associate words 

with phrase structures and syntactic roles (Mintz, 2003). Such findings underscore the question: 

how does syntactically and pragmatically diverse discourse shape not only infants’ linguistic 



 75

environment, but also their language acquisition? One possibility is that discourse diversity is 

merely incidental: parents simply produce complex language out of habit, but the diversity of 

words and discourse‐functions does not directly affect early language acquisition. A second 

possibility is that caregivers use IDS to regulate infants’ attention, to make word‐learning 

opportunities more predictable and therefore more effective (Benitez & Smith, 2012). A third 

possibility, not mutually exclusive with the second, is that complex discourse is itself an input for 

infant learning–not, perhaps, of word‐object mappings, but of the different types of utterances 

that can accompany various social‐interactive events. That is, perhaps a burgeoning awareness 

of discourse types, working in tandem with infants’ growing social‐event knowledge (Cannon & 

Woodward, 2012; Tomasello, 1992) allows infants to classify or even predict adults’ 

communicative actions during social interactions. However, the relevant statistical patterns 

characterizing infant‐directed discourse–its structure over time and correspondences with other 

observable events–are poorly characterized. Thus, it remains unclear what role the diversity of 

varied discourse content plays in language acquisition. 

Discourse continuity 

Conversational analysis studies show that successive speakers’ turns show well‐
structured, predictable sequences of functional content types, such as question‐answer pairs 

(Ninio, Snow, Pan, & Rollins, 1994; Schegloff, 2007). Conversations between adults and young 

children show developmental trajectories toward a variety of such functional conversational 

sequences, including question‐answering (Gallagher, 1981) and repair (Tomasello, Conti‐
Ramsden, & Ewert, 1990). However, relatively few studies have focused on discourse structure 

in parents’ speech to prelinguistic infants, even though infant‐directed discourse is presumably 

the developmental context for the emergence of early conversational patterning. These studies 

are reviewed below. 
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One proposed mechanism by which infant‐directed discourse could facilitate learning is 

continuity of reference (Messer, 1980). Frank, Tenenbaum, and Fernald (2013) identified object 

references in a corpus of IDS and found that mothers’ consecutive utterances were more likely 

to refer to the same object than to other objects that were present. Moreover, a computational 

model was able to use this continuity of reference to more accurately infer which object was the 

topic of each utterance. However, sequential continuity might also characterize discourse 

functions other than object reference. For instance, if utterances that either name objects, 

describe objects, or refer to actions each tend to follow previous utterances of the same type, 

this continuity might be useful to a learner tasked with learning a lexicon of nouns, adjectives, 

and verbs, respectively. That is, sequences of utterances of the same type might provide not 

only repetition of topical content words and continuity of reference, but also correlated repetition 

of syntactic forms. Repetition of these parallel levels of content, function, and context variables 

might facilitate semantic and pragmatic mapping. 

Another form of discourse continuity might be available to infants: short, formulaic 

sequences of different utterances that tend to occur in predictable order. For example, 

utterances that capture the infant's attention might be followed by utterances that direct their 

attention to an object, and then by utterances that name the object, and finally by elaborating 

utterances that describe or evaluate it. By this hypothesis, IDS would be organized around 

stereotyped sequences (or “paths”) of content‐types (“states”), with different probabilities 

associated with all of the possible transitions from one content type to the next. For example, 

Rohde and Frank (2014) found that mothers produced more utterance‐final object names early 

within runs of same‐topic utterances; conversely, they produced more pronouns later in runs. 

However, the aforementioned studies analyzed only object‐naming and/or object‐referring 

utterances, and therefore did not address whether continuity over time or predictable transitions 



 77

characterize other types of infant‐directed utterances. Therefore, in the current study we 

recorded transition probabilities among different types of infant‐directed utterances. 

Contextual correlates of discourse types 

In addition to sequential continuity from one utterance to the next, the discourse 

structure of IDS could facilitate language learning if different types of utterances appear 

preferentially in specific contexts. Relatively few studies have examined the contextual 

correlates of utterances other than object‐referring utterances. Moreover, studies on the 

nonlinguistic contexts of object‐referring utterances often measure only the degree to which the 

infant and/or parent's gaze or manual actions are directed to the particular object being spoken 

about (e.g. Frank et al., 2013; Yu & Smith, 2012). However, independent of object‐specific 

associations, object‐naming as a discourse function occurs coupled with infants’ general object‐
directed gaze and developmentally advanced manual object exploration (Chang, de Barbaro, & 

Deák, 2016), and analogous coupling might exist between other discourse functions and other 

non‐verbal actions or states within social interactions. If infants can learn to associate utterance‐
types with the contexts they most often occur in, this could form the basis for infants to develop 

expectations that are well coordinated with caregiver actions (Rochat, Querido, & Striano, 

1999). These contexts can be studied at a macro level (e.g. the activity being engaged in and 

the participants present), or at a micro level: that is, the moment‐to‐moment actions and 

attention‐states of participants within an activity. Several studies have investigated the 

frequency of various types of linguistic content in IDS across different activities: book‐reading 

and object play (Choi, 2000; Gros‐Louis, West, & King, 2016; Tamis‐LeMonda, Song, Leavell, 

Kahana‐Kalman, & Yoshikawa, 2012; Yont, Snow, & Vernon‐Feagans, 2003), as well as eating 

and dressing (Hoff‐Ginsberg, 1991; Pan, Perlmann, & Snow, 2000). These efforts have 

revealed significant variability in the proportions of types of maternal utterances, such as 

imitations, directives, questions, and naming, produced in these varied social contexts. 
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Other studies have investigated caregivers’ use of different types of utterance content in 

response to infants’ moment‐to‐moment actions within an activity context. One series of studies 

found that mothers follow infants’ social initiatives with responsive utterances, whereas they 

tend to ignore or redirect infants’ object initiatives, and to redirect infants when they disengage 

from toys (Masur, Flynn, & Lloyd, 2013; Lloyd & Masur, 2014). Similarly, Tamis‐LeMonda, 

Kuchirko, and Tafuro (2013) found that mothers contingently respond to 14‐month‐old infants’ 

object exploration actions by handling the objects themselves and by producing more referential 

language. Another study found that mothers respond contingently to infants’ object exploration 

and play with utterances of various types including questions, descriptions, affirmations, 

imitations, and prompts (Bornstein, Tamis‐LeMonda, Hahn, & Haynes, 2008). Beyond social 

and object play, infants’ walking and crawling influences parents’ use of prohibitions and action 

directives (Karasik, Tamis‐LeMonda, & Adolph, 2014; Zumbahlen, 1997), and infants’ pointing 

encourages parents to ask questions (Wu & Gros‐Louis, 2014). Collectively, these studies show 

that caregivers’ utterance content types depend on infants’ actions; however, each has 

limitations. In several studies, infants’ activity was judged subjectively by different criteria, 

making comparisons across studies difficult. In others, parental utterances were only counted if 

they were judged by human observers to be appropriate responses to the infants’ actions, or 

utterance types were defined based on how they related to infant actions. These designs do not 

allow for comparisons between observed utterance‐action co‐occurrence rates and chance, and 

are difficult to interpret in terms of informativeness to naive learners. Therefore, in the current 

study we comprehensively documented both infants’ action primitives, specifically gaze target 

and object handling, and mothers’ speech, which was then classified for different types of 

discourse content. 

Utterance types 
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Several utterance content types have been studied in IDS and infant language, and the 

evidence points to predictable developmental trajectories. At the lexical level, researchers have 

been interested in infants’ first‐acquired words. These include many “routines” (e.g. thank you, 

all gone, hello), and an increasing proportion of object nouns in the first months of production 

(Caselli et al., 1995). As early as 6 months of age, infants show evidence of having formed 

associations with common nouns (Bergelson & Swingley, 2012) and their own name (Mandel, 

Jusczyk, & Pisoni, 1995). 

Other researchers have examined which types of discourse content in speech input 

correlate with developmental outcomes. A consistent finding has been that a higher proportion 

of responsive utterances –typically defined as utterances that refer to the infants’ focus of 

attention, or non‐referential affirmations of infants’ communicative actions –correlate with 

positive outcomes in language development (Baumwell, Tamis‐LeMonda, & Bornstein, 1997; 

Carpenter, Nagell, Tomasello, Butterworth, & Moore, 1998; Masur, Flynn, & Eichorst, 2005; 

Rollins, 2003; Tamis‐LeMonda, Bornstein, & Baumwell, 2001). In contrast, a higher proportion 

of directive utterances is unrelated to (Baumwell et al., 1997; Carpenter et al., 1998) or 

negatively correlated with vocabulary growth (Hughes, Dote‐Kwan, & Dolendo, 1999; Nelson, 

1973; Tomasello & Todd, 1983), perhaps because directives disrupt infants’ attention (Akhtar et 

al., 1991; Lloyd & Masur, 2014; Masur et al., 2005). 

We therefore sought to code maternal utterances in a way that captured the salient 

lexical, syntactic, and topical content types reviewed above. Standardized taxonomies of 

communicative acts have been proposed (Ninio et al., 1994; Searle, 1976); however, these 

schemes either did not cover the desired range of levels of description or did not match well with 

the set of content types that were developmentally and contextually appropriate to the current 

study. Therefore, we chose to create a coding system suitable for the population and context 

represented in the current study. We chose to tag infant‐directed utterances at the syntactic 
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level as declarative, imperative, or questions; and at the topical level as about attention, infant 

actions, or object‐properties (i.e., descriptions). We also tagged utterances for several other 

lexical or functional content types with specific relevance to infant language: infant's name, 

object names, social routines, and affirmations. Similar approaches to coding IDS have been 

used in studies of infant‐parent interaction (Bornstein et al., 2008; Gros‐Louis, West, Goldstein, 

& King, 2006; Toda, Fogel, & Kawai, 1990). 

Infant activity 

While previous studies have extensively documented parents’ tendency to refer to 

specific objects of infant visual attention (e.g. Yu & Smith, 2012), we chose to analyze more 

general categories of gaze: at toys, at the mother's face, or other. We expected that mothers 

would tailor their speech content to the infant's focus of attention (Frank et al., 2013), 

preferentially using speech with referential, interpersonal, or attention‐directing content, 

depending on infants’ gaze state. We also expected that simple versus complex object handling 

would elicit different speech patterns. Chang et al. (2016) and de Barbaro, Johnson, Forster, & 

Deák (2016) showed that infants’ manipulation of two objects is related to their cognitive and 

motor maturity, and that bimanual manipulation elicited more object naming by mothers of 

infants between 4 and 9 months. Handling of multiple objects might also be related to subjective 

measures of infant manual behavior such as the distinction between object exploration and play 

(Bornstein et al., 1998). Object handling was therefore classified as involving no objects, one 

object, or two objects. 

Current study 

In the current study, we observed mother‐infant dyads in a free‐play in‐home interaction 

with toys. We transcribed the mothers’ speech and tagged utterances as containing 

declaratives, imperatives, questions, talk about action, talk about attention, object descriptions, 

affirmations, social routines, object names, and the infant's name. We also annotated infants’ 

gaze at toys and at the mother's face, and infants’ handling of the toys. The first set of analyses 
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describes the structure of mothers’ discourse over time. We measured the repetitiveness of all 

content types, and report transitions between the types that occur at above‐chance rates. The 

second set of analyses describes contingencies between infants’ actions and mothers’ 

discourse. We first investigated whether changes in infants’ gaze target or object handling affect 

mothers’ probability of repeating each content type in successive utterances. We also 

investigated whether each content type varies in frequency as a function of infants’ gaze target 

and/or object handling. Finally, we quantified the degree of predictability of each content type as 

a function of previous utterance content and of infant activity state. We expected that most 

content types would tend to follow utterances of the same type at above‐chance levels, and that 

infant gaze or hand shifts would decrease this tendency. We also expected that mothers’ 

speech would include both significant sequential transitions between different utterance content 

types, and correlations between utterance content and infants’ gaze and object handling. 

Furthermore, the specific patterns should not be arbitrary, but should reflect the social, 

attentional, and referential functions of the utterances. 

Methods 

Participants 

The participants were 42 mother–infant dyads (20 female) from a longitudinal study of 

infant social development (Chang et al., 2016; Deák, Triesch, Krasno, de Barbaro, & Robledo, 

2013). Participants were recruited as a sample of convenience from the greater San Diego area. 

Mothers’ mean age upon recruitment was 32.1 years (range = 21–42) and they had completed 

a mean of 16.1 years of formal education (range = 12–21). Twenty‐nine infants were 

Caucasian, two were Asian, four were Hispanic, five were “other” or multiple races, and two 

parents did not report ethnicity. No infants had any neurological, cognitive, or sensory deficits, 

according to parental report. 

An experimenter visited the participants’ home each month between 3 and 9 months, 

and again at 12 months, and participants also visited the laboratory to complete various tasks 
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every month. All participants gave informed consent before participating in each session. For 

the current study, only the 12‐month home session was used. Six additional participants were 

recruited but dropped out of the study before the 12‐month session, and four participants were 

tested but excluded from analyses due to equipment failure or use of non‐English language, 

resulting in a final sample of 38 dyads. Infants’ mean age was 371 days (range: 356–450; SD = 

14.5 days); all but one infant was tested before 13 months of age, but excluding this participant 

did not affect the qualitative results. 

Procedure 

An experimenter visited the participants’ home. Infants and mothers participated in a 

free‐play task in which they were seated on the floor and experimenters provided three different 

sets of toys (switched out by the experimenter every ~3 min; Figure 2.1). Similar tasks have 

been widely used to study infant language learning (Song, Spier, & Tamis‐Lemonda, 2014; 

Sosa, 2016; Suanda et al., 2016; Tamis‐LeMonda et al., 2001; Yu & Smith, 2012). Object play 

tasks elicit rich parental speech with many opportunities for interaction, and are representative 

of “peaks” in infants’ daily language exposure rather than average periods (Tamis‐LeMonda, 

Kuchirko, Luo, Escobar, & Bornstein, 2017). Multiple sets of toys reduced the possibility of 

spurious results due to specific toys. The first set of toys included a set of three colorful blocks, 

two wooden ladybugs (red and green), and a chain of plastic rings. The second set included a 

set of stacking cups, a rubber duck, and a ball. The third set included a turtle, a boat, a parrot, 

and two pirate dolls. Free play duration averaged 9.8 min (range: 2.6–13.8; SD = 2.6). Mothers 

were instructed to play as they normally would, but to remain in view of the two stationary 

Canon mini‐DV video cameras used to record the sessions. During the session, the 

experimenter waited quietly in a nearby room, and only entered to switch out the toy sets as 

quickly and unobtrusively as possible. All procedures were approved by the university's 

Institutional Review Board. 
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Coding 

We coded the videos for infant gaze, infant object handling, and maternal speech. In 

each frame we identified the infant's gaze target; the possible targets included TOY, the 

mother's FACE and OTHER (e.g. furniture, the floor, or otherwise indeterminate). For each frame, 

we also identified whether the infant handled one or multiple toys, and the identity of the toy(s). 

Finally, we also transcribed all maternal speech, divided into utterances separated by gaps of at 

least 200 ms, with the start and stop time of each utterance identified. After transcription, 

utterances were tagged for 10 content types: DECLARATIVE, IMPERATIVE, QUESTION, DESCRIPTION, 

ATTENTION, ACTION, OBJECT NAME, INFANT’S NAME, AFFIRMATION, and SOCIAL ROUTINE. Because 

the content types spanned multiple levels of description, they were not mutually exclusive: 

utterances frequently were tagged with multiple content types, accurately reflecting the fact that 

many utterances contain different types of information at different levels. Example tagged 

utterances are shown in Table 2.1, and overlap rates are given in Table A.1. A second coder 

coded 10 randomly selected sessions (26% of sample). Average Cohen's kappa for utterance 

tags ranged from 0.76 (DESCRIPTION) to 0.96 (QUESTION). Cohen's kappa averaged 0.76 for 

infant gaze and 0.81 for infant object handling (Table A.2). A representative sequence is shown 

in Table A.3. 

Analysis 

We analyzed mothers’ utterance content types with mixed‐effects logistic regression 

models, using the lme4 package in R (Bates, Maechler, Bolker, & Walker, 2015) to model the 

probability of occurrence of each utterance type. These models fit the log‐odds of occurrence of 

a content type as a linear function of the predictor variables, with random intercepts fit for each 

participant dyad. p‐values for each coefficient are calculated using likelihood ratio tests between 

the full model and the model with that predictor removed. 

The first set of analyses examined sequences of mothers’ utterance content types, 

testing for which content types predicted the type(s) of the following utterance. We first selected 
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all consecutive utterance pairs, so long as the following utterance occurred within 5 s of the end 

of the previous one (including all utterance pairs regardless of the delay yielded qualitatively 

similar results). We then fit separate mixed‐effects logistic regression models for each content 

type as a function of all the types in the previous utterance. Because most content types were 

most strongly predicted by previous occurrence of the same type, we conducted an additional 

analysis of temporal and interactive factors affecting the probability of repetition. For each 

content type, we selected utterances that followed an utterance containing that content type. We 

then fit mixed‐effects logistic regression models predicting the probability of repeating the 

content type as a function of three factors: time elapsed between utterances, infants’ shifts in 

gaze target, and infants’ shifts in object handling. 

The next set of analyses examined whether the proportion of utterances with each 

content type differed as a function of infants’ gaze target and infants’ object handling. For each 

content type, we fit mixed‐effects logistic regression models with infants’ gaze target (FACE, TOY, 

or OTHER) and previous utterance content types as predictors, and then with object handling 

(none, one, or two objects) and previous utterance type as predictors. These models were 

compared against the baseline models using previous utterance type alone (including these 

baseline predictors was necessary to remove serial correlation between consecutive 

utterances). 

The final set of analyses examined how both factors–the previous utterance content, and 

the infant's gaze and object handling state–predicted the content of the next utterance. We fit 

mixed‐effects logistic regression models using previous utterance content, the infants’ gaze 

state, and the infant's object handling state. We then quantified how much each subset of 

factors (previous utterance, gaze and hands, both) predicts each content type in the next 

utterance. Performance was evaluated using subsets of fixed effects estimated from the joint 

model to predict the content types for participants held out under 10‐fold cross validation 

(Zhang, 1993). Results were quantified using the area under the ROC curve. 
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To correct for the total number of comparisons, we adopted a stringent α = 0.01 criterion 

for statistical significance throughout the results (note that a correction for multiple comparisons 

such as Bonferroni would be inappropriate because correlations among tested variables are 

predicted by previous results; e.g., Chang et al., 2016; Frank et al., 2013; Suanda et al., 2016). 

Effects with 0.01 < p < 0.05 are indicated in figures and tables but not discussed in detail. The 

data and code used to generate the results may be found at: 

https://github.com/cogdevlabucsd/discourse-continuity-dev-sci. 

Results 

Descriptive statistics 

The frequencies of mother's production of utterances with each content type are shown 

in Table 2.2, and the proportion of time that infants spent in each gaze and object‐handling state 

are shown in Table 2.3. 

Continuity and sequential structure of discourse 

We analyzed the sequential structure of infant‐directed discourse by identifying the 

predictive relations between utterance content types in consecutive utterances (Figure 2.2). The 

data included 7,432 utterances, of which 6,535 were preceded by an utterance within 5 s. All 

utterance types showed significant repetitiveness: values greater than 0 on the main diagonal of 

Figure 2.2 indicate that all content types were more likely to occur when the previous utterance 

contained the same content type (ps < 0.01). Pairs of successive utterance content types that 

were significantly predictive are highlighted in Figure 2.2 and listed in Table 2.4. The presence 

of significant transitions between different content types indicates that sequential contingencies 

in content types are a source of regularity in mothers’ utterances, over and above content 

repetition (Figure 2.3); however, the largest magnitude effects are observed for repetitiveness. 

Although exact repetitions were sometimes observed, the repetition coefficients remained 

positive when exact repetitions were removed from the dataset for all content types 

except AFFIRMATION, and remained significant for all content types except AFFIRMATION, 
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IMPERATIVE, and INFANT’S NAME (Table A.4). The proportion of exact repeats ranged from 0.08 

(DECLARATIVE) to 0.41 (AFFIRMATION). Partial repeats (i.e. at least one overlapping word, but not 

exact repeats) constituted the majority of repeats for all content types except AFFIRMATION and 

SOCIAL ROUTINE (Table A.5).  

Relations between maternal discourse and infants’ gaze and object handling 

To further characterize the repetitiveness observed in the previous section, we 

investigated whether infants’ activity plays a role in the repetitiveness of maternal discourse. 

Specifically, we tested whether infants’ gaze shifts or object handling shifts affect the probability 

of repetition of each content type. Gaze shifts were defined as any difference in the gaze target 

at the start times of the two utterances, and handling shifts were defined as any difference in the 

object(s) being handled at the start times of the two utterances. For each content type, we first 

identified all utterances that followed an utterance with that same type. We then modeled the 

probability of repetition for each type using mixed‐effects linear models with time (i.e., seconds 

between end of utterance and start of next utterance), gaze shift, and hand shift as fixed effects, 

and with dyad as a random effect. Results showed that probability of repetition decreased over 

time for nine of ten content types, reliably so for six types (Table 2.5). Although infants’ gaze 

and hand shifts did not generally affect the probability of repetition, gaze shifts reliably 

decreased the probability of repeating INFANT’S NAME (β = −1.21, p < 0.01). Marginal effects 

suggest that gaze shifts might decrease the probability of repeating SOCIAL ROUTINE (β = −0.44, 

p = 0.04), and hand shifts might decrease the probability of repeating ACTION (β = −0.30, p = 

0.02). 

Next, for each utterance content type, we used mixed‐effects logistic models to test 

whether the proportion of utterances containing that type differed as a function of infants’ gaze 

target (FACE, TOY, or OTHER), and/or object handling (zero, one, or two objects), controlling for 

effects of previous utterance content. Infant gaze and hands were codable for 6763 utterances. 

Significant effects (ps < 0.01) of gaze target were found for the content types IMPERATIVE, 
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DESCRIPTION, ATTENTION, OBJECT NAME, INFANT’S NAME, and AFFIRMATION (see Figure 2.4). Post 

hoc tests showed that DESCRIPTION and OBJECT NAME were more frequent when infants looked 

at TOY than other, whereas IMPERATIVE and ATTENTION utterances were more frequent when 

infants looked at OTHER than TOY. Also, INFANT’S NAME was more frequent when infants looked 

at OTHER than TOY or FACE, and AFFIRMATION was more frequent when infants looked at 

FACE than TOY. 

 Significant effects (ps < 0.01) of object handling were found for IMPERATIVE, 

DESCRIPTION, and INFANT’S NAME (Figure 2.5). Post hoc tests showed that IMPERATIVE was more 

frequent when infants handled zero objects than two, DESCRIPTION was more frequent when 

infants handled one or two objects than zero, and INFANT’S NAME was more frequent when 

infants handled zero objects than one. 

Predictability of utterance content 

We next investigated how much infants’ concurrent gaze and object handling and the 

previous utterance content contributed to the predictability of utterance content type. Using 

mixed‐effects logistic regression, we fit models predicting the probability of each utterance 

content type based on the full set of predictors (gaze, handling and previous utterance content). 

We then used 10‐fold cross‐validation (assigning each dyad to one fold) to quantify how much 

fixed effects for gaze/handling, previous utterance content, or both improved predictability over 

chance levels in sessions not used for model fitting. We evaluated the predictability using the 

area under the ROC curve (AUC; Table 2.6). This measure is computed by plotting the true 

positive rate against the false positive rate as the decision boundary (i.e., the predicted 

probability of the content type necessary for a positive prediction) is varied. An AUC value of 0.5 

indicates chance prediction (true positives do not outnumber false positives for any decision 

boundary), and 1.0 indicates perfect accuracy (i.e., some decision boundary detects all true 

positives and no false positives). 
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Consistent with the previous analyses, prediction was better than chance for most 

gaze/handling models (AUC from 0.49 to 0.60), for all discourse models (AUC from 0.56 to 

0.69), and for all full models (AUC from 0.58 to 0.70). The previous utterance content was 

generally a stronger predictor than gaze and handling information. However, gaze/handling 

state was a stronger predictor than previous utterance content for INFANT’S NAME. The two 

factors performed approximately equally well for predicting AFFIRMATION (Figure 2.6). For most 

content types, the model using only previous content performed as well as (i.e., AUC within 0.01 

of) the full model, indicating that gaze/handling information was redundant with previous 

content; however, for utterances with INFANT’S NAME and OBJECT NAME, both sources of 

information made independent contributions. 

Discussion 

The current results confirm that a combination of sequential discourse structure and 

concurrent infant gaze and manual activity predict a wide range of content types in naturalistic 

maternal speech to 12‐month‐old, English‐learning infants. Unlike previous studies on the 

linguistic and action context of IDS (e.g., Frank et al., 2013; Trueswell et al., 2016; Yu & Smith, 

2012), these effects were not measured in terms of relations between specific words and their 

referents. Nor were they limited to concrete utterances referring to observable objects or 

actions. Instead, sequential and cross‐modal relations were found for a wide range of abstract 

content types that are prevalent in IDS and relevant to language acquisition. 

Maternal speech exhibited pervasive repetitiveness, in that utterances with a given type 

of content were likely to be followed by one or more successive utterances with the same type 

of content. Notably, this pattern held across all the 10 syntactic, thematic, and lexical content 

types tested. For most content types, most repetitions showed only partial (not complete) 

overlap with the previous utterance. In addition, discourse type repetition was more likely when 

utterances were closely spaced in time. 
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Repetitiveness in IDS has been documented previously: it is known that caregivers 

frequently produce both exact and partial repetitions (Hoff‐Ginsberg, 1990; Kaye, 1980; Snow, 

1972). Infants, notably, prefer the expected level of repetitiveness of IDS (McRoberts, 

McDonough, & Lakusta, 2009). This repetition seems to have specific pragmatic functions: for 

example, parents’ consecutive utterances tend to refer to the same object even after taking into 

account infants’ and parents’ ongoing and coordinated gaze and object handling (Frank et al., 

2013). Moreover, this structured repetition impacts language learning. Continuity in discourse 

has been found experimentally to facilitate word learning: 2‐year‐olds learn new object words 

more effectively when they are repeated in consecutive utterances (Schwab & Lew‐Williams, 

2016), and toddlers can use continuity of reference to infer the referent of otherwise ambiguous 

utterances (Horowitz & Frank, 2015). Effects of repetition on learning might be more general: for 

example, repetitive exposure to the same individuals in time has been proposed to facilitate 

learning in other domains such as face processing (Jayaraman & Smith, 2018). 

Our findings demonstrate that content repetition in IDS is more general than previously 

recognized, in that discourse continuity is not specific to one or a few types of linguistic content. 

If infants use the continuity of adjacent utterances to reduce the ambiguity of object‐referential 

utterances, they could potentially use the same mechanism to more accurately identify the 

communicative function of a wide variety of infant‐directed utterances. 

In addition to repetition of content types, we also found significant sequential patterning 

of mothers’ use of different content types across utterances, demonstrating that continuity of 

infant‐directed discourse also includes sequential transitions between content types. We 

identified sequences or paths of frequent transitions, such as INFANT’S NAME → ATTENTION  

→ DECLARATIVE and INFANT’S NAME → ATTENTION → DESCRIPTION. These sequences might 

help to focus infants’ attention on the most informative utterances by first capturing the infant's 
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attention by saying their name, then orienting the infant to an object, then providing an 

informative comment. A prototypical example is the following sequence: 

what’s under here [name]? good job! look what it is. it’s the blue one and a purple. 

Infants might initially experience such sequences while spontaneously exploring their 

environment or following overt cues. However, as they learn to predict and comply with 

caregivers’ attentional bids, infants might also increasingly choose actions that facilitate the 

emergence of more complex and reliable sequences. 

Consistent with this idea, our results show systematic patterning of mothers’ discourse 

content depending on infants’ state of engagement with the physical and social environment. 

Although we did not find general effects of infant attention shifts on content type repetition, there 

was at least one specific effect: a lower rate of repetition of the infant's name after infant gaze 

shifts, suggesting that infants’ reorientations in relation to maternal utterances might facilitate 

sequential transitions in discourse. Given that only two infant behavioral states were coded, a 

more thorough characterization of infant states might reveal more specific relations to the 

caregiver's speech repetition. Additionally, several content types differed in frequency based on 

infants’ attention states. When infants gaze at toys, they hear more descriptive language and 

more object names; when they gaze at faces, they hear more affirmations, and when they gaze 

away from faces and toys, they hear more imperatives, their own name, and attention‐related 

language. Similarly, when infants handle one or more toys, they hear more descriptive 

language; whereas when they do not handle objects, they hear more imperatives and their own 

name. These results complement and expand a sizable literature (reviewed above) on maternal 

speech about objects, and maternal responsiveness in dyadic and triadic interactions. 

Some of these differences might be due to mothers responding to infants’ attentional 

engagement. Nevertheless, such associations could still help establish the pragmatic force of 

some utterances as regulatory and others as informative. Furthermore, some utterance types 

are observed to differ in frequency across “on‐task” states. Notably, affirmations are associated 
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with gaze at the mother's face rather than at objects, reflecting their interpersonal rather than 

referential role. Also, whereas descriptions are associated with both gaze to and handling of 

toys, object names were associated only with gaze. 

We also compared how much the infant's gaze and object handling and/or the previous 

utterance content predicted occurrences of each utterance content type. One or both types of 

contextual factors predicted every content type above chance, although substantial uncertainty 

remained for all content types, suggesting that other predictive contextual factors have not yet 

been identified. Previous utterance content was generally a stronger predictor than concurrent 

gaze and object handling, but the relative importance of the cues differed substantially across 

content types. Thus, some discourse types were typically produced within a longer discourse 

sequence, whereas other functions were more immediately responsive to the infant's actions. At 

one extreme, object names and descriptions were highly dependent on the previous utterance, 

but occurred frequently in all configurations of the infant's gaze and object handling; at the 

other, the infant's name occurred in response to infants’ gaze away from toys and the mother's 

face but depended only weakly on previous utterances. These differences can reflect the 

interacting roles of different discourse types: for instance, mothers typically did not talk about 

attention as a direct consequence of an infant's disengagement with the toys, but rather 

oriented the infant to an interesting object only after first capturing their attention by calling their 

name. 

Previous research suggests how correspondences between infants’ actions and parents’ 

speech might facilitate language learning. In the well‐studied case of object‐name learning, 17‐ 
to 18‐month‐old infants are more likely to learn words that are uttered during episodes of joint 

attention (Baldwin, 1991; Tomasello & Farrar, 1986), and 18‐month‐old infants learn more 

object labels that are presented while the object dominates their visual field (Yu & Smith, 2012). 

The effectiveness of object naming, therefore, depends not only on the correspondence 

between object and label, but also on a supportive context in which the utterance is expected 
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and appropriate. The current results suggest that nonverbal context could similarly support the 

usage of a range of referential (descriptions, object names, talk about action) and regulatory 

(attention, imperative, infant's name, affirmations) discourse types. Our approach complements 

other empirical studies of structured relations between maternal speech and concurrent 

activities that are predictable within a variety of contexts (e.g., diaper‐changing; Nomikou & 

Rohlfing, 2011). Characterizing language input at the level of associations between maternal 

discourse content and infants’ embodied behavioral states is also consistent with the proposal 

that infants represent linguistic meanings not as specific objects or events, but as frames of 

routinized goal‐directed activity (Rohlfing, Wrede, Vollmer, & Oudeyer, 2016). As infants learn 

their role in interactive sequences, they might further improve their ability to participate in and 

learn from routines, eventually leading to the emergence of conversation. The current results 

characterize speech‐activity relations experienced by infants at a particularly important 

developmental stage, as predictable, structured activities play an increasingly complex and 

integral role in 1‐year‐old’ social interactions (De Barbaro, Johnson, & Deák, 2013; Nelson, 

1998), despite their still immature and incomplete linguistic knowledge and symbolic skills. 

Discourse continuity in IDS might facilitate language acquisition in several ways. Partial 

repetitions of parental utterances correlate positively with children's syntactic development 

(Baker & Nelson, 1984; Hoff‐Ginsberg, 1985, 1986). Discourse continuity has been previously 

argued to facilitate syntax acquisition because partial overlap in adjacent utterances constrains 

word and phrase boundaries (Onnis, Waterfall, & Edelman, 2008), and facilitates lexical 

acquisition by clustering object‐labeling events (Schwab & Lew‐Williams, 2016; Vlach & 

Johnson, 2013). Structured sequences in discourse and interaction might cue infants to expect 

utterances with novel information such as object names or descriptions. In fact, these were the 

two most predictable content types in our data. Our finding of significant transitions from 

attention‐regulating to declarative and descriptive utterances suggests that attention‐directing 
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talk might be partially responsible for this predictability. This raises the possibility that findings of 

negative correlations between directive maternal talk and child language outcomes (Hughes et 

al., 1999; Nelson, 1973; Tomasello & Todd, 1983) are related to the disruption of these 

sequences, perhaps due to infants’ failure to respond to bids for attention, rather than 

differences in speech style per se. 

Sequential continuity and repetitiveness might further facilitate learning of syntactic 

and/or pragmatic categories if continuity effects are stronger for valid categories than for 

arbitrary ones. Repetition in discourse might highlight similarities among exemplars of a content 

type, whereas sequences emphasize contrastive features (Carvalho & Goldstone, 2017). 

Moreover, infants might better recognize repeated word tokens if prosody or other utterance‐
level features are consistent across utterances (Bortfeld & Morgan, 2010). Consistent 

sequences in discourse might also make it possible to infer similar meanings between 

utterances that occur in similar discourse contexts, analogous to inferring word meaning by 

familiar sentence context (Miller & Charles, 1991). Once children learn to detect discourse 

continuity, contextual utterances could constrain the interpretation of utterances that would be 

ambiguous in isolation. This effect has been called discourse bootstrapping. For example, by 2 

years of age children can use discourse continuity to select a referent for an unfamiliar word 

suggested by a speaker's previously expressed preferences (Sullivan & Barner, 2016), and 

parents use multiple cues such as syntactic frames, utterance‐final position, and prosodic 

emphasis to introduce unfamiliar words to 2‐ to 5‐year‐old children (Clark, 2010). Although we 

cannot yet determine how much discourse bootstrapping facilitates meaning‐inference relative 

to syntactic and semantic bootstrapping, the current results indicate that information supporting 

the former is available by 12 months. 

Finally, discourse continuity might facilitate language acquisition via general information 

processing factors such as increased processing speed (see Conway, Bauernschmidt, Huang, 

& Pisoni, 2010) and reduced working memory load. These mechanisms might bridge 
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correlational findings indicating that parental speech style influences language acquisition 

(Barnes, Gutfreund, Satterly, & Wells, 1983; Hart & Risley, 1995; Tamis‐LeMonda et al., 2001) 

with mechanistic accounts of how infants find structure in linguistic input (Hoff & Naigles, 2002; 

see also Tamis‐LeMonda, Kuchirko, & Song, 2014). 

The current study has several limitations. We observed mother‐infant dyads interacting 

in a restricted context that captured only a limited portion of their daily activities. Also, the dyads 

were a sample of convenience of mostly middle‐ to upper‐class families that did not faithfully 

represent local population demographics with respect to education and ethnicity. This limits the 

generality of the findings–specifically, the patterns of experience found in this sample might not 

hold in different contexts or populations. However, context‐specific structure in infants’ language 

exposure might facilitate language learning over and above regularities that are evident when 

aggregating over all contexts (Beals, 1997; Roy, Frank, DeCamp, Miller, & Roy, 2015; Roy, 

Frank, & Roy, 2012). Another limitation of the current study is the necessarily somewhat 

arbitrary classification of verbal content types. Further research could attempt to derive a 

“bottom‐up” taxonomy based on raw verbal data, and investigate how much the sequential and 

cross‐modal structure of maternal speech affords unsupervised discovery of content types. 

The current study simplified interactions that unfold over time by studying state 

transitions and concurrent co‐occurrences between utterances and other events. Although a 

lagged analysis of relations between parental speech and infants’ past attention states is 

outside the scope of the study, concurrent relations between infants’ attention state and 

mothers’ speech can also be interpreted as contingent responses to infant state changes. 

However, mothers’ speech might also depend on sequences and durations of infant activities. 

Infants’ object handling, for example, tends to occur later in episodes of shared attention to 

objects, compared to object gaze (Chang et al., 2016; Rohde & Frank, 2014). Therefore, 

another layer of contingency remains to be revealed. Future work also could explore how 
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parents’ discourse patterns are related to infants’ comprehension of specific words or 

constructions, as the current study and related studies have not disaggregated contingencies 

based on the familiarity or novelty of linguistic elements to the infant. In addition, an extension of 

the current study could examine discourse contingencies at multiple ages because parents 

integrate speech into play differently depending on the infant age or developmental status 

(Bornstein et al., 2008; Murphy, 1978). Finally, future research might improve models by adding 

individual differences in caregiver speech (e.g., level of discourse repetitiveness) as a predictor 

of infants’ emerging speech processing fluency or early linguistic knowledge. 

Conclusion 

The current results demonstrate that mothers’ speech to 12‐month‐old infants is 

repetitive at multiple levels of analysis, is sequentially structured, and is contingently related to 

infants’ exploratory activity. All of the syntactic, thematic, and lexical content types that we 

examined tended to occur preferentially in specific positions in the discourse. Also, most types 

showed significant associations with infants’ ongoing gaze and/or manual activity, even when 

ignoring specific word‐object pairings. Yet the specific predictors of each utterance content type 

varied: some types were more repetitive, others more sequential, others more responsive to 

infant actions. This richly structured input thus provides opportunities for infants to distinguish 

between pragmatic functions of different content types in caregiver speech. The patterns we 

identified might also reflect mothers’ efforts to ensure that informative utterances occurred at 

times when their infant was attentive to the referent object, and therefore might expect 

informative input to quickly follow. If infants are sensitive to these regularities, then the diversity 

of structured discourse contexts might constitute a source of information that facilitates, rather 

than complicates, learning. Future research on language acquisition should account for such 

information within connected, multimodal, interactive discourse, thereby more fully explicating 

the mechanisms by which social interaction endows infants’ linguistic experience with an 

organizing structure. 
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Figure 2.1. Sample screen-shots of mother-infant dyads in free play with standardized toy sets. 
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Figure 2.2. Predictive relations between content types in consecutive utterances. Row indicates 
content types present in the preceding utterance. Column indicates content type being 
predicted. Values shown are coefficients representing the difference in log-odds when the 
previous content type is present. †p < 0.05, *p < 0.01, and **p < 0.001. Significance is only 
shown for positive predictors. Dec: DECLARATIVE; Imp: IMPERATIVE; Que: QUESTION; 
Dsc: DESCRIPTION; Att: ATTENTION; Act: ACTION; ONm: OBJECT NAME; INm: INFANT’S NAME; 
Aff: AFFIRMATION; Soc: SOCIAL ROUTINE 
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Figure 2.3. Graph of above-chance transitions in mothers’ discourse. Significant predictive 
relations are shown as bold arrows. Then, smaller dashed arrows were added for the highest 
remaining coefficients until the graph was fully connected. 
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Figure 2.4. Estimated frequency of each content type as a function of infant gaze target type, 
evaluated at mean values of previous-utterance predictors. Error bars represent the standard 
error of the fitted value. Significance symbols in the panel titles represent likelihood ratio tests 
for the effect of infant gaze target in the linear mixed effects model. Significant symbols within 
the panels represent pairwise post hoc tests. †p < 0.05, *p < 0.01, and **p < 0.001. 
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Figure 2.5. Estimated frequency of each content type as a function of infant object handling, 
evaluated at mean values of previous-utterance predictors. Error bars represent the standard 
error of the fitted values. Significance symbols in the panel titles represent likelihood ratio tests 
for the effect of infant object handling in the linear mixed effects model. Significance symbols 
within the panels represent pairwise post hoc tests. †p < 0.05, *p < 0.01, and **p < 0.001. 
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Figure 2.6. Content types plotted by degree of predictability (AUC) when predicting using the 
infant’s gaze and object handling state or the previous utterance content. Dashed lines indicate 
chance prediction. 
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Table 2.1. Discourse content types, definitions of types, and a representative utterance. 
Because content types are not mutually exclusive, the right-most column indicates additional 
content types that were tagged in the example utterance, if any. 

 

 

 

 

 

 

 

 

 



 104 

Table 2.2. Frequency of utterance content types 

 

  



 105 

Table 2.3. Proportion of time spent in gaze/object handling states 

 

Table 2.4. Significant sequential structure in mothers’ discourse. Effects are listed if their 
coefficients were positive with p < 0.01. 
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Table 2.5. Effects of time between utterances and infant attention shifts on probability of content 
type repeats. 

 

Table 2.6. Area under curve scores for logistic regression models predicting each utterance 
content type. 0.50 represents chance performance, and 1.0 represents perfect accuracy. 
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CHAPTER 3: Adjacent and Non-Adjacent Word Contexts Both Predict Age of Acquisition of 

English Words: A Distributional Corpus Analysis of Child-directed Speech 

Abstract 

Children show a remarkable degree of consistency in learning some words earlier than 

others. What patterns of word usage predict variations among words in age of acquisition? We 

use distributional analysis of a naturalistic corpus of child-directed speech to create quantitative 

features representing natural variability in word contexts. We evaluate two sets of features: one 

set is generated from the distribution of words into frames defined by the two adjacent words. 

These features primarily encode syntactic aspects of word usage. The other set is generated 

from non-adjacent co-occurrences between words. These features encode complementary 

thematic aspects of word usage. Regression models using these distributional features to 

predict age of acquisition of 656 English words indicate that both types of features improve 

predictions over simpler models based on frequency and appearance in salient or simple 

utterance contexts. Syntactic features were stronger predictors of children's production than 

comprehension, whereas thematic features were stronger predictors of comprehension. Overall, 

earlier acquisition was predicted by features representing frames that select for nouns and 

verbs, and by thematic content related to food and face-to-face play topics; later acquisition was 

predicted by features representing frames that select for pronouns and question words, and by 

content related to narratives and object play. 

Introduction 

Infants’ linguistic, social, and physical environment provides a wide array of features that 

might support early word learning. How do the myriad cues and correlations in the world 

combine to determine which words are learned, and when? Laboratory studies have 

demonstrated, at various ages and situations, influences of factors including dominance of the 

word’s referent in the child’s visual field (Yu & Smith, 2012), speech-motion synchrony (Gogate 

& Bahrick, 1998), children’s biases to attend preferentially to relevant cues such as object shape 
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(Landau, Smith & Jones, 1988), discourse context (Horowitz & Frank, 2015; Sullivan & Barner, 

2016), and the distribution of exposures over time (Childers & Tomasello, 2002; Vlach & 

Johnson, 2013). However, laboratory studies typically involve mapping novel nouns to novel 

toys during a single experimental session, which is not representative of normal word 

acquisition. During typical language acquisition, early-learned words represent diverse syntactic 

and semantic types and are experienced repeatedly over weeks or months. To understand the 

role of these experiences in word learning, researchers have related the normative age of 

acquisition (AoA) of words to measures of their frequency and usage patterns in infant-directed 

speech, as reviewed below. 

Predicting Age of Acquisition 

Recently, large databases of infants’ vocabularies collected using the MacArthur-Bates 

Communicative Development Inventory (CDI; Fenson, Marchman, Thal, Dale, & Reznick, 2007) 

have made it easier to study the normative AoA of individual words (Frank, Braginsky, 

Yurovsky, & Marchman, 2017). Infant-directed speech corpora such as those in CHILDES 

(MacWhinney, 2014) make it possible to derive predictors from real-world usage patterns. Using 

these data, Braginsky et al. found that normative ages of comprehension and production in 

seven languages are predicted by high word frequency, low mean length of utterance (MLU), 

frequent appearance in isolated or utterance-final positions, high concreteness ratings, and high 

“babiness” ratings by adults–i.e., relevance of a word to babies (Braginsky, Yurovsky, 

Marchman, & Frank, 2016, 2017). Machine-extracted prosodic features also predict age of 

comprehension (Frermann & Frank, 2017). Swingley and Humphrey (2018) extended these 

analyses to predict individual differences. By pairing individual children’s CDIs with samples of 

their parents’ speech, they found that word frequency, frequency of occurrence in isolation, 

shorter utterance length, and longer spoken duration predicted both comprehension and 

production, and these predictors were stronger for matched mother-infant pairs than for 

randomized pairings of mothers and infants. Another study used dense data collected for a 
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single child, finding that word production was predicted by frequency of a word in the input and 

by distinctiveness of a word’s spatial, temporal, and topic distribution (Roy, Frank, DeCamp, 

Miller, & Roy, 2015). 

The above factors illustrate that words can be easier or harder to learn in a few distinct 

ways: some predictors relate to the sheer number of opportunities to learn the word, some 

relate to the conceptual accessibility of the word meanings for young children, and some relate 

to the position of words within a linguistic context. Within the last category, only a few simple 

predictors have been evaluated. These show that simplicity of the sentential context, 

distinctiveness of contexts, and placement at utterance boundaries, all positively predict word 

learning. However, data-driven distributional representations of word usage patterns have not 

been evaluated as predictors of AoA, even though distributional models have been proposed as 

mechanisms for infants to learn about word class (Monaghan, Chater, & Christiansen, 2005; 

Clair, Monaghan, & Christiansen, 2010) and verb semantics (Laakso & Smith, 2007), and can 

successfully represent semantic similarity and categorical structure when trained on infant-

directed speech (Huebner & Willits, 2018).  

The goal of the current study is to investigate whether, and how, distributional properties 

of words contribute to predicting age of acquisition. Distributional features are derived from co-

occurrences among words or word sequences, but might reflect, to varying degrees, different 

types of information including syntactic, thematic, and taxonomic relations among words 

(Huebner & Willits, 2018). Therefore, a second goal of the study is to design and extract a set of 

distributional features from real-world language use that segregates information types, so that 

the contributions of these types to lexical development can be evaluated separately. One simple 

way to segregate distributional features into two complementary streams is by tracking 

distributional statistics at different time scales. That is, a word’s distribution can be described 

both in terms of adjacency relations such as transition probabilities or simple constructions 

across successive words, and in terms of non-adjacent co-occurrence with other words in a 
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wider scope. We expect this simple distinction to correlate with some higher-level conceptual 

boundaries: specifically, we expect that adjacency relations will primarily capture word class and 

syntactic information, whereas non-adjacent co-occurrence will primarily reflect thematic 

information. In the next section, we review the strengths and limitations of existing methods of 

generating distributional semantic representations of words. 

Distributional Word Representations 

General-purpose distributional lexical representations have a history of effective use in 

natural language processing, and therefore serve as a starting point for the design of 

developmentally relevant distributional representations. Three main approaches can be 

distinguished. One family of models represents words by their distribution across large-scale 

contextual units. These contexts can be defined by document boundaries in the training corpus, 

as in latent semantic analysis (Dumais, 2004), or they may represent topics inferred by a 

generative model, as in latent Dirichlet allocation (Blei, Ng, & Jordan, 2003). A second group of 

models represents words by their co-occurrence rates with other words. This approach was 

introduced as the Hyperspace Analogue to Language (Lund & Burgess, 1996), and statistical 

refinements such as COALS (Rohde, Gonnerman, & Plaut, 2004). Recently, new levels of 

performance on large datasets have been achieved by recasting this approach as a neural 

network, as in Skip-gram (Mikolov, Chen, Corrado & Dean, 2013; Mikolov, Sutskever, Chen, 

Corrado & Dean, 2013). Finally, a third group of models learns to predict sequences of words, 

such that its internal states after training can be interpreted as word representations. This group 

includes recurrent neural networks (Elman, 1990) and their refinements such as LSTM 

(Hochreiter & Schmidhuber, 1997), Gated Recurrent Unit (Chung, Gulcehre, Cho, & Bengio, 

2014), and Delta-RNN (Ororbia, Mikolov, & Reitter, 2017). Despite their successes, existing 

distributional models suffer from a few drawbacks. Models that represent words as points in a 

vector space have trouble accounting for the fact that pairwise word similarity is not a valid 

metric: word A may be similar to word B, and word B may be similar to word C in an unrelated 
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way, without implying that words A and C are at all similar (e.g., Barclay, Bransford, Franks, 

McCarreli & Nitsch, 1974; Griffiths, Steyvers, & Tenenbaum, 2007; Medin & Shoben, 1988). 

Another potential problem is that computational models often achieve good performance by 

processing vast amounts of data at arbitrary timescales and memory loads, which are 

unrealistic models of human infants’ learning, and might be counterproductive for certain kinds 

of learning (Elman, 1993; Newport, 1990; Phillips & Pearl, 2015). 

Corpus linguistic studies from a developmental perspective have demonstrated that 

adjacent distributional regularities encode rich information about syntax. For instance, many 

frequent frames, consisting of pairs of flanking words for a target word, are strongly selective for 

nouns and verbs, and have been proposed to form the basis for early syntactic learning (Mintz, 

2003). Frames are an attractive measure for predicting AoA of specific words, for several 

reasons. They can be detected in corpora of child-directed speech, and they encode information 

about word class and usage without requiring advanced syntactic knowledge. Frames might 

support word learning in several ways. Frequent frames likely facilitate word segmentation by 

demarcating the boundaries of the framed word, increasing the probability that it will be further 

processed. Another possibility is that frames help children infer word meaning by embedding 

words in familiar and meaningful constructions (see Goldberg, 2003; Gleitman, 1990). A third 

possibility is that frequent frames might facilitate production if infants acquire productive 

language in a construction-specific manner (Tomasello, 2000; Cameron-Faulkner, Lieven, & 

Tomasello, 2003): if producing a word depends not only on inferring its meaning, but also on 

having a construction in which it is known to occur, then the words that appear most often in the 

earliest-acquired productive constructions are likely to be produced first. Finally, appearing in 

one or a few specific frames might be a proxy for a word’s syntactic class. In sum, features 

derived from word-frame co-occurrence statistics merit closer study because frames are thought 

to be relevant for infant learning, they address open questions about interactions between 
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syntactic and lexical learning, and they can be derived exclusively from the words immediately 

adjacent to each target word. 

In contrast to adjacency relations such as frames, it has been noted that models based 

on word-co-occurrences, such as Skip-gram, tend to be biased toward thematic rather than 

syntactic or taxonomic information (Huebner & Willits, 2018). To further emphasize thematic 

information at the expense of syntax, a model based on word co-occurrence can be trained 

using a sliding window that counts co-occurrences between nearby words, but not adjacent 

ones. The representation modified in this way is a simple, associative model of coarse-grained 

distributional information whose input is complementary to that of frames.  

Because co-occurrences are derived from bottom-up distributional statistics in infant-

directed speech, they reflect the structure of naturalistic language environments more directly 

than theory-based measures of grammatical class and word meaning that have been used to 

predict acquisition (e.g. Braginsky et al., 2016; 2017). Thus, taken together we expect frames 

and non-adjacent co-occurrences to reflect primarily syntactic and thematic aspects of word 

meaning, respectively, and to generate a rich set of quantitative features that jointly predict AoA 

better than either level of information alone. 

Current Study 

The current study addresses how distributional properties of words predict AoA of 

individual words. We derive quantitative features from a large corpus using two types of 

information: syntactic features are derived from distribution of words in frames, and thematic 

features are derived from non-adjacent co-occurrences between words. We first demonstrate 

that these two types of features succeed in capturing different levels of structure in the lexicon, 

both qualitatively and by quantifying the extent to which they distinguish between syntactic and 

thematic word classes as defined by the groupings on the CDI. Then, we evaluate how well 

normative AoA of words is predicted by the two types of distributional features, using CDI 

production norms as the primary measure of AoA. We also used the features to predict CDI 
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comprehension norms to increase generality and comparability with previous studies. We fit 

models predicting AoA using a set of simple word-use metrics that have been previously 

described (i.e., frequency, MLU, final frequency, solo frequency; Braginsky et al., 2016). We 

then investigate how these models are improved by including the syntactic and/or thematic 

distributional features.  

Methods 

Corpus 

The corpus was constructed by downloading all American English transcripts from 

CHILDES (MacWhinney, 2014). These were narrowed down to those containing speech by 

primary caregivers directed to typically-developing children aged 48 months or younger. Special 

codes indicating non-words were removed. All punctuation was removed except for utterance 

boundary tokens. Dialectal, spelling, word segmentation, contractions, and transcription-style 

variants were standardized. Whenever possible, we attempted to standardize variants so that 

each CDI item corresponded to a single word type in the corpus. Finally, we removed common 

inflections and contractions (-ing, -ed, -s, ‘ll, ‘ve, ‘m, ‘re, -n’t), leaving word lemmas. The 

resulting corpus contained 952,564 utterances and 5,083,634 tokens from 3377 transcribed 

sessions (range: 2 - 11,722 tokens per recording session) of 2093 children (range: 2 - 462,442 

tokens per child). 

2.2. Age of Production 

CDI data were obtained from Wordbank (Frank et al., 2017). American English Words 

and Gestures (age 8-18) and Words and Sentences (age 16-30) were both used. For each age, 

the proportion of children producing the word was calculated. We then fit a logistic curve to the 

proportion, constraining the proportion to approach 1 eventually. The age at which this curve 

crossed .5 was considered the age of production for the word. For model fitting, values were 

normalized to have zero mean and unit variance. Three items were dropped because they 

consisted of family-specific names; nine were dropped because they were phrases that could 
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not be segmented as distinct units in the corpus; and two were dropped because they are sex-

specific body parts and were very infrequent in the corpus. This left scores for 656 words. 

Age of Comprehension 

Comprehension scores were calculated the same way as production scores, except that 

only the shorter Words and Gestures form includes a comprehension checklist (see Fenson et 

al. 2007). Thus, data were available for a smaller set of words and ages. In addition to the items 

that were dropped from the production dataset, logistic curves could not be fit to four words 

(brother, sister, mommy, daddy) because no increasing trend was present over the range 8-18 

months. This resulted in scores for 383 words. 

Syntactic Features 

 Frequent frames were defined as pairs of words (including the utterance boundary 

marker, so that the framed word could be in utterance-initial or -final position) that co-occurred, 

separated by one word, at least 1000 times in the corpus. This cutoff was chosen to eliminate 

most frames involving content words specific to a theme or activity, and those that occurred too 

infrequently to be familiar to most children. This yielded 403 frequent frames. All other frames 

were collapsed into a single “other” frame, representing rare or unknown frames. For each 

target word, we then constructed a vector of the number of times the word occurred in each 

frame. Thus, 656 words’ occurrences in 404 frames were counted, yielding a 656 x 404 matrix. 

Values were first normalized so that each word’s features (i.e., frame-occurrences) summed to 

1, and then these features were scaled to have a mean of zero and variance of 1. Each row of 

the resulting matrix thus consisted of a 404-dimensional representation of a word, where each 

dimension represents its tendency to occur in a specific frame. To generate a smaller set of 

features, we applied principal components analysis (PCA). This operation produces a set of 

abstract features representing combinations of frames that best explain the variability in the 

data, subject to the constraint that they are uncorrelated with each other. For instance, all 

frames that allow mainly nouns are likely to contribute to a single principal component (PC) that 
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represents, roughly, the affinity of a word for “noun” contexts. The resulting principal 

components (PCs) are ordered by amount of variance explained, and by selecting the first few 

PCs, we obtain a low-dimensional set of syntactic features that capture the most divergent and 

systematic differences in the typical frame-contexts of different words. Finally, to improve 

robustness of regressions, PCs were winsorized, clipping values more extreme than 10 times 

the mean absolute deviation from the median. We focus on the first 10 PCs for analysis.  

Thematic Features 

 Thematic (i.e., non-adjacent) features were generated using a version of the COALS 

model, based on correlations between words (Rohde et al., 2004). This model was chosen for 

its simplicity and lack of domain- or task-specific assumptions, and because it represents co-

occurrences between words as statistical associations, in accordance with statistical learning 

theories of language acquisition (Romberg & Saffran, 2010; Smith, Suanda, & Yu, 2014; 

Erickson & Thiessen, 2015). Context words were defined as any word that occurred at least 

1000 times in the corpus (this cutoff eliminated rare context words that were unlikely to be 

familiar to children). 1376 distinct context words were thus identified. For each target word, we 

counted the number of times it co-occurred with each context word, using a sliding window to 

count co-occurrences that were within five flanking words but not adjacent. This resulted in a 

656 x 1376 matrix. Co-occurrence frequencies were then normalized to represent correlations, 

and negative values were set to zero (because the model is only interested in finding regular 

associations between words). Finally, values were square-root transformed (this transformation 

is mathematically arbitrary, but as Rohde et al. (2004) note, it increases the weight of weak 

associations between words relative to strong ones, thereby increasing sensitivity to patterns in 

a limited dataset, and it puts the values on a more interpretable scale). Each row of the matrix 

thus consists of a 1376-dimensional representation of a word, where each dimension represents 

its tendency to co-occur non-adjacently with a specific context word. As above, we applied PCA 

to produce abstract features representing combinations of context words that explain the most 
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variability among target words, and PCs were winsorized in the same way. This produces a set 

of 10 thematic features that are comparable in structure, but complementary in content, to the 

syntactic features.  

Other Metrics 

Following Braginsky et al. (2016), we computed frequency, mean length of utterance 

(MLU), solo frequency, and final frequency. Frequency was calculated as the logarithm of the 

number of times each word appeared in the corpus. Stemming and standardization described 

above ensured that this frequency represents that of the word overall and not just the specific 

form listed in the CDI. MLU was calculated as the mean number of words in utterances 

containing each word, where utterance boundaries were defined by the original transcription, 

and did not always correspond to grammatical sentences. Solo frequency and final frequency 

were calculated by taking the logarithm of the number of times each word appeared in a one-

word utterance or as the last word of an utterance respectively, and finally taking the residual 

with respect to log frequency. 

Evaluation 

 We first evaluate the extent to which syntactic and thematic features encode distinct 

information. We investigate this qualitatively by reporting the frames/context words that 

contribute most to the top PCs, and the words with the highest and lowest values on each PC. 

We then quantitatively evaluate the extent to which each PC distinguishes among either 

syntactic or thematic word categories, as defined by the groupings on the CDI, and confirm that 

the syntactic and thematic distributional features differentiate the syntactic and thematic word 

groups, as hypothesized. 

 We then fit multiple linear regression models predicting both age of production and age 

of comprehension for the target words. First, a baseline model included frequency, MLU, solo 

frequency, and final frequency. Next, a full model including all features as predictors. Finally, we 

fit models with the baseline and syntactic features, the baseline and thematic features, and the 
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syntactic and thematic features, leaving out one feature set at a time. Models are evaluated 

using R2 and adjusted R2, and significance for each predictor set was evaluated using likelihood 

ratio tests between the full model and the model without the predictors. Finally, predictive 

robustness was evaluated using 10-fold cross-validation to estimate the root mean squared 

error for predicted AoA of words not used to fit the model parameters. 

We additionally repeated the analysis with different values (increasing or decreasing by 

a factor of 2) for minimum feature frequency, number of PCs, and winsorization levels to ensure 

that the overall model fits are not strongly dependent on the specific values chosen.  

Results 

We examined the top principal components of the syntactic (adjacent) and thematic 

(non-adjacent) distributional features. First, we examined scree plots to validate the number of 

PCs selected for each feature type (Figure 3.1). These plots show the proportion of the total 

variance in the raw features that is explained by each additional syntactic and thematic principal 

component. Inspection of the plots shows that the proportion of variance explained levels off 

around 5 to 10 PCs, slightly more sharply for the syntactic features. Therefore, we conduct the 

main analyses using the first 10 PCs, but also compare the results using 5 or 20 PCs for 

robustness. 

Next, we inspected the top PCs to determine whether they qualitatively capture mainly 

syntactic and thematic distinctions, respectively. Table 3.1 shows the words with lowest and 

highest values, and the frames with lowest and highest weights, for the first ten syntactic PCs.  

Examining the sets of words frames qualitatively, PC1 separates pronoun frames from 

noun and verb frames, and PC2 separates nouns from verbs. Thus, the first two PCs encode 

distinctions among three major word classes. PC3 selects for modal verbs that appear between 

a pronoun and a verb. PC4 distinguishes between modal verbs and question words. PC5 seems 

to encode the difference between you and other pronouns. PC6 selects for adjectives, PC8 
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selects for helping verbs, and PC10 seems to encode the difference between don’t and other 

verbs. PC7 and PC9 are difficult to interpret. 

Similarly, Table 3.2 shows for the first ten thematic PCs, the words with lowest and 

highest values, and the context words with lowest and highest weights. PC1 separates words 

that appear in food contexts from words that appear in narrative contexts (some of the extreme 

values occur for low-frequency words with spurious associations, but the context words are 

more stable). PC2 selects for the topic of animals; PC3 and PC4 collectively distinguish 

between object play contexts and talk about the past. PC5 separates object play from 

interpersonal play contexts. PC6 selects for body-related contexts; PC7 separates food from 

object-describing contexts; PC8 separates clothing from vehicle contexts. PC9 seems to encode 

additional distinctions between animal-related and narrative contexts, and PC10 selects for 

colors. Taken together, the syntactic features reflect salient aspects of word class, whereas the 

thematic features represent different topics and activities.   We next verified that the syntactic 

and thematic PCs quantitatively discriminated between different syntactic and thematic groups 

of words, respectively. For this purpose, we used the word categories on the CDI. We collapsed 

the categories into a subset that primarily reflects syntactic distinctions, and a subset that 

primarily reflects thematic distinctions. The “syntactic” categories were quantifiers, locations, 

helping verbs, connecting words, descriptive words, action words, pronouns, question words, 

and the eleven noun categories (combined into a single set). Time words, sounds, and 

games/routines were dropped because they were not syntactically homogeneous. The 

“thematic” categories were the eleven noun categories taken separately: vehicles, animals, 

body parts, food/drink, people, outside, toys, furniture/rooms, household objects, places, and 

clothing. For each PC, we calculated the F-statistic reflecting the ratio of between-category and 

within-category variance for each category set. Figure 3.2 shows the F-statistics for the first 10 

PCs in each feature type for both category sets. Frame features reflected syntactic categories 

significantly better than thematic categories (median = 50.9 for syntactic categories, median = 
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9.9 for thematic categories; Wilcoxon test, p < .001; rank-biserial correlation = .96), and co-

occurrence features reflected thematic categories significantly better than syntactic categories 

(median = 8.3 for syntactic categories, median = 28.8 for thematic categories; Wilcoxon test, p 

< .005, rank-biserial correlation = .64). For each feature type, 9 out of 10 PCs were consistent 

with this distinction. This confirms that adjacent context better predicts syntactic class, whereas 

non-adjacent context better predicts thematic relations within a syntactic class (nouns). 

 Having established that the two feature sets differentiate distinct aspects of word 

semantics, we then used the distributional features to predict age of production and 

comprehension of words using linear regression models. For both production and 

comprehension, we evaluated a baseline model using frequency, MLU, solo frequency, and final 

frequency, a full model including all features, and models with only the baseline and syntactic 

features, the baseline and thematic features, and the syntactic and thematic features, leaving 

out one set of features at a time. Models were evaluated using R2, adjusted R2, and root mean 

squared error (RMSE) under 10-fold cross-validation (Table 3.3). 

 For both comprehension and production, the full model (RMSE = 2.83 months for 

comprehension, 2.49 months for production) performed substantially better than the baseline 

model (RMSE = 3.31 months for comprehension, 2.84 months for production). Moreover, for 

both comprehension and production, the model fit was significantly degraded when any of the 

three feature sets was removed (likelihood ratio tests, ps < .001). For both comprehension and 

production, removing the baseline features caused the biggest increase in prediction error 

relative to the full model. However, the relative importance of syntactic and thematic features 

depended on the AoA measure: for comprehension, prediction error was higher for the model 

without thematic features (RMSE = 3.01 months) than for the model without syntactic features 

(RMSE = 2.97 months), whereas for production, prediction error was higher for the model 

without syntactic features (RMSE = 2.68 months overall, 2.71 for the subset of words that are 

on the comprehension form) than for the model without thematic features (RMSE = 2.57 months 
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overall, 2.51 months for the comprehension-form subset). This pattern suggests that syntactic 

features are relatively more important for production, whereas thematic features are more 

important for comprehension. Finally, error was higher for comprehension (RMSE = 2.83 

months) than production (RMSE = 2.49 months overall, 2.46 on the comprehension-form 

subset), though it is unclear whether this is due to weaker predictive relations or to noisier data 

due to the difficulty of assessing comprehension in infants. Predictions of the full model of age 

of production and comprehension of individual words were plotted against actual AoA values for 

the production corpus and the comprehension corpus (Figure 3.3). 

To further characterize the contributions of individual syntactic and thematic features to 

the AoA values, we also report the estimated weights for each feature in the full models in 

Tables 3.1 and 3.2. These are visualized in Figure 3.4 for production (top) and comprehension 

(bottom) data. Accuracy of estimation of the contribution of each individual feature is decreased 

when predictors are correlated; therefore, we calculated the variance inflation factor for each 

feature in the full production and comprehension models (Tables B.1, B.2). VIFs ranged from 

1.07 to 7.34 in the production model, and from 1.19 to 5.98 in the comprehension model, 

indicating a moderate amount of multicollinearity. 

Finally, to test whether our results were dependent on the specific choices for numerical 

parameters, we repeated all analyses with different values (increasing or decreasing by a factor 

of 2) for minimum feature frequency, number of PCs, and winsorization levels. The overall 

pattern of model fits was similar in all cases (Tables B.3, B.4, B.5). Performance was slightly 

degraded by increasing the minimum feature frequency, suggesting that less-common items 

add noise to the PCs. Performance was also slightly degraded by increasing the winsorization 

threshold, suggesting that a few extreme PC values can obscure the information encoded in 

smaller differences among other words. Changing the number of PCs had different effects 

depending on the model: Decreasing the number of PCs from 10 to 5 resulted in worse 

performance of all models, although the model with baseline and syntactic features was 
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relatively less affected, which is consistent with the smaller coefficients on syntactic features 6-

10. Increasing the number of PCS from 10 to 20 improved predictions slightly for production, but 

degraded predictions for comprehension. However, increasing the number of PCs did not affect 

the pattern of relative performance among models. Thus, models using 10 PCs avoid overfitting 

while encoding most of the relevant information in the word usage distributions. 

Discussion 

 In the current paper, we introduce a novel distributional representation of word usage in 

child-directed speech. By deriving separate representations of words’ distribution over frames 

and (non-adjacent) co-occurrences between words, we produce two sets of features that 

capture word usage patterns at different timescales. These features primarily encode syntactic 

and thematic information, respectively, which we confirm both by qualitative inspection of the 

feature content and by comparing feature values across syntactic and thematic word groups. 

Furthermore, the features are consistent with a simple model in which learners track the co-

occurrences of frequent items in naturalistic input. 

We then examine the degree to which each feature type predicted children’s normative 

age of acquisition (AoA) of English words, compared to a baseline model that includes 

previously identified word usage features including mean length of utterance and three 

frequency-based measures (Braginsky et al., 2016). The baseline features, especially word 

frequency and solo frequency, were consistently among the strongest predictors in all models, 

suggesting that a word’s distribution over usage contexts complements but does not supersede 

overall frequency and frequency in salient contexts. Nonetheless, for both production and 

comprehension, both distributional feature types predicted AoA over and above the baseline 

model. The syntactic and thematic feature types were complementary, in that a model that 

includes both feature types predicted AoA over and above either feature type alone. Together, 

syntactic and thematic distributional features explained 15% more variance in production AoA 

than the baseline model, and they explained 27% more variance in comprehension. These 
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improvements were robust both to corrections for the number of parameters, and to cross-

validation. 

Although comprehension and production showed similar patterns of incremental 

predictive utility for distributional features over and above frequency-based (baseline) features, 

age of comprehension was predicted less accurately overall than age of production. It is likely 

that comprehension data are inherently noisier due to limitations in parent report accuracy 

(Feldman et al., 2000; Oliver et al., 2003; Eriksson, Westerlund, & Berglund, 2002; Tomasello & 

Mervis, 1994). Syntactic features were a stronger predictor for production, whereas thematic 

features were a stronger predictor for comprehension. This suggests that availability of syntactic 

constructions (and related cognitive resources such as verbal working memory) might be a 

limiting factor in children’s acquisition of words for production (Arnon & Clark, 2011). The 

relative influence of individual features was nevertheless mostly consistent between 

comprehension and production (see Figure 3.4). 

Different types of distributional features contributed to AoA in different ways. Frequency, 

solo frequency, and final frequency were consistently strong predictors, which suggest that a 

word’s inherent salience in the input may contribute to learning rate, possibly in several ways -- 

for example, solo frequency eliminates the problem of segmentation and suggests that the word 

can be meaningful without requiring the learner to represent complex relations among multiple 

entities (Brent & Siskind, 2001). Consistently with this, concrete nouns and interactive social 

words (e.g. “hi”) are prevalent among children’s first learned words, as are frozen multi-word 

phrases that express a discrete meaning and segment as a unit (Lieven, Pine & Barnes, 1992; 

Bates et al., 1994). In contrast, final frequency suggests a role of perceptual salience and/or 

working memory limitations in learning (Fernald & Mazzie, 1991). Among the syntactic features, 

the strongest effects indicated that content words (nouns and verbs) were learned earlier than 

pronouns, and that question words were produced late, consistent with previous studies of 

vocabulary composition by word class (e.g. Caselli et al., 1995; Bates et al., 1994). Among the 
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thematic features, the strongest effects indicated that words used in food contexts were learned 

earlier than words used in narrative or descriptive contexts, and that words used in face-to-face 

interpersonal play were learned earlier than words used in object play. These patterns are 

consistent with the limited sentence complexity of early production, as well as the well-

established developmental progression from dyadic to triadic and finally displaced reference 

(Adamson & Bakeman, 1991; de Barbaro, Johnson, Forster, & Deák, 2016; Sachs, 1983; 

Morford & Goldin-Meadow, 1997). 

The predictive utility of these different types of distributional features derived from 

naturalistic caregiver speech, in addition to frequency-based features, suggests that 

distributional contextual information might play a role in infants’ word learning. This identifies a 

gap in much of the research on word learning, which has focused more prominently on the 

referential transparency of object-naming events (Trueswell et al., 2016; Medina, Snedeker, 

Trueswell, & Gleitman, 2011; Yu & Smith, 2012), social cues in naming (Frank, Tenenbaum, & 

Fernald, 2013), and children’s biases about word (mostly noun) meanings (Markman, 1990; 

Deák, 2000). Thus far, these explanations of word learning have been complementary, in that 

the relevant factors are typically manipulated experimentally but are not assessed or estimated 

from naturalistic data. Conversely, frequency and distributional data can be computed from 

corpus data but not assessed experimentally in real-time learning. Furthermore, because 

experimental and distributional factors have typically been evaluated independently, it has been 

difficult to meaningfully compare the relative importance of each type of factor, alone or jointly. 

Thus far, this methodological divide has prevented us from understanding interactions among 

factors in word learning. However, new experimental tests of distributional factors identified in 

the current study and related work, as well as dense recording of social cues and visual-speech 

co-occurrences enabled by new technology (Smith, Yu, Yoshida, & Fausey, 2015) should make 

it possible to estimate word learning as a function of multiple relevant factors in the local 
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embodied social environment as well as the more protracted accumulation of distributed 

linguistic patterns. 

Our bottom-up approach to deriving word features aims to be less theory-laden and 

assumption-dependent than methods that attempt to characterize word syntax or meaning 

directly, and by representing words based on their usage in actual child-directed speech we can 

be more confident that the features are observable by infants and children. Of course, many 

other types of word features vary with syntactic class–e.g., nouns tend to be more concrete than 

other words (Brysbaert, Warriner, & Kuperman, 2015). Words also vary in their degree of 

perceptual grounding. For example, early-acquired nouns tend to refer to objects that occur 

frequently in infants’ visual environments (Clerkin, Hart, Rehg, Yu, & Smith, 2017), and object-

naming events vary in their referential clarity (Cartmill et al., 2013). Social cues, such as 

caregivers’ gaze and pointing may also vary in frequency across different words and 

constructions (Murphy, 1978; Chang & Deák, 2019; Mason, Kirkpatrick, Schwade, & Goldstein, 

2018), and words vary in their spatial and temporal distinctiveness (Roy et al., 2015).  In our 

view, it is unlikely that distributional features exert their influence directly and independently of 

other cues. Instead, they provide us with a way to identify those contexts and constructions that 

most reliably afford word learning. Future research might then determine how those events 

support learning. It is likely that no single information source dominates; rather, the current 

results are consistent with the possibility that multiple correlated features in different modalities 

and in the language input conspire to distinguish groups of words. (Yu & Ballard, 2007; Sahni, 

Seidenberg, & Saffran, 2010; Bhatt, Wilk, Hill, & Rovee-Collier, 2004). Indeed, it might be the 

quantity of correlated features, rather than their specific type, that is most important. Thus, it 

might be possible to achieve comparable performance in predicting age of acquisition using 

independent feature sets such as distributional, acoustic, visual, and other features. As more 

modalities are added, redundant predictors might converge to the same set of words that occur 

frequently in distinctive, salient, and referentially transparent contexts.  
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It is important to note that distributional features may be proxies for other correlated 

cues, so that correlations between distributional features and AoA do not necessarily imply that 

children learn by tracking word context distributions. We designed our features to differentiate 

words by syntactic class and by thematic/activity contexts. Therefore, we cannot determine how 

much our effects depend on the distributional features we measured as opposed to the 

associated syntactic classes and semantic features of words, which children might detect in 

other ways. However, distributional features might help to identify precisely which syntactic and 

semantic distinctions matter for word learning, thereby contributing to, rather than detracting 

from, theories of word learning based on other types of more abstract features. Future research 

might further distinguish the contributions of word distributions by computing distributional 

features for each child based on their individual language input, rather than combining data from 

many children. By focusing on the differences in distributional features between children, it 

would thus be possible to eliminate any confounding effect of word features, such as 

grammatical class or concreteness, that are shared within a language community. 

By measuring individual differences in exposure to words in syntactic and thematic 

contexts, future work might also identify sources of individual differences in vocabulary size and 

composition. It might be possible to measure the degree to which a caregiver’s speech style 

supports word learning by characterizing how often they use words in contexts that are most 

strongly associated with word learning. Future research could investigate whether such 

measures, derived from actual associations between word usage and children’s learning, can 

supplement, or even outperform existing summary measures of caregivers’ speech quantity and 

style in predicting children’s vocabulary outcomes (Weisleder & Fernald, 2013; Tamis-LeMonda, 

Kuchirko, & Song, 2014).  

The current study is subject to several limitations. Our measures of caregiver word use 

and AoA data were taken from disjoint samples of children. The caregiver corpora come from a 

biased sample of situations recorded by researchers, and so it is not clear how faithfully the 
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corpora represent natural input to English-learning infants. Conversely, the AoA estimates are 

flawed by virtue of their sole basis in parental reports, which have documented limitations as 

noted above. Another limitation is that the current study treats AoA only as a population 

average. It is not known whether different features increase the probability of acquisition for all 

words across all children equally, or if there are individual differences in style or trajectory of 

acquisition. Yet, it is suggestive that inter-individual variability exists in the distribution of 

syntactic types in children’s vocabulary (Kauschke & Hofmeister, 2002; Bates et al., 1994). 

Moreover, children’s existing vocabulary predicts which new words will be acquired 

subsequently (Beckage & Colunga, 2013). Therefore, understanding AoA as a non-stationary 

function of different types of predictors might enable better description and prediction of this 

variability. Another limitation related to the corpora is that we did not model differences in 

parental word usage as a function of children’s age. Developmental changes in language input 

might induce associations between AoA and specific constructions or contexts. In addition, the 

types of contexts that predict learning might change across children’s age ranges. Finally, a 

further limitation of the generalizability of the results is that languages other than English might 

not have the same degree of correspondence between syntactic constructions and frames 

defined by adjacent words. Frames might be expected to be less informative in languages that 

make greater use of inflectional morphemes and non-adjacent dependencies such as 

agreement, and less use of word order. Thus, although semantic and frequency predictors of 

AoA have been found to be largely consistent in a variety of languages (Braginsky et al., 2017; 

Fourtassi, Bian, & Frank, 2018), it is not known how well the distinction between adjacent and 

non-adjacent contextual information would generalize cross-linguistically. 

Age-of-acquisition norms provide a unique opportunity to investigate how children’s 

environment supports their acquisition of knowledge and competence. The current study 

demonstrates strong and detailed links between words’ usage patterns and AoA. A challenge 

for future research is to integrate these results with studies of individual differences, 
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computational learning theory, and laboratory word learning studies. Under this vision, the goal 

is to integrate micro-level causal, cognitive, and neural explanations for word learning with 

observed developmental trajectories within natural environments. If successful, we believe this 

would serve as a model for how to explain ontogenesis in complex systems generally. 
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Figure 3.1. Scree plots for PCA components. 
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Figure 3.2. Frame versus Co-occurrence PCs segregate syntactic and thematic information. 
Each feature is represented as a line connecting its F-statistic with respect to the syntactic and 
thematic categories on the CDI. Downward sloping lines correspond to features that are more 
diagnostic of syntactic category, and upward sloping lines correspond to features that are more 
diagnostic of thematic category.  
 

 
Figure 3.3. 10-fold cross-validation predicted versus actual AoA (left: production; right: 
comprehension) for all words. 
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Figure 3.4. Feature weights (top: production; bottom: comprehension). Distributional feature 
signs are chosen so that higher feature values predict earlier production; i.e., negative weights 
(plotted up). Therefore, for comprehension weights, bars pointing up represent coefficients with 
the same sign as those for production, whereas bars pointing down represent coefficients with 
opposite sign. Error bars indicate standard errors of the coefficient estimates. 
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Table 3.1: First ten syntactic PCs. Signs are arbitrary, so “highest” is chosen for the extreme 
that predicts lower age of production. Coefficients are reported for the full model including 
baseline predictors and both sets of PCs. Significance is computed with likelihood ratio tests; 
*p<.05, **p< .01, ***p< .001. 
 

PC Highest 
words 

Lowest 
words 

Highest 
weight frames 

Lowest weight 
frames 

Production 
coefficient 

Comprehension 
coefficient 

1 hear 
read 
fix 
feed 

you 
we 
they 
i 

you_the 
to_the 
gonna_the 
you_it 

did_do 
so_can 
._gotta 
are_gonna 

-.53** -.52* 

2 tights 
cheerio 
gas station 
block 

hear 
read 
put 
fix 

the_. 
a_. 
the_in 
your_. 

you_the 
can_it 
wanna_the 
you_it 

-.27 .27 

3 you 
we 
they 
read 

wanna 
gonna 
gotta 
could 

can_put 
do_see 
do_wanna 
do_know 

you_put 
you_get 
you_do 
you_take 

-.09 .06 

4 you 
wanna 
gonna 
gotta 

what 
why 
where 
who 

you_put 
you_take 
you_get 
you_do 

._he 

._she 

._did 

._that 

-.81*** -.47* 

5 she 
he 
we 
mommy 

you 
are 
did 
is 

._was 

._has 
there_is 
._had 

can_say 
do_remember 
do_think 
do_want 

-.48*** -.47* 

6 sick 
thirsty 
cute 
broken 

what 
where 
why 
you 

was_. 
is_. 
he_. 
they_. 

the_. 
a_. 
you_. 
the_in 

-.02 .21 

7 we 
are 
did 
no 

what 
you 
why 
where 

oh_you 
._they 
what_you 
where_you 

._do 

._is 

._did 
know_. 

-.50*** -.93*** 

8 is 
does 
are 
did 

now 
no 
thank you 
wanna 

where_the 
what_it 
what_that 
what_he 

._what 

._let 

._how 

._where 

-.10 -.51* 

9 is 
under 
wanna 
does 

don’t 
why 
what 
are 

it_the 
this_the 
go_the 
what_that 

why_you 
you_like 
you_wanna 
i_know 

-.29* -.14 

10 is 
build 
draw 
need 

don’t 
show 
give 
feed 

we_a 
you_a 
gonna_a 
to_a 

you_wanna 
i_know 
why_you 
i_think 

-.03 .10 
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Table 3.2: First ten thematic PCs. Signs are arbitrary, so “highest” is chosen for the extreme 
that predicts lower age of production. Coefficients are reported for the full model including 
baseline predictors and both sets of PCs. Significance is computed with likelihood ratio tests; 
*p<.05, **p< .01, ***p< .001. 
 

PC Highest 
words 

Lowest 
words 

Highest weight 
context words 

Lowest weight 
context words 

Production 
coefficient 

Comprehension 
coefficient 

1 coke 

ankle 

melon 

green bean 

the 

he 

and 

was 

want 
yummy 

spoon 

milk 

and 

day 

home 

was 

-.48* -.38 

2 cat 
quack 

woof 
who 

you 

i 
eat 
have 

look 

is 

rabbit 
cat 

some 

more 

alright 
i 

-.21 .18 

3 was 

eat 
day 

were 

put 
it 
on 

up 

had 

um 

eat 
was 

whoa 

whoops 

down 

oops 

-.03 .68*** 

4 to 

when 

day 

time 

that 
a 

you 

is 

went 
when 

were 

night 

that 
mhm 

mm 

good 

-.01 .38 

5 hi 
you 

hello 

say 

in 

the 

put 
of 

infant’s name 

hi 
kiss 

aw 

of 
car 
truck 

different 

-.45*** -44** 

6 he 

his 

and 

head 

we 

you 

bye 

wanna 

hurt 
his 

has 

leg 

infant’s name 

later 
book 

bye 

-.10 .34 

7 the 

eat 
down 

bye 

that 
it 
i 
blue 

milk 

high chair 
eat 
feed 

color 
know 

pretty 

blue 

-.67*** -.1.01*** 

8 put 
her 
wash 

and 

it 
push 

car 
stop 

pajama 

dress 

clothes 

shirt 

crash 

stop 

noise 

it 

-.22* -.45** 

9 did 

you 

they 

are 

quack 

i 
moo 

say 

yesterday 

hurt 
park 

got 

rooster 
moo 

cow 

sheep 

-.14 -.16 

10 in 

does 

don’t 
think 

and 

up 

green 

blue 

garage 

because 

does 

truck 

yellow 

green 

blue 

orange 

-.06 -.34* 
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Table 3.3. Model evaluation for different subsets of features. RMSE = Root Mean Squared 
Error, in units of months (evaluated on words not used for training). 
 

Model 
 

R2 Adjusted 

R2
 

Cross-validation 

RMSE 

Production 

    

 

Full .649 .636 2.49  

 

Baseline .498 .495 2.84 

 

Syntactic+Thematic .399 .380 3.31 

 

Baseline+Thematic .571 .561 2.68 

 

Baseline+Syntactic .607 .598 2.57 

Comprehension 

    

 

Full .511 .478 2.83 

 

Baseline .239 .231 3.31 

 

Syntactic+Thematic .382 .347 3.16 

 

Baseline+Thematic .425 .403 2.97 

 

Baseline+Syntactic .391 .368 3.01 

 

 

  



 141 

 

References 

 
Adamson, L. B., & Bakeman, R. (1991). The development of shared attention during infancy. In 
R. Vasta (Ed.), Annals of child development, Vol. 8 (pp. 1-41). London: Jessica Kingsley Press. 
 
Arnon, I., & Clark, E. V. (2011). Why brush your teeth is better than teeth–Children's word 
production is facilitated in familiar sentence-frames. Language Learning and Development, 7(2), 
107-129. 
 
Barclay, J. R., Bransford, J. D., Franks, J. J., McCarreli, N. S., & Nitsch, K. (1974). 
Comprehension and semantic flexibility. Journal of Verbal Learning and Verbal Behavior, 13, 
471-481.  
 
Bates, E., Marchman, V., Thal, D., Fenson, L., Dale, P., Reznick, J. S., ... & Hartung, J. (1994). 
Developmental and stylistic variation in the composition of early vocabulary. Journal of child 

language, 21(1), 85-123. 
 
Beckage, N., & Colunga, E. (2013). Using the words toddlers know now to predict the words 
they will learn next. In Proceedings of the 35th Annual Meeting of the Cognitive Science 

Society. 
 
Bhatt, R. S., Wilk, A., Hill, D., & Rovee-Collier, C. (2004). Correlated attributes and 
categorization in the first half‐year of life. Developmental psychobiology, 44(2), 103-115. 
 
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of machine 

Learning research, 3, 993-1022. 
 
Braginsky, M., Yurovsky, D., Marchman, V. A., & Frank, M. C. (2016). From uh-oh to tomorrow: 
Predicting age of acquisition for early words across languages. In Proceedings of the 38th 

Annual Conference of the Cognitive Science Society. 
 
Braginsky, M., Yurovsky, D., Marchman, V., & Frank, M. C. (2017). Consistency and variability 
in word learning across languages. Retrieved from: https://psyarxiv.com/cg6ah/ 
 
Brent, M. R., & Siskind, J. M. (2001). The role of exposure to isolated words in early vocabulary 
development. Cognition, 81(2), B33-B44. 
 
Brysbaert, M., Warriner, A., & Kuperman, V. (2014b). Concreteness ratings for 40 thousand 
generally known English word lemmas. Behavior Research Methods, 46(3), 904-911. 
 
Cameron-Faulkner, T., Lieven, E., & Tomasello, M. (2003). A construction based analysis of 
child directed speech. Cognitive Science, 27(6), 843-873. 
 



 142 

Cartmill, E. A., Armstrong, B. F., Gleitman, L. R., Goldin-Meadow, S., Medina, T. N., & 
Trueswell, J. C. (2013). Quality of early parent input predicts child vocabulary 3 years later. 
Proceedings of the National Academy of Sciences, 110(28), 11278-11283. 
 
Caselli, M. C., Bates, E., Casadio, P., Fenson, J., Fenson, L., Sanderl, L., & Weir, J. (1995). A 
cross-linguistic study of early lexical development. Cognitive Development, 10(2), 159-199. 
 
Childers, J. B., & Tomasello, M. (2002). Two-year-olds learn novel nouns, verbs, and 
conventional actions from massed or distributed exposures. Developmental psychology, 38(6), 
967. 
 
Chang, L., & Deák, G. (2019). Maternal discourse continuity and infants' actions organize 12-
month-olds’ language exposure during object play. Developmental Science, 22(3), e12770. 
 
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent 
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. 
 
Clair, M. C. S., Monaghan, P., & Christiansen, M. H. (2010). Learning grammatical categories 
from distributional cues: Flexible frames for language acquisition. Cognition, 116(3), 341-360. 
 
Clerkin, E. M., Hart, E., Rehg, J. M., Yu, C., & Smith, L. B. (2017). Real-world visual statistics 
and infants' first-learned object names. Phil. Trans. R. Soc. B, 372(1711), 20160055. 
 
Deák, G. O. (2000). Hunting the fox of word learning: Why “constraints” fail to capture it. 
Developmental Review, 20(1), 29-80. 
 
de Barbaro, K., Johnson, C. M., Forster, D., & Deák, G. O. (2016). Sensorimotor decoupling 
contributes to triadic attention: A longitudinal investigation of mother–infant–object interactions. 
Child development, 87(2), 494-512. 
 
Dumais, S. T. (2004). Latent semantic analysis. Annual review of information science and 

technology, 38(1), 188-230. 
 
Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211. 
 
Elman, J. L. (1993). Learning and development in neural networks: The importance of starting 
small. Cognition, 48(1), 71-99. 
 
Erickson, L. C., & Thiessen, E. D. (2015). Statistical learning of language: theory, validity, and 
predictions of a statistical learning account of language acquisition. Developmental Review, 37, 
66-108. 
 



 143 

Eriksson, M., Westerlund, M., & Berglund, E. (2002). A screening version of the Swedish 
communicative development inventories designed for use with 18-month-old children. Journal of 

Speech, Language, and Hearing Research, 45, 948-960. 
 
Feldman, H.M., Dollaghan, C.A., Campbell, T.F., Kurs-Lasky, M., Janosky, J.E., & Paradise, 
J.L. (2000). Measurement properties of the MacArthur communicative development inventories 
at ages one and two years. Child Development, 71, 310-322. 
 
Fenson, L., Marchman, V. A., Thal, D. J., Dale, P. S., & Reznick, J. S. (2007). MacArthur-Bates 

communicative development inventories: User’s guide and technical manual. Baltimore, MD: 
Brookes. 
 
Fernald, A., & Mazzie, C. (1991). Prosody and focus in speech to infants and adults. 
Developmental psychology, 27(2), 209. 
 
Fourtassi, A., Bian, Y., & Frank, M. C. (2018). Word Learning as Network Growth: A Cross-
linguistic Analysis. In Proceedings of the 40th Annual Meeting of the Cognitive Science Society. 

 
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open 
repository for developmental vocabulary data. Journal of child language, 44(3), 677-694. 
 
Frank, M. C., Tenenbaum, J. B., & Fernald, A. (2013). Social and discourse contributions to the 
determination of reference in cross-situational word learning. Language Learning and 

Development, 9(1), 1-24. 
 
Frermann, L., & Frank, M. C. (2017). Prosodic Features from Large Corpora of Child-Directed 
Speech as Predictors of the Age of Acquisition of Words. arXiv preprint arXiv:1709.09443. 
 
Gleitman, L. (1990). The structural sources of verb meanings. Language acquisition, 1(1), 3-55. 
 
Gogate, L. J., & Bahrick, L. E. (1998). Intersensory redundancy facilitates learning of arbitrary 
relations between vowel sounds and objects in seven-month-old infants. Journal of experimental 

child psychology, 69(2), 133-149. 
 
Goldberg, A. E. (2003). Constructions: A new theoretical approach to language. Trends in 

cognitive sciences, 7(5), 219-224. 
 
Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. 
Psychological review, 114(2), 211. 
 
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 
1735-1780. 
 



 144 

Horowitz, A. C., & Frank, M. C. (2015). Young children’s developing sensitivity to discourse 
continuity as a cue for inferring reference. Journal of experimental child psychology, 129, 84-97. 
 
Huebner, P. A., & Willits, J. A. (2018). Structured semantic knowledge can emerge 
automatically from predicting word sequences in child-directed speech. Frontiers in Psychology, 
9, 133. 
 
Kauschke, C., & Hofmeister, C. (2002). Early lexical development in German: A study on 
vocabulary growth and vocabulary composition during the second and third year of life. Journal 

of child language, 29(4), 735-757. 
 
Laakso, A., & Smith, L. B. (2007). Pronouns and verbs in adult speech to children: A corpus 
analysis. Journal of Child Language, 34(4), 725-763. 
 
Landau, B., Smith, L. B., & Jones, S. S. (1988). The importance of shape in early lexical 
learning. Cognitive development, 3(3), 299-321. 
 
Lieven, E. V., Pine, J. M., & Barnes, H. D. (1992). Individual differences in early vocabulary 
development: Redefining the referential-expressive distinction. Journal of child language, 19(2), 
287-310. 
 
Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-
occurrence. Behavior research methods, instruments, & computers, 28(2), 203-208. 
 
MacWhinney, B. (2014). The CHILDES project: Tools for analyzing talk, Volume II: The 

database. Psychology Press. 
 
Markman, E. M. (1990). Constraints children place on word meanings. Cognitive Science, 14(1), 
57-77. 
 
Mason, G. M., Kirkpatrick, F., Schwade, J. A., & Goldstein, M. H. (2018). The Role of Dyadic 
Coordination in Organizing Visual Attention in 5-Month‐Old Infants. Infancy, 24(2), 162-186. 
 
Medin, D. L., & Shoben, E. J. (1988). Context and structure in conceptual combination. 
Cognitive Psychology, 20(2), 158-190. 
 
Medina, T. N., Snedeker, J., Trueswell, J. C., & Gleitman, L. R. (2011). How words can and 
cannot be learned by observation. Proceedings of the National Academy of Sciences, 108(22), 
9014-9019. 
 
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word 
representations in vector space. arXiv preprint arXiv:1301.3781. 
 



 145 

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed 
representations of words and phrases and their compositionality. In Advances in neural 

information processing systems (pp. 3111-3119). 
 
Mintz, T. H. (2003). Frequent frames as a cue for grammatical categories in child directed 
speech. Cognition, 90(1), 91-117. 
 
Monaghan, P., Chater, N., & Christiansen, M. H. (2005). The differential role of phonological 
and distributional cues in grammatical categorisation. Cognition, 96(2), 143-182. 
 
Morford, J. P., & Goldin-Meadow, S. (1997). From here and now to there and then: The 
development of displaced reference in homesign and English. Child development, 68(3), 420-
435. 
 
Murphy, C. M. (1978). Pointing in the context of a shared activity. Child development, 49(2), 
371-380. 
 
Newport, E. L. (1990). Maturational constraints on language learning. Cognitive science, 14(1), 
11-28. 
 
Oliver, B., Dale, P.S., Saudino, K.J., Petrill, S.A., Pike, A., & Plomin, R. (2003). The validity of a 
parent-based assessment of cognitive abilities in three-year olds. Early Child Development and 

Care, 172, 337-348. 
 
Ororbia, I. I., Alexander, G., Mikolov, T., & Reitter, D. (2017). Learning simpler language models 
with the delta recurrent neural network framework. arXiv preprint arXiv:1703.08864. 
 
Phillips, L., & Pearl, L. (2015). The utility of cognitive plausibility in language acquisition 
modeling: Evidence from word segmentation. Cognitive science, 39(8), 1824-1854. 
 
Rohde, D. L., Gonnerman, L. M., & Plaut, D. C. (2004). An improved method for deriving word 
meaning from lexical co-occurrence. Cognitive Psychology, 7, 573-605. 
 
Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley 

Interdisciplinary Reviews: Cognitive Science, 1(6), 906-914. 
 
Roy, B. C., Frank, M. C., DeCamp, P., Miller, M., & Roy, D. (2015). Predicting the birth of a 
spoken word. Proceedings of the National Academy of Sciences, 112(41), 12663-12668. 
 
Sachs, J. (1983). Talking about the there and then: The emergence of displaced reference in 
parent-child discourse. Children’s language, 4, 1-28. 
 
Sahni, S. D., Seidenberg, M. S., & Saffran, J. R. (2010). Connecting cues: Overlapping 
regularities support cue discovery in infancy. Child Development, 81(3), 727-736. 



 146 

 
Smith, L. B., Suanda, S. H., & Yu, C. (2014). The unrealized promise of infant statistical word–
referent learning. Trends in cognitive sciences, 18(5), 251-258. 
 
Smith, L. B., Yu, C., Yoshida, H., & Fausey, C. M. (2015). Contributions of head-mounted 
cameras to studying the visual environments of infants and young children. Journal of Cognition 

and Development, 16(3), 407-419. 
 
Sullivan, J., & Barner, D. (2016). Discourse bootstrapping: Preschoolers use linguistic discourse 
to learn new words. Developmental science, 19(1), 63-75. 
 
Swingley, D., & Humphrey, C. (2018). Quantitative linguistic predictors of infants’ learning of 
specific English words. Child development, 89(4), 1247-1267. 
 
Tamis-LeMonda, C. S., Kuchirko, Y., & Song, L. (2014). Why is infant language learning 
facilitated by parental responsiveness? Current Directions in Psychological Science, 23(2), 121-
126. 
 
Tomasello, M. (2000). The item-based nature of children’s early syntactic development. Trends 

in cognitive sciences, 4(4), 156-163. 
 
Tomasello, M., & Mervis, C.B. (1994). The instrument is great, but measuring comprehension is 
still a problem. Monographs of the Society for Research in Child Development, 59, 174-179. 
 
Trueswell, J. C., Lin, Y., Armstrong III, B., Cartmill, E. A., Goldin-Meadow, S., & Gleitman, L. R. 
(2016). Perceiving referential intent: Dynamics of reference in natural parent-child interactions. 
Cognition, 148, 117-135. 
 
Vlach, H. A., & Johnson, S. P. (2013). Memory constraints on infants’ cross-situational statistical 
learning. Cognition, 127(3), 375-382. 
 
Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language experience 
strengthens processing and builds vocabulary. Psychological science, 24(11), 2143-2152. 
 
Yu, C., & Ballard, D. H. (2007). A unified model of early word learning: Integrating statistical and 
social cues. Neurocomputing, 70(13-15), 2149-2165. 
 
Yu, C., & Smith, L. B. (2012). Embodied attention and word learning by toddlers. Cognition, 
125(2), 244-262. 
  



 147 

CHAPTER 4: Words that Share Usage Contexts in Child-Directed Speech Co-occur in 

Children’s Vocabularies: Network Analyses of Individual Differences in Word Learning 

Introduction 

 When children acquire a lexicon, they learn not a collection of individual associations 

between concepts and labels, but rather a densely interconnected set of representations in 

memory. Psycholinguistic methods indicate that word associations affect children’s processing 

of related words (e.g. apple and banana) as early as 24 months (Borovsky, Ellis, Evans, & 

Elman, 2016). In addition to affecting language use at a particular point in time, relations among 

words are a significant source of complexity as well as structure in children’s vocabulary 

acquisition over the course of development. Computational models of early word learning 

suggest that relations between words can facilitate word learning by constraining the search 

space of potential meanings (Yu, 2008) or facilitating learning of words in a category (Borovsky 

& Elman, 2006). Therefore, to understand how children acquire words in the real world it is 

necessary to consider the broader network of relations among words, and how the structure of 

that network emerges from and in turn influences the process of word learning. 

The idea of representing related words or concepts as a network has a long history in 

psychology. In adults, network representations form the basis of spreading-activation theories of 

memory and semantic association (Collins & Loftus, 1975; Anderson, 1983) Evidence of the 

consequences of word relations on language processing includes phenomena such as priming 

(e.g., Koriat, 1981), erroneous recall (Roediger & McDermott, 1995), inhibition of learning 

(Tinkham, 1993; Erten & Tekin, 2008), and patterns of anomic errors in aphasia (Martin, Roach, 

Brecher, & Lowery, 1998) and dementia (Lerner, Ogrocki, & Thomas, 2009). It therefore seems 

plausible that inter-word associations and the larger network properties of these associations 

have pervasive effects on how we structure and utilize lexical information. 

Vocabulary networks are non-randomly structured in several ways. Related words are 

organized in clusters around salient conceptual and thematic categories such as animals, 
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colors, or mental verbs. Language networks typically also have a “small-world” structure 

(Steyvers & Tenenbaum, 2005, Milgram, 1967): that is, short paths can be drawn between any 

two parts of the network despite the existence of local structure. Small-world structure can arise 

either through sporadic connections between clusters (Watts & Strogatz, 1998) or through hub 

nodes, which have many connections and therefore enable more paths. A particular class of 

small-world network in which hubs play a significant role is known as scale-free (Barabási, 

2009). This network structure, characterized by a distribution of degree (i.e. number of 

connections) following a power law, can emerge from a process of preferential attachment as 

known words “recruit” their neighbors to be added to the network (Steyvers & Tenenbaum, 

2005). The short paths observed in small-world networks might facilitate search and recall in 

semantic memory (Beckage, Steyvers, & Butts, 2012). The combination of psycholinguistic 

relevance and intriguing structural diversity makes networks a useful way to formalize the 

interrelatedness of words. More broadly, the application of network representations is leading to 

advances in multiple scientific fields, often revealing surprising commonalities across domains 

(Barabasi, 2016; Strogatz, 2001; Watts & Strogatz, 1998). 

Previous studies have used networks to characterize the structure of children’s 

vocabularies. One set of questions concerns the typical network structure and growth patterns 

of children’s vocabulary networks. As children acquire words in nonrandom orders, their 

individual vocabulary networks acquire additional structure beyond that inherent in the 

relationships among random sets of words. One way this can occur is if the earliest-learned 

words have different relationships than later words. For instance, Engelthaler & Hills (2017) 

found that words that shared semantic features with fewer other words were likely to be learned 

earlier. Another study found that children tended to learn words with more connections to other 

words in the environment (preferential acquisition) (Hills, Maouene, Maouene, Sheya, & Smith, 

2009). Alternatively, children might learn words differentially based on their relatedness to 

already known words, either by learning new words that connect to known hub words 
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(preferential attachment) or by learning new words that are related to many known words 

(Beckage & Colunga, 2019), a pattern called lure of the associates. 

 A second set of questions concerns variability in the vocabulary network structures 

among individual children. Do children with different word learning strategies tend to develop 

structurally different networks? In one study, children who showed evidence of using mutual 

exclusivity as a word learning strategy tended to have vocabulary networks with more hubs 

(Yurovsky, Bion, Smith, & Fernald, 2012). Of particular interest are differences between late 

talkers and children with typical language acquisition, because delayed growth in productive 

vocabulary is a strong predictor of later language outcomes (Moyle, Weismet, Evans, & 

Lindstrom, 2007; Fisher, 2017). In one study, late talkers (sometimes defined as below the 20th 

percentile for productive vocabulary) learned fewer related words compared to typically-

developing children at the same vocabulary size, as shown by network measures including in-

degree, clustering coefficient, and geodesic distance (Beckage, Smith, & Hills, 2011). However, 

with a larger sample size, Jimenez and Hills (2017) failed to replicate this pattern, as late 

talkers’ vocabulary structure was similar to typically developing children. In another study, 

neural networks trained on the vocabularies of early-talking and late-talking children learned 

different biases for generalizing novel nouns based on shape and material, suggesting that the 

children’s vocabularies encode different correlational structure (Colunga & Sims, 2017). 

Tracking longitudinal changes in the network structure of twelve children’s vocabularies from 2 

to 4 years of age, Ke & Yao (2008) found that vocabulary size and average degree, a measure 

of word relatedness, were not significantly related. Thus, it remains unclear how the lexical 

network properties of children with very different vocabulary sizes and word learning skills might 

qualitatively differ. 

Previous studies of children’s vocabulary networks suffer from several limitations. First, 

small sample sizes limit the precision of many findings (e.g. Colunga & Sims, 2017; Beckage, 

Smith, & Hills, 2011; Ke & Yao, 2008). However, as large databases of children’s vocabularies 
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have become available (Frank, Braginsky, Yurovsky, & Marchman, 2016), it is now possible to 

characterize variability in children’s vocabulary structure much more precisely, especially for 

analyses that do not require longitudinal data. Second, previous studies have represented 

vocabulary networks using arbitrary or ad hoc methods to define links between words. For 

instance, Hills et al. (2009) and Beckage et al. (2011) used networks with directed links from 

one word to another if they co-occurred in that order at least once in a corpus of child-directed 

speech. Ke and Yao (2008) applied ordered co-occurrence separately for children’s speech and 

for caregivers’ speech to children. Hills et al. (2009) also tested networks in which two words 

were linked if they shared at least two features from the McRae, Cree, Seidenberg, and 

McNorgan (2005) feature norms, which were generated by asking adult participants to list 

features of nouns. Although these methods clearly align with the intuitive notion of word 

“relatedness,” there is no reason to believe that any of them neatly captures child-relevant 

aspects of word relations, or is free of influence from factors that are of no relevance to young 

children (e.g., literary or pop-culture associations). Additionally, co-occurrence-based measures 

are highly dependent on word frequency, so it is unclear whether results depend on word 

relatedness or simply the known correlation between word frequency and age of acquisition 

(Braginsky, Yurovsky, Marchman, & Frank, 2016). 

One way to infer word relatedness relies on the observation that children learn groups of 

related words at a higher rate than would be expected if words were learned independently. In 

the most direct demonstration of this, a statistical model using the set of words known by a child 

to predict which words would be acquired by the next month performed better than a model 

based on normative age of acquisition alone (Beckage & Colunga, 2013). Thus, learning some 

words is correlated with learning other words. These correlations constitute a rich source of 

information about language learning. A pair of words might show correlated learning if learning 

one word facilitates learning the other, if they are associated such that children exposed to one 

word are likely to be exposed to the other, or if learning them depends on a shared underlying 
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conceptual or grammatical competence. In any case, a strong correlation for a word pair 

indicates that those words are related in precisely the way or ways that are most relevant for 

children’s word learning. Therefore, in the present study we quantify word learning correlations 

and use them to define a network of relations among words. Correlated learning can be 

computed for any pair of words for which vocabulary data are available, which in practice means 

the 600+ words on the MCDI (Fenson et al., 2000). A vocabulary network can thus be 

constructed by drawing links between words when correlated learning of those words exceeds a 

certain threshold. Networks can also be evaluated for individual children by taking the subset of 

words known by each child. 

When we define word relatedness using correlated learning, it becomes possible to turn 

a traditional question about vocabulary networks on its head: rather than assume a given 

external measure of word relatedness is relevant and use it to evaluate children’s vocabulary 

structure, as has been done in previous studies using co-occurrence or semantic features, we 

can use our measure of word relatedness that inherently reflects relevance to word learning as 

a ground-truth target, and evaluate whether external measures can predict or explain it. If 

measures such as co-occurrence are relevant to word learning, they should be significantly 

correlated with the correlated-learning measure. In this way, we can evaluate the relevance of 

different candidate measures. Relevant predictors are likely to take the form of similarity 

measures in the usage or meaning of two words. However, to the extent that some measures 

explain correlated learning better than others, or differentially predict learning of different 

subsets of words, we can infer what sources of information are relevant for word learning.  

A primary source of information that might explain word learning patterns is the 

distribution of words in natural speech (Monaghan, Chater, & Christiansen, 2005; Chemla, 

Mintz, Bernal, & Christophe, 2009; Clair, Monaghan, & Christiansen, 2010). Distributional 

information refers to quantitative representations of co-occurrence patterns of pairs or groups of 

words in large samples of language. These include the co-occurrence measures used in 
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previous studies of vocabulary networks, as well as more advanced measures that use word co-

occurrence statistics to represent words as vectors, e.g. HAL (Lund & Burgess, 1996), COALS 

(Rohde, Gonnerman, & Plaut, 2004), and Word2Vec (Mikolov, Chen, Corrado, & Dean, 2013). 

Thus, if children’s word learning is predictable based on the distributional information encoded 

in the usage patterns of words, we should expect words with similar vector representations to 

show correlated learning. However, although vector-based distributional representations 

achieve state-of-the-art performance in many applications, they have some disadvantages as 

explanatory variables in a developmental context: they conflate syntactic and thematic word 

features, and in most implementations they make unrealistic demands on memory and require 

processing of vast amounts of input data (Huebner & Willits, 2018). In previous work, we 

introduced two distributional representations intended to mitigate these difficulties (Chang & 

Deák, submitted for publication / Chapter 3). The first representation is based on a word’s 

distribution across “frequent frames,” i.e., high-frequency contexts defined by the previous and 

next word token. Frequent frames are useful units of representation because they primarily 

encode information about a word’s syntactic role (Mintz, 2003), and they do not require learners 

to represent rare words or long-distance dependencies. The second, complementary 

representation is based on co-occurrences between words in a sliding window, ignoring the 

immediately adjacent tokens (which were used to define frequent frames). This representation 

selectively ignores most syntactic information but preserves more thematic and other semantic 

information. To maintain child-appropriateness, the two sets of representations were trained on 

the CHILDES corpora of child-directed speech (MacWhinney, 2014), excluding rare words.  

Because our networks depend only on word learning and not usage, we can then 

measure the relevance of distributional word usage by evaluating how closely word relations 

defined by distributional information correspond to those defined by correlated learning. By 

predicting the amount of correlated learning based on the similarity between two words’ 

distributional representations, we can determine how well the usage patterns of words in 
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naturalistic input explain which words tend to go together in children’s vocabularies. 

Furthermore, we can roughly partition how much correlated learning of words is predicted by the 

syntax-like information contained in local frames, versus the additional semantic information 

encoded in broader-scope word co-occurrences. In addition, as a rough way to determine 

whether semantic information independent of words’ distributions in child-directed speech can 

predict children’s word learning, we used a database of free-association norms (Nelson, 

McEvoy, & Schreiber, 2004; Steyvers & Tenenbaum, 2005) as an additional predictor. Free 

associations by adult language users predict performance on psycholinguistic measures 

including cued recall and intrusions in free recall (Steyvers, Shiffrin, & Nelson, 2002), and they 

should predict correlated learning if those associations capture relevant dimensions of 

association between words other than those captured by distributional representations. 

The current paper describes findings from two theoretically related but distinct 

investigations. In the first, we use the Wordbank database of toddlers’ productive vocabularies 

(Frank et al., 2016) to compute correlated learning between pairs of words. We model semantic 

networks where the value of the log-odds ratio, a measure of correlated learning, defines the 

strength of connection between words. We describe the structure of this network over all words 

in the MCDI. We further demonstrate how the network structure differs between children with 

large vs. small vocabularies for their age, using several quantitative measures of network 

structure. In the second investigation, we examine how well distributional and subjective 

relations among words predict their correlated learning. We evaluate regression models 

predicting the log-odds ratio as a function of frame similarity, word co-occurrence similarity, and 

subjective associations from the free-association norms.  

Study 1: Methods 

In this section, we describe how vocabulary data was used to define the connectivity 

between words in terms of correlated acquisition by American English-learning children, and 
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how the resulting pairwise connections were used to characterize the network structure of each 

child’s productive vocabulary. 

Vocabulary Database 

CDI data were taken from Wordbank (Frank et al., 2016). The American English Words 

and Sentences form (word production for children aged 16-30 months) was used. Separate 

entries for different meanings of the same word were combined. Additionally, three items were 

dropped because they were family-specific names; eight were dropped because they were 

multiple-word phrases, and two were dropped because they were sex-specific body parts and 

were rarely used in the CHILDES corpus. This left 654 words for which production data were 

analyzed for each child. The database contained 5520 vocabulary checklists for 4867 unique 

children. 

Additionally, we computed the normative age of production of each word using both the 

Words and Sentences form and the Words and Gestures form (age 8-18 months). We 

computed the proportion of children at each age who produced each word, then fit a logistic 

curve to this proportion. The curve was constrained so that the proportion approached 1 as age 

increased. Normative age of production was calculated as the age at which the curve 

crossed .5. 

Log-Odds Ratio 

 The strength of correlated learning between each pair of words was calculated using the 

Log-Odds Ratio (LOR). The LOR of a word pair measures how much more likely a child is to 

produce both words in the pair over and above what would be expected if words were learned 

independently. It is defined as the difference between the log odds of producing both words in 

the pair and the log odds of producing both words assuming independence: 

����� = �	
�� ���� ∧ ���� − �	
�� ����������� 

 
Equivalently, the probability of producing a word pair can be expressed as: 
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���� ∧ ��� =  � �	
�� ����������� + ������  
 

where ���� = �
���� .  

 

The probabilities ����� and ����� of producing each word in a pair were not constant 

across all children in the sample. Instead, for each child we approximated these probabilities 

using the observed proportion of children with the same total vocabulary size who produced the 

word. We then approximated the LOR by fitting the value � that maximized the likelihood of the 

observed data (i.e. the set of children who actually produce both words in the pair). Thus, for a 

word pair ���, ���, 
����� = !"
 #!���� $%����&�'(�1 − ���&��*'(

&
+ 

where ,& = 1 if the -./ child produces both words in the pair and 0 otherwise, and 

���& =  � �	
�� 0���&�0���&�� +  ���� 

where 0���&� is the proportion of children producing word � out of all children with total 

productive vocabulary equal to that of the -./child. 

The form of the above equations is equivalent to logistic regression, so LOR was 

computed using the glm function in R. For a given word pair, a large positive LOR value 

indicates that children who produced one word in the pair were much more likely to produce the 

other one; a large negative LOR value indicates that children who produced one word in the pair 

were much less likely to produce the other one; and a LOR value near zero indicates that 

knowing that a child produces one word provides little to no information about the probability 

that they produce the other word. 

 Given the strength of connection between any two words, we next define several metrics 

that characterize the structure of an individual child’s vocabulary, i.e. the words that child 

produces and the connections among them.  
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Mean edge strength 

 The mean edge strength is calculated as the average LOR of all word pairs in a child’s 

vocabulary. It takes higher values if the child’s vocabulary words are more closely related to 

each other, and it approaches zero if random sets of words are learned.  

Clustering coefficient 

Unlike the mean edge strength, which is calculated using the raw LOR values, the other 

measures are calculated using all-or-nothing edges calculated by thresholding LOR at a given 

value. This thresholding allows us to use standard measures from network theory to 

characterize the data. The clustering coefficient measures how locally connected groups of 

nodes are. For a single node, the clustering coefficient is defined as the proportion of that 

node’s neighbors that are neighbors with each other. The clustering coefficient for the whole 

graph is computed by averaging over all nodes with at least two neighbors (i.e. wherever it is 

well-defined). A value of one indicates that word connections are transitive. More generally, in a 

network with a high clustering coefficient, a word is likely to be connected to most of its 

neighbors through the same shared feature, which those neighbors in turn share with each 

other (e.g. cow with horse and pig). By contrast, a low clustering coefficient can arise if many 

words are connected to different neighbors through different shared features or relations (e.g. 

cow with horse and milk). 

Harmonic path closeness 

 The harmonic path closeness (harmonic centrality index; Rochat, 2009) measures how 

easy it is to find paths among nodes in the graph. It is closely related to the mean path length, 

but is well-defined when the graph is not fully connected (i.e. some node pairs have no path 

connecting them). Harmonic path closeness is defined as the mean over all node pairs of the 

reciprocal of the shortest path length (zero if no path exists). Higher values indicate that most 

pairs of words are connected by short paths. Small-world networks are characterized by high 

path closeness and high clustering coefficient. 
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Degree distribution skewness 

 The degree distribution skewness measures the prevalence of hubs. Whereas a scale-

free network should exhibit a degree distribution fit by a power law, other distributions can also 

be described by the prominence of the right tail, composed of hub nodes. Thus, without making 

assumptions about the shape of the degree distribution, higher right skewness implies the 

presence of one or more significant hubs. 

Study 1: Results 

Log-odds ratio network 

The LOR can be interpreted as a pairwise measure of relatedness among words. 

Structure in these relations can be examined qualitatively by visualizing the LOR values as a 

matrix and by using hierarchical clustering to identify clusters of words that are related by the 

LOR metric (Figure 4.1). 

Hierarchical clustering using complete linkage in R reveals groupings of words that 

correspond well with intuitive notions of relatedness. The top-level clusters roughly align with 

nouns, verbs, function words/relations, and other words. Within these, more focused clusters of 

thematically and functionally related words are found. Two examples are shown in Figure 4.2.  

The LOR can also be represented as an undirected graph, where words are connected if 

their LOR exceeds a threshold value (Figure 4.3). This threshold can be chosen to fix the overall 

edge probability to a given value; additional examples of more or less dense graphs constructed 

using this method are given in Figures C.1, C.2, and C.3.  

Differences in network structure between early and late talkers 

 For each network measure (mean edge strength, degree centralization, clustering 

coefficient, harmonic path closeness), we investigated whether the measure’s values differed 

between early and late talkers. Children were divided into four groups based on whether their 

total vocabulary size was in the first, second, third, or fourth quartile for their age (in months, 

range: 16-30). Thus, the groups partially overlapped in total vocabulary size.  
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 All measures depended systematically on vocabulary size, which is expected based on 

the structural properties of graphs as the number of nodes varies, but might also be influenced 

by differences in the sets of words learned early versus late in vocabulary acquisition. 

Therefore, it was necessary to correct each measure for vocabulary size before comparing 

measure values across vocabulary quartile groups. First, to compare across quartile groups, we 

restricted the analysis to children with vocabulary sizes for which data were available in every 

quartile group (at various ages). Therefore, we analyzed vocabularies between 74 to 451 words, 

which included 2510 of the 5520 total vocabularies. The large sample size made it possible to 

control for vocabulary size nonlinearly. This was done using kernel regression, with Gaussian 

kernel bandwidth set to 10 words and reweighted so that at each point, the total weights from 

points in each quartile group were equal. This reweighting prevented differences in the density 

of points of each group at different vocabulary sizes from distorting the correction. Measure 

values were adjusted by subtracting the kernel-regression line from the raw values. For multiple 

measures, the relationship with vocabulary size was strong and nonlinear, and thus any effects 

of quartile group are detectable only after controlling for vocabulary size. The results were 

robust to the exact form of this correction; similar results were obtained using kernel regression 

without reweighting and with a kernel bandwidth of 5, 10, or 20 (see Table C.1).  

 After correcting for total vocabulary size, measure values were compared across quartile 

groups using one-way ANOVA (Figure 4.4). The analysis was repeated using thresholds that 

give 5%, 10%, and 15% edge density. To show differences most clearly, for each metric we 

report only the threshold that results in the largest effect of vocabulary quartile (i.e. the largest 

F-score). Therefore, a Bonferroni correction was used to correct for the three comparisons that 

were run to select the threshold. In addition, linear regression of measure values on the quartile 

group’s numerical value was used to test for ordinal trends. Finally, pairwise tests were 

conducted using the Holm-Bonferroni procedure on the comparisons between all groups at all 

thresholds to compute significance. 
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 Results showed that mean edge strength differed significantly by vocabulary quartile 

group, F(3, 2506) = 20.1, p < .001, with a significant increasing trend, F(1, 2508) = 54.5, p 

< .001. Post hoc comparisons showed that mean edge strength was higher for quartiles 3 and 4 

than for quartiles 1 and 2, and higher for quartile 4 than for quartile 3. This suggests that 

children who were relatively early talkers had vocabularies generally containing more related 

words than did later talkers. Clustering coefficient fit best with 5% edge density, and differed 

significantly by vocabulary quartile group, F(3, 2506) = 8.1, p < .001, with a significant 

decreasing trend, F(1, 2508) = 12.1, p < .001. Post hoc comparisons showed that clustering 

coefficient was lower for quartiles 2, 3, and 4 than for quartile 1. This suggests that children who 

were late talkers had vocabularies with more dense clusters: that is, they were more likely to 

learn groups of words that were all related in the same way, such that most of a word’s 

neighbors were also neighbors with each other. 

Harmonic path closeness fit best with 15% edge density, and differed significantly by 

vocabulary quartile, F(3,2506) = 26.4, p < .001, with a significant increasing trend, F(1, 2508) = 

75.3, p < .001. Post hoc comparisons showed that harmonic path closeness was higher for 

quartiles 3 and 4 than for quartile 1, and higher for quartile 4 than for quartiles 2 and 3. This 

suggests that children who were relatively early talkers had vocabulary networks in which 

shorter paths were available between more word pairs than did later talkers. Degree distribution 

skewness fit best with 15% edge density, and differed significantly by vocabulary quartile group, 

F(3, 2506) = 4.3, p < .005, with a significant increasing trend, F(1, 2508) = 11.8, p < .001. This 

suggests that children who were relatively early talkers had vocabularies with more significant 

hubs than did later talkers. However, none of the pairwise comparisons reached significance.  

All comparisons remained significant, with the same pattern of pairwise differences, 

removing repeated tests of the same child (n = 11). Thus, each measure indicates subtle but 

significant differences in the network structure between children with relatively large or small 

vocabularies for their age. 
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Discussion: Study 1 

We used CDI data and the log-odds ratio to describe relatedness among words in the 

context of toddlers’ productive word acquisition. This measure grouped words into the major 

syntactic classes, indicating that individual children in the sample tended to concentrate their 

word learning disproportionately on nouns, verbs, or other sets of related words. Further 

exploration of the word learning correlations revealed both strong signatures of more fine-

grained taxonomic categories, such as colors and food, as well as a range of miscellaneous 

functional and thematic associations. Thus, the LOR is effective as a general-purpose word 

relatedness measure for toddlers. LOR naturally avoids dependence on factors that are 

irrelevant for children’s word learning, and effectively weights various, possibly 

incommensurate, factors according to the magnitude of their effect on word learning. It also 

does not depend on a specific set of pre-selected features, but can potentially depend on any 

distinguishing properties of words or their referents. For the purpose of defining relatedness of 

word pairs for analysis of children’s vocabulary networks, this approach is therefore more likely 

to identify results that are specifically relevant to word learning, compared to previous 

approaches using graph edges defined for convenience (e.g., Beckage et al. (2011; Engelthaler 

& Hills, 2017). However, the log-odds ratio also has some limitations: it can only be computed 

for word pairs where vocabulary data are available, and it is affected by any bias in parents’ 

report of their children’s vocabulary (Feldman et al., 2000; Oliver et al., 2003; Eriksson, 

Westerlund, & Berglund, 2002; Tomasello & Mervis, 1994). It also focuses solely on production, 

and therefore does not account for receptive vocabulary or graded levels of word knowledge. 

Using the LOR graph, we investigated differences in the vocabulary composition of late-

talking and early-talking children. At a given vocabulary size, early-talking children’s vocabulary 

networks had higher mean edge strength, higher degree distribution skewness, lower clustering 

coefficient, and higher harmonic path closeness. In other words, children with large productive 

vocabulary for their age tended to know words that were more closely related among each 
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other, more organized around hub words, less organized into locally coherent clusters, and 

better connected by short paths or chains of relations. Previous studies investigating network 

structure differences between late talkers and typical children have reached different 

conclusions. Beckage et al. (2011) reported that late talkers had networks with less coherent 

structure than typical children. However, Jimenez and Hills (2017), using a much larger sample 

– essentially the same vocabulary database analyzed here – found no differences between late 

talkers and typical children. Both of these studies used word co-occurrences as network links. 

Using correlated word learning instead of word co-occurrences to define links, we find support 

for the idea that late talkers’ words are less coherent. Nevertheless, the small magnitude of our 

effects cast doubt on the reliability of detecting such differences in samples of fewer than 100 

children, which might partly explain discrepancies across previous investigations. The small 

effect sizes also limit the clinical usefulness of the findings. 

What can we learn from the differences in vocabulary structure between early and late 

talkers? One general finding is that the effects generally show a consistent directional trend 

across all successive quartile groups, rather than specific differences between “late talkers” or 

“early talkers” and others. This suggests that the differences reflect parametric variability in 

factors that are reflected in scalar differences in vocabulary acquisition rate across most or all 

children, and cannot be attributed specifically to a disordered subpopulation. The observed 

differences can be summarized by saying that compared with late talkers, early-talking children 

learn words that have many connections to other words, but do not simply fixate on one 

category or a few categories to the exclusion of other words. Early-talking children might learn 

more related words because they are more sensitive to the contextual distribution of words. For 

example, if children are more sensitive to taxonomic relations (Colunga & Sims, 2017) or use 

heuristics such as a ‘one-word-per-concept’ bias to disambiguate groups of associated words 

(Yurovsky et al., 2012) or if they know more syntactic constructions that pick out groups of 

words related by their common role in the sentence, they might build relatively large 
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vocabularies that are well connected but not narrowly clustered. Thus, sensitivity to certain 

patterns in language input might explain why some children acquire more words. However, to 

the extent that children build a resulting network with strong connections and small-world 

structure, that structure might feed back into further word learning by accruing more diverse 

words to serve as potential associates for even more novel words, and thus progressively 

structure the lexicon to enable more efficient processing. 

Study 2 

Having established that correlated word learning reveals both patterns in connections 

among words and individual differences in children’s lexical development, we next asked 

whether other measures of word relatedness were consistent with the structure in the word 

learning network. Correlations and regressions between pairwise similarity matrices have been 

used previously to evaluate the quantitative agreement between different sets of pairwise 

structure on words (Sadeghi, McClelland, & Hoffman, 2015; Devereux, Clarke, Marouchos, & 

Tyler, 2013; Peelen & Caramazza, 2012; Kenett et al., 2013). We evaluated the extent to which 

LOR was correlated with two distributional measures of similarity word use – frame overlap and 

context-word overlap, described below. We also evaluated whether LOR was correlated with 

adults’ subjective word associations as measured by free-association norms (Nelson, McEvoy, 

& Schreiber, 2004). Free association data serve as a useful counterpoint to the distributional 

measures because they depend directly on the words’ conventional meanings and are not 

specific to the information discernible from linguistic inputs to children. The Nelson et al. free 

association norms (Steyvers & Tenenbaum, 2005) and similar association datasets (De Deyne 

& Storms, 2008; Kenett, Kenett, Ben-Jacob, & Faust, 2011) have been used directly to construct 

semantic networks. Therefore, understanding the relationships between the word connections 

defined by subjective associations, distributional measures, and LOR is important for the 

interpretation of existing and future network analyses of children’s vocabulary. 

Methods: Study 2 
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Corpus 

The corpus for computing distributional word representations was the same one used by 

Chang & Deák (submitted / Chapter 3), which contains all caregiver speech directed to typically-

developing children aged up to 48 months in the CHILDES database (MacWhinney, 2014). 

Special codes and punctuation were removed except for utterance boundary tokens. Dialectal, 

spelling, word segmentation, contractions, and transcription-style variants were standardized, so 

that each word, and especially each CDI item, corresponded to a single word type in the corpus. 

Finally, we removed inflections and contractions (-ing, -ed, -s, ‘ll, ‘ve, ‘m, ‘re, -n’t). The corpus 

contained 952,564 utterances and 5,083,634 tokens from 3377 transcribed sessions (range: 2 - 

11,722 tokens) of 2093 children (range: 2 - 462,442 tokens). 

Frame Overlap 

The frame overlap (FO) was designed to be a quantitative measure of similarity in the 

distributions of two words across utterance contexts, reflecting primarily syntactic constructions 

but without making specific assumptions about syntactic structures. For each CDI word, we 

recorded its frequency of appearance in each frequent frame, following Chang & Deák 

(submitted / Chapter 3). Frequent frames were defined as pairs of tokens (i.e. words or 

utterance boundary) that appeared surrounding a single word at least 1000 times in the corpus. 

403 such frequent frames occurred in the corpus. Each word was represented as a 403-

dimensional vector, where the components represented the proportion of tokens of that word 

that were in each frame. Then, for each pair of words, we computed the overlap by taking the 

sum over all 403 frames of the proportion shared between the two words (i.e. the lesser of the 

two values: if the two words appeared in a given frame 5% and 3% of the time, respectively, 

then that frame contributed 0.03 to the total overlap). Finally, FO was normalized so that each 

word had an average FO of 0 with respect to all other words, and the standard deviation of FO 

over all word pairs was 1. Thus, for a given word pair, a positive FO indicates that the two words 

tended to occur in the same frames (i.e. contexts defined by the immediately preceding and 
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following words) whereas a negative FO indicates that the words tended to occur in disjoint sets 

of frames. 

Context-Word Overlap 

The context-word overlap (CWO) was also designed to measure similarity in the 

contextual distributions of two words. However, complementary to FO, CWO was designed to 

reflect primarily thematic semantic information while being relatively independent of syntax. This 

was achieved by representing each word’s distribution using the co-occurrence with a set of 

context words, while selectively removing information about word transitions. Following Chang 

and Deák (submitted), word vectors were generated using the COALS model (Rohde et al., 

2004). All word types that occurred at least 1000 times in the corpus were used as context 

words. 1376 context words were retained. For each CDI word and context word, we computed 

the number of times they co-occurred within five words of each other, but not adjacent. Ignoring 

adjacent co-occurrences allows the CWO to avoid redundancy with FO and limits its 

dependence on specific syntactic constructions. The raw co-occurrence counts were then pre-

processed to improve their properties as a measure of association between words. First, to 

remove dependence on word frequency, co-occurrence counts were normalized to represent 

correlations. Next, to select specifically for positive associations, negative values were set to 

zero. Finally, to increase the weight of weaker but significant associations relative to the 

strongest ones, values were square-root transformed. Each word was thus represented as a 

1376-dimensional vector, where the components represented the degree of positive association 

between the word and each context word. Then, similarly to FO, we computed the overlap for 

each word pair by taking the sum over all 1376 context words of the value shared between the 

two words (i.e. the lesser of the two values, representing the weaker of the two words’ 

associations with that context word). Finally, CWO was normalized so that each word had an 

average CWO of 0 with respect to all other words, and the standard deviation of CWO over all 

pairs was 1. Thus, for a given word pair, a positive CWO indicates that the two words tended to 
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occur in the vicinity of the same context words, whereas a negative CWO indicates that the two 

words tended to occur with disjoint sets of context words.  

Subjective Associations 

 As a measure of salient subjective associations between words that is not derived from 

the words’ usage patterns in child-directed speech, we used the free-association norms of 

Nelson, McEvoy, and Schreiber (2004). To construct these norms, participants were given one 

of over 5000 stimulus words and were asked to write the first word that came to mind that was 

meaningfully associated with the stimulus word. Each word was shown to an average of 149 

(SD = 15) adult participants, and responses produced by at least 2 participants were recorded 

as connections. Free-association norms were available for 559 of the 654 words in the study 

(85%), which implies that connections could be evaluated for 73% of word pairs. For the current 

study, forward and backward connections were treated as equivalent, and words were 

considered connected if either stimulus produced the other as a response. We defined both the 

direct association (DA), which is equal to 1 if the words are connected and 0 otherwise, and the 

indirect association (IA), which is equal to the reciprocal of the length of the shortest path 

between the words, and 0 if no path exists. Mean DA and IA values were imputed for pairs 

where norms were not available. Finally, DA and IA were normalized the same way as other 

variables. 

Results: Study 2 

 Frame overlap and word overlap were calculated for all word pairs. Figure 4.5 shows the 

FO and CWO as matrices, where the order of the rows and columns was set according to the 

hierarchical clustering on the LOR, as in Figure 4.1. The blue squares along the diagonal of 

Figure 4.5A show that the high-level clusters in the LOR matrix correspond closely with FO. This 

is expected because the high-level clusters are organized around major word classes, which are 

strongly reflected in frames but less so in broader contexts (e.g., occurring during the same 

activity). More generally, the three matrices (LOR, FO, and CWO) appear to be positively 
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correlated, indicating that word usage patterns can explain departures from word-wise 

independence in children’s word learning. The following analysis examines this hypothesis 

quantitatively. 

The simple correlations among the three matrices are positive: r (LOR, FO) = .41, r 

(LOR, CWO) = .35, r (FO, CWO) = .30. To address the question of how well distributional word 

usage explains children’s word learning, we regressed the LOR values on the FO and CWO 

values. Visual inspection of the relationships between LOR and the two predictor variables show 

that they are approximately linear. Because the pairwise structure of the values violates 

independence, ordinary regression gives valid estimates for the regression coefficients but not 

for the standard errors. Thus, standard errors were computed using bootstrapping: we 

repeatedly sampled 654 words with replacement to approximate the sampling distribution of the 

regression coefficients. Regression results are summarized in Table 4.1. For regression of LOR 

on FO, β (change in expected LOR per standard deviation of FO) = .0217 (R2 = .166, 95% CI 

[.146 - .184]). For regression of LOR on CWO, β = .0184 (R2 = .120, 95% CI [.103 - .137]). 

Multiple regression of LOR on FO and CWO achieves R2 of .222 (CI [.200 - .241]). Thus, CWO 

is a significantly better predictor than chance, FO is significantly better than CWO, and FO and 

CWO jointly are better than FO alone. 

Better model fits can be achieved by accounting for the fact that LOR is negatively 

correlated (r = -.17) with the difference in normative age of acquisition between two words 

(∆AOA), where normative age of acquisition is the estimated age at which half of children 

produce the word (Frank et al., 2016). This is expected both for fundamental reasons and for 

methodological reasons: because words that are learned at widely disparate ages are likely to 

be learned under very different conditions and conceptual foundations, and because LOR 

cannot detect relations between word pairs where children start learning the harder word only 

after the age at which all children know the easier word. Including ∆AOA as a main effect and 

interaction term increased the R2 of the FO, CWO, and full models to .196, .154, and .257, 
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respectively, and also increased the coefficients for the main effects of FO and CWO to 

represent the estimated effect sizes in the ideal case where the word pairs are at the same 

developmental level. 

Next, we investigated whether adults’ subjective associations among words improved 

prediction of LOR over and above distributional measures alone (Table 4.2). Multiple regression 

of LOR on FO, WO, and direct subjective associations (DA) did not significantly improve fit over 

the model using FO and WO alone, either without including effects of ∆AOA (R2 = .224, CI [.202 

- .244], p = .45) or with those effects (R2 = .259, CI [.234 - .282], p = .46). Including subjective 

associations slightly lowered the estimated effect of CWO but not FO, suggesting that the 

relevance of adults’ subjective associations to children’s word learning is mostly through 

thematic relations between words. Similarly, indirect subjective associations (IA) did not improve 

the fit over FO and CWO alone, either without including effects of ∆AOA (R2 = .226, CI [.204 

- .245], p = .40), or with those effects (R2 = .261, CI [.235 - .284], p = .42). 

Finally, we investigated whether relationships between distributional measures and LOR 

differed by word class (Table 4.3). Word classes were defined as the 22 sections on the CDI, 

which are split into semantic groups by both functional distinctions and, for object nouns, 

thematic distinctions. For each word class, we re-fit the two models, first with FO, ∆AOA, and 

their interaction, and then with CWO, ∆AOA, and their interaction, using only word pairs in which 

at least one of the words was a member of the word class. Each model was evaluated using 

both R2 and the coefficient on FO or CWO (Table 4.3). Although a detailed statistical analysis of 

differences in effect sizes across word classes is outside the scope of the current study, a few 

patterns are evident. First, βFO and βCWO are greater than 0 for all word classes, indicating that 

the observed effects are not simply due to the learning patterns of a specific subset of words. 

βFO tends to be higher for word classes made up of closed-class words than for open-class 

words, and βFO is lowest for word classes that are not strongly embedded in sentences (sounds, 
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games and routines). Compared to FO, the effect of CWO did not vary as strongly or as 

systematically across word classes. 

Discussion: Study 2 

 Using distributional semantic representations derived from a corpus of child-directed 

speech, we were able to explain up to 26% of the variability in the tendency of word pairs to be 

learned in a correlated way. Words that occurred in overlapping frames tended to align with 

major syntactic and functional word classes, such as nouns, verbs, and several types of closed-

class words, which were also the strongest clusters in LOR. A smaller but still significant effect 

was observed for words that occurred in the vicinity of the same context words, a distributional 

measure of thematic semantics. The frame overlap and word overlap each contributed 

separately to predicting children’s learning patterns, as the model using both predicted LOR 

significantly over and above either measure alone. The accuracy of these predictions was 

improved by accounting for the fact that words with widely disparate normative ages of 

acquisition tend to have smaller correlations. However, augmenting the model in this way did 

not change the overall pattern of results. Thus, the systematic correlations in children’s word 

learning are well explained by the usage patterns of words in natural language samples. Neither 

syntactic nor thematic relations dominated; rather, children seem able to flexibly use whatever 

type of salient association is available to organize their word learning. This pattern of 

complementary effects of the two measures is consistent with previous research indicating that 

word similarity measures that integrate multiple sources of information (features and word co-

occurrences) fit behavioral data better than models using only one source (Andrews, Vigliocco, 

& Vinson, 2009). The overall patterns were not driven by one or a few word classes, but held 

generally across word categories as defined on the MCDI, although frames were more 

predictive of correlated learning for word pairs that included closed-class words. 

 We also addressed the question of whether children’s correlated word learning is 

sensitive primarily to the word associations present in their linguistic environment, or to lexical 
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associations that adults find highly available. To do this, we used the free-association norms of 

Nelson, McEvoy, and Schreiber (2004) to compute both the adjacency matrix and the path 

distance between words. However, these subjective associations did not significantly improve 

the LOR predictions. The free-association norms contain a rich amount of information beyond 

that encoded the distributional measures, such as taxonomic associations, object properties, 

linguistic collocations, and cultural associations. Nevertheless, word associations encoded in 

adults’ semantic associations did not predict children’s word learning correlation above the word 

associations implicit in children’s actual language exposure. It is possible that free-association 

norms were ineffective because they selected mostly strong associations involving later-learned 

semantic (e.g., idiomatic or literary) usages, whereas children’s early learning might depend 

primarily on broader associations such as membership in the same word class or co-occurrence 

in an activity context. Such loosely connected word pairs might be expected to occur in similar 

linguistic contexts and be amenable to learning by similar strategies, despite not appearing in 

free associations.  

 Another relevant question is whether lexical distributional measures directly index 

important patterns of input to children’s learning, or whether they are proxies for other 

environmental associations or semantic factors. A few studies have investigated statistical 

associations between words or objects and the spatial, temporal, and perceptual environments 

in which they occur (Roy, Frank, DeCamp, Miller, & Roy, 2015; Sadeghi et al., 2015; Clerkin, 

Hart, Rehg, Yu, & Smith, 2017). These studies find that nonlexical environmental distributions 

are correlated with lexical distributions, and also independently predict learning. Thus, though it 

is difficult to assign causality to the lexical distributional measures, the current results add to a 

body of results suggesting that associative structure in children’s everyday environmental inputs 

influences learning (Goldstein et al., 2010). Further characterization of environmental inputs 

other than speech, from naturalistic datasets involving large samples of children and multiple, 
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representative social-interactive contexts, would be likely to explain additional systematicity in 

children’s learning.  

General Discussion 

Firth (1957:11) famously said, “you shall know a word by the company it keeps,” 

referring to the power of co-occurrence between words in language corpora to deliver insight 

about their meaning. Another way words “keep each other company” is by co-occurring in the 

vocabulary of an individual. In this chapter, we use patterns in the tendencies of words to keep 

each other’s company as a source of insights about conceptual and lexical development in 

children. We showed that the network of words, linked by their correlated learning patterns, not 

only reflects common-sense knowledge about the structure of children’s semantic universe, but 

also makes it possible to explore that structure in vivid detail. In addition to mapping this word 

learning network, we also develop two of its applications: first, we use subnetworks defined by 

the words known by individual children to show that, at a given absolute vocabulary size, 

children with large vocabularies for their age (early talkers) know sets of words that are more 

closely related, connected by shorter paths, and contain more hubs compared to children with 

small vocabularies for their age (late talkers). Second, we use the network as a target and 

investigate to what extent it can be explained (“predicted”) by the distribution of words over 

linguistic contexts in large natural samples of parents’ speech to children. 

 In Study 1, we identified systematic differences in the network structure of children’s 

vocabularies as a function of children’s age-adjusted vocabulary size. We did not find a specific 

effect for the slowest-learning group (“late talkers”), but rather approximately linear effects 

spanning the whole range of vocabulary sizes. What might differ between the learning 

mechanisms of faster-learning and slower-learning children to account for these patterns? 

Faster-learning children might learn more connected words because they are better able to 

harness semantic and syntactic connections to learn new words. This might occur because they 

have greater syntactic knowledge or a more well-connected and richer conceptual system. 
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Some children might also learn sets of related words if they discover generalizable word 

learning strategies or “biases,” such as an object-shape/object-name bias (Landau, Smith & 

Jones, 1988; Colunga & Sims, 2017), a limited assumption that novel words map onto non-

synonymous concepts (Markman & Wachtel, 1988; Yurovsky, Bion, Smith, & Fernald, 2012; but 

see Deák & Maratsos, 1998; Deák, Yen & Petit, 2001) or syntactic bootstrapping (Gleitman, 

1990), which could promote learning many words from the same class. 

Alternatively or in addition, faster-learning children might more reliably learn a specific 

set of “fundamental” words that are more densely connected among each other than to words 

outside that set. A related but distinct possibility is that causation goes in the other direction: 

learning a set of well-connected words might accelerate further vocabulary growth. Another 

complicating factor is that faster-learning children reach a given vocabulary size at a younger 

age, so age-related differences in children’s interests, environments, and non-vocabulary 

knowledge might additionally influence their vocabulary growth patterns (Storkel, 2009). 

Ultimately, explaining differences between fast- and slow-learning children might depend on a 

better understanding of how individual differences in language development emerge from 

variability in genetic factors (Tomblin & Buckwalter, 1998; Dale, Dionne, Eley, & Plomin, 2000; 

Stromswold, 2017) and environmental factors such as socioeconomic status, caregiver 

responsiveness, quantity of speech input (Hart & Risley, 1995; Tamis-LeMonda, Bornstein, & 

Baumwell, 2001; Hoff, 2003; Tamis-LeMonda, Kuchirko, & Song, 2014). 

  Study 2 demonstrated that word learning correlations are consistent with the tendency of 

word pairs to occur in shared contexts in natural child-directed speech – both the immediate 

context defined by the two adjacent words, and the broader context defined by words that 

appeared in close proximity but not adjacent. These large-scale measures of children’s situated 

exposure to words explained a substantial proportion of the variance in correlated word 

learning, whereas adults’ word association norms did not. Despite the caveat that the different 

measures might have varied in sensitivity and validity, this suggests that rich structure in 
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children’s environment, rather than word semantics measured independently of children’s 

experience, might ultimately be the best way to account for children’s learning.  

 A large proportion of variance still remains to be explained. Two factors limit our 

accuracy: first, our language samples come from a different sample of children than the children 

whose vocabularies we studied. Second, our analysis is limited to orthographic transcriptions of 

parental speech, so we cannot observe effects involving the embedding of words in children’s 

spatiotemporal or sensory environments. Studies using video recording suggest that 

individualized, multimodal inputs do have a strong influence on word learning. For instance, 

toddlers are more likely to learn words they hear during moments when the referent object is 

visually dominant (Yu & Smith, 2012) or during joint attention with parents (Tomasello & Farrar, 

1986). An open question concerns to what extent this embodied referent selection depends on 

explicitly social communication (Csibra & Gergely, 2009) as opposed to relying on general 

processes of attention and associative learning (Szufnarowska, Rohlfing, Fawcett, & 

Gredebäck, 2014; Yu, Suanda, & Smith, 2019). 

 Whereas the aforementioned studies used short recording sessions and evaluated 

learning of a few target words, one study used large-scale recording of the spatiotemporal 

distribution of words in one toddler’s environment and revealed that for that child, words with 

distinct contextual distributions were learned earlier (Roy et al., 2015). Technical and practical 

limitations have prevented collecting this type of dataset for large samples of children. In recent 

years, however, emerging technologies as well as a greater appreciation for the role of 

environmental structure have produced several efforts that might provide data sources richer 

than the speech transcripts used in the current study. For example, the LENA system provides 

hardware for all-day audio recording for infants and software for speaker recognition, allowing 

detailed assessments of the amount and timing of speech (Xu et al., 2008; Greenwood, Schnitz, 

Irvin, Tsai, & Carta, 2018; Bergelson et al., 2019). Head-mounted cameras can be fitted to 

infants and toddlers, and platforms such as Amazon Mechanical Turk enable crowdsourcing of 
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image analysis, e.g. object tagging (Clerkin et al., 2017; Fausey, Jarayaman, & Smith, 2016). 

Head-mounted eye tracking systems make it possible to record infants’ gaze targets during 

naturalistic behavior (Franchak, Kretch, Soska, & Adolph, 2011; Yu & Smith, 2013; Franchak, 

Kretch, & Adolph, 2018), and advances in computer vision might enable more automated video 

coding (e.g. Bambach, Lee, Crandall, & Yu, 2015; Mirsharif, Sadani, Shah, Yoshida, & Burling, 

2017). Thus, in the near future it might be possible to create datasets that enable large-scale 

analyses of not only the linguistic distribution of words, but also their distributions over time, 

space, visual stimulation, and parent social cues. 

These studies only scratch the surface of the potential applications for mapping the 

tracks along which children grow their semantic networks - or the trails and ruts where those 

tracks will be more readily laid. We computed the pairwise relations among words for only a 

single sample of convenience of American English-learning children aged 16 to 32 months. One 

issue is that this sample is not representative of all populations of word learners. Without 

studying diverse populations, we cannot explore the similarities and differences between 

semantic networks trained on populations that vary by language, culture, ethnicity, 

socioeconomic status, gender, technology exposure, or neurodevelopmental status. Studying 

varied populations might reveal alternative ways of organizing words in a network as a function 

of different experience. Word relations might vary in part because of structural differences 

between languages. For example, Korean sentences typically include verbs in salient positions 

and often omit noun information. As a result, Korean-learning toddlers are better than English-

learning toddlers at learning verbs without supporting noun information (Arunachalam, Leddon, 

Song, Lee, & Waxman, 2013). This might cause Korean verbs to show less correlated learning 

with semantically related nouns than in English. Another population that might provide an 

interesting comparison is children with ASD. Although children with ASD have delayed 

vocabulary growth, their vocabulary composition has not been found to significantly deviate from 

typically developing children (Rescorla & Safyer, 2013). Yet more detailed analyses might 
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reveal subtler effects of language-specific encoding of certain word classes (e.g., spatial 

predicates) on acquisition. Free-association norms in adults with high-functioning ASD reveals 

that their semantic networks are more strongly “modular,” or organized around rigid categories 

(Kenett, Gold, & Faust, 2016). Thus, one might expect the patterns of correlated word learning 

to be more affected in ASD than the probabilities of learning individual words or the distribution 

over word classes. Finally, by studying older children in these and other populations, we might 

learn how exposure to the more structured pedagogical environment of school contributes to the 

developing organization of children’s vocabulary (Dubossarsky, De Deyne, & Hills, 2017).  

Another potential direction to explore is the practical applications of models predicting 

word learning via network and corpus properties. It might be possible to accelerate word 

learning by ensuring children are exposed to words that are likely to be learned given the words 

that they already know. Another possible strategy is to enrich words that have many 

connections to unknown words, to maximize the number of target words that can connect to the 

growing network. Finally, it might be useful to enrich words that reduce the path distances within 

the network, under the hypothesis that the short path distances characteristic of small-world 

networks are beneficial.  

This investigation introduced a method to compute compact pairwise representations of 

the correlations in learning between words, without relying on longitudinal data. The same 

method could be applied to study the learning patterns of any set of discrete items. For 

example, one could use networks to study correlated mastery of classroom learning objectives. 

Similarly to vocabulary, it might be possible to identify differences in structure between the 

networks of items learned by children with different levels of overall performance, or to identify 

features of learning items that explain their correlated learning. Another possible application is 

to batteries of cognitive tests (e.g. Bayley, 2006). Network analysis of correlated performance 

on test items might reveal structures missed by existing divisions into subscores or techniques 

such as factor analysis. 
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Overall, the current study represents an effort to use “big data” not to predict 

developmental outcomes of direct practical interest, but rather to mine the data for secondary 

patterns that reveal the structure of cognitive development. With the rapid growth in collection of 

large and detailed observational datasets, there will be many more opportunities to discover 

subtle traces of cognitive and developmental mechanism within the complexity of human 

behavior. 
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Figure 4.1: Log-odds ratio (LOR) matrix organized using hierarchical clustering. Each row and 
each column of this 654x654 matrix represents a single word, and each entry represents the 
LOR of a word pair (entries below the diagonal are redundant). Blue values indicate positive 
LOR, and red values indicate negative LOR. Hierarchical clustering was used to organize 
related words into groups visible as blue squares along the diagonal. Labels on the right 
describe typical words in each cluster.   
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Figure 4.2: Selected small-scale clusters of related words. 
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Figure 4.3: Log-odds-ratio subnetwork consisting of the 125 earliest-learned words, with 
connections shown when LOR was greater than the 95th percentile of word pairs. Nodes were 
placed using the Fruchterman-Reingold force-directed algorithm (Fruchterman & Reingold, 
1991) and resulting clusters of qualitatively related nodes are indicated.  
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Figure 4.4: Differences in network structure metrics as a function of age-adjusted vocabulary 
size quartile group. Y-axis shows metrics corrected for absolute vocabulary size as described in 
the text, so that 0 represents the mean for a given vocabulary size. Box plots indicate the 5th, 
25th, 50th, 75th, and 95th percentile, and small circles indicate the values (with random 
horizontal jitter) for individual children (maximum and minimum values do not necessarily fall 
within the plot area). 
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Figure 4.5: Word relation matrices organized using the same hierarchical clusters based on 
LOR. Blue indicates positive values, and red values indicate negative values. A: FO; B: CWO; 
C: LOR (reproduction of Figure 4.1, for comparison) 
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Table 4.1: Regression models using frame and context-word overlap to predict log-odds ratio. 
 
 

βFO βCWO R2 CI 

FO .0217 - .166 .146 - .186 

CWO - .0184 .120 .102 - .136 

FO, CWO .0178 .0131 .222 .200 - .242 

FO x ∆AOA .0310 - .196 .174 - .218 

CWO x ∆AOA - .0286 .154 .132 - .173 

FO x ∆AOA, CWO x ∆AOA .0243 .0201 .257 .233 - .281 

 
Table 4.2: Subjective associations do not significantly improve prediction of log-odds ratio over 
and above the regression on frame and context-word overlap. 
 
 

βFO βCWO βDA βIA R2 CI 

FO, CWO .0178 .0131 - - .222 .200 - .242 

FO, CWO, DA .0178 .0127 .0184 - .224 .202 - .244 

FO, CWO, IA .0177 .0122 - .0034 .226 .204 - .245 

FO, CWO x ∆AOA .0243 .0201 - - .257 .233 - .281 

FO, CWO, DA x ∆AOA .0243 .0193 .0033 - .259 .234 - .282 

FO, CWO, IA x ∆AOA .0241 .0186 - .0047 .261 .235 - .284 
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Table 4.3: Model fits split by CDI category (ordered by average R2  across the two models). 
 
  

FO x ∆AOA WO x ∆AOA 

Word category Number of words (pairs) βFO R2 βWO R2 

Connecting words 6 (3903) 0.106 0.482 0.069 0.378 

Helping verbs 20 (12870) 0.073 0.358 0.047 0.223 

Pronouns 25 (16025) 0.08 0.379 0.039 0.194 

Question words 7 (4550) 0.073 0.417 0.033 0.144 

Time words 12 (7770) 0.055 0.288 0.032 0.246 

Locations 24 (15396) 0.063 0.331 0.031 0.136 

Quantifiers 17 (10965) 0.08 0.321 0.033 0.132 

Animals 43 (27176) 0.033 0.202 0.032 0.186 

Outside words 31 (19778) 0.023 0.196 0.032 0.167 

Vehicles 14 (9051) 0.023 0.211 0.03 0.136 

Body parts 25 (16025) 0.024 0.181 0.022 0.143 

Action words 103 (62006) 0.03 0.211 0.019 0.088 

Furniture and rooms 33 (21021) 0.017 0.157 0.028 0.138 

Descriptive words 63 (39196) 0.032 0.174 0.023 0.109 

Sounds 12 (7770) 0.011 0.063 0.022 0.212 

Household objects 50 (31425) 0.018 0.131 0.021 0.098 

Food and drink 68 (42126) 0.027 0.123 0.018 0.1 

Clothing 28 (17906) 0.021 0.089 0.025 0.113 

Toys 18 (11601) 0.019 0.13 0.018 0.063 

Places 22 (14135) 0.012 0.053 0.025 0.138 

People 26 (16653) 0.02 0.057 0.021 0.09 

Games and routines 19 (12236) 0.011 0.046 0.01 0.045 
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CONCLUSION 

In this work, I took two angles to the study of how interacting contextual factors shape 

infants’ and toddlers’ word learning: a micro-level approach and a macro-level approach. Within 

the micro-level approach, I studied recordings of naturalistic infant-parent interactions using 

hand-annotated transcriptions of infants’ and parents’ vocal, gaze, and manual behaviors. 

Building on previous research, I found that parents’ utterances were embedded in multiple 

layers of regularities determined by infants’ object-oriented and person-oriented activity, the 

physical situation, parents’ responsiveness, and the structure of typical language/action 

routines. In Chapter 1 I found that, between the ages of 4 and 9 months, parents tended to 

name objects in response to onsets and offsets of infants’ manual object exploration of multiple 

objects. Developmental changes and individual difference in the amount and maturity of infants’ 

manual activity thus determined the availability of word-learning opportunities. In Chapter 2, I 

found that parents tended to produce descriptive and object-naming utterances as part of multi-

utterance sequences that also depended on successfully recruiting and sustaining infant’s 

attention. Infants’ exposure to parents’ descriptive and naming utterances about objects was 

therefore not a static affordance of the environment. Rather, it was co-constructed by both 

partners in the interaction, modulated by individual differences in the infants’ developmental 

status and the parents’ interaction style. Overall, these results illustrate how the inputs to word 

learning go far beyond co-occurrences between word forms and potential referents, by framing 

object-labeling events in a spatial, temporal, linguistic, and developmental context.  

At the macro level, I studied how the usage patterns of English words in a large corpus 

of child-directed speech relate to regularities in children’s production of those words. I 

introduced two distributional measures of word usage: frame-based features, and non-adjacent 

co-occurrence-based features. I found that the co-occurrences between words in child-directed 

speech, when filtered and processed at these two levels, produced rich, interpretable 

representations of words that effectively segregated two types of information: the frame-based 
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features primarily reflect information about grammatical class and usage in linguistic 

constructions, whereas the non-adjacent co-occurrence-based features primarily reflect broader 

semantic associations between words and the objects and activities they co-occur with. In 

Chapter 3, I showed that these distributional representations help predict normative age of 

acquisition over and above semantic and frequency variables that have previously been used to 

explain age of acquisition. Moving on from population-average ages of acquisition, in Chapter 4 

I investigated the tendency of words to be learned in a correlated manner—that is, whether 

individual children learned both words in a usage-correlated pair more often than would be 

expected if words were learned independently. I found that the similarity between two words’ 

distributional representations is a strong predictor of their tendency to be learned together. I also 

used the observed tendency for each word pair as a novel way to define the edges in a 

vocabulary network. Using this network representation I found modest but significant differences 

between the network structures of children with above- and below-average productive 

vocabulary: higher-vocabulary children produced words that were, on average, more closely 

related, connected by shorter-distance paths, and organized with more significant hubs. These 

results demonstrate that children learn words in predictable orders that follow naturally from 

similarities and differences in the words’ contextual distributions. 

 The individual studies in this dissertation contain several novel findings that might be 

primarily of interest to researchers studying several different areas within the field of first 

language acquisition, including word learning but also early syntactic development, 

categorization of objects and other concepts, and statistical learning in general. Taken together, 

they support theories of word learning that ascribe a major role to the multimodal, embodied 

contexts in which words are experienced (e.g., Suanda, Smith, & Yu, 2016). Although word 

exposures are at first embedded in contexts provided by parents’ scaffolding (Gogate, Maganti, 

& Bahrick, 2015; Gogate, Bahrick & Watson, 2000; Meyer, Hard, Brand, McGarvey, & Baldwin, 

2011), infants and toddlers gradually develop behavioral and cognitive competences that allow 
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them both to actively participate in generating richly embedded linguistic inputs (Smith, 

Jayaraman, Clerkin, & Yu, 2018) and to efficiently make valid inferences about word meaning 

(Hockema & Smith, 2009). Rather than simply referring to specific entities, words might be best 

understood as parts of enacted communicative events that unfold according to conventional 

“protocols” such as interactional formats (Bruner, 1983) or pragmatic frames (Rohlfing, Wrede, 

Vollmer, & Oudeyer, 2016). In sum, we see that parents’ object-referring utterances to infants 

are embedded in multimodal, responsive sequences, and that patterns in the words children 

learn suggest that infants and toddlers learn groups of words organized around habitual ways of 

enacting their meaning in a consistent context. 

 Several limitations of the work presented in this dissertation also illustrate pervasive and 

ongoing challenges for research on word learning. Notably, our ability to understand how 

children learn words is constrained by the difficulty of determining causality, and by the diversity 

of sociocultural contexts in which children are raised, as described below. However, I will 

explain how these challenges also present opportunities for future research directions and 

discoveries.  

 None of the studies in this work were expected to produce causal evidence for the claim 

that any specific environmental feature increases the probability that a child will learn a word. It 

is extremely difficult (or unethical) to manipulate a child’s linguistic environment in ways that 

maintain experimental control without oversimplifying the developmental task. In particular, 

stimulus characteristics cannot be controlled without severely constraining the freedom of the 

child-adult dyad to engage in mutually responsive interaction. Therefore, experiments and 

randomized controlled trials of word learning have been limited to small-scale laboratory 

experiments, usually involving a few exposures to a few words, and to enrichment interventions, 

which apply experimental control at too high a level to answer questions about representative 

mechanisms. Instead of the experimental method, I have followed many other developmental 

scientists in adopting an observational, descriptive, and/or correlational approach: documenting 
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behavioral patterns that are outside our control but are of theoretical relevance for word 

learning, and measuring the extent to which they correlate with word learning. Using new 

statistical techniques being developed for data science, econometrics, and other scientific fields, 

we tap into a growing repertoire of tools for finding patterns and quantifying trends in complex, 

multivariate datasets. These techniques can even generate quasi-causal inferences under 

certain conditions (Imbens & Lemieux, 2018, Pearl, 2009). On the data collection side, 

innovations include, for example large-scale data annotation via crowdsourcing (Clerkin, Hart, 

Rehg, Yu, & Smith, 2017), egocentric video and gaze tracking (Smith, Yu, Yoshida, & Fausey, 

2015), and mobile brain-body imaging (Liao, Acar, Makeig, & Deák, 2015). Such methods could 

be used to replicate and extend the new findings reported in Chapters 3 and 4. At the same 

time, researchers are increasingly compiling or creating large, open datasets such as the 

CHILDES and Wordbank databases, with the explicit intent of enabling more “reusable 

research” (Gilmore, 2016). 

 Our approach to studying word learning depends on the concrete behavioral 

instantiations of developmental processes, rather than on abstract universal principles. The 

current studies analyzed data derived from the specific sequences of visual, manual, and verbal 

behaviors that occurred in our study populations, i.e. American English-learning children and 

their parents, within a limited range of times and social classes. Thus, the relevance of our 

results depends on what one can learn by studying this population. Child-directed speech and 

play practices vary significantly between populations. In some populations, caregivers rarely 

address prelinguistic infants directly (Lieven, 1994; Cristia, Dupoux, Gurven, & Stieglitz, 2019), 

and the physical and social contexts in which child-directed speech practices occur vary 

significantly across populations (Bornstein et al., 1992; Ogura, Dale, Yamashita, Murase, & 

Mahieu, 2006; Kärtner et al., 2008). Nevertheless, the structured information generated by 

these practices correlates with language acquisition outcomes even in populations with minimal 

child-directed talk (Shneidman & Goldin-Meadow, 2012; Weber, Fernald, & Diop, 2017). Future 
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research might therefore document similarities and differences in the relations between the 

detailed structure of language input–both child-directed and overheard–and word learning 

trajectories in children both within and outside commonly-studied WEIRD (Western, Educated, 

Industrial, Rich, Democratic) populations (Henrich, Heine, & Norenzayan, 2010; Nielsen, Haun, 

Kärtner, & Legare, 2017). In making such comparisons, it will be important to view each study 

population carefully rather than simply applying methods that make implicit Western-centric 

assumptions (Kline, Shamshudheen, & Broesch, 2018). Truly general principles might then 

follow from an effort to develop models that can account for both the similarities and differences 

in the word learning patterns observed across different populations.  

 Cognitive development in general, and word learning in particular, is the result of 

complex systems that unfold over time and space across multiple scales, between multiple 

individuals and with abundant crosstalk between different cognitive domains and sensorimotor 

modalities. Although this complexity can make it difficult to characterize these systems in the 

abstractions of scientific theory, it also generates learning opportunities by embedding words in 

predictable interactive sequences and linguistic and non-linguistic contexts. In this dissertation, I 

have attempted to show how complexity can also be an asset for researchers, as detailed 

recordings of the events occurring within a complex developmental system and the resulting 

learning outcomes can provide clues to its function.  
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APPENDIX A: Supporting information for Chapter 2 

Table A.1. Conditional probability that an utterance contains content type in column given that it 
contains the content type in row. 

 

Dec Imp Que Dsc Att Act ONm INm Aff Soc 

Dec 

 

.05 .06 .30 05 .16 .38 .02 .03 .03 

Imp .08 

 

.07 .03 .53 .51 .20 .10 .02 .02 

Que .06 .05 

 

.09 .09 .36 .33 .04 .01 .02 

Dsc .67 .04 .20 

 

.04 .02 .25 .01 .03 .01 

Att .10 .80 .20 .04 

 

.07 .22 .11 .02 .01 

Act .20 .44 .44 .01 .04 

 

.25 .05 .02 .04 

ONm .41 .15 .36 .12 .11 .22 

 

.03 .03 .04 

INm .09 .33 .19 .02 .23 .20 .12 

 

.01 .17 

Aff .10 .04 .04 .04 .02 .05 .07 .00 

 

.03 

Soc .07 .03 .05 .01 .01 .07 .06 .09 .03 
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Table A.2. Cohen’s Kappa for coded variables 

Content type κ 

DECLARATIVE .89 

IMPERATIVE .91 

QUESTION .96 

DESCRIPTION .76 

ATTENTION .94 

ACTION .86 

OBJECT NAME -- * 

INFANT’S NAME .93 

AFFIRMATION .92 

SOCIAL ROUTINE .80 

Gaze target .76 

Object handling .81 

* This was tagged using a word list, so it did not differ across coders 
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Table A.3. Representative maternal speech sequence  

Utterance Content types Gaze 
target 

Toys 
handled 

Hey [name] SOCIAL ROUTINE, INFANT’S NAME TOY 1 

Look at that block IMPERATIVE, ATTENTION, OBJECT NAME OTHER 1 

Can you give it to me? QUESTION, ACTION TOY 2 

Give it to me. IMPERATIVE, ACTION TOY 2 

Oh thank you. SOCIAL ROUTINE TOY 2 

Thank you. SOCIAL ROUTINE TOY 1 

How about the box? QUESTION, OBJECT NAME TOY 1 

I don’t, you don’t like these 
blocks do you? 

DECLARATIVE, OBJECT NAME OTHER 0 

You just want me to play with 
them, huh. 

DECLARATIVE TOY 0 

[Toys exchanged]   
 

I know but we got new toys 
to play with. 

DECLARATIVE TOY 0 

Hey look IMPERATIVE, ATTENTION TOY 2 

Look at this IMPERATIVE, ATTENTION TOY 1 

Look at what we can do, we 
can make a ball. 

IMPERATIVE, ATTENTION, DECLARATIVE, 
ACTION, OBJECT NAME 

TOY 1 

We can make a ball. DECLARATIVE, ACTION, OBJECT NAME TOY 1 

We can make a bigger ball. DECLARATIVE, ACTION, OBJECT NAME, 
DESCRIPTION 

TOY 1 

wow. SOCIAL ROUTINE TOY 1 
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Table A.4. Coefficients for repetition of utterance content types. The first column reproduces the 
diagonal of Figure 2. The second column shows re-computed coefficients when exact 
repetitions are removed. 
 

Type β with exact repeats β without exact repeats 

DECLARATIVE .63** .38** 

IMPERATIVE .60** .34† 

QUESTION .83** .55** 

DESCRIPTION 1.89** 1.71** 

ATTENTION .94** .63** 

ACTION 1.27** 1.10** 

OBJECT NAME 1.66** 1.42** 

INFANT’S NAME .90** .48† 

AFFIRMATION .41* -.20 

SOCIAL ROUTINE 1.07** .62** 
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Table A.5. Proportion of utterances with each content type that are followed by exact 
repetitions.  
 

Type Proportion exact 
repetitions 

Proportion overlapping 
words 

Proportion not overlapping 
words 

DECLARATIVE .08 .58 .35 

IMPERATIVE .15 .52 .33 

QUESTION .14 .58 .29 

DESCRIPTION .09 .56 .35 

ATTENTION .15 .61 .24 

ACTION .12 .59 .30 

OBJECT NAME .14 .71 .15 

INFANT’S NAME .28 .62 .10 

AFFIRMATION .41 .23 .36 

SOCIAL ROUTINE .32 .39 .30 

 

 
  



 203 

APPENDIX B: Supporting Information for Chapter 3 

Table B.1. Variance Inflation Factors for distributional features 

 Production Comprehension 

Variable Coefficient SE VIF Coefficient SE VIF 

Syntactic PC1 -.53 .17 3.24 -.52 .25 3.18 

Syntactic PC2 -.27 .14 2.17 .27 .22 2.42 

Syntactic PC3 -.09 .18 3.83 .06 .28 3.11 

Syntactic PC4 -.81 .13 1.86 -.47 .22 2.30 

Syntactic PC5 -.48 .13 2.03 -.47 .21 1.87 

Syntactic PC6 -.02 .11 1.43 .21 .18 2.02 

Syntactic PC7 -.50 .11 1.25 -.93 .20 1.90 

Syntactic PC8 -.10 .12 1.54 -.51 .23 2.46 

Syntactic PC9 -.29 .12 1.50 -.14 .21 1.83 

Syntactic PC10 -.03 .12 1.56 .10 .21 2.07 

Thematic PC1 -.48 .22 5.30 -.38 .35 3.94 

Thematic PC2 -.21 .14 2.10 .18 .19 2.26 

Thematic PC3 -.03 .13 1.80 .68 .19 2.11 

Thematic PC4 -.01 .15 2.64 .38 .24 3.29 

Thematic PC5 -.45 .11 1.29 -44 .16 1.54 

Thematic PC6 -.10 .11 1.33 .34 .16 1.54 

Thematic PC7 -.67 .10 1.13 -.1.01 .15 1.23 

Thematic PC8 -.22 .10 1.17 -.45 .15 1.36 

Thematic PC9 -.14 .10 1.07 -.16 .14 1.19 

Thematic PC10 -.06 .10 1.16 -.34 .15 1.28 
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Table B.2. Variance Inflation Factors for baseline features 

 Production Comprehension 

Variable Coefficient SE VIF Coefficient SE VIF 

MLU .60 .17 3.43 .37 .32 5.11 

Frequency -1.82 .25 7.34 -.76 .39 5.98 

Final frequency -.89 .15 2.43 -.84 .26 2.59 

Solo frequency -1.59 .18 3.48 -1.31 .32 4.39 
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Table B.3. RMSE for different values of minimum frame/context word frequency 

Min Frequency 

 

500 1000 2000 

Production 

    

 

Full 2.47 2.49 2.54 

 

Baseline 2.84 2.84 2.84 

 

Syntactic+Thematic 3.24 3.31 3.30 

 

Baseline+Thematic 2.69 2.68 2.68 

 

Baseline+Syntactic 2.53 2.57 2.63 

Comprehension 

    

 

Full 2.81 2.83 2.92 

 

Baseline 3.31 3.31 3.31 

 

Syntactic+Thematic 3.15 3.16 3.24 

 

Baseline+Thematic 3.00 2.97 2.95 

 

Baseline+Syntactic 3.00 3.01 3.08 
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Table B.4. RMSE for different numbers of PCs 

PCs 

 

5 10 20 

Production 

    

 

Full 2.60 2.49 2.46 

 

Baseline 2.84 2.84 2.84 

 

Syntactic+Thematic 3.49 3.31 3.45 

 

Baseline+Thematic 2.84 2.68 2.67 

 

Baseline+Syntactic 2.61 2.57 2.60 

Comprehension 

    

 

Full 3.06 2.83 2.91 

 

Baseline 3.31 3.31 3.31 

 

Syntactic+Thematic 3.44 3.16 3.15 

 

Baseline+Thematic 3.22 2.97 3.00 

 

Baseline+Syntactic 3.09 3.01 3.12 
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Table B.5. RMSE for different winsorization thresholds 

Winsorization 

 

5 MAE 10 MAE 20 MAE 

Production 

    

 

Full 2.49 2.49 2.52 

 

Baseline 2.84 2.84 2.84 

 

Syntactic+Thematic 3.24 3.31 3.35 

 

Baseline+Thematic 2.69 2.68 2.68 

 

Baseline+Syntactic 2.59 2.57 2.60 

Comprehension 

    

 

Full 2.78 2.83 2.85 

 

Baseline 3.31 3.31 3.31 

 

Syntactic+Thematic 3.11 3.16 3.20 

 

Baseline+Thematic 2.97 2.97 2.97 

 

Baseline+Syntactic 3.00 3.01 3.03 

 

 
  



 208 

APPENDIX C: Supporting Information for Chapter 4 

 

Figure C.1. Log-odds-ratio subnetwork consisting of the 125 earliest-learned words, with 
connections shown when LOR was greater than the 98th percentile of word pairs. 
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Figure C.2. Log-odds-ratio subnetwork consisting of the 125 earliest-learned words, with 
connections shown when LOR was greater than the 90th percentile of word pairs. 
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Figure C.3. Log-odds-ratio subnetwork consisting of the 125 earliest-learned words, with 
connections shown when LOR was greater than the 85th percentile of word pairs. 
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Table C.1. F-statistics for models predicting network measures as a function of vocabulary 
quartile group (both as categorical variable and as linear trend) are robust to different methods 
of correcting for vocabulary size. All models reached statistical significance by the methods 
described in the text. 
 

 
Network measure 

Reweighting 

by quartile 

No 

reweighting 
Bandwidth 5 Bandwidth 20 

Categorical models Mean Edge 20.1 19.9 20.2 19.9 

 Clustering Coef. 8.1 8.0 8.4 7.5 

 Harmonic Path 26.4 26.1 26.5 26.7 

 Deg. Dist. Skewness 4.3 4.3 4.3 4.3 

      

Linear Trend models Mean Edge 54.5 54.1 53.9 55.0 

 Clustering Coef. 12.1 12.0 12.5 11.6 

 Harmonic Path 73.3 74.3 75.3 75.1 

 Deg. Dist. Skewness 11.8 11.8 11.4 11.7 

 
 




