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Abstract

Algebraic Matroids in Applications

by

Zvi H Rosen

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Algebraic matroids are combinatorial objects defined by the set of coordinates of an
algebraic variety. These objects are of interest whenever coordinates hold significance: for
instance, when the variety describes solution sets for a real world problem, or is defined
using some combinatorial rule. In this thesis, we discuss algebraic matroids, and explore
tools for their computation. We then delve into two applications that involve algebraic
matroids: probability matrices and tensors from statistics, and chemical reaction networks
from biology.
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Chapter 1

Introduction

Both chapters 1 and 2 are based on material from Computing Algebraic Matroids [48]. The
definitions and introductory examples are brought to aid exposition, but similar examples
can be found in standard texts such as [45] and [56].

Algebraic matroids have a surprisingly long history. They were studied as early as the
1930’s by van der Waerden, in his textbook Moderne Algebra [55, Chapter VIII], and
MacLane in one of his earliest papers on matroids [35]. The topic lay dormant until the
70’s and 80’s, when a number of papers about representability of matroids as algebraic ma-
troids were published: notably by Ingleton and Main [23], Dress and Lovasz [11], the thesis
of Piff [46], and extensively by Lindström ([32, 33, 30, 31], among others). In recent years,
the algebraic matroids of toric varieties found application (e.g. in [43]); however, they have
been primarily confined to that setting.

Renewed interest in algebraic matroids comes from the field of matrix completion, start-
ing with [26], where the set of entries of a low-rank matrix are the ground set of the algebraic
matroid associated to the determinantal variety. In applied algebra in general, coordinates
typically carry real-world significance, and the matroid has inherent interest as the depen-
dence structure among those quantities. Even for varieties arising in pure mathematics,
distinguished coordinates may have combinatorial meaning, in which case the matroid also
provides insight.

1.1 Summary of Main Results
The purpose of this dissertation is to provide the relevant tools for computation of algebraic
matroids and to actually use them in practice. The remainder of Chapter 1 introduces
matroids to the reader and defines technical language that will be used in the thesis. We
prove some basic results where the proof is particularly instructive or relevant. In Chapter 2,
we summarize two techniques for computing algebraic matroids associated to prime ideals.
An original definition in this chapter is the non-matroidal locus of an affine variety. This is a
subvariety which exhibits degenerate behavior under coordinate projection. In Propositions
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2.2.2 and 2.2.4, we also give an explicit formula; as a corollary, this demonstrates that it has
positive codimension. Therefore, generic computation of the Jacobian returns the correct
matroid.

The sample computations, which fully describe some large matroids and their algebraic
decorations are also new results. In particular, we compute the matroid associated to the
Plackett-Luce model for statistical rankings of size 4, the mixture model matroid of rank 3
for 4× 4 matrices, the matroid for the steady state variety of the MAP kinase network, the
Grassmannian Gr(3, 6), and two realizations of the non-Pappus matroid. These motivate
many questions and justify the matroid as an object of interest.

Chapter 3 explores a problem from algebraic statistics in depth: Completely describe
the algebraic matroid associated to the variety of rank-1 matrices whose entries sum to one.
In Theorem 3.1.14, we prove necessary and sufficient conditions for a subset of entries of
a matrix to be completable to a rank-1 matrix with nonnegative entries summing to one.
We also turn this into an algorithm for outputting such a matrix – Algorithm 3.3.2 for
arbitrary partial matrices and Algorithm 3.3.3 for partial matrices with only two connected
components. This gives a rejection criterion for the hypothesis that two discrete random
variables are independent given a partial joint probability mass function.

In Chapter 4, we embark on a full algebraic study of a particular chemical reaction net-
work: the shuttle model for the Wnt signaling pathway. The model has not been previously
studied, as it was only recently introduced in [37]; therefore, all results about its properties
are original. Techniques used in the analysis include symbolic computation, numerical alge-
braic geometry, polyhedral analysis. We prove that the system has nine solutions generically
in Theorem 4.0.3, and that it can achieve as many as three real positive steady states in
Theorem 4.3.1. In Proposition 4.5.2, we show that nonzero values for rate parameters and
conserved quantities imply nonzero concentrations for all species at steady-state. Original
techniques introduced here use the algebraic matroid to find combinatorially nice coordinate
parametrizations of the steady-state variety, in Proposition 4.4.3 and to perform parameter
inference with only a subset of species data.

Finally, we conclude the dissertation in Chapter 5 with open problems and research
directions. Some of these are extensions of topics already discussed in the thesis, and others
peek into untapped areas. Algebraic matroids are natural and intriguing objects, and with
this dissertation and ongoing research, we aim to contribute to a more widespread discussion
of their applications.

1.2 Examples
Matroids were introduced as a way to generalize phenomena termed “independence” from
across mathematics. Before defining a matroid, it is helpful to describe some of the founda-
tional examples that motivated their invention. In each case, we will describe the associated
structures, whose definitions we will formalize in the next section.



CHAPTER 1. INTRODUCTION 3

Example 1.2.1 (Linear Matroid). Let {v1, . . . , v4} be a collection of vectors as pictured in
Figure 1.1. We let linear independence be the guiding principle here, defining a collection of
associated structures. For brevity, we use E = {v1, . . . , v4} and 2E = the power set of E.

v1

v2

v3

v4

Figure 1.1: Example of linear matroid.

Independent Sets I Subsets of E that are linearly independent.
Here: {∅, {2}, {3}, {4}, {2, 3}, {2, 4}}.

Bases B Vector space bases of the span of E; equivalently, maximal lin-
early independent subsets.
Here: {{2, 3}, {2, 4}}

Dependent sets D Subsets of E that have some nonzero linear dependency.
Here: {{1}, {1, 2}, {1, 3}, {1, 4}, {3, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 4},
{1, 2, 3}, {1, 2, 3, 4}}.

Circuits C Minimal subsets of E that are dependent.
Here: {{1}, {3, 4}}

Hyperplanes H Subsets of E that do not span the full space, but after adding any
vector, the resulting set does span the full space.
Here: {{1, 2}, {1, 3, 4}}.

Closure function c Function from 2E → 2E which takes a set of vectors and returns
all vectors in their span.

Rank function ρ Function 2E → N0 which takes a set of vectors and returns the
dimension of their span.
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Example 1.2.2 (Graphic Matroid). Let G = (V,E) be an undirected graph, not necessarily
simple: in particular, there may be loops or parallel edges. For instance, let G be as pictured
in Figure 1.2. The guiding principle in this example is acyclicity. For brevity, we use
E = {e1, . . . , e5} and 2E = the power set of E.

e1

e2

e3

e4

e5

Figure 1.2: Example of graphic matroid.

Independent Sets I Forests of E.
Here: {∅, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

Bases B Spanning trees of G, i.e. maximal acyclic edge sets.
Here: {{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

Dependent sets D Subsets of E containing cycles.
Here: {{5}, {1, 2}, {1, 5}, {2, 5}, {3, 5}, {4, 5}, . . .
Twenty-two subsets of E not in I.

Circuits C Simple cycles of G - i.e. cycles with no repeated vertex.
Here: {{5}, {1, 2}, {1, 3, 4}, {2, 3, 4}}

Hyperplanes H The set of all edges resulting from inducing a subgraph on both
parts of a bipartition.
Here: {{1, 2, 5}, {3, 5}, {4, 5}}.

Closure function c Function from 2E → 2E which includes an edge if the two end-
points are connected by another path in the input.

Rank function ρ Function 2E → N0 which returns the size of the largest contained
independent set.
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Example 1.2.3 (Algebraic Matroid). Let K/k be a field extension. For this example, we let
k = Q and K = Q(x, y). Consider the ground set E given by the following elements of K:

α1 =
1

y − 1
, α2 = x3 + 5, α3 = xy2, α4 = y − 1

The idea determining the structures in this example is algebraic independence. A set of
elements {α1, . . . , αs} in the field extension K/k is considered algebraically independent, if
there exists no nonzero polynomial P ∈ k[X1, . . . , Xs] such that P (α1, . . . , αs) = 0.

Independent Sets I Algebraically independent subsets of E.
Here: {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}.

Bases B Transcendence bases of K.
Here: {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}

Dependent sets D Algebraically dependent sets (i.e. those containing a subset which
satisfy a polynomial relation).
Here: {{1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

Circuits C Minimal algebraically dependent subsets.
Here: {{1, 4}, {1, 2, 3}, {2, 3, 4}}

Hyperplanes H Subsets of E s.t. adding any of the remaining elements induces
a basis.
Here: {{1, 4}, {2}, {3}}.

Closure function c Function from 2E → 2E which takes a subset S ⊂ E and adds
any element algebraic over k(S).

Rank function ρ Function 2E → N0 which takes S ⊂ E and returns the transcen-
dence degree of k(S).

In each of these cases, any one of the listed structures is enough to specify all of the
others. They are each also subject to a set of axioms that they must satisfy. In the next
section, we will discuss the commonality among these concepts, introducing definitions and
concepts that will be used later in the thesis.

1.3 Definitions, Axioms, and Notation
Having seen various motivating examples for the definition of a matroid, we will state it
formally here. Matroids have many characterizations; we present the axiom systems for
independent sets, bases, and circuits. The computation problem tackled in Chapter 2 returns
as output the list of bases and circuits of an algebraic matroid. For this reason, having these
axioms may be useful.
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The following sets of axioms paraphrase [56]:

Definition 1.3.1 (Independent Set Axioms). A matroid is an ordered pair (E, I) where E
is a finite set, and I ⊂ 2E, such that I satisfies:

1. ∅ ∈ I.

2. I ′ ⊂ I and I ∈ I implies I ′ ∈ I.

3. (Augmentation Axiom) I1, I2 ∈ I and |I1| < |I2| implies there exists x ∈ E such that
I1 ∪ x ∈ I.

Definition 1.3.2 (Basis Axioms). A matroid is an ordered pair (E,B) where E is a finite
set, and B ⊂ 2E, such that B satisfies:

1. B is not empty.

2. (Basis Exchange Axiom) If B1, B2 ∈ B are distinct, then there exist x ∈ B1 \ B2 and
y ∈ B2 \B1 such that B1 \ {x} ∪ {y} ∈ B.

Definition 1.3.3 (Circuit Axioms). A matroid is an ordered pair (E, C) where E is a finite
set, and C ⊂ 2E, such that C satisfies:

1. C is not empty.

2. C ′ ⊆ C and C,C ′ ∈ C implies C ′ = C.

3. (Circuit Elimination Axiom) If C1, C2 ∈ C are distinct such that x ∈ C1 ∩ C2, then
there exist C3 ⊆ C1 ∪ C2 \ {x} such that C3 ∈ C.

As mentioned earlier, every set of axioms can be derived from any other set of axioms.
Since this is the case, proving that a given independence structure is a matroid can be
accomplished by showing it satisfies any set of axioms. With these axioms established as the
definition of a matroid, we can prove that algebraic matroids, the topic of this thesis, are in
fact matroids:

Theorem 1.3.4. Let E be a finite set of elements in a field extension K/k, and let B be all
subsets that are transcendence bases of k(E). Then (E,B) is a matroid.

Proof. Since E generates the field extension, it must contain a transcendence basis. As for
the basis exchange axiom, let B1, B2 be transcendence bases of k(E). Then, for any y ∈ B2,
y must be algebraic over k(B1). This implies it satisfies an algebraic relation P (y) = 0 where
P has coefficients in k(B1).

Since y is not algebraic over k, at least one other xi must appear in the coefficients for
some i. That means that xi is algebraic over B1 \ {xi} ∪ {y}; since the algebraic closures
contains a transcendence basis for the full extension, it must be a transcendence basis as
well.
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In Example 1.2.3, an algebraic matroid was presented by giving a collection of elements
in a purely transcendental extension. An alternative approach is to first define elements, and
then quotient out by the ideal of relations, as in the following definition.

Definition 1.3.5 (Matroid of a Prime Ideal). Let k be a field, and R = k[x1, . . . , xn], a
polynomial ring.

Let P ⊆ k[x1, . . . , xn] be a prime ideal. The ring S = k[x1, . . . , xn]/P is an integral
domain, so the function field K = Frac(S) is well-defined.

Let E = {x1, . . . , xn} ⊂ K be the image of {x1, . . . , xn} under the composition of the
quotient and the injection ϕ : k → S → K. Independence is defined as usual in an algebraic
matroid: algebraic independence over the ground field k. M(P ) denotes the matroid obtained
from a prime ideal in this manner.

In fact, every algebraic matroid M can be obtained as M(P ) for some prime ideal P .
Start from an algebraic matroid M of size n with ground set contained in K/k. Set the
ground set E to be the image of the variables in a ring map φE : k[x1, . . . , xn] → K.
The image of the induced map of varieties is an irreducible variety in kn. The associated
prime ideal P , obtainable by implicitization, satisfies M = M(P ). Despite this property,
it is often convenient to study the matroid of a variety purely in terms of the variety’s
parametrization. Given a map φ : k[x1, . . . , xn] → K, the notationM(φ) will then refer to
the algebraic matroid with ground set {φ(xi) : i = 1, . . . , n}.

Decorated Bases and Circuits

We can infuse more of the algebraic structure of the ideal into the matroid via “matroid
decorations.” This approach of enhancing a matroid with more information has been taken
in various forms: oriented matroids [5], arithmetic matroids [9], valuated matroids [12] and
matroids over rings [15], to name a few. Circuits of algebraic matroids have a natural
decoration, based on the following fact ([25, Lemma 5.6]):

C = {xi1 , . . . , xik} is a
circuit ofM(P )

⇐⇒ The ideal I ∩ k[C] is principal with generator θC
s.t. support(θC) = C.

The generator θC of the principal ideal, called a circuit polynomial is unique up to unit.
This invariant was used by Dress and Lovasz in [11] as well as Lindström in [30] in the
process of proving structural facts about algebraic matroids. More recently in [25], the
circuit polynomials are studied as objects of interest in their own right. If the polynomial
itself is too unwieldy, we may prefer to record only some aspect of the polynomial: (1) The
Newton Polytope associated to the polynomial. (2) Top-Degree: This aspect is explored in
[25]. It is the vector in Nn given by (degxi θC)i∈[n]. Equivalently, it is the outer vertex of the
tightest bounding box for the Newton polytope. When we try to construct points in a variety
based on subsets of the coordinates, the top-degree allows us to determine the cardinality of
the solution set. (3) Degree: A natural concise invariant.
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Remark 1.3.6. A question whose answer is still not fully understood: What constraints are
there for a set of integers attached to the circuits of a matroid to be the degrees of circuit
polynomials for some algebraic matroid?

IfM is a matroid with corank 1, then there is a unique circuit: the full set of variables.
Assuming there is more than one variable, we can find an irreducible circuit polynomial of
any degree involving the circuit variables. On the other hand, suppose that a matroid has
loops. Over an algebraically closed field, the degree of a loop’s polynomial is forced to 1,
since a polynomial in one variable breaks into linear factors and the polynomial must be
irreducible. Over Q, on the other hand, any degree is possible for a loop, since there are
irreducible polynomials in every degree. (See Section 2.3 for another example where the field
places constraints on the matroid decorations.)

The bases of an algebraic matroid have the following nice property (cf. [25, Definition 2.6]):
{xi1 , . . . , xik} is a base ofM(P ) ⇐⇒ the projection from the variety onto the

i1, . . . , ik-th coordinates is dominant with
generically finite fibers.

The cardinality of the generic fiber (or, equivalently, the degree of the projection) is the
decoration on the bases and will be referred to as the base degree.

Matroid Duality

The final matroid property we will discuss in this chapter will be matroid duality. The
nature of duality for algebraic matroids is the most well-known open problem about this
object [56, Exercise 11.2.3]. Duality of linear matroids will be useful for us in Chapter 2.
The construction is as follows:

Definition 1.3.7. LetM = (E,B) be a matroid. The dual matroidM∗ = (E,B∗) is defined
by

B∗ = {E \B | ∀B ∈ B}.

The basis exchange axiom is inherited by B∗ so the construction is well-defined. The
language of duality is appropriate sinceM∗∗ =M.

There are a number of nice bijections between structures of M and M∗. Structures
associated to M∗ are given the prefix co-. Since they have not been mentioned before, we
note that a spanning set is a set whose closure is E, a loop is a circuit consisting of just one
element, and a bridge is an element in ∩B∈BB (Graph theory makes the last two notations
intuitive).

Base Cobase B ⊂ E ←→ Complement of B,
Independent Set Cospanning Set I ⊂ E ←→ Complement of I,

Hyperplane Cocircuit H ⊂ E ←→ Complement of H,
Bridge Coloop x←→ x (identity).

Obviously, switching the “co”s preserves the bijection.
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Proof. Since independent sets are those sets contained in some base, the complement con-
tains a cobase, which means it is a cospanning set. The hyperplane is a subset such that
adding any element returns a spanning set; on the dual side, removing any element from its
complement gives a coindependent set. However, the hyperplane is not a spanning set, so its
complement is codependent; therefore, it must be a circuit. Finally, a bridge is an element
whose complement is a hyperplane, so the same element is a cocircuit.

The map from a linear matroidM to its dual is simple.

Theorem 1.3.8. Let A be a matrix whose columns comprise the ground set of the linear
matroid M. Let K be a set of vectors spanning ker(A), and let A′ be a matrix whose rows
are K. The columns of A′ is the ground set of a linear matroid identical toM∗.

Proof. The ground set clearly has the right cardinality, and the rank-nullity theorem indicates
that the rank will be |E| − ρ(M), the correct rank for the dual.

Suppose B ⊂ E is a base of the matroid. Then for any x ∈ E \B, there is a vector in the
kernel supported on B ∪x. Since the row span of A′ contains vectors with support B ∪x for
each x ∈ E \B, the matrix restricted to E \B must have full rank. So, it must be a cobase
of the matroid.

If a subset of the appropriate size is not a base, there is some vector with support B in
the row span of A′. Row reduce so that one of the rows has support B, and only |E|−ρ(M)
rows are nonzero. (Row operations do not affect the matroid). Then, the matrix restricted
to E \B does not have full rank.
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Chapter 2

Computation

In this chapter, we will explore the various options for computing algebraic matroids with
base degrees and circuit polynomials. After discussing two primary strategies for the com-
putation, we will demonstrate through several examples of various sizes from different areas
of mathematics. This material comes from Computing Algebraic Matroids [48].

The two strategies we will outline are the symbolic algorithm and the linear algorithm.
In both approaches, an ideal in a polynomial ring is taken, and a list of bases with base
degrees and a list of circuits with circuit polynomial (or alternative decoration like degree) are
returned. The linear algorithm allows us to turn the algebraic matroid into a linear matroid
by specializing the Jacobian at a generic point of the variety. We define the subvariety where
this specialization fails to obtain the correct matroid. We then use the computational tools to
describe matroids for: the Plackett-Luce model for statistical rankings of size 4, the mixture
model matroid of rank 3 for 4 × 4 matrices, the matroid for the steady state variety of the
MAP kinase network, the Grassmannian Gr(3, 6), and two realizations of the non-Pappus
matroid.

Within each regime, we employ techniques on two different levels: oracles, which extract
matroid features from the ideal, and matroid algorithms, which turn one type of matroid
data (e.g. rank) into another type (e.g. circuits). Matroid algorithms are well-studied, and
will not be the focus of the chapter, though our software does rely upon them. In most cases,
we use naïve matroid algorithms, though we have also implemented sophisticated methods
like ReverseSearch [1] and the circuit enumeration algorithm of Boros et al. [6] to list bases
and circuits respectively. These occasionally perform better than the naïve algorithms;
however, in the majority of cases, they do not significantly accelerate the computation.
Since the bottleneck of algebraic computation, in the form of Gröbner bases or homotopy
continuation, is very time-consuming, only relatively small examples are feasible. At this
scale, the difference in complexity for the combinatorial algorithms is not noticeable.
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2.1 Symbolic Algorithm
In the symbolic realm, elimination is at the core of the computations. It is used in the rank
oracle, which will be justified by the following proposition:

Proposition 2.1.1 (Rank Oracle). Let k be a field, P ⊆ k[x1, . . . , xn] be a prime ideal,
E = {x1, . . . , xn} ⊂ Frac(k[x1, . . . , xn]/P ) be the ground set, and M(P ) be the matroid of
this prime ideal as in Definition 1.3.5, and S ⊂ E. Then,

ρ(S) = |S| − height(P ∩ k[S]),

where height denotes the height of the ideal.

Proof. The rank of S in the algebraic matroid is given by the transcendence degree of k(S).
This is the dimension of the coordinate projection of V(P ) to the space with coordinates in
S. The ideal P ∩ k[S] is the defining ideal of the closure of the image of V(P ) in kS under
the projection. This ideal lives in the smaller polynomial ring k[S]; the height of P ∩ k[S]
as an ideal of this ring is equal to its codimension in the S-subspace. Subtracting from |S|
gives the dimension.

Based on this, elimination of E \ S followed by computation of height will serve as a rank
oracle. Matroid algorithms use the rank oracle to enumerate bases and circuits. For circuits,
we may also use the characterization of circuits in Section 1.3 to define a circuit oracle:
test a set S by first computing the elimination ideal P ∩ k[S], and then checking that the
generator has full support on the variables of S.

The decoration of the circuits is a natural byproduct of the symbolic algorithm. For the
base degree, fix a base B = {xi1 , . . . , xid}. Under the projection map from kn → kd onto the
coordinates in the base, the preimage of a generic point (λ1, . . . , λd), generated randomly, is
a subspace with defining ideal IB = 〈xis −λs | s = 1, . . . , d〉. The fiber of the projection then
has defining ideal P + IB, and the degree of that ideal is the base degree.

An implementation of the symbolic approach, called matroids.m2, written for the com-
mutative algebra platform Macaulay2 [18], can be found at: http://math.berkeley.edu/
~zhrosen/matroids.html. Important commands are listed in Table 2.1.

The code has two sources of complexity - the complexity of elimination of variables via
Gröbner bases, and the combinatorial complexity of listing and testing all potential bases,
resp. circuits. For this reason, the code has difficulty with large ground sets, large-rank
matroids, and ideals with high degree generators. In trials, the code works quickly for
matroids with |E| ≤ 18, ρ(M) ≤ 6, and generators in degree ≤ 4. For larger or higher-rank
matroids, one should use a more tailored approach, as in Example 2.3.2.

2.2 Linear Algebra
A classical result in the study of algebraic matroids states: algebraic matroids defined over a
field k of characteristic zero can also be realized as a linear matroid over a field k(T ) where
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bases
Input: Polynomial Ring, Ideal.
Output: List of bases of the matroidM(I).

decoratedBases
Input: Polynomial Ring, Ideal.
Output: List of bases of the matroidM(I) with base degree.

circuits
Input: Polynomial Ring, Ideal.
Output: List of circuits of the matroidM(I).

pCircuits

Input: Polynomial Ring, Ideal.
Output: List of ordered pairs: circuits of the matroidM(I) to-
gether with circuit polynomials.
Degree-decorated circuits can be computed with:
apply(pCircuits, c -> (c_0, degree(c_1))).

topDegree

Input: Polynomial Ring, Polynomial.
Output: Top-degree vector of the polynomial w.r.t. the variables
of the ring.
Top-degree decorated circuits can be computed with:
apply(pCircuits(Ring, Ideal), c -> (c_0,
topDegree(Ring,c_1))).

Table 2.1: Commands to compute algebraic matroids using matroids.m2

T is a finite set of transcendentals ([45, Proposition 6.7.10]). In particular, when P is defined
by generators 〈f1, . . . , fm〉 ⊆ k[x1, . . . , xn], we define the Jacobian matrix J (P ) as:(

∂fi
∂xj

)
: 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2.1)

This matrix, when considered as a matroid with columns as the ground set and linear
independence over Frac(k[x]/P ) defining the independent sets I, represents the dual ma-
troid toM(P ). Though the derivatives are computed symbolically in the polynomial ring
k[x1, . . . , xn], we then consider linear algebra over the function field of the variety.

When the variety is defined by a parametrization φ(t1, . . . , td) = (g1(t), . . . , gn(t)), we
write J (φ) for the Jacobian matrix of the following form:(

∂gj
∂ti

)
: 1 ≤ i ≤ d, 1 ≤ j ≤ n. (2.2)

Note that the indices in top and bottom are flipped. This matrix, again setting the columns
as E and using linear independence over Frac(k[x]/P ) to define I, representsM(P ) (not its
dual). Since symbolic computation is more costly, certain values of x1, . . . , xn, the ambient
coordinates, can be substituted for the variables.

Definition 2.2.1 (NM-Locus). Let the non-matroidal locus NM(I) denote the locus of
points in V(I), at which the specialization of the Jacobian matrix does not represent the dual



CHAPTER 2. COMPUTATION 13

of the algebraic matroid. Similarly, NM(φ) is the set of points in the parameter space where
the specialization of the Jacobian matrix does not represent the algebraic matroid.

This pair of definitions specifies the values that should be avoided when specializing the
linear matroid. To help describe the non-matroidal locus, we set the following notation:
Id(M) will refer to the ideal generated by d × d minors of a matrix M . Further, M{S}
denotes the submatrix of M obtained by restricting to the columns with indices in S.

Proposition 2.2.2. Let V = V(P ) be a variety of dimension d in an ambient space of
dimension n, with Jacobian J (P ) representing the dual ofM(P ). Then NM(P ) is defined
by the ideal:

I = P +
⋂

B∈B(M)

In−d(J (P ){B}),

or, equivalently, the intersection of In−d(J (P ){S}) over all S such that In−d(J (P ){S}) 6⊆ P .
In the special case where J (P ) has n− d rows, this is a principal ideal generated by the lcm
of all nonzero (mod P ) maximal minors.

Proof. A matroid is fully described by its list of bases. Given any cobase of M(V ), the
corresponding m × (n − d) matrix has rank n − d, so some (n − d) × (n − d) minor is
nonvanishing. The last fact follows from the properties of intersections of principal ideals.

Example 2.2.3. We compute the non-matroidal locus of a torus in R3. Let P = 〈(x2 + y2 +
z2 + 3)2 − 16(x2 + y2)〉 ⊆ R[x, y, z], the defining ideal for the torus with minor radius 1 and
major radius 2. The Jacobian J (P ) is a 1× 3 matrix:

x y z

[4x3 + 4xy2 + 4xz2 − 20x 4x2y + 4y3 + 4yz2 − 20y 4x2z + 4y2z + 4z3 + 12z]

Since the dual matroid has rank 1, the non-matroidal locus NM(P ) is a principal ideal
generated by the lcm of the entries.

NM(P ) = P+〈−x5yz−2x3y3z−xy5z−2x3yz3−2xy3z3−xyz5+2x3yz+2xy3z+2xyz3+15xyz〉.

This defines the non-matroidal locus as a subvariety of the torus, and we compute the asso-
ciated primes:

〈x, y2 + z2 + 4y + 3〉, 〈x, y2 + z2 − 4y + 3〉, 〈y, x2 + z2 + 4x+ 3〉, 〈y, x2 + z2 − 4x+ 3〉,

〈z, x2 + y2 − 9〉, 〈z, x2 + y2 − 1〉, 〈z2 + 3,x2 + y2〉, 〈z + 1, x2 + y2 − 4〉, 〈z − 1, x2 + y2 − 4〉.

The boldface ideal has empty real variety, but the other 8 ideals define 8 circles around the
torus, four for each generator of the fundamental group. Specializing at any point on those
circles gives the wrong matroid forM(P ).

The corresponding statement for parametrized varieties is given in Proposition 2.2.4.
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Proposition 2.2.4. Let V = V(φ) be a variety of dimension d with Jacobian J (φ) repre-
sentingM(φ). Then NM(φ) is defined by the ideal:

I =
⋂

B∈B(M)

Id(J (φ){B}),

or, equivalently, the intersection of all nonzero Id(J (φ){S}). This is a principal ideal gen-
erated by the lcm of all nonzero maximal minors.

For the linear algorithm, the goal is to specialize the Jacobian at a point so that we can
perform linear algebra to compute the matroid. The propositions imply that selecting a
non-root of the ideal I guarantees the desired matroid. From the formulation, it is clear that
the non-matroidal locus has positive codimension in the ambient variety; therefore, selection
of a generic point is sufficient to guarantee that the NM-locus is avoided.

For parametrized varieties, the Jacobian at a generic point is obtained simply by plugging
in random numbers for each parameter. For varieties defined by ideals, a generic point can
be computed using numerical algebraic geometry software; we use Bertini [3].

Remark 2.2.5. When we select points in the variety numerically, we often need to use very
high accuracy. A set of columns may have minors with polynomial values that evaluate to
zero when passing to the quotient; however, when we specialize to a point with low accuracy,
we may find that the minors corresponding to these columns are � 0. The required accuracy
depends on the degree of the ideal generators or polynomial parametrizations.

Software that computes linear matroids is then used to transform the matrix into a list
of circuits and bases; we use numerical linear algebra in Sage [50], as well as its Matroid
implementation. These lists are translated into a set of {0, 1} vectors that are sent back
to Bertini. We then use Bertini’s TrackType:5 routine, which carries out coordinate pro-
jections to the subspaces specified by the {0, 1} vectors. Bertini performs each projection,
obtaining the base degree for the list of basis vectors, and the degree or top-degree of the
circuit polynomial for the list of circuit vectors. Bertini returns these values using numerical
algebraic geometry techniques (see [4] for more details). In this mode of computation, Gröb-
ner basis complexity is avoided; however, combinatorial complexity is still a fixture. The
original calculation of the witness set can also be expensive for a high-dimensional variety
and ambient space. Examples of code for Sage and Bertini are included in the website
http://math.berkeley.edu/~zhrosen/matroids.html, mentioned earlier.
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2.3 Sample Computations for Applications
In this section, examples from different areas of mathematics will demonstrate that deco-
rated algebraic matroids are natural and provide fundamental insight into the independence
structure of a system of distinguished coordinates. As mentioned earlier, this is an approach
which has already been explored in matrix completion [26], and which can be applied much
more broadly. An application to statistics will be explored in Chapter 3, and matroids as
part of an algebraic approach to chemical reaction networks is outlined in Chapter 4. This
section is meant as a proof of concept, and includes examples that show the capabilities of
our computational techniques.

Algebraic Statistics

The first area we look into is the field of algebraic statistics. Statistical models have dis-
tinguished coordinates describing the probability of an event; the relationship among those
coordinates is therefore an obvious and natural question. The decorated algebraic matroid
is the way to succinctly describe the independence structure among those probabilities. An
in-depth study of a statistical matroid problem appeared in [29], and will be presented as
Chapter 3. In this section, we discuss two specific models from [28, 52].

Example 2.3.1 (PL4 matroid).

M(PL4) : |E| = 24, ρ = 4, |B| = 10560, |C| = 41346.

Consider a random variable X which takes as values the permutations of the letters
1, . . . , n, which correspond to rankings of a set of preferences. Probability functions pπ : Θ→
[0, 1] assign probabilities to each ranking as a function of some parameters θ1, . . . , θk.

The geometry of the variety defined by the image of the pπ’s in [0, 1]n! is the object of
interest. We forget the cube and consider the variety in Cn! for simplicity. In [52, Section
7], the Plackett-Luce model is defined by:

pπ 7→
n−1∏
i=1

1∑i
j=1 θπ(j)

.

Since algebraic dependence is not changed by reciprocating elements, we instead consider
pπ 7→

∏n−1
i=1 (

∑i
j=1 θπ(j)) for easier computation. The variety defining the Plackett-Luce model

for n = 4 is 4-dimensional with degree 27; the corresponding ideal is minimally generated
by 9 polynomials of degree 1 and 36 degree-2 polynomials. Since M(PL4) has rank 4, the
matroid may be represented by an affine representation in 3-space, depicted by its Schlegel
diagram in Figure 2.1, made with Polymake [17].

At first glance, this arrangement looks like the vertices of a permutohedron; however,
some sets expected to be contained in facets are in fact full-dimensional. The polytope has
four hexagonal facets given by fixing the last element of the ranking and acting with S3 on
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Figure 2.1: Schlegel diagram for the affine representation ofM(PL4)

the others. The four facets of the permutohedron corresponding to fixing the first element
are triangulated. This may be due to the fact that in the parametrization the last element of
the ranking does not make an appearance. (e.g. p1234 7→ x1(x1 + x2)(x1 + x2 + x3)). The
full matroid is too large for computation; instead, we use combinatorial tools in Sage [50]
to find representatives of each base and circuit modulo the natural S4-action on the set of
variables. We will refer to distinct bases and circuits modulo the group action as base classes
and circuit classes, respectively.

1. Decorated Circuits: There are five circuit classes of size 4 with orbit size 6, 12, 12, 12, 24:

Type: Polynomial: Orbit Size:
12341243

2143 2134

p1243p2134 − p1234p2143 6
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1234 1324

2134

2314

3124

3214

p21234p2134−p1234p1324p2134−p1234p22134−p1324p22134+
p21234p2314 + p1234p2134p2314

12

1234 1324

2134

2314

3124

3214

p21234p1324 − p1234p21324 − p21324p2134 + p21234p3124 12

1234 1324

2134

2314

3124

3214

p41234 − 2p31234p1324 + p21234p
2
1324 − p31234p2134 −

p21234p1324p2134 + 2p1234p
2
1324p2134 + p1234p1324p

2
2134 +

p21324p
2
2134 − p31234p3214 − p21234p2134p3214

24

1234 1324

2134

2314

3124

3214

p21234p2314 − 2p1234p1324p2314 + p21324p2314 −
p1324p

2
2314+p

2
1234p3214−2p1234p1324p3214+p21324p3214+

p1234p2314p3214 + p1324p2314p3214 − p1234p23214
12

There are 1720 circuit classes of size 5, each of which has orbit size 24, yielding an
additional 41, 280 circuits. Important to note here: the Macaulay2 computation ran for
10 days without producing circuit polynomials. Bertini was able to produce a witness set
in approximately 8 hours and compute 1720 projections in approximately 6 hours (working
in parallel). The degrees of the circuit polynomials are recorded in Figure 2.2.

2. Decorated Bases: The 464 classes of size 4 that are not circuits are bases. The computa-
tion of base decorations produces the distribution of base degrees in Figure 2.3.

The highest base degree is 24, which is also the cardinality of the matroid, and the size of
the symmetry group. The base of degree 24 is {p1234, p2341, p3412, p4123}. In other words,
pick a ranking and apply the 4-cycle to it. The degree of the variety, which tells us
the degree of a fiber under generic projection, is 27, indicating that all of the coordinate
projections are “special.”

Knowing about the decorated bases and circuits of this matroid allows us to understand its
coordinate projections, and gives valuable information about reconstructing partial data.
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Figure 2.2: Circuit degree frequency
forM(PL4).
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Figure 2.3: Base degree frequency for
M(PL4).

Another application of matroids to algebraic statistics is in the study of mixture models.
The r-th mixture model of a pair of discrete random variables X and Y , with m and n
states respectively, models the situation where X ⊥⊥ Y conditional on a “hidden” variable Z
which occupies r states. In [28], the algebraic boundary of the mixture model for m = n = 4
and r = 3 is computed; it has 288 components, one of which is analyzed in the example.
Studying this example gives insight into the combinatorics of all of the components of the
variety, in addition to the independence structure of this particular component.

Example 2.3.2 (Mixture Model Matroid).

M(Imix) : |E| = 16, ρ = 14, |B| = 112, |C| = 11.

We examine one of the components of the algebraic boundary of the mixture model of rank 3
for 4× 4 matrices, as defined in [28, Example 5.2]. Let Imix denote the defining ideal of this
component; Imix is generated by the 4× 4 minors of the following matrix:

p11 p12 p13 p14 0
p21 p22 p23 p24 0
p31 p32 p33 p34 p33(p11p22 − p12p21)
p41 p42 p43 p44 p41(p12p23 − p13p22) + p43(p11p22 − p12p21)


1. Decorated Bases: The base enumeration in this case is very quick. There are 120 subsets

of size 14; checking all of them took 0.5 seconds to run in Macaulay2 before returning a
list of 112 bases.

The cobases are the pairs of variables for which the corresponding edge is not one of the
8 edges in Figure 2.4.
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Figure 2.4: Non-cobases ofM(Imix).
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Figure 2.5: Base degrees forM(Imix).

Computation of base degree yields the following numbers:

Base Degree 1 2 3
# of Bases 52 54 6

The blue edges in Figure 2.5 indicate the complements of degree-1 bases, the green edges
are the degree-2 bases, and the six red edges are the degree-3 bases.

2. Decorated Circuits: The matroid has 11 circuits, which can be read from Figure 2.4 as
the complements of each connected component of the graph; this coincidence is because
the cohyperplanes have rank one. The computation checking all sets of size ≤ 11 took
3090 seconds. When we started instead from the fundamental circuits associated to some
base, and checked mutual eliminations (the Boros et al algorithm), took only 2.7 seconds
to produce all circuits, and another 293 seconds to verify that the list was complete. This
is one example where, due to high rank, the alternative circuit enumeration algorithm is
preferred. The circuit polynomials are too big to record here: the number of terms in each
polynomial are 24, 27, 27, 19, 150, 136, 24, 136, 150, 150, and 150, respectively. Instead,
we record relevant statistics:

Circuit Complement Circuit Top-Degree Circuit Degree
p32, p42 (2, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1) 6
p41 (1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1) 6
p31 (1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1) 6
p34, p44, p14, p24 (2, 2, 2, 0, 2, 2, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0) 6
p22 (3, 1, 3, 2, 2, 0, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2) 9
p21 (1, 3, 3, 2, 0, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2) 9
p33, p43 (2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1) 6
p11 (0, 2, 2, 2, 1, 3, 3, 2, 1, 2, 2, 2, 1, 2, 2, 2) 9
p12 (2, 0, 2, 2, 3, 1, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2) 9
p13 (2, 2, 0, 2, 3, 3, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2) 9
p23 (3, 3, 1, 2, 2, 2, 0, 2, 2, 2, 1, 2, 2, 2, 1, 2) 9

These circuit statistics tell us how many completions are possible for every projection.
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The combinatorial characterization of this component also carries information for the
global structure. Consider the action of S4×S4×Z2 on the labeled graph of Figure 2.4. The
orbit of the graph has cardinality 144. Indeed, in [28, Example 5.2], it is shown that the 288
components are paired by taking the transpose of the factorization, and both components in
a given pair have the same matroid.

Chemical Reaction Networks

In the algebraic study of chemical reaction networks (CRNs), steady-state concentrations
of chemical species lie in some algebraic variety. The matroid associated to this variety
may be used to design an experiment where measurements of each coordinate are obtained
only through some specified costs. Then, bases of the matroid would be appropriate to
measure if the goal is to find all concentrations; if we aim to test the validity of the model,
a circuit may be a good choice for model rejection. A thorough description of how algebraic
matroids inform chemical reaction network analysis may be found in Chapter 4, based on
the article Algebraic Systems Biology: A Case Study for the Wnt Pathway [20], joint work
with Elizabeth Gross, Heather Harrington, and Bernd Sturmfels.

Example 2.3.3 (MAPK Network).

M(IMAPK) : |E| = 12, ρ = 3, |B| = 190, |C| = 303.

This ideal comes from [38], which analyzes the polynomials defining the steady-state of a
certain CRN. Each variable corresponds to the concentration of some chemical species:

R = R[KS00, KS01, KS10, FS01, FS10, FS11, K, F, S00, S01, S10, S11].

IMAPK = 〈a00 · K · S00 + b00 · KS00 + γ0100 · FS01 + γ1000 · FS10 + γ1100 · FS11,−a01 · K · S01 + b01 · KS01 +

c0001 ·KS00 − α01 · F · S01 + β01 · FS01 + γ1101 · FS11,−a10 ·K · S10 + b10 ·KS10 + c0010 ·KS00 − α10 · F · S10 + β10 ·
FS10 + γ1110 ·FS11,−α11 ·F ·S11 +β11 ·FS11 + c0111 ·KS01 + c1011 ·KS10 + c0011 ·KS00, a00 ·K ·S00− (b00 + c0001 +

c0010 + c0011) ·KS00, a01 ·K ·S01− (b01 + c0111) ·KS01, a10 ·K ·S10− (b10 + c1011) ·KS10, α01 ·F ·S01− (β01 + γ0100) ·
FS01, α10 · F · S10 − (β10 + γ1000) · FS10, α11 · F · S11 − (β11 + γ1101 + γ1110 + γ1100) · FS11,−a00 ·K · S00 + (b00 +

c0001 + c0010 + c0011) ·KS00 − a01 ·K · S01 + (b01 + c0111) ·KS01 − a10 ·K · S10 + (b10 + c1011) ·KS10,−α01 · F · S01 +

(β01 + γ0100) · FS01 − α10 · F · S10 + (β10 + γ1000) · FS10 − α11 · F · S11 + (β11 + γ1101 + γ1110 + γ1100) · FS11〉.

The constants a, b, c, α, β, and γ are taken to be random real numbers, i.e. a set of
algebraically independent transcendentals over Q. If the rate constants are originally taken
to be part of the matroid, this specialization amounts to matroid contraction. The ideal
IMAPK is radical with two associated primes: (1) a variety of degree 10 and dimension 3,
and (2) a coordinate subspace with ideal 〈F,K, FS11, FS10, FS01, KS1011, KS01, KS00〉. In the
chemical reaction, the latter component to the steady-state achieved by the disappearance of
these reactants. We are interested in the rank 3 matroid associated to the former component.
A quick symbolic calculation determines that the matroid has affine representation as in
Figure 2.6.
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Figure 2.6: Affine representation of the MAP kinase matroid.

1. Decorated Bases: Any non-collinear set of 3 elements from the diagram are a basis of the
matroid; there are 190 in total. Of these, 52 have base degree 1, 124 have degree 2, and
14 have degree 3.

2. Decorated Circuits: There are circuits of size 3 and 4. The size 3 circuits are the 30
collinear sets of 3: these have degree 2 except for {S00, S01, S11} and {S00, S10, S11}, which
have degree 3.

There are 273 circuits of size 4; the degrees of the circuit polynomials have the following
frequencies:

Circuit Degree 2 3 4 5 6
# of Circuits 13 76 125 49 10

Possessing this data aids in experimental design, as mentioned above; however, it also distills
the combinatorial essence of a chemical reaction network. This demonstrates the power of
algebraic matroids in summarizing structure.

The Grassmannian

In algebraic geometry and representation theory, some important objects have a distinguished
set of coordinates. For the Grassmannian Gr(r, n), the Plücker coordinates are the variables
of choice. When r = 2, the Grassmannian is defined by skew-symmetric n×n matrices; this
is thematically similar to the content of [25]. We examine the next case of interest: r = 3.
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Example 2.3.4.

M(Gr(3, 6)) : |E| = 20, ρ = 10, |B| = 184, 590, |C| = 51, 005.

Gr(3, 6) is the variety of 3-dimensional subspaces of C6, with coordinates given by the
Plücker coordinates pijk, with 1 ≤ i, j, k ≤ 6, distinct. The ideal of the Grassmannian is
generated by 35 Plücker relations of degree 2.

1. Decorated Bases: The bases are sets of size 10. Computation is aided here by using Sage
to give only one representative of each class up to the S6 action on the Grassmannian.
The rest is carried out in 7 seconds by Macaulay2. There are 197 base classes of degree
1, 42 of degree 2, two of degree 3, and one of degree 7.
The degree-7 base appears to be an outlier, so further examination seems appropriate. The
appearing variables correspond to the triangles in the beautifully symmetric complex in
Figure 2.7. This image is familiar as a minimal triangulation of RP2; we plan to explore
the connection between this image and high-degree projections of the Grassmannian in
future work.

1

2

3

45

6

54

2

3 6

Figure 2.7: Base ofM(Gr(3, 6)) with base degree 7.

2. Decorated Circuits: For circuit computation, Sage once again proved vital in cutting down
the number of required tests by a factor of approximately 6!. The testing on the circuit class
representatives took 55 seconds in Macaulay2 before returning the list of circuits. There
are 97 total circuit classes, with degree of circuit polynomials distributed as in Figure 2.8.
Taking into account the full orbits of each circuit, we have 51, 005 total circuits. The only
circuit class of degree 12 is obtained from our special base by adding one triangle, e.g. the
variable p456 as in Figure 2.9.

Matroid Representations

There is a small collection of algebraic matroids over finite fields that are not representable
as linear matroids. Note that base degree is more delicate when working over a finite field
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Figure 2.8: Circuit degree frequency for
M(Gr(3, 6)).

1
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45
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Figure 2.9: Circuit of M(Gr(3, 6)) with
degree 12.

as the “generic fiber” is not defined; instead, one would consider the degree of the algebraic
field extension k(E)/k(B). In any case, computation of the corresponding ideal with circuit
polynomials can give insight into the structure of the matroid. One such matroid is explored
in the example:

Example 2.3.5 (Non-Pappus Matroid). M(I) : |E| = 9, ρ = 3, |B| = 76, |C| = 86.
The non-Pappus Matroid is algebraic over every finite field while not being linearly repre-
sentable over any field. Since linear representability is equivalent to algebraic representability
for fields of characteristic 0, this is as extreme as a matroid can be.

1 2 3

654

7
8

9

Figure 2.10: Non-Pappus matroid.



CHAPTER 2. COMPUTATION 24

Algebraic Matroid over F4 (λ 6= λ2):

ϕ(1) = x2 + y,
ϕ(2) = x,
ϕ(3) = x+ y,
ϕ(4) = y + z,
ϕ(5) = y + λz,
ϕ(6) = z,
ϕ(7) = (λ− 1)x2 + λy + λz,
ϕ(8) = x2 + y + z − z2,
ϕ(9) = λz − x.

Algebraic Matroid over F2:

ϕ(1) = x,
ϕ(2) = x+ y,
ϕ(3) = y,
ϕ(4) = x+ y + xz

x+y
,

ϕ(5) = z,
ϕ(6) = x+ y + yz

x+y
,

ϕ(7) = xz,
ϕ(8) = xy + xyz

x+y
,

ϕ(9) = yz.

The algebraic representation on the right was used by Lindström in [32] to prove that
the non-Pappus matroid is algebraic. The algebraic representation on the left is a valid
algebraic representation over Fp2 for any p prime, used in [33] to prove an infinite algebraic
characteristic set. We can be a bit more precise in assessing these matroid representations,
by computing the implicit ideal of each.

The representation over F2 has defining ideal generated as:

〈t4 + t5 + t6, t1 + t2 + t3, t5t8 + t3t9 + t5t9 + t6t9, t3t7 + t2t9 + t3t9,

t2t7 + t6t7 + t2t9 + t5t9 + t6t9, t3t5 + t9, t2t5 + t7 + t9, t
2
3 + t3t6 + t8 + t9, t

2
2 + t2t6 + t9〉.

Compiling the degrees of the circuit polynomials, we have:

Degree 1 2 3 4 5 6 7
# of Circuits 2 33 24 21 4 0 2

The representation over F4 has defining ideal generated as:

〈t4 + t5 + (λ+ 1)t6, t3 + t5 + t9, t2 + λt6 + t9, t1 + λt5 + λt7,

t29 + λt5 + t6 + (λ+ 1)t7 + (λ+ 1)t8, t
2
6 + λt5 + t6 + λt7 + t8〉.

The degrees of the circuit polynomials appear with the following frequency:

Degree 1 2 3 4
# of Circuits 12 59 0 15

Further examination of the decorated algebraic matroid may give insight into the various
possible representations of this and similar nonlinear matroids.

With these examples, we have demonstrated that computation of algebraic matroids is
feasible, even in quite large examples. The statistics and biology applications show that we
can completely describe matroids whose interest comes from real-world completion problems;
we will see more matroids of this type in Chapters 3 and 4. The results for the Grassmannian
and the non-Pappus matroid present examples where our computations raise interesting
questions in pure mathematics.
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Chapter 3

Statistics: Joint Probability Matroid

This chapter comes mostly from the paper Matrix Completion for the Independence Model
[29], joint with Kaie Kubjas. The problem comes from statistics and asks a question with a
very matroidal flavor. Our treatment does not rely on matroid theory, but in Section 3.4, we
make the underlying matroids explicit. The matroid perspective organizes our answer to the
statistics question, helps explain why generalization will be difficult, and leads us to more
questions about the geometry of algebraic matroids. The question coming from statistics is
as follows:

Problem 3.0.1. Given some entries of a matrix, is it possible to add the missing entries so
that the matrix has rank 1, is nonnegative, and its entries sum up to one?

The answer to this question takes many different forms. For example, as we shall prove
later, the partial probability matrix

0.16
0.09

0.04
0.01


has a unique completion: 

0.16 0.12 0.08 0.04
0.12 0.09 0.06 0.03
0.08 0.06 0.04 0.02
0.04 0.03 0.02 0.01

 .

On the other hand, perturbing any entry of the original matrix by ε > 0 makes the matrix
have no eligible completions, and perturbing any entry by ε < 0 introduces an infinite number
of completions.

The motivation for studying Problem 3.0.1 comes from statistics. Let X and Y be two
discrete random variables with m and n states respectively. Define the probability matrix:

P = (pij)1≤i≤m,1≤j≤n, where pij = Pr(X = i, Y = j).
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For any probability matrix P , we have pij ≥ 0 for all i, j and
∑
pij = 1. We say that the

random variables X and Y are independent if

Pr(X = i, Y = j) = Pr(X = i) · Pr(Y = j)

for all i, j. This can be translated into the statement

P =


Pr(X = 1)
Pr(X = 2)

...
Pr(X = m)

(Pr(Y = 1) Pr(Y = 2) · · · Pr(Y = n)
)
.

Hence, the probability matrix P of two independent random variables has rank 1, is non-
negative, and its entries sum to one.

Suppose that the probabilities Pr(X = i, Y = j) are measurable only for certain pairs
(i, j). A situation in which this might arise in applications is a pair of compounds in a
laboratory that only react when in certain states. A complete answer to Problem 3.0.1 will
allow us to reject a hypothesis of independence of the events X and Y , based only on this
collection of probabilities.

For each type of partial matrix, we derive an inequality which is satisfied if and only
if the partial matrix can be completed to a rank-1 probability matrix. This main result is
derived in Theorem 3.1.14. In Theorem 3.2.3, we generalize this characterization to diagonal
partial tensors which can be completed to rank-1 probability tensors, i.e. rank-1 tensors
whose entries are nonnegative and sum to one. Rank-1 probability tensors correspond to
joint probabilities of independent random variables X1, X2, . . . , Xn. An entry pi1i2,...in of a
probability tensor expresses the joint probability Pr(X1 = i1, X2 = i2, . . . , Xn = in).

We design Algorithm 3.3.2 for checking completability of partial matrices to rank-1 prob-
ability matrices. Moreover, we will explain how to construct desired completions. In case
there is more than one desired completion, we will show how to use Lagrange multipliers to
find a completion that minimizes a distance measure to a fixed probability distribution.

Problem 3.0.1 is a variation on the well-studied problem of low-rank matrix completion.
Király et al [26] introduced algebraic matroid techniques for matrix completion problems. In
Section 3.4, we will study the algebraic matroids that arise in the context of completions of
probability matrices. The problem has an immediate generalization to probability matrices
of higher rank: We can ask if a partial matrix can be completed to a probability matrix of
(nonnegative) rank r. Nonnegative rank r probability matrices express joint probabilities of
random variables X and Y that are independent given a hidden random variable Z with r
states. However, to study nonnegative rank r probability completions, one has to consider
rank-r probability completions first. We will explore an example for matrices of rank 2.

Outline

In Section 3.1, we derive, for each type of partial matrix, an inequality which is fulfilled
if and only if the partial matrix is completable to a rank-1 probability distribution. Our
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discussion starts with diagonal probability masks, before moving on to general probability
masks. Theorem 3.1.2 and Theorem 3.1.14 characterize when a diagonal, respectively a
general, partial matrix is completable.

Partial matrices which can be completed to rank-1 probability matrices form a semialge-
braic set, see Proposition 3.2.1. In Section 3.2, we will study the semialgebraic description
of completable partial matrices and tensors. In Theorem 3.2.3, we will derive a characteri-
zation of diagonal partial tensors which can be completed to rank-1 probability tensors, and
in Proposition 3.2.4, we study the polynomial inequalities defining this semialgebraic set.

In Section 3.3, we use results in Section 3.1 to define an algorithm which checks com-
pletability. We then present an algorithm to recover the ≤ 2 possible solutions when the
solution set is finite. Afterwards, we show how to construct a completion if there are infinitely
many completions. We will use Lagrange multipliers to construct a rank-1 probability com-
pletion which maximizes or minimizes a certain function, e.g. the distance from the uniform
distribution or the probability of a particular state.

In Section 3.4, we examine the algebraic matroids arising from this problem, following
the approach of Király et al [26] for low-rank matrix completion. Finally, in Section 3.5,
we study generalization of our results to higher rank probability matrices and probability
tensors.

Implementations of algorithms can be found on
math.berkeley.edu/∼zhrosen/probCompletion.html

The following notation will be used throughout the chapter:

Notation Definition
∆n : Standard n-simplex {x ∈ Rn+1 :

∑
xi = 1 and xi ≥ 0 for all i}

∆n
0 : n-simplex as a corner of the n-cube {x ∈ Rn :

∑
xi ≤ 1 and xi ≥ 0 for all

i} = conv({0} ∪∆n−1)

Πm×n : Ideal of algebraic relations among entries of a rank-1 matrix with entries
summing to 1.

V(Πm×n) : Variety of rank-1 matrices with entries summing to 1.
πS : Probability mask. Projection of Rm×n onto the coordinates indexed by S.

Summarized by 0-1 matrix with 1’s for coordinates in the image, and 0’s
for coordinates in the kernel.

πS(M) : Partial matrix. The image of a matrix M under the probability mask πS.
Summarized by matrix with values in the coordinates indexed by S and
blanks elsewhere.

The completion problem can be restated as a question about geometry.

Remark 3.0.2. The set of rank-1 matrices in Rm×n with entries summing to 1 is an algebraic
variety V(Πm×n). The projection map πS : V(Πm×n) → R|S| takes a rank-1 matrix with
entries summing to 1 and returns some subset of its entries. To move backwards from that
subset to the full rank-1 matrix summing to 1, i.e. matrix completion, amounts to computing
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the fiber of the projection, in particular π−1S (M)∩ (V(Πm×n)∩∆mn−1). The intersection with
the simplex restricts our attention to matrices with nonnegative entries.

3.1 Completability of Partial Probability Matrix

Diagonal Partial Matrices

The simplest case to analyze is the set of partial matrices with entries visible along the
diagonal. For a 1 × 1 matrix, this is trivially completable, indeed completed, if and only if
the observed entry is 1. For a 2× 2 matrix, there is more to consider.

Example 3.1.1. Let M be the partial probability matrix given by:

M =

(
a

b

)
.

In order for the matrix to be completed, both the rank 1 requirement and the summing to
1 must be addressed. First, for rank 1, the off-diagonal entries are set to x and ab/x,
then the quantity a + ab/x + x + b is set equal to 1. The equivalent quadratic equation is
x2 + (a+ b− 1)x+ ab = 0. In order for a real solution for x to exist, the discriminant must
be greater than or equal to 0, i.e.

(a+ b− 1)2 − 4ab ≥ 0.

This inequality, along with the requirement that a+ b ≤ 1 and both a and b are greater than
or equal to 0, is necessary and sufficient to guarantee that x gives a completion in ∆3, see
Figure 3.1.

For n > 2, we take advantage of the factorization of rank-1 matrices as products of
vectors to obtain the following more general result:

Theorem 3.1.2. LetM be an n×n partial probability matrix, where n ≥ 2, with nonnegative
observed entries along the diagonal:

M =

 a1
. . .

an

 .

Then M is completable if and only if
∑n

i=1

√
ai ≤ 1, or equivalently, ||(a1, . . . , an)||1/2 ≤ 1.

In the special case
∑n

i=1

√
ai = 1, the partial matrix M has a unique completion.

Proof. Recall that a rank-1 n×n probability matrix can be factored as uTv for u ∈ Rn,v ∈
Rn where the sum of the entries in each vector is 1. For this problem, consider all possible



CHAPTER 3. STATISTICS: JOINT PROBABILITY MATROID 29

Figure 3.1: Completable probability masks of 2× 2 matrices with diagonal entries observed.

values of u in ∆n−1, but do not restrict the values of v to the simplex. Instead, let v be
formulated in terms of u and the entries of the matrix. Explicitly, we haveu1...

un

(a1/u1 · · · an/un
)

=

a1 . . .
an

 .

A probability completion will arise when
∑
vi = 1. Here we assume ai > 0 and thus ui > 0

for all i. We will consider the case when ai = 0 for some i separately.
Let f(u) =

∑n
i=1 vi =

∑n
i=1 ai/ui denote this quantity and compute the minimum of f

on the simplex. For this computation, consider u1, . . . , un−1 as independent variables and
un = 1−

∑
ui. We thus consider the following function on the simplex ∆n−1

0 .

f =

(
n−1∑
i=1

ai
ui

)
+

an

1−
∑n−1

i=1 ui

⇒ ∂f

∂ui
= − ai

u2i
+

an

(1−
∑n−1

i=1 ui)
2

Setting ∂f/∂ui = 0 for all i implies ai/u2i = k is constant for all i. Since u is in the simplex,
we have k equal to (

∑√
ai)

2. The value of f (i.e. the sum of vi) at this point is (
∑√

ai)
2. If
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this is ≤ 1, continuity of f implies that a completion exists somewhere between our minimum
and the boundary, because within an ε of the boundary of ∆n−1, we have∑

vi =
a1
u1

+ · · ·+ an
un
� 1.

If this minimum value is > 1, the function will not achieve 1 anywhere in the simplex, so no
completion is possible.

Now assume ai = 0 for i ∈ I. If |I| ≥ n− 1, then the statement of the theorem is clearly
satisfied. Assume |I| ≤ n − 2. If

∑
i∈[n]\I

√
ai ≤ 1, then the probability mask with the

rows and columns in I removed has a rank 1 probability completion, and it can be extended
to a rank 1 completion of the original matrix by replacing the entries in the removed rows
and columns with zeros. On the other hand, a completion of the original matrix gives a
completion of the reduced matrix with sum of entries ≤ 1. By continuity, the reduced
matrix also has a completion with sum of entries equal to 1. Hence

∑n
i∈[n]\I

√
ai ≤ 1.

Finally, when equality is attained, the solution must be unique, since
(
∑√

ai)
−1(
√
a1, . . . ,

√
an) is unique as a minimum in the simplex.

Corollary 3.1.3. Let
∑n

i=1

√
ai < 1. For n = 2, the probability mask M has exactly two

completions. If n > 2, then the semialgebraic set of completions of M is (n−2)-dimensional.

Proof. IfM contains no zeros, then every path from (
∑√

ai)
−1(
√
a1, . . . ,

√
an) to the bound-

ary of the simplex will contain exactly one completion. For u ∈ ∆1, there are only two
distinct paths to the boundary. For higher-dimensional simplices, this will induce a codi-
mension 1 set inside the (n − 1)-dimensional simplex, which gives an (n − 2)-dimensional
set.

If M has zeros, let I = {i : ai = 0} denote the indices of zero observed entries. The set
of completions of M is⋃

R,C⊆I:R∪C=I

{completions of M with rows in R and columns in C zero}.

By the previous discussion, the dimension of the semialgebraic set of completions with
the sum of entries ≤ 1 of the (n− |I|)× (n− |I|) submatrix of M corresponding to nonzero
observed entries is (n − |I| − 1). For each such completion, we can freely fix all but one of
the row sums ui with i ∈ I\R and columns sums vj with j ∈ I\C: Without loss of generality
assume |C| ≤ |R|. Row sums ui with i ∈ I\R determine all row sums. The nonzero observed
entries together with row sums determine column sums in columns [n]\I. All but one of
the rest of the columns sums can be chosen freely such that they sum to one. Hence the
dimension of the set of completions corresponding to R and C is (n− |I| − 1) + (|I| − |R|+
|I| − |C| − 1) ≤ (n− |I| − 1) + (|I| − 1) = n− 2. The equality is obtained for any R and C
with |R|+ |C| = |I|.
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Remark 3.1.4. The analysis of Theorem 3.1.2 works to derive the constraint for the 2× 2
diagonal probability mask as in Example 3.1.1:

√
a+
√
b ≤ 1⇔ a+ b+ 2

√
ab ≤ 1⇔ 2

√
ab ≤ 1− a− b

⇔ 4ab ≤ (1− a− b)2 and 0 ≤ 1− a− b.

Example 3.1.5. The matrix diag(1/4, 1/4, 1/4) does not have a completion to a rank-1
probability matrix, since 3

√
1/4 = 3/2. The set of 3 × 3 diagonal partial matrices that are

completable to rank-1 probability matrices is shown in Figure 3.2.

Figure 3.2: Completable probability masks of 3× 3 matrices with diagonal entries observed.

Block Diagonal Matrices

In this section, we will use our result about diagonal partial matrices to prove completability
conditions for different types of partial matrices with increasing generality:

Diagonal =⇒ Block Diagonal =⇒ Acyclic =⇒ Feasible.
To discuss non-diagonal masks, we introduce graph notation used in various places in the

matrix completion literature.

Definition 3.1.6. Let M = uTv be an m × n matrix of probabilities whose entries sum
to 1, and let u and v be vectors in ∆m−1 and ∆n−1 respectively. A bipartite graph can be
associated to M in the following way:

Graph Matrix
White vertex ri i-th row
Black vertex cj j-th column
Edge (ricj) (i, j)-th entry
Weight ω(ri) Sum of i-th row, or ui
Weight ω(cj) Sum of j-th column, or vj
Edge weight ω(ricj) Value of entry mij
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The bipartite graph associated to a probability mask is the graph obtained by deleting the
edges corresponding to unobserved entries, and omitting vertex weights.

Example 3.1.7. On the left is a partial probability matrix with entries, and on the right is
the corresponding bipartite graph.x11 x12

x21
x33


1 1

22

3 3

Note that in this formulation, the question of completability is equivalent to the existence
of a vertex labeling so that the black vertex weights and white vertex weights each sum to 1,
and the edge weights satisfy ω(ricj) = ω(ri)ω(cj). The diagonal case describes those masks
whose graphs are the union of disjoint edges. We now consider more general bipartite graphs.

Lemma 3.1.8. Let G be a bipartite graph with a connected component Kp,q, with edge weights
a1,1, . . . ap,q, so that the corresponding submatrix is rank 1. Let H be the graph (G\Kp,q)∪K1,1,
with the edge weight on K1,1 given by

ω(a1,1) =

p∑
i=1

q∑
j=1

ai,j.

Then completability of G is equivalent to completability of H.

Proof. (⇒) Begin with a vertex weighting on G. Replace the white vertices weighted
u1, . . . , up with a single white vertex weighted

∑p
i=1 ui and the black vertices weighted

v1, . . . , vq by a single black vertex labeled
∑q

i=1 vi. Since Kp,q was disconnected from the
other vertices, no other observed entries will be changed by this replacement.

(⇐) Begin with a vertex weighting on H. The fact that a1,1, . . . , ap,q form a rank-1
p× q matrix implies that there is a rank-1 factorization u′Tv′. Scale the vector u′ with the
constant u1/

∑
u′i; and scale v′ by the inverse. The resulting submatrix is the same but now∑

u′i = u1 and
∑
v′i = v1. The new vertex weights give a completion of G.

This lemma establishes that Theorem 3.1.2 applies to block diagonal matrices as well. To
extend to general acyclic matrices, we need to make a definition to account for exceptional
cases involving zeros:

Definition 3.1.9. Let M be a partial matrix, with corresponding graph G. We say that M is
prunable if there is a set of vertices W ⊂ V (G) such that every edge labeled zero is adjacent
to some w ∈ W , but no edge with nonzero label is adjacent to any w ∈ W .

Pruning refers to removing W and all incident edges from the graph, or equivalently,
considering only the induced subgraph on V \ W . A careful pruning takes W so that the
remaining graph has the largest possible number of components.

Proposition 3.1.10. A partial matrix is completable to a rank-1 probability matrix only if
it is prunable.
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Proof. Let W be the set of vertices whose incident edges are all labeled zero. Suppose some
e ∈ E(G) labeled zero is not adjacent to any w ∈ W . Then, if e = (ri, cj), both ri and cj
are connected to some other vertices ck and rl with nonzero edges. The 2 × 2 minor of M
defined by rows i, l and columns j, k then has two nonzero entries along one diagonal and
zero in the other. Therefore, the matrix M cannot be rank one.

The next lemma allows us to confine our conversation to matrices with nonzero entries:

Lemma 3.1.11. Let G be a bipartite graph with a vertex v such that all edges incident to v
have weight 0. In particular, the vertex v might be an isolated vertex. Completability of G
is equivalent to completability of G \ v, except when G \ v is connected.

Proof. (⇒) Assume that the probability maskM corresponding toG is completable. Remove
the row or column corresponding to v. Contract rows and columns corresponding to each
completable block to one row and column respectively. Add the corresponding entries in a
completion of M . After permuting rows and columns, we get a diagonal probability mask
that has a nonnegative completion with the sum of entries ≤ 1 (by modifying the completion
of M in the same way as we have modified M). By the proof of Theorem 3.1.2, the diagonal
probability mask is completable as long as n > 1. By Lemma 3.1.8, also the probability mask
corresponding to G \ v is completable. In the case where G \ v is connected, this reasoning
does not hold, since the sum must be = 1.

(⇐) Begin with a probability matrix M which is a completion of G \ v. Simply add in a
row or column of zeros corresponding to v to obtain the desired completion of G.

Example 3.1.12. To illustrate why the exception in Lemma 3.1.11 is necessary, consider
the following partial matrix: 0.15

0.05 0.1
0 0


If we prune off the bottom row, the remaining matrix is completable; however, if we prune
off the last column, the matrix has only one rank-1 completion and its entries do not sum to
1.

We say that a block of a matrix is 1-closable (as in [26]), if the corresponding graph is
a spanning tree. If all labels in a spanning tree are nonzero, then the rest of the entries
in the block can be completed using fundamental cycles (see Section 3.3 for details). So,
Lemma 3.1.11 will allow us to prune a partial matrix to the form where it can be completed
to a block diagonal partial matrix using cycles. The result from the discussion so far is
that for matrices that can be pruned to acyclic graphs with nonzero edge labels and n > 1
component, the question is reduced to the problem solved in Section 3.1.

In order to allow cycles in the graph, we recall that a universal Gröbner basis for the ideal
of relations among entries in a rank-1 matrix is indexed by the set of cycles of the bipartite
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graph (this follows from Theorems 4.11 and 8.11 in [51]); see Sections 3.3 and 3.4 for more
detail. If the cycles in the graph satisfy these relations, they admit a rank-1 completion. We
summarize all of our conditions in the following definition:

Definition 3.1.13. A matrix M is said to be feasible, if M is prunable, and cycles in the
graph of M satisfy the binomial relations from the universal Gröbner basis.

Theorem 3.1.14. Let M be a feasible partial probability matrix such that after careful prun-
ing, its graph G has s connected components. Let bi be the sum of the weights in the i-th
connected component of G after rank-1 closure. If s = 1, then M is completable if and
only if b1 = 1. For s > 1, the partial matrix M is completable to a probability matrix if and
only if:

s∑
i=1

√
bi ≤ 1.

Proof. By Lemma 3.1.11, if the pruned matrix has more than one component, completability
of the pruned matrix is equivalent to completability of the original. In the exceptional case
where every choice of vertices leaves one component, completability of the pruned matrix is
also equivalent to the original. This is because every row and column removed was forced to
be all zeros so cannot contribute to the total probability.

On the remaining nonzero matrix, blocks are completed using cycles, and then contracted
from a block diagonal matrix to a diagonal matrix; this does not change completability by
Lemma 3.1.8. Finally, we use Theorem 3.1.2.

Example 3.1.15. The probability maskx11 x12
x21

x33

 (3.1)

with all observed entries nonnegative has a completion if and only if√
x11 + x12 + x21 + x12x21/x11 +

√
x33 ≤ 1.

This is equivalent to the conditions

(x11 + x12 + x21 + x12x21/x11 + x33 − 1)2 − 4(x11 + x12 + x21 + x12x21/x11)x33 ≥ 0,

and x11 + x12 + x21 + x12x21/x11 + x33 ≤ 1.

By clearing the denominators, we get polynomial inequalities in the observed entries whose
solutions are all completable probability masks of form (3.1).
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3.2 Semialgebraic Description
Proposition 3.2.1. Partial matrices with a specified set of observed entries, which can be
completed to rank-1 probability matrices, form a semialgebraic set.

Proof. The independence model is a semialgebraic set defined by 2 × 2-minors, nonnega-
tivity constraints and entries summing to one. The statement of the proposition follows
by the Tarski-Seidenberg theorem, which states that projections of semialgebraic sets are
semialgebraic. This is also known as quantifier elimination.

The goal of this section is to find a semialgebraic description of this semialgebraic set.
The difference from characterizations in Theorems 3.1.2 and 3.1.14 is that we aim to derive
a description without square roots. For 2 × 2 partial matrices with diagonal entries, a
semialgebraic description is given in Example 3.1.1 and its derivation from the inequality
containing square roots is explained in Remark 3.1.4.

Example 3.2.2. Let us consider 3×3 probability masks with diagonal entries a, b, c. Denote
the elementary symmetric polynomials by S1 = a + b + c, S2 = ab + bc + ca and S3 = abc.
By consecutive squaring and reordering terms, we get:

√
a+
√
b+
√
c = 1 (3.2)

⇒2(
√
ab+

√
bc+

√
ca) = 1− S1 (3.3)

⇒8(a
√
bc+ b

√
ac+ c

√
ab) = (1− S1)

2 − 4S2 (3.4)

⇒128S3(
√
ab+

√
bc+

√
ca) = ((1− S1)

2 − 4S2)
2 − 64S1S3 (3.5)

Substituting Equation (3.3) into Equation (3.5) gives:

64S3(1− S1) = ((1− S1)
2 − 4S2)

2 − 64S1S3 (3.6)
⇔((1− S1)

2 − 4S2)
2 − 64S3 = 0 (3.7)

The degree four polynomial equation (3.7) with 35 terms in the region

a, b, c ≥ 0, (3.8)
1− S1 ≥ 0, (3.9)

(1− S1)
2 − 4S2 ≥ 0 (3.10)

gives the equation (3.2). The left hand sides of inequalities (3.9) and (3.10) are given by
right hand sides of equations (3.3) and (3.4). The region defined by

√
a+
√
b+
√
c ≤ 1

is the same as

((1− S1)
2 − 4S2)

2 − 64S3 ≥ 0 (3.11)
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Figure 3.3: Region defined by (3.11) inside the cube [0, 2]3.

together with inequalities (3.8), (3.9) and (3.10). This is a semialgebraic description of
3×3 diagonal partial matrices which can be completed to rank-1 probability matrices. Figure
3.3 shows the large semialgebraic set defined by inequality (3.11); only after slicing with
inequalities (3.8), (3.9) and (3.10), do we obtain the set of completable matrices.

Before we continue with studying semialgebraic descriptions of general partial matrices,
we make a detour and characterize diagonal partial tensors that can be completed to rank-1
probability tensors. This is also a semialgebraic set and its semialgebraic description can be
studied in a similar way to the partial matrix case.

Tensors

The reasoning for diagonal matrices translates nicely into higher-dimensional tensors as
follows:

Theorem 3.2.3. Suppose we are given a partial probability tensor T ∈ ∆nd−1 ⊂ (Rn)⊗d with
nonnegative observed entries ai along the diagonal, i. e. we have tii...i = ai for 1 ≤ i ≤ n,
and all other entries unobserved. Then T is completable if and only if

n∑
i=1

a
1/d
i ≤ 1.

Proof. The proof is analogous to the proof of Theorem 3.1.2, with a few adjustments to deal
with the multiple parametrizing vectors. The tensor T can be factored as u1⊗. . .⊗ud, where
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each ui ∈ ∆n−1 ⊂ Rn. The relations ai = u1i · · ·udi imply that the coordinates of ud can be
expressed as functions on the product of simplices (∆n−1)d−1. Define f : (∆n−1)d−1 → R by:

f(u1, . . . ,ud−1) =
n∑
i=1

udi =
n∑
i=1

ai

u1i · · ·ud−1i

.

Since every variable appears in the denominator of some term, the function f approaches
infinity at the boundary of the product of simplices. A candidate vector ud will be available
if and only if the minimum value of f on the product of simplices is below one. To find
the minimum, compute partial derivatives; as in the proof of Theorem 3.1.2, we let ujn =
1−

∑n−1
k=1 u

j
k for each j = 1, . . . , d− 1.

∂f

∂uji
= − ai

uji
∏d−1

k=1 u
k
i

+
an

ujn
∏d−1

k=1 u
k
n

.

Setting the partial derivatives to zero gives us the following:

ai

uji
∏d−1

k=1 u
k
i

=
ad

ujn
∏d−1

k=1 u
k
d

∀i ∈ [n− 1],∀j ∈ [d− 1].

Let cj be the value on both sides of this equation. Picking two values of j, w.l.o.g., 1 and 2,
this designation means:

ai

u1i
∏d−1

k=1 u
k
i

/
ai

u2i
∏d−1

k=1 u
k
i

=
u2i
u1i

=
c1
c2
.

Applying to all indices, we have uji = c1
cj
u1i for all i, j. Since

∑
i u

j
i = 1 = c1

cj

∑
i u

1
i = c1/cj

for all j, implying that every cj = c1, and

ai

(uji )
d

= c1 ∀i ∈ [n],∀j ∈ [d− 1]

⇒ uji = (ai/c1)
1/d = κ(ai)

1/d.

for some constant κ. Since the sum
∑

i u
j
i = 1, the value of κ = (

∑n
i=1 a

1/d
i )−1. Plugging in

these values of uji , we obtain

f =
n∑
i=1

ai
(κ(ai)1/d)d−1

=
n∑
i=1

a
1/d
i

κd−1
=

(
n∑
i=1

a
1/d
i

)d

.

Since f is at its minimum here, the value must be less than one for a solution to exist,
proving the theorem.

We will characterize the semialgebraic set of diagonal partial tensors which can be com-
pleted to rank-1 probability tensors. This is the positive part of the unit ball in the L

1
d

space.
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Proposition 3.2.4. There exists a unique irreducible polynomial f of degree dn−1 with con-
stant term 1 that vanishes on the boundary of diagonal partial tensors which can be completed
to rank-1 probability tensors. The semialgebraic description takes the form f ≥ 0, coordi-
nates ≥ 0 plus additional inequalities that separate our set from other chambers in the region
defined by f ≥ 0.

The proof of Proposition 3.2.4 was suggested to us by Bernd Sturmfels. For analogous
proof idea, see [42, Lemma 2.1].

Proof. Denote the diagonal entries of the partial tensor by x1, . . . , xn. We will show that the
defining polynomial of the 1

d
-unit ball can be written as

pd,n =
∏

yi s.t. ydi =x
1/d
i

for each i

(
(1− y1 − ...− yn−1)d − xn

)
. (3.12)

We want to eliminate y1, . . . , yn from the ideal

I =

〈
yd1 − x1, . . . , ydn − xn,

n∑
i=1

yi − 1

〉
⊂ Q[x1, . . . , xn, y1, . . . , yn].

First replace yn by 1 − y1 − ... − yn−1 in the equation ydn − xn. We consider the field of
rational functions K = Q(x1, . . . , xn). Solving the first n− 1 equations ydi − xi is equivalent
to adjoining the d-th roots of xi for i ∈ {1, . . . , n− 1} to the base field. This gives a Galois
extension L of degree dn−1 over K. The Galois group of the extension L/K is (Z/dZ)n−1.
The product (3.12) is the orbit of (1− y1 − ...− yn−1)d − xn under the action of the Galois
group, and thus lies in the base field K. Every factor in the product (3.12) is integral
over Q[x1, . . . , xn], hence the product (3.12) is a degree dn−1 polynomial in x1, . . . , xn. No
subproduct is left invariant under the Galois group, so (3.12) is irreducible.

In Example 3.2.2, the polynomial f is the left hand side of Equation (3.7). Inequal-
ities (3.8), (3.9) and (3.10) separate the set

√
a +
√
b +
√
c ≤ 1 from other chambers of

f ≥ 0.
The semialgebraic description for an arbitrary probability mask can be constructed in

five steps using the semialgebraic description for diagonal masks:

1. Take all elements of the universal Gröbner basis of Πm×n (see Section 3.3) that contain
only observed entries. With these equations we check that observed entries do not
contradict the rank-1 condition.

2. For each R ⊆ [m], C ⊆ [n] consider the semialgebraic set

{xij is observed : xij = 0 if i ∈ R or j ∈ C and xij > 0 otherwise}. (3.13)
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For example, the partial matrix (
1
0 1

)
.

does not belong to the semialgebraic set (3.13) for any R and C

3. For fixed R and C, express all completable entries as rational functions in observed
entries, see Equation (3.15). This gives a block diagonal matrix.

4. Construct the diagonal mask corresponding to the block diagonal mask, where each
diagonal entry is equal to the sum of entries in the corresponding block. Clear denom-
inators. Intersect the semialgebraic set for this diagonal mask with the semialgebraic
set in Step 2.

5. Take the union of semialgebraic sets in Step 5 for all R and C and intersect with the
variety in Step 1.

3.3 Completion Algorithms

Algorithm for Checking Completability

When the bipartite graph corresponding to a probability mask is a tree with all nonzero
entries, there is a unique completion. The missing entries can be computed by the following
relations among entries in a cycle:∏

(i,j)∈E1

xij −
∏

(i,j)∈E2

xij = 0, (3.14)

where (E1, E2) is a partition of the edges in a cycle so that no two edges in either Ei are
adjacent. In particular, since the graph G is connected, if there is a missing edge (rk, cl)
there is a path from rk to cl in G; ordering those edges in the path order from rk to cl, let S1

be every other edge in the list starting with rk, and let S2 be the complement in the path.
Then:

ω(rkcl) =
∏

(ij)∈S1

xij /
∏

(ij)∈S2

xij. (3.15)

This formula is implemented in [26, Algorithm 8].

Example 3.3.1. Given the base indicated at left, we can uniquely complete as at right using
polynomials (3.14):

 a b
c d

e

 →


a b

ad

c

c
bc

a
d

ae

b
e

ade

bc
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The entries are assumed to be nonzero; if an observed entry is zero, we omit an appropriate
row and/or column and complete the rest. If a probability matrix only has one connected
component, then completability amounts to checking that the unique rank-1 completion has
entries summing to 1.

Combining Theorem 3.1.14 with the algorithm just described, we may now present an
algorithm for checking completability of an arbitrary partial probability matrix.

Algorithm 3.3.2 (Completability of Arbitrary Partial Matrices). Let M be a partial matrix
with nonnegative entries whose sum is less than or equal to 1. The following algorithm
answers "Is M completable?":

1. Translate M into the corresponding bipartite graph G including edge weights.

2. If all edge weights are nonzero, proceed to Step 3; otherwise:

a) If G is not prunable, return “NO."
b) If G is prunable, execute a careful pruning, as described in Definition 3.1.9.

3. In the remaining graph, suppose there are k connected components C1, . . . , Ck. If k = 1:

a) Check that Equation (3.14) holds for every cycle in the graph. If a cycle fails,
return “NO."

b) Uniquely complete to Km,n. If the edge weights after completion add up to 1,
return “YES." Else, return “NO."

4. If k > 1:

a) Check that Equation (3.14) holds for every cycle in the graph. If a cycle fails,
return “NO."

b) Add in edges to make each component a complete bipartite graph, with edge weights
from Equation (3.15). Let S =

∑k
i=1

√
bi where bi is the sum of the entries in Ci

after the last step. If S > 1, return “NO." Else, return “YES."

Algorithm for Completing Partial Matrices with Two Components

In the last section, an algorithm was presented that determines completability for an arbi-
trary mask. In the special case where Step 3 returns k = 2 connected components, there is
a finite set of completions, with cardinality between 0 and 2 (see Section 3.4 for an explana-
tion). The following algorithm returns this set of completions:

Algorithm 3.3.3. Begin with a graph G, and carry out Algorithm 3.3.2 until Step 3. Let
H be the graph returned from Step 3 with two complete bipartite components C1 and C2.

1. Choose any edge connecting C1 and C2; set it equal to X. Fill in the remaining entries
(in terms of the known entries and X) using Equation (3.15).
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2. Solve the quadratic equation
∑
pij = 1 for X, where pij’s are the set of entries obtained

in Step 1. Substitute the two values for X into the completed matrix from Step 3 to
obtain two (usually distinct) completions.

3. Reintroduce any vertices removed in Step 2 of Algorithm 3.3.2 as rows/columns with
all zero entries.

Note that since the entries involving X all have the same sign, and their sum is fixed,
the solutions for X (if real) must be both positive or both negative.

START: Spanning forest
with two connected compo-
nents.

1) Complete each compo-
nent toKm,n uniquely using
binomials.

2) Connect components us-
ing two solutions to

∑
pij =

1.

Table 3.2: Algorithm for completing probability matrix projections.

Example 3.3.4. Consider the projection of a 3× 3 matrix into ∆4
0 indicated by the partial

matrix below:  .06 .09
.08

.15



Step 1: Add in the missing edges so that both con-
nected components are complete bipartite.

 .06 .08
.09 .12

.15



Step 2: Add in X to connect the components, and fill
in the remaining edges.

 .06 .08 X
.09 .12 1.5X

.009/X .012/X .15



Step 3: Set
∑
pij = 1 and solve for X:

(.06 + .08 + .09 + .12 + .15) +X + 1.5X + .009/X + .012/X = 1
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⇒ .5 + 2.5X + .021/X = 1⇒ 2.5X2 − .5X + .021 = 0

The two solutions for X yield the following two completions: .06 .08 .06
.09 .12 .09
.15 .2 .15

  .06 .08 .14
.09 .12 .21

9/140 3/35 .15


If a set of entries is indeed a projection of a probability matrix, this algorithm will recover

it. Though the generic fiber has two points, there will be a unique completion if and only if
the discriminant of the quadratic polynomial in X is zero.

Example 3.3.5. Applying the algorithm to a random point x ∈ ∆m+n−2
0 does not necessarily

produce a matrix in the probability simplex ∆mn−1. Indeed, even in the smallest cases, this
is seen to be false; the matrix below left is obviously in ∆2

0, but its fiber in V(Πm×n) consists
of the matrix at right and its complex conjugate: 1

3
1

3

→


1

3

1

6
+

i

2
√

3
1

6
− i

2
√

3

1

3


Completing Partial Matrices with More Than Two Components

When the graph has n > 2 components, and the quantity
∑n

i=1

√
bi is less than 1, there is an

(n−2)-dimensional set of completions. For example, consider a diagonal partial 3×3 matrix
with each observed entry equal to the same constant c. In Figure 3.4, each curve represents
values of u that parametrize a completion of the partial matrix with c on the diagonal, for
various values of c. Here u is projected onto the first two coordinates.

For practical applications, some completions are more useful than others. We may want
to minimize a distance measure d from a fixed probability distribution. We will explain how
to use Lagrange multipliers to solve this optimization problem if d is the Euclidean distance
from the uniform distribution.

Let S =
∑n

i=1

√
ai. Let us parametrize a vector u ∈ ∆n−1 by

u(t) =
(√

a1
S

+ t1,
√
a2
S

+ t2, . . . ,
√
an−1

S
+ tn−1,

√
an
S

+ tn

)
,

where tn = −t1 − t2 − . . .− tn−1. Then

f(u(t)) =
n∑
i=1

vi(t) =
n∑
i=1

ai
ui(t)

=
n∑
i=1

ai
√
ai
S

+ ti
=

n∑
i=1

aiS√
ai + tiS

.

Proposition 3.3.6. The semialgebraic set of completions of a diagonal probability mask
diag(a1, a2, . . . , an) is given by f(u(t)) = 1 and u(t) ≥ 0 (after clearing denominators).
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Figure 3.4: Solution curves for c = 1/9, 1/10, 1/16, 1/36, 1/64, and 1/150.

By the method of Lagrange multipliers, an element
(
t1, t2, · · · , tn−1

)
in this semialgebraic

set is a critical point for a distance function d if and only if the gradient of d is a constant
multiple of the vector of partial derivatives ∂f

∂ti
. To compute all the critical points of the

function d on the variety given by f(t) = 1, we need to solve the system of rational equations
given by f(t) = 1 and all the 2× 2 minors of the matrix

L =

(
∂f
∂t1

∂f
∂t2

. . . ∂f
∂tn−1

∂d
∂t1

∂d
∂t2

. . . ∂d
∂tn−1

)
.

Finally we need to check for all real solutions which satisfy u(t) ≥ 0 which one minimizes
the distance d.

Example 3.3.7. Let us return to the matrix A = diag(1/4, 1/25, 1/36), and find a comple-
tion that minimizes the Euclidean distance from the uniform distribution:

d =

[∑
i,j

(
pij −

1

9

)2
]1/2

=

[∑
i,j

(
uivj −

1

n2

)2
]1/2

.

Our method is not restricted to Euclidean distance and can be used for any distance measure.
We construct the Lagrange matrix

L =

( ∂f
∂t1

∂f
∂t2

∂d
∂t1

∂d
∂t2

)
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and find the critical points of d on the variety f = 1 by solving the system of rational
equations {f = 1, det(L) = 0}. We use maple to construct L and to solve the system of
equations. This system has 18 solutions, out of which ten are real and four are feasible, i.e.
they satisfy u ≥ 0. The minimum is achieved at

M =

0.250 0.049 0.215
0.204 0.040 0.176
0.032 0.006 0.028

 and MT .

The Euclidean distance from the uniform distribution is 0.683.

Any path from the local minimum to the boundary of the simplex will strike at least one
solution. If any completion is acceptable, we can designate a simple path and find its points
of intersection with the semialgebraic set of completions.

Proposition 3.3.8. Let A = diag(a1, . . . , an), such that n > 2 and S =
∑√

ai < 1. Then,
a completion of the matrix is given by uTv with:

u =

(√
a1
S

+ t,

√
a2
S
− t,
√
a3
S

, . . . ,

√
an
S

)
,

where t is one of the solutions to the following quadratic equation:(√
a1 +

√
a2

S

)
t2+

(
a2 − a1 −

(√
a1 +

√
a2

S

)2
)
t

+

(
a1
√
a2 + a2

√
a1

S
−
√
a1a2(

√
a1 +

√
a2)

S3

)
= 0,

(3.16)

both of which lie in the interval [−√a1/S,
√
a2/S]. The coordinates of v are obtained by

setting vi = aiu
−1
i .

Proof. The trajectory traced for values of t ∈ [−√a1/S,
√
a2/S] is a line segment on the

simplex. Setting the sum of the coordinates of (ai/ui)i=1,...,n equal to 1 and clearing de-
nominators gives the quadratic equation above. Since it passes through the local minimum,
continuity implies existence of two solutions in the desired interval.

Example 3.3.9. Consider the matrix A = diag(1/4, 1/25, 1/36). To obtain a completion,
we set u = (15

26
+ t, 3

13
− t, 5

26
) and solve the quadratic equation (3.16), which turns into

77

90
t2 +

28

325
t− 28

845
= 0

giving solutions t = − 6
715

√
586 − 36

715
, or 6

715

√
586 − 36

715
. Using the latter value, we obtain

u ≈ ( .730, .078, .192 ),v ≈ ( .343, .513, .144 ), and the matrix completion:

uTv ≈

 0.250 0.374 0.105
0.027 0.040 0.011
0.066 0.098 0.028

 .
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3.4 Algebraic Matroids
In this section, we make the connection to matroid theory explicit. A closer focus on algebraic
matroids associated to determinantal ideals may be found in [25]; earlier, its application to
low-rank matrix completion was explored in [26]. Later, we will discuss how the complicated
matroid structures for the variety of rank-r matrices and the variety of higher-order rank-1
tensors make their analysis less accessible.

Rank-One Determinantal Matroid

The determinantal matroid is the algebraic matroid associated to the determinantal ideal. In
particular, the determinantal ideal Ir,m×n is generated by (r+1)× (r+1)-minors of an m×n
matrix of variables xij, and its vanishing set is the set of m × n matrices of rank ≤ r. The
matroid encoding the algebraic relationships among the xij’s is denoted D(m×n, r). In the
case of the determinantal matroid D(m × n, 1), much is clearly understood. In particular,
the matroid D(m × n, 1) is the graphic matroid on Km,n. Some consequences are in the
following proposition:

Proposition 3.4.1. The following facts hold about D(m× n, 1):

1. Rank of D(m× n, 1) = m+ n− 1.

2. B = {spanning trees of Km,n}.

3. C = {simple cycles of Km,n}.

Circuit polynomials are the essentially unique relations among the elements of each circuit
of the matroid. The circuit polynomials of D(m × n, 1) are each of the form described in
Equation (3.14).

Probability Matroid

The rank-1 probability matroid is the algebraic matroid associated to the ideal of algebraic
relations among the entries pij = P (X = xi, Y = yj) for X, Y independent discrete random
variables. Let this ideal be denoted Πm×n; it is generated as

Πm×n =
〈

2× 2 minors,
∑

pij − 1
〉

;

the associated variety is the section of V(I1,m×n) with the hyperplane
∑
pij − 1.

Proposition 3.4.2. The dimension of V(Πm×n) is m+ n− 2.
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Proof. There is a parametrization of V(Πm×n) analogous to the standard parametrization of
the determinantal variety.

(a1, . . . , am−1, b1, . . . , bn−1) 7−→ (aibj : 1 ≤ i ≤ m, 1 ≤ j ≤ n),

where we set am = 1−
m−1∑
i=1

ai and bn = 1−
n−1∑
i=1

bi. This map is actually invertible, via:

(pij) 7−→

(∑
j

p1j, . . . ,
∑
j

pm−1,j,
∑
i

pi1, . . . ,
∑
i

pi,n−1

)

The existence of these maps implies that the dimension of the two varieties is equal.

The corollary for the matroid is that ρ(M(Πm×n)) = m + n − 2; however, the matroid
can be much more tightly characterized:

Theorem 3.4.3. The matroid M(Πm×n) has bases given by B = {spanning forests with 2
connected components}, and circuits given by C = {spanning trees and non-spanning simple
cycles}.

Proof. The bases of a matroid characterize it completely; we claim that spanning forests
on two components are the bases of M(Πm×n). From [25], a base of an algebraic matroid
is a subset of the coordinates for which the projection map is finite surjective. Then, the
algorithm in Section 3.3 returns the finite fiber over any point, since we are not restricted to
the simplex in the more general algebraic context. This gives the set of bases, and the set
of circuits follows from the two types of relations in the ideal.

Remark 3.4.4. The matroid-theoretic way of formulating Theorem 3.4.3 is thatM(Πm×n)
is the truncation to rank m + n − 2 of the determinantal matroid D(m × n, 1), see [56,
Definition 4.1].

A question worth exploring with the rank one determinantal variety, and for varieties
in general, is as follows: What hyperplane sections induce a truncation of the algebraic
matroid? Intuition dictates that almost all hyperplanes would lead to a truncation; charac-
terizing the subvariety of the projective space of hyperplanes that would induce a different
matroid seems very interesting but nontrivial.

The base degree, as defined in Section 1.3, is the cardinality of a generic fiber in a
projection onto the base’s coordinates. If a base B has an isolated vertex, the base degree
is 1; if both components have positive number of edges, the base degree is 2.

The circuit polynomials associated to cycles are the binomials inherited from the deter-
minantal ideal. As for the spanning trees, the circuit polynomials are obtained either by
elimination in Πm×n, or we complete the matrix using the binomials and then set the sum
equal to 1. After clearing denominators, we obtain a polynomial with the circuit polynomial
as a factor; indeed, it is actually the circuit polynomial.
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Proposition 3.4.5. Let F be the set of edges in a spanning tree C not incident to a leaf.
Let PC be the set of paths in C from white leaves to black leaves.
For a path p ∈ PC, take p1 to be the set of alternate edges of p containing the leaves, let
p2 denote the set of alternate edges of p not containing the leaves, and let m(p) denote the
product of p1 divided by the product of p2.

The circuit polynomial for C is the degree |F |+ 1 polynomial:

∏
(k,l)∈F

xkl

 ∑
(i,j)∈C

xij +
∑
p∈P

m(p)− 1


Proof. We first need to show that the rational function inside of the parentheses evaluates
to zero on a rank-1 matrix summing to one. Then, we need to check that after clearing
denominators by multiplying the monomial on the left, we have an irreducible polynomial.

Each term in the sum of entries is a Laurent monomial of total degree 1. The variables
in the first sum are the revealed entries. The m(p) terms are the Laurent monomials we
using the fundamental cycle to assign a value to every missing edge from Km,n. So the
parenthetical expression is in the ideal.

There aremn terms of degree |F |+1 and one term of degree |F |. Let fg be a factorization
of θC . Then exactly one of f and g must have terms in two degrees; otherwise, the product
would have terms in at least three degrees. Let f = f1 + f2 where f1 is the part of highest
degree. The product f2g must be equal to the monomial

−
∏

(k,l)∈F

xkl.

This implies that g is a monomial. Since no variable divides every term in θC , that monomial
must be a unit.

3.5 Generalizations

Low-Rank Matrices

One natural direction to generalize these results would be to fix r > 1, and find conditions
for a matrix to be rank or nonnegative rank r and have nonnegative entries that sum to 1.
One obvious consequence of our results is that any matrix completable to rank 1 is trivially
completable as a higher-rank matrix. It is harder to provide tighter conditions, however,
even in the smallest examples.

Example 3.5.1 (r = 2,m = n = 3). There are two polynomials constraining the entries
of a 3 × 3 probability matrix of rank 2: the determinant must be zero, and the sum of the
entries must be 1. The variety of matrices with these properties has dimension 7.
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In terms of the matroid, there are two distinct bases up to row permutation and transpose:
the set of size 7 obtained by omitting adjacent edges, and the set obtained by omitting non-
adjacent edges. To find completions, we substitute X and R − X for the missing entries,
where R = 1− (a+ b+ c+ d+ e+ f + g):

Base 1:

 a b c
d e f
g X R−X

 Base 2:

 a b c
d X f
g e R−X

 .

Since the sum is now fixed at 1, we only need to check that there is a value of X in [0, R] so
that the determinant is 0. The determinant in base 1 gives a linear equation in X, while the
determinant in base 2 is a quadratic; the solutions to each are:

X =
g(bf − ce) +R(ae− bd)

(ae− bd) + (af − cd)

X =
(aR + bd− cg)±

√
(aR + bd− cg)2 − 4a(b(dR− fg) + e(af − cd))

2a

Substituting the values (.07, .09, .09, .12, .15, .04, .16) for the known coordinates of the ma-
trix yields a completion for Base 1, but since the discriminant of the Base 2 determinant is
negative, no probability completion is possible.

Since the determinantal matroid is not fully understood for r > 1, the results on com-
pletability to probability matrices of rank 1 will be difficult to generalize to higher rank.
From the statistics viewpoint, it would be more interesting to study completability to proba-
bility matrices of nonnegative rank at most r, because the r-th mixture model of two discrete
random variables is the semialgebraic set of matrices of nonnegative rank at most r. If a
nonnegative matrix has rank 0, 1, or 2, then its nonnegative rank is equal to its rank. Hence,
in Example 3.5.1, we simultaneously address the question of completing a partial matrix to
a probability matrix of nonnegative rank 2.

If r ≥ 3, then matrices of nonnegative rank at most r form a complicated semialgebraic
set. For r = 3, a semialgebraic description of this set is given in [28, Theorem 3.1]. Par-
tial matrices that are completable to probability matrices of nonnegative rank at most 3,
are coordinate projections of this semialgebraic set. To find all probability completions of
nonnegative rank 3 of a partial matrix, one has to find all probability completions of rank 3
and then take the intersection with the semialgebraic set of matrices of nonnegative rank at
most 3.

General Tensors

The generalization to higher-dimensional tensors brings several challenges. Theorem 3.2.3
gives a partial result characterizing diagonal tensors. However, the nice bipartite graph
structure we had for matrices becomes k-partite hypergraphs with k-hyperedges; notions
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like connectivity and acyclicity will need to be modified. So, while any rank-1 matrix com-
pletability problem was reducible to a diagonal case, the tensor case does not seem to be
reducible in the same way. We record here the results for the smallest case distinct from
matrices:

Example 3.5.2 (2 × 2 × 2 Tensors). The variety of 2 × 2 × 2 tensors whose entries sum
to 1 is 3-dimensional. For this example, we will only consider the independent sets of the
algebraic matroid corresponding to this variety. We use the octahedral symmetry group of
the cube to look only at orbits of independent sets:

1. (Size 1) Any singleton, e.g. p000. The only condition is p000 ≤ 1.

2. (Size 2) Three orbits of pairs:

a) p000, p001: p000 + p001 ≤ 1.

b) p000, p011:
√
p000 +

√
p011 ≤ 1.

c) p000, p111: 3
√
p000 + 3

√
p111 ≤ 1.

3. (Size 3) Three orbits of triples:

a) p000, p001, p010: p000 + p001 + p010 + (p001p010/p000) ≤ 1.

b) p000, p001, p110:
√
p000 + p001 +

√
p110 + p001p110/p000 ≤ 1.

c) p000, p101, p011: The tensor is completable if and only if the equation

x3 + (p000 + p101 + p011− 1)x2 + (p000p101 + p000p011 + p101p011)x+ p000p101p011 = 0

has a root in the interval [0, 1].

In this small example, most partial tensors reduced to a case we knew how to handle; however,
3c does not have a simple semialgebraic description. This equation was obtained by adding
x as an entry then completing using minors, and summing the entries to 1.

With this chapter, the matroid for rank-1 matrices summing to 1 has been completely
described. Moving forward, tensors and higher-rank matrices summing to 1 present new
challenges with a similar flavor. Having explored an application to statistics, the next chapter
will be devoted to biology.
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Chapter 4

Biology: Chemical Reaction Matroid

This chapter is based on the paper Algebraic Systems Biology: A Case Study for the Wnt
Pathway [20], written jointly with Elizabeth Gross, Heather Harrington, and Bernd Sturm-
fels. Our goal in this chapter is to employ a comprehensive battery of algebraic tools to
study the shuttle model for the Wnt pathway. While many of these tools are not matroidal
in nature – for example, polyhedral analysis and numerical algebraic geometry – the chapter
also makes extensive use of matroids. In particular, the algebraic matroid associated to the
model is featured in Section 4.4, and also aids our analysis in Section 4.6. Using matroids
in an algebraic study of a chemical reaction network shows how the algebraic matroid can
give us compelling combinatorial tools to understand a polynomial system’s structure.

The theory of biochemical reaction networks is fundamental for systems biology [27, 54].
It is based on a wide range of mathematical fields, including dynamical systems, numerical
analysis, optimization, combinatorics, probability, and, last but not least, algebraic geometry.
There are numerous articles that use algebraic geometry in the study of biochemical reaction
networks, especially those arising from mass action kinetics. A tiny selection is [8, 14, 24,
40, 49].

We here perform a detailed analysis of one specific system, namely the shuttle model for
the Wnt signaling pathway, introduced recently by MacLean, Rosen, Byrne, and Harring-
ton [37]. Our aim is twofold: to demonstrate how biology can lead to interesting questions
in algebraic geometry and to apply state-of-the-art techniques from computational algebra
to biology.

The dynamical system we study consists of the following 19 ordinary differential equa-
tions. Their derivation and the relevant background from biology will be presented in Sec-
tion 4.1.
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ẋ1 = −k1x1 + k2x2
ẋ2 = k1x1 − (k2 + k26)x2 + k27x3 − k3x2x4 + (k4 + k5)x14
ẋ3 = k26x2 − k27x3 − k14x3x6 + (k15 + k16)x15
ẋ4 = −k3x2x4 − k9x4x10 + k4x14 + k8x16 + (k10 + k11)x18
ẋ5 = −k28x5 + k29x7 − k6x5x8 + k5x14 + k7x16
ẋ6 = −k14x3x6 − k20x6x11 + k15x15 + k19x17 + (k21 + k22)x19
ẋ7 = k28x5 − k29x7 − k17x7x9 + k16x15 + k18x17

ẋ8 = −ẋ16 = −k6x5x8 + (k7 + k8)x16
ẋ9 = −ẋ17 = −k17x7x9 + (k18 + k19)x17

ẋ10 = k12 − (k13 + k30)x10 − k9x4x10 + k31x11 + k10x18
ẋ11 = −k23x11 + k30x10 − k31x11 − k20x6x11 − k24x11x12 + k25x13 + k21x19

ẋ12 = −ẋ13 = −k24x11x12 + k25x13
ẋ14 = k3x2x4 − (k4 + k5)x14
ẋ15 = k14x3x6 − (k15 + k16)x15
ẋ18 = k9x4x10 − (k10 + k11)x18
ẋ19 = k20x6x11 − (k21 + k22)x19

(4.1)

The quantity xi is a differentiable function of an unknown t, representing time, and ẋi(t)
is the derivative of that function. This dynamical system has five linear conservation laws:

0 = (x1 + x2 + x3 + x14 + x15)− c1
0 = (x4 + x5 + x6 + x7 + x14 + x15 + x16 + x17 + x18 + x19)− c2
0 = (x8 + x16)− c3
0 = (x9 + x17)− c4
0 = (x12 + x13)− c5

(4.2)

The 31 quantities ki are the rate constants of the chemical reactions, and the five ci are the
conserved quantities. Both of these are regarded as parameters, so we have 36 parameters
in total. Our object of interest is the steady state variety, which is the common zero set of
the right hand sides of (4.1) and (4.2). This variety lives in K19, where K is an algebraically
closed field that contains the rational numbers Q as well as the 36 parameters ki and ci. If
these parameters are fixed to be particular real numbers then we can take K = C, the field
of complex numbers. If it is preferable to regard k = (k1, . . . , k31) and c = (c1, . . . , c5) as
vectors of unknowns, then K = Q(k, c) is the algebraic closure of the rational function field.
In this latter setting, when all parameters are generic, we shall derive the following result:

Theorem 4.0.3. The polynomials in (4.1)–(4.2) have 9 distinct zeros in K19 when K =
Q(k, c).

By analyzing the steady state variety, we can better understand the model, which is
nonlinear, and thus the biological system. The aim is to predict the system’s behavior, offer
biological insight, and determine what data are required to verify or reject the model. Here
is a list of questions one might ask about our model from the perspective of systems biology.
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Biological Problems

These are labeled according to the section that will address them.

3. For what real positive rate parameters and conserved quantities does the system exhibit
multistationarity? This question is commonly asked when using a dynamical system
for modeling a real-world phenomenon. When modeling a process that experimentally
appears to have more than one stable equilibrium, multistationary models are preferred.

4. Suppose we can measure only a subset of the species concentrations. Which subsets can
lead to model rejection? If all species are measurable at steady state, then we can substi-
tute data into the system (4.1), and check that all expressions ẋi are close to zero. If only
some xi are known, we still want to be able to evaluate models with the available data.

5. Give a complete description of the stoichiometric compatibility classes for the chemical
reaction network. A stoichiometric compatibility class is the set of all points accessible
from a given state via the reactions in the system. This question relates more closely to
the dynamics of the system, but also has ramifications for the set of all steady states.

6. What information does species concentration data give us for parameter estimation?
In particular, are the parameters identifiable? Identifiability means that having many
measurements of the concentrations x can determine the reaction rate constants k. If not
identifiable, we will explore algebraic constraints imposed by the species concentration
data. This question is relevant for complete and partial steady-state data (usually noisy).

These questions are open challenges for medium to large models in systems biology and
medicine [27, 54]. The book chapter [36] illustrates standard mathematical and statistical
methods for addressing these questions, with Wnt signaling as a case study. Here, we examine
these questions from the perspective of algebraic geometry. The aim is to provide insight into
global behavior by applying tools from nonlinear algebra to synthetic and systems biology.
Below are the algebraic problems underlying the four biological problems listed above.

Algebraic Problems

3. Describe the set of points (k, c) ∈ R31
>0 × R5

>0 such that the polynomials (4.1)-(4.2) have
two or more positive zeros x ∈ R19

>0. When is there only one? Identify the discriminant.

4. Which projections of the variety defined by (4.1) into coordinate subspaces of K19 are
surjective? Equivalently, describe the algebraic matroid on the ground set {x1, . . . , x19}.

5. The conservation relations (4.2) specify a linear map χ : R19 → R5, x 7→ c. Describe all
the convex polyhedra χ−1(c)∩R19

≥0 where c runs over the points in the open orthant R5
>0.

6. a. Complete data: Describe the matroid on the ground set {k1, k2, . . . , k31} that is defined
by the linear forms on the right hand sides of (4.1), for fixed steady-state concentra-
tions.
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b. Partial steady-state data without noise: Repeat the analysis after eliminating some of
the x-coordinates.

c. Partial steady-state data with noise: For the remaining x-coordinates, suppose that we
have data which are approximately on the projected steady state variety. Determine a
parameter vector (k, c) that best fits the data.

In this paper we shall address these questions, and several related ones, after explaining
the various ingredients. A particular focus is the exchange between the algebraic formulation
and its biological counterpart. Our presentation is organized as follows.

In Section 4.1 we review the basics on the Wnt signaling pathway, we recall the shuttle
model of MacLean et al. [37], and we derive the dynamical system (4.1)–(4.2). In Section
4.2 we establish Theorem 4.0.3, and we examine the set of all steady states. This is here
regarded as a complex algebraic variety in an affine space of dimension 55 = 19+31+5 with
coordinates (x,k, c).

In Sections 4.3, 4.4, 4.5, and 4.6 we address the four problems stated above. The numbers
of the problems refer to the respective sections. Each section starts out with an explanation
of how the biological problem and the algebraic problem are related. The rationale behind
Section 4.3 is likely to be familiar, given that multistationarity has been discussed widely
in the literature; see e.g. [8, 40]. On the other hand, in Section 4.4 we use the language
of algebraic matroids, which are new tools for chemical reaction networks. Section 4.5
characterizes the polyhedral geometry encoded in the conservation relations (4.2). This is a
case study in the spirit of [49, Figure 1]. Section 4.6 addresses the problems of parameter
identifiability and parameter estimation. Finally, in Section 4.7 we return to the biology, and
we discuss what our findings might imply for the study of Wnt signaling and other systems.

4.1 From Biology to Algebra
Cellular decisions such as cell division, specialization and cell death are governed by a rich
repertoire of complex signals that are produced by other cells and/or stimuli. In order for
a cell to come to an appropriate decision, it must sense its external environment, communi-
cate this information to the nucleus, and respond by regulating genes and producing relevant
proteins. Signaling molecules called ligands, external to the cell, can bind to proteins called
receptors, initializing the propagation of information within the cell by molecular interactions
and modifications (e.g. phosphorylation). This signal may be relayed from the cytoplasm
into the nucleus via molecules and the cell responds by activation or deactivation of gene(s)
that control, for example, cell fate. The complex interplay of molecules involved in this in-
formation transmission is called a signaling transduction pathway. Although many signaling
pathways have been defined biochemically, much is still not understood about them or how a
signal results in a particular cellular response. Mathematical models constructed at different
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scales of molecular complexity may help unravel the central mechanisms that govern cellular
decisions, and their analysis may inform and guide testable hypotheses and therapies.

This chapter will focus on the canonical Wnt signaling pathway, which is involved in
cellular processes, both during development and in adult tissues. This includes stem cells.
Dysfunction of this pathway has been linked to neurodegenerative diseases and cancer. Con-
sequently, Wnt signaling has been widely studied in various organisms, including amphibians
and mammals. Researchers are interested in how the extracellular ligand Wnt affects the
protein β-catenin, which plays a pivotal role in turning genes on and off in the nucleus.

The molecular interactions within the Wnt signaling pathway are not yet fully under-
stood. This has led to the development and analysis of many mathematical models. The
Wnt shuttle model [37] includes an abstraction of the signal transduction pathway (via
activation/inactivation of molecules) described above. The model also takes into account
molecules that exist, interact and move between different compartments in the cell (e.g.,
cytoplasm and nucleus). Biologists understand the Wnt system as either Wnt off or Wnt
on. However, such a scenario is rarely binary (i.e., different concentration levels of Wnt may
exist) and inherently depends on spatial movement of molecules. The Wnt shuttle model
includes complex interactions with nonlinearities arising in the equations. In particular, it
includes both the Wnt off and Wnt on scenarios, by adjusting initial conditions or parameter
values. The biology needed to understand the model can be described as follows. See also
Table 4.1.

Wnt off: When cells do not sense the extracellular ligand Wnt, β-catenin is degraded
(broken down). The degradation of β-catenin is partially dependent on a group of molecules
(Axin, APC and GSK-3) that form the destruction complex. Crucially, the break down of
β-catenin occurs when the destruction complex is in an active state; modification to the
destruction complex by proteins, called phosphatases, changes it from inactive to active.
Additionally, β-catenin can degrade independent of the destruction complex. Synthesis of
β-catenin occurs at a constant rate.

Wnt on: When receptors on the surface of a cell bind to Wnt, the Wnt signaling trans-
duction pathway is initiated. This enables β-catenin to move into the nucleus where it binds
with transcription factors that regulate genes. This signal propagation is mediated by the
following molecular interactions. After Wnt stimulus, the protein Dishevelled is activated
near the membrane. This in turn inactivates the destruction complex, thereby preventing
the destruction of β-catenin, allowing it to accumulate in the cytoplasm through natural
synthesis. Throughout the molecular interactions in the signaling pathway, intermediate
complexes can form (e.g., β-catenin bound with Dishevelled).

Space: The location of molecules plays a pivotal role: β-catenin moves between the
cytoplasm and the nucleus (to reach target genes and regulate them). Dishevelled and
molecules that form the destruction complex shuttle between the nucleus and the cytoplasm.
However, it is assumed that only the inactive destruction complex can shuttle (since in the
cytoplasm it would be bound to β-catenin). Phosphatases exist in both the nucleus and the
cytoplasm but the movement across compartments is not included in the model. Symmetry
of reactions is assumed if the species exist in both compartments. Intermediate complexes
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are assumed to be short-lived, or not large enough for movement across compartments.
The Wnt shuttle model of [37] has 19 species whose interactions can be framed as bio-

chemical reactions. These species correspond to variables x1, . . . , x19 in our dynamical system
(4.1). Namely, xi represents the concentration of the species that is listed in the ith row in
Table 4.1.

Variable Species Symbol
Dishevelled D

x1 Dishevelled in cytoplasm (inactive) Di

x2 Dishevelled in cytoplasm (active) Da

x3 Dishevelled in nucleus (active) Dan

Destruction complex (APC/Axin/GSK3β) Y
x4 Destruction complex in cytoplasm (active) Ya
x5 Destruction complex in cytoplasm (inactive) Yi
x6 Destruction complex in nucleus (active) Yan
x7 Destruction complex in nucleus (inactive) Yin

Phosphatase P
x8 Phosphatase in cytoplasm P
x9 Phosphatase in nucleus Pn

β− catenin x
x10 β-catenin in cytoplasm x
x11 β-catenin in nucleus xn

Transcription Factor T
x12 TCF (gene transcription in nucleus) T

Intermediate complex C
x13 Transcription complex, β-catenin: TCF in nucleus CxT
x14 Intermediate complex, β-catenin: dishevelled in cytoplasm CY D
x15 Intermediate complex, destruction complex: dishevelled in nucleus CY Dn
x16 Intermediate complex, destruction complex:

phosphatase in cytoplasm
CY P

x17 Intermediate complex, destruction complex: phosphatase in nucleus CY Pn
x18 Intermediate complex, β-catenin: destruction complex in cytoplasm CxY
x19 Intermediate complex, β-catenin: destruction complex in nucleus CxY n

Table 4.1: The 19 species in the Wnt shuttle model.

The second column in Table 4.1 indicates the biological meaning of the 19 species. The
symbols in the last column are those used in the presentation of the Wnt shuttle model
in [37].

The 19 species in the model interact according to the 31 reactions given in Table 4.2.
Each reaction comes with a rate constant ki. These are the coordinates of our parameter
vector k.
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Reaction Explanation

x1
k1 // x2
k2
oo (In)activation of dishevelled, depends on Wnt

x2 + x4
k3 // x14
k4
oo

k5 // x2 + x5 Destruction complex active → inactive

x5 + x8
k6 // x16
k7
oo

k8 // x4 + x8 Destruction complex inactive → active

x4 + x10
k9 // x18
k10
oo

k11 // x4 + ∅ Destruction complex-dependent β-catenin degradation

∅ k12 // x10 β-catenin production

x10
k13 // ∅ Destruction complex-independent β-catenin degradation

x3 + x6
k14 // x15
k15
oo

k16 // x3 + x7 Destruction complex active → inactive (nucleus)

x7 + x9
k17 // x17
k18
oo

k19 // x6 + x9 Destruction complex inactive → active (nucleus)

x6 + x11
k20 // x19
k21
oo

k22 // x6 + ∅ Destruction complex-dependent β-catenin degradation (nu-
cleus)

x11
k23 // ∅ Destruction complex-independent β-catenin degradation

(nucleus)

x11 + x12
k24 // x13
k25
oo β-catenin binding to TCF (nucleus)

x2
k26 // x3
k27
oo Shuttling of active dishevelled

x5
k28 // x7
k29
oo Shuttling of inactive-form destruction complex

x10
k30 // x11
k31
oo Shuttling of β-catenin

Table 4.2: The 31 reactions in the Wnt shuttle model.

The 31 reactions in Table 4.2 translate into a dynamical system ẋ = Ψ(x;k). Here
Ψ is a vector-valued function of the vectors of species concentrations x and rate constants
k. The choice of Ψ is up to the modeler. In our study, we assume that Ψ represents the
law of mass action [27, §2.1.1]. This is precisely what is used in [37] for the Wnt shuttle
model. The resulting dynamical system is (4.1). We refer to [8, 14, 24, 40, 49] and their
many references for mass action kinetics and its variants. In summary, Table 4.2 translates
into the dynamical system (4.1) under the law of mass action. The five relations in (4.2)
constitute a basis for the linear space of conservation relations of the model in Table 4.2
assuming mass action kinetics.

We refer to x1, . . . , x19 as the species concentrations, k1, . . . , k31 as the rate parameters,
and c1, . . . , c5 as the conserved quantities. We write x,k and c for the vectors with these
coordinates. As is customary in algebraic geometry, we take the coordinates in the complex
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numbers C, or possibly in some other algebraically closed field K containing the rationals Q.
Our aim is to understand the relationships between x,k and c in the Wnt shuttle model.

To this end, we introduce the steady state variety S ⊂ C55. This is the set of all points
(x,k, c) that satisfy the equations ẋ1 = . . . = ẋ19 = 0 in (4.1) along with the five conservation
laws in (4.2). We write our ambient affine space as C55 = C19

x ×C31
k ×C5

c. This emphasizes the
distinction between the species concentrations, rate parameters, and conserved quantities.

4.2 Ideals, Varieties, and Nine Points
We write I for the ideal in the polynomial ring Q[x,k] = Q[x1, . . . x19, k1, . . . k31] that is
generated by the 19 polynomials ẋi on the right hand side of (4.1). Five of these generators
are redundant. Indeed, the conservation relations (4.2) give the following identities mod I:

ẋ1 + ẋ2 + ẋ3 + ẋ14 + ẋ15 = ẋ8 + ẋ16 = ẋ9 + ẋ17 = ẋ12 + ẋ13 =
ẋ4 + ẋ5 + ẋ6 + ẋ7 + ẋ14 + ẋ15 + ẋ16 + ẋ17 + ẋ18 + ẋ19 = 0.

For instance, the polynomials ẋ13, ẋ15, ẋ16, ẋ17 and ẋ19 are redundant because they can be
expressed as negated sums of other generators of I. Hence I is generated by 14 polynomials.
The variety V (I) lives in the 50-dimensional affine space C19

x × C31
k , and it is isomorphic to

the steady state variety S ⊂ C55. A direct computation using the computer algebra package
Macaulay2 [18] shows that V (I) has dimension 36. Hence the affine ideal I is a complete
intersection in Q[x,k]. Furthermore, using Macaulay2 we can verify the following lemma.

Lemma 4.2.1. The ideal I admits the non-trivial decomposition I = Im ∩ Ie, where Ie = I :
〈x1〉 and Im = I + 〈x1〉, both of these components have codimension 14, and Ie is a prime
ideal.

The ideal Im is called the main component, while Ie is called the extinction component,
since it reflects those steady states where a number of the reactants “run out." Both of these
ideals live in Q[x,k], and we now present explicit generators. The extinction component
equals

Ie = 〈x1, x2, x3, x5, x7, x14, x15, x16, x17, k30x10 − (k23 + k31)x11 − k22x19,
k13x10 + k23x11 + k11x18 + k22x19 − k12, k24x11x12 − k25x13,

k20x6x11 − (k21 + k22)x19, k9x4x10 − (k10 + k11)x18〉.
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The ideal Ie is found to be prime in Q[x,k]. The main component equals

Im = 〈k16x15 − k19x17, k5x14 − k8x16, k30x10 − (k23 + k31)x11 − k22x19,
k13x10 + k23x11 + k11x18 + k22x19 − k12, k28x5 − k29x7, k26x2 − k27x3,

k1x1 − k2x2, k24x11x12 − k25x13, k20x6x11 − (k21 + k22)x19,
k9x4x10 − (k10 + k11)x18, k17x7x9 − (k18 + k19)x17, k6x5x8 − (k7 + k8)x16,

k14x3x6 − k15x15 − k19x17, k3x2x4 − k4x14 − k8x16,
(k4k6k8k14k16k18k26k29 + k5k6k8k14k16k18k26k29+

k4k6k8k14k16k19k26k29 + k5k6k8k14k16k19k26k29)k1x6x8
−(k3k5k7k15k17k19k27k28 + k3k5k8k15k17k19k27k28

+k3k5k7k16k17k19k27k28 + k3k5k8k16k17k19k27k28)k1x4x9〉.

This ideal is not prime in Q[x,k]. For instance, the variable k1 is a zerodivisor modulo Im,
as seen from the last generator. Removing the factor k1 from the last generator yields the
quotient ideal Im : 〈k1〉. However, even that ideal still has several associated primes. All of
these prime ideals, except for one, contain some of the rate constants ki.

That special component is characterized in the following proposition. Given any ideal
J ⊂ Q[x,k], we write J̃ = Q(k)[x]J for its extension to the polynomial ring Q(k)[x] in the
unknowns x1, . . . , x19 over the field of rational functions in the parameters k1, . . . , k31.

Proposition 4.2.2. The ideal Jm = Ĩm ∩ Q[x,k] is prime. Its irreducible variety V (Jm) ⊂
C50 has dimension 36; it is the unique component of V (Im) that maps dominantly onto C31

k .

Proof. The ideal Ĩm has the same generators as Im but now regarded as polynomials in
x with coefficients in Q(k). Symbolic computation in the ring Q(k)[x] reveals that Ĩm
is a prime ideal. This implies that Jm is a prime ideal in Q[x,k], and hence V (Jm) is
irreducible. The dimension statement follows from the result of Lemma 4.2.1 that Im is
a complete intersection. This ensures that V (Im) has no lower-dimensional components,
by Krull’s Principal Ideal Theorem. Finally, V (Jm) maps dominantly onto C31

k because
Jm ∩ Q[k] = {0}.

Corollary 4.2.3. The ideal Ĩ is radical, and it is the intersection of two primes in Q(k)[x]:

Ĩ = Ĩe ∩ Ĩm. (4.3)

Proof. This follows directly from Proposition 4.2.2 and the primality of Ie in Lemma 4.2.1.

The decomposition has the following geometric interpretation. We now work over the
field K = Q(k). All rate constants are taken to be generic. Then V (Ĩ) is the 5-dimensional
variety of all steady states in K19. This variety is the union of two irreducible components,

V (Ĩ) = V (Ĩe) ∪ V (Ĩm),
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where each component is 5-dimensional. The first component lies inside the 10-dimensional
coordinate subspace V (x1, x2, x3, x5, x7, x14, x15, x16, x17). Hence it is disjoint from the hy-
perplane defined by the first conservation relation x1 + x2 + x3 + x14 + x15 = c1. In other
words, V (Ĩe) is mapped into a coordinate hyperplane under the map χ : K19 → K5,x 7→ c.

On the other hand, the second component V (Ĩm) maps dominantly onto K5 under χ.
Theorem 4.0.3 states that the generic fiber of this map consists of 9 reduced points. Equiv-
alently,

χ−1(c) ∩ V (Ĩ) = χ−1(c) ∩ V (Ĩm) (4.4)

is a set of nine points in K19. We are now prepared to argue that this is indeed the case.

Computational Proof of Theorem 4.0.3. We consider the ideal of the variety (4.4) in the
polynomial ring Q(k, c)[x]. This polynomial ring has 19 variables, and all 36 parameters are
now scalars in the coefficient field. This ideal is generated by the right hand sides of (4.1)
and (4.2). Performing a Gröbner basis computation in this polynomial ring verifies that our
ideal is zero-dimensional and has length 9. Hence (4.4) is a reduced affine scheme of length
9 in K19.

Fast numerical verification of this result is obtained by replacing the coordinates of k
and c with generic (random rational) values. In Macaulay2 one finds, with probability 1,
that the resulting ideals in Q[x] are radical of length 9. We also verified this result via
numerical algebraic geometry, using the two software packages Bertini [4] and PHCpack
[53].

4.3 Multistationarity and its Discriminant
This section centers around Question 3 from the Introduction: For what real positive rate
parameters and conserved quantities does the system exhibit multistationarity? This is com-
monly asked about biochemical reaction networks and about dynamical systems in general.

Mathematically, this is a problem of real algebraic geometry. Writing S for the steady
state variety in C55, we are interested in the fibers of the map πk,c : S ∩ R55

>0 → R31
>0,k×R5

>0,c.
According to Theorem 4.0.3, the general fiber consists of 9 complex points x ∈ C19

x , when
the map πk,c is taken over C. But here we take it over the reals R or over the positive reals
R>0.

In our application to biology, we only care about concentration vectors x whose coordi-
nates are real and positive. Thus we wish to stratify R31

>0,k×R5
>0,c according to the cardinality

of
π−1k,c(k, c) =

{
(x,k′, c′) ∈ S ∩ R55

>0 : k′ = k and c′ = c
}
. (4.5)

This stratification comes from a decomposition of the 36-dimensional orthant R31
>0,k ×R5

>0,c

into connected open semialgebraic subsets. The walls in this decomposition are given by the
discriminant ∆, a giant polynomial in the 36 unknowns (k, c) that is to be defined later.

We begin with the following result on what is possible with regard to real positive solu-
tions.
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Theorem 4.3.1. Consider the polynomial system in (4.1)–(4.2) where all parameters ki
and cj are positive real numbers. The set (4.5) of positive real solutions can have 1, 2, or 3
elements.

Proof. For random choices of (k, c) = (k1, . . . , k31, c1, . . . , c5) in the orthant R36
>0, our poly-

nomial system has 9 complex solutions, by Theorem 4.0.3. For the following two special
choices of the 36 parameter values, all 9 solutions are real. First, take (k, c) to be the vector

(1.7182818, 53.2659, 3.4134082, 0.61409879, 0.61409879, 3.4134082, 0.98168436, 0.98168436,
92.331732, 0.86466471, 79.9512906, 97.932525, 1, 3.2654672, 0.61699064, 0.61699064,
37.913879, 0.86466471, 0.86466471, 4.7267833, 0.17182818, 0.68292191, 1, 0.55950727,
1.0117639, 1.7182818, 1.7182818, 0.99326205, 0.99326205, 5.9744464, 1, 4.9951026,

16.4733784, 1.6006340000000001, 1.2089126, 2.7756596399999998).

The resulting system has three positive solutions x ∈ R19
>0. Next, let (k′, c′) be the vector

(0.948166, 7.45086, 5.72974, 3.96947, 7.21145, 7.8761, 1.87614, 8.11372, 6.21862, 5.24801,
3.10707, 1.08146, 5.22133, 5.84158, .911392, 4.28788, 4.81201, 9.67849, 1.34452, 7.38597,
6.64451, 7.10229, 8.57942, 5.79076, 6.33244, 1.53916, 1.39658, 0.81673, 5.8434, 3.86223,

7.22696, 1.45438, 3.36482, 6.06453, 4.82045, 3.6014).

Here, one solution to our system is positive. By connecting the two parameter points above
with a general curve in R36

>0, and by examining in-between points (k′′, c′′), we can construct a
system with two positive solutions. All computations were carried out using Bertini [4].

Remark 4.3.2. At present, we do not know whether the number of real positive solutions
can be larger than three. We suspect that this is impossible, but we currently cannot prove it.

The difficulty lies in the fact that the stratification of R36
>0 is extremely complicated.

In computer algebra, the derivation of such stratifications is known as the problem of real
root classification. For a sample of recent studies in this direction see [7, 13, 47]. Real
root classification is challenging even when the number of parameters is 3 or 4; clearly, 36
parameters is out of the question. The stratification of R36

>0 by behavior of (4.5) has way too
many cells.

While symbolic techniques for real root classification are infeasible for our system, we
can use numerical algebraic geometry [19] to gain insight into the stratification of R36

>0.
Coefficient-parameter homotopies [41] can solve the steady state polynomial system (4.1)-
(4.2) for multiple choices of (k, c) quickly. For our computations we use Bertini.m2. This
is the Bertini interface for Macaulay2, as described in [2]. Each system has 19 equations
in 19 unknowns and, for random (k, c), each system has 9 complex solutions. Such a system
can be solved in less than one second using the bertiniParameterHomotopy function from
Bertini.m2.

Below we describe the following experiment. We sample 10, 000 parameter vectors (k, c)
from two different probability distributions on R36

>0. In each case we report the observed
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frequencies for the number of real solutions and number of positive solutions. We then follow
these experiments with a specialized sampling scheme for testing numerical robustness.

Uniform sampling scheme: Here we choose (k, c) uniformly from the cube (0.0, 100.0)36.
Sampling 10,000 parameter vectors from this scheme and solving the steady state system for
each of these parameter vectors in Bertini, we obtained 9, 992 solutions sets that contained
9 complex points. Solution sets with less than 9 points occur when some paths in the
coefficient-parameter homotopy fail. We call solution sets with 9 solutions good.

Integer sampling scheme: Here we select (k, c) uniformly from {1, 2, 3}36. Sampling
10,000 parameter vectors according to this scheme and solving the corresponding steady
state system returned 9, 963 good solution sets. Below is a table that records how many
of the good solution sets had 9, 7, 5, 3 real solutions; all solution sets had 1 positive real
solution.

# of real solutions 9 7 5 3
Freq. for Uniform Sampling 5,760 3,675 544 13
Freq. for Integer Sampling 2,138 5,181 2,522 122

Table 4.3: Frequencies for the sampling schemes.

These computations indicate that for most parameter vectors in (0, 100)36 we will see only
one positive solution to the steady state system. But while the set of parameter vectors that
result in multiple steady states is not very large, we can give evidence that multistationarity
is preserved under small perturbations. This is our next point.

Testing Robustness: Let (k∗, c∗) be the first point in the proof of Theorem 4.3.1. For each
index i ∈ {1, . . . , 19} we choose yi uniformly from (−0.03 · k∗i , 0.03 · k∗i ) then set ki = k∗i + yi.
We ran the same process for the ci. Sampling 10, 000 parameter vectors this way and solving
the corresponding steady state systems returned 10, 000 good solution sets, as follows:

# of real solutions Freq. # of pos. solutions Freq.
9 9,879 3 9,879
7 121 1 121

Table 4.4: Frequencies for testing robustness scheme.

In the remainder of this section, we properly define the discriminant ∆ that separates
the various strata in R36

>0. Let ∆int denote the Zariski closure in C31
k × C5

c of all parameter
vectors (k, c) for which (4.1)–(4.2) does not have 9 isolated complex solutions and there
are no solutions with xi = 0 for some i. It can be shown that ∆int is a hypersurface that
is defined over Q, so it is given by a unique (up to sign) irreducible squarefree polynomial
in Z[k, c]. We use the symbol ∆int also for that polynomial. To be precise, ∆int is the
discriminant of a number field L with K ⊃ L ⊃ Q, namely L is the field of definition of the
finite K-scheme (4.4).

Next, for any i ∈ {1, 2, . . . , 19} consider the intersection of the steady state variety S
with the hyperplane {xi = 0}. The Zariski closure of the image of S ∩ {xi = 0} under the
map πk,c is a hypersurface in C19

k × C31
c , defined over Q, and we write ∆xi=0 for the unique
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(up to sign) irreducible polynomial in Z[k, c] that vanishes on that hypersurface. We now
define

∆ := ∆int · lcm
(

∆x1=0 , ∆x2=0 , . . . , ∆x19=0

)
.

This product with a least common multiple (lcm) is the discriminant for our problem.

Example 4.3.3. The degree of ∆int as a polynomial only in c = (c1, c2, c3, c4, c5) equals 34.
To illustrate this, we set c =

(
5, 16 + C, 8

5
− C, 6

5
+ C, 3− C

)
where C is a parameter, and

k =

(
9

5
,
9

5
, 3,

2

3
,
2

3
, 3, 1, 1, 100,

4

5
, 80, 100, 1, 3,

2

3
,
2

3
, 38,

4

5
,
4

5
, 4,

1

8
,
3

5
, 1,

1

2
, 19,

7

4
,
7

4
, 1, 1, 5, 1

)
.

Under this specialization, the polynomial ∆int becomes an irreducible polynomial of degree 34
in the parameter C. Its coefficients are enormously large integers. It has 14 real roots.

For the other factors ∆xi=0 of the discriminant, we find the following specializations:

x1 → 0, x2 → 0, x3 → 0, x4 → (C+16)(5C−8), x5 → C+16, x6 → (C+16)(5C+6),
x7 → C+16, x8 → 5C − 8, x9 → 5C + 6, x10 → a quartic q(C), x11 → 0, x12 → C−3,
x13 → C−3, x14 → (C+16)(5C−8), x15 → (C+16)(5C+6), x16 → (C+16)(5C−8),

x17 → (C+16)(5C+6), x18 → (C+16)(5C−8)q(C), x19 → (C+16)(5C+6).

(4.6)

These polynomials have 8 distinct real roots in total, so the total number of real roots of the
discriminant is 14 + 8 = 22. These are the break points where real root behavior changes:

(9, 0) −77.2388 (9, 0) −16.0000 (9, 0) −5.28669 (7, 0) −1.57472
(9, 0) −1.46506 (9, 0) −1.34899 (7, 0) −1.29581 (9, 0) −1.20000
(9, 1) −1.19215 (9, 1) −1.18389 (7, 1) −0.584325 (9, 3) −0.361808
(7, 3) 0.191039 (5, 1) 1.30812 (7, 1) 1.33197 (5, 1) 1.60000
(5, 0) 1.60161 (3, 0) 3.0000 (3, 0) 4.26306 (5, 0) 11.1174
(7, 0) 21.4165 (9, 0) 310.141 (9, 0)

In this table, we list all 22 roots of the specialized discriminant ∆(C). The eight boldface
values of C are the roots of (4.6): here one of the coordinates of x becomes zero. At the
other 14 values of C, the number of real roots changes. Between any two roots we list the
pair (r, p), where r is the number of real roots and p is the number of positive real roots. For
instance, for −0.361808 < C < 0.191039, there are 7 real roots of which 3 are positive.

4.4 Algebraic Matroids and Parametrizations
Question 4 asks: Suppose we can measure only a subset of the species concentrations. Which
subsets can lead to model rejection? This issue is important for the Wnt shuttle model
because, in the laboratory, only some of the species are measurable by existing techniques.

We shall address Question 4 using algebraic matroids. Matroid theory allows us to analyze
the structure of relationships among the 19 species in Table 4.1. This first appeared in [37].
We here present an in-depth study of the matroids that govern the Wnt shuttle model.
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We are here interested in the matroid that is defined by the prime ideal P = Ĩm in
Q(k)[x]. Its ground set X is the set of species concentrations {x1, . . . , x19}. Since V (Ĩm) is
5-dimensional, each basis consists of five elements in X. In our application, bases are the
maximal subsets of X that can be specified independently at steady state; they are also the
minimal-cardinality sets that can be measured to learn all species concentrations. The rank
of a set Y indicates the number of measurements required to learn the concentrations for
every element of Y . Flats are the full subsets that are specified by any given collection of
measurements.

Circuits furnish our answer to Question 4: they are minimal sets of species that can be
used to test compatibility of the data with the model. For each circuit Y there is a unique-up-
to-scalars relation in Ĩm ∩Q(k)[Y ], called the circuit polynomial of Y . If the measurements
indicate that this relation is not satisfied, then the model and data are not compatible.

Proposition 4.4.1. The algebraic matroid of Ĩm has rank 5. It has 951 circuits, summarized
in Table 4.5. Of the 11628 subsets of X of size 5, precisely 2389 are bases. The 2092 bases
summarized in Table 4.6 have base degree 1, while the remaining 297 have base degree 2.

The computation of this matroid was carried out using the methods described in [48]. It
was first reported in [37], along with the matroids of alternative models for the Wnt pathway.
The idea there was to find subsets of variables that were dependent for different models.

Our matroid analysis here goes beyond [37] in several ways:

1. We keep track of the parameters k. We take our circuit polynomials to have (relatively
prime) coefficients in Z[k]. This gives us a new tool for model rejection, e.g. in situations
where only one data point is known but some parameter values are available.

2. We show how circuits can be used in parameter estimation; this will be done in Section 4.7.

3. We use the degree-1 bases to derive rational parametrizations of the variety V (Ĩm).

We now explain Table 4.5. A circuit polynomial has type (i, j) if it contains i species
concentrations (x-variables) and j rate parameters (k-variables). The entry in row i and
column j in Table 4.5 is the number of circuits of type (i, j). Zero values are omitted for
clarity.

Example 4.4.2. There are five circuits of type (2, 2). One of them is ẋ1 = −k1x1 + k2x2.
Most of the 951 circuit polynomials in Ĩm are more complicated. In particular, they are
non-linear in both x and y. For instance, the unique circuit polynomial of type (6, 11) equals

(−k15k17k19k20k25 − k16k17k19k20k25)x7x9x13
+(k14k16k18k21k24 + k14k16k19k21k24 + k14k16k18k22k24 + k14k16k19k22k24)x3x12x19.

In Section 4.6, we will consider the role of these nonlinear functions in parameter estimation.

Given a basis Y of an algebraic matroid, its base degree is the length of the generic fiber of
the projection of V (P ) onto the Y -coordinates (cf. [48]). Bases with degree 1 are desirable:
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2 3 4 5 6
2 5 1
3 6
4 1 5
5 6 1
6 7 5
7 5 3
8 1 11 1
9 6 12 3
10 11 1
11 4 7 11 1

2 3 4 5 6
12 13 10
13 13 15 2
14 19 16 1
15 17 21 4
16 15 11 2
17 16 32 9
18 4 6 2
19 26 36 11
20 44 1 1
21 26 27 9

2 3 4 5 6
22 8 58
23 4 56 5
24 54 14
25 53 15
26 8 16
27 12 56 16
28 2 2
29 29 14
30
31 6

Table 4.5: The 951 circuit polynomials, by numbers of unknowns xi and kj.

Proposition 4.4.3. Let P ⊂ K[X] be a prime ideal, Y a basis of its algebraic matroid,
|X| = n, and |Y | = r. If Y has base degree 1 then V (P ) is a rational variety, and the basic
circuits of Y specify a birational map ϕY : Kr 99K Kn whose image is Zariski dense in V (P )

Proof. For each coordinate xi in X\Y there exists a circuit containing Y ∪ {xi}; this is the
basic circuit of (Y, xi). Since Y has base degree 1, the generic fiber of the map V (P )→ Kr

consists of a unique point. Therefore the circuit polynomial is linear in xi. It has the form

pi(Y ) · xi + qi(Y ), where pi, qi ∈ K[Y ].

The i-coordinate of the rational map ϕY equals xi if xi ∈ Y and −qi(Y )/pi(Y ) if xi /∈ Y .

From Propositions 4.4.1 and 4.4.3, we obtain 2092 rational parametrizations of the variety
V (Ĩm). These are the maps ϕY : K5 99K K19, where Y runs over all bases of base degree 1.
Using these ϕY , we obtain 2092 representations of the steady state variety (4.4) as a subset
of K5, where now K = Q(k, c). Namely, we consider the preimages of the five hyperplanes
defined by (4.2). These are hypersurfaces in K5 whose intersection represents the nine points
in (4.4). We performed the following computation for all 2092 bases Y = {y1, . . . , y5} of base
degree 1:

1. Substitute x = ϕY (y1, . . . , y5) into the five linear equations (4.2).

2. Clear the denominators d1, . . . , d5 in each equation to get polynomials h1, . . . , h5 in Y .

3. The saturation ideal JY = 〈h1, . . . , h5〉 : 〈d1d2 · · · d5〉∞ represents the preimage of (4.4).

Given such a wealth of parametrizations, we seek one where JY has desirable properties.
We use the following criterion: consider subsets of five of the generators of JY , compute the
mixed volume of their Newton polytopes, and fix a subset minimizing that mixed volume.
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Mixed Volume 5 9 10 11 12 13 14 15 16 20 23 24 25 30 35 42 45

Frequency 2 416 6 73 50 167 563 751 10 12 6 1 11 12 4 4 4

Table 4.6: Reducing the steady state equations to the 2092 bases of base degree 1

In the census of 2092 bases in Table 4.6, that minimum is referred to as the mixed volume
of Y .

By Bernstein’s Theorem, the mixed volume is the number of solutions to a generic system
with the five given Newton polytopes. We seek bases Y where this matches the number nine
from Theorem 4.0.3. We see that the mixed volume is nine for 416 of the bases in Table 4.6.

Example 4.4.4. The basis Y = {x1, x4, x6, x8, x13} has base degree 1 and mixed volume 9.
The remaining variables can be expressed in terms of Y as follows. For brevity, we set

r(x4, x6) = k9k11k20k22x4x6 + k9k11(k21 + k22)(k23 + k31)x4
+ k20k22(k10 + k11)(k13 + k30)x6 + (k10 + k11)(k21 + k22)(k13k23 + k23k30 + k13k31).

x2 =
k1
k2
x1 x12 = r(x4,x6)

k12k30(k10+k11)(k21+k22)

k25
k24

x13

x3 =
k1k26
k2k27

x1 x14 =
k1k3

k2(k4 + k5)
x1x4

x5 =
k1k3k5(k7 + k8)

k2k6k8(k4 + k5)

x1x4
x8

x15 =
k1k14k26

k2k27(k15 + k16)
x1x6

x7 =
k1k3k5k28(k7 + k8)

k2k6k8k29(k4 + k5)

x1x4
x8

x16 =
k1k3k5

k2k8(k4 + k5)
x1x4

x9 = k6k8k14k16k26k29(k4+k5)(k18+k19)
k3k4k5k17k19k27k28(k7+k8)(k15+k16)

x6x8
x4

x17 =
k1k14k16k26

k2k19k27(k15 + k16)
x1x6

x10 = k12(k10+k11)(k20k22x6+(k21+k22)(k23+k31))
r(x4,x6)

x18 = k9k12(k20k22x6+(k21+k22)(k23+k31))
r(x4,x6)

x4

x11 =
k12k30(k10 + k11)(k21 + k22)

r(x4, x6)
x19 =

k12k20k30(k10 + k11)

r(x4, x6)
x6

This map ϕY is substituted into (4.2), and then we saturate. The resulting ideal JY equals

〈α1x6x8 + α2x4 + α3x6, α4x1x6 + α5x1 + α6x8 + α7,
α8x1x4 + α9x8 + α10, α11x4x6x13 + α12x4x13 + α13x6x13 + α14x13 + α15,

α16x4x
2
6 + α17x

3
6 + α18x4x6+ α19x

2
6 + α20x

2
8 + α21x1 + α22x4 + α23x6 + α24x8 + α25〉,

where the α1, . . . , α25 are certain explicit rational functions in the k-parameters.
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4.5 Polyhedral Geometry
Dynamics of the system while not at steady state cannot typically be studied with algebraic
methods. One exception is the set of all possible states accessible from a given set of initial
values via the chemical reactions in the model. This set is called a stoichiometric compatibility
class in the biochemistry literature. Mathematically, these classes are convex polyhedra. We
determine them all for the Wnt shuttle model. This resolves Problem 5 from the Introduction.

The conservation relations (4.2) define a linear map χ from the orthant of concentrations
R19
≥0 to the orthant of conserved quantities R5

≥0. We express this projection as a 5×19-
matrix:

c1
c2
c3
c4
c5

 =


1 1 1 · · · · · · · · · · 1 1 · · · ·
· · · 1 1 1 1 · · · · · · 1 1 1 1 1 1
· · · · · · · 1 · · · · · · · 1 · · ·
· · · · · · · · 1 · · · · · · · 1 · ·
· · · · · · · · · · · 1 1 · · · · · ·

 ·


x1
x2
x3
...
x18
x19


(4.7)

Let Pc denote the fiber of the map χ for c ∈ R5
≥0. This is known in the biochemical

literature as the invariant polyhedron or the stoichiometric compatibility class of the given x;
see e.g. [49, (3)]. The fiber over the origin is P0 = R≥0{e10, e11}, the two-dimensional
orthant formed by all positive linear combinations of e10 and e11. If c ∈ R5

≥0 is an interior
point, then Pc is a 14-dimensional convex polyhedron of the form P0 × P̃c where P̃c is
a 12-dimensional (compact) polytope. Two vectors c and c′ are considered equivalent if
their invariant polyhedra Pc and Pc′ have the same normal fan. This property is much
stronger than being combinatorially isomorphic. The equivalence classes are relatively open
polyhedral cones, and they define a partition of R5

≥0. This partition is the chamber complex of
the matrix (4.7). For a low-dimensional illustration, see [49, Figure 1]. Informally speaking,
the chamber complex classifies the possible boundary behaviors of our dynamical system.

Proposition 4.5.1. The chamber complex of our 5×19-matrix divides R5
≥0 into 19 maximal

cones. It is the product of a ray, R≥0, and the cone over a subdivision of the tetrahedron.
That subdivision consists of 18 smaller tetrahedra and 1 bipyramid, described in detail below.

Proof. The product structure arises because the matrix has two blocks after permuting
columns, an upper left 4×17 block and a lower right 1×2 block (1 1). Our task is to compute
the chamber decomposition of R4

≥0 defined by the 4× 17-block. After deleting zero columns
and multiple columns, we are left with a 4× 7-matrix, given by the seven left columns in

M =


a b c d e f g h i j k l

0 1 0 0 1 0 0 0 1 1 1 1
1 1 1 1 0 0 0 1 1 1 1 2
0 0 1 0 0 1 0 1 0 1 1 1
0 0 0 1 0 0 1 1 1 0 1 1

.
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The correspondence between the seven left columns of M and the columns of (4.7) is as
follows:

a = {x4, x5, x6, x7, x18, x19}, b = {x14, x15}, c = {x16},
d = {x17}, e = {x1, x2, x3}, f = {x8}, g = {x9}.

The remaining columns of M are additional vertices in the subdivision.
The following table lists the 19 maximal chambers. For each chamber we list the extreme

rays and the facet-defining inequalities. For instance, the chamber in R5
≥0 denoted by efjk is

the orthant spanned by the columns e, f , j and k of the matrixM times the ray (0, 0, 0, 0, 1)T .
It is defined by c5 ≥ 0 together with the four listed inequalities: c4 ≥ 0, min(c1, c3) ≥ c2 ≥ c4.

abcd {c4, c3, c1, c2 − c4 − c3 − c1}
bcdl {c2 − c3 − c1, c2 − c4 − c1, c2 − c4 − c3,−c2 + c4 + c3 + c1}
efgk {c2,−c2 + c4,−c2 + c3,−c2 + c1}
bcjl {c4,−c2 + c1 + c3, c2 − c3 − c4, c2 − c1 − c4}
bdil {c3,−c2 + c4 + c1, c2 − c4 − c3, c2 − c3 − c1}
beij {c3, c4, c1 − c2, c2 − c3 − c4}
cdhl {c1,−c2 + c3 + c4, c2 − c4 − c3, c2 − c4 − c1}
cfhj {c4, c1,−c2 + c3, c2 − c4 − c1}
dghi {c1, c3,−c2 + c4, c2 − c1 − c3}
egik {c3,−c2 + c4, c2 − c3,−c2 + c1}
fghk {c1,−c1 + c2,−c2 + c3,−c2 + c4}
efjk {c4, c1 − c2, c2 − c4,−c2 + c3}
bijl {c2 − c1,−c2 + c1 + c3,−c2 + c4 + c1, c2 − c3 − c4}
chjl {c2 − c3,−c2 + c4 + c3,−c2 + c3 + c1, c2 − c4 − c1}
dhil {c2 − c4,−c2 + c4 + c1,−c2 + c3 + c4, c2 − c1 − c3}
ghik {c4 − c2, c2 − c3, c2 − c1,−c2 + c1 + c3}
eijk {c2 − c4, c2 − c3, c1 − c2,−c2 + c3 + c4}
fhjk {c2 − c4, c2 − c1,−c2 + c3,−c2 + c4 + c1}
hijkl {c2 − c4, c2 − c3, c2 − c1,−c2 + c4 + c3,−c2 + c4 + c1,−c2 + c3 + c1}

Interpreting the columns ofM as homogeneous coordinates, the table describes a subdivision
of the standard tetrahedron into 18 tetrahedra and one bipyramid hijkl. These cells use the
12 vertices a, b, . . . , l. The reader is invited to check that this subdivision has precisely 39
edges and 47 triangles, so the Euler characteristic is correct: 12− 39 + 47− 19 = 1.

We shall prove the following result about the Wnt shuttle model.

Proposition 4.5.2. Suppose that the rate constants ki and the conserved quantities cj are
all strictly positive. Then no steady states exist on the boundary of the invariant polyhedron
Pc.

Proof. Consider the two components Im and Ie of the steady state ideal I given in Lemma
4.2.1. We intersect each of the two varieties with the affine-linear space defined by the
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conservation relations (4.2) for some c ∈ R5
>0. We claim that all solutions x satisfy xi 6= 0

for i = 1, 2, . . . , 19.
For the main component V (Im), we prove this assertion with the help of the parametriza-

tion ϕY from Example 4.4.4. If the values of x1, x4, x6, x8, x13 and of the expression r(x4, x6)
are nonzero, then each coordinate of ϕY is nonzero. We next observe that r(x4, x6) > 0 for
any k > 0 and x ≥ 0. A case analysis, using binomial relations in the ideal Im, reveals that
if any of x1, x4, x6, x8, x13 are zero, some coordinate of c is forced to zero as well:

x1 = 0 ⇒ x2, x3, x14, x15 = 0 ⇒ c1 = 0,
x13 = 0 ⇒ x12 = 0 ⇒ c5 = 0,
x4 = 0 ⇒ x5, x6, x7, x14, x15, x16, x17, x18, x19 = 0 ⇒ c2 = 0,

or x8, x16 = 0 ⇒ c3 = 0,
x6 = 0 ⇒ x9, x17 = 0 ⇒ c4 = 0,

or x4 = 0 ⇒ c2 or c3 = 0,
x8 = 0 ⇒ x16 = 0 ⇒ c3 = 0.

It remains to consider the extinction component. Its ideal Ie contains the set b ∪ l =
{x1, x2, x3, x14, x15}. The corresponding columns of the matrix in (4.7) are the only columns
with a nonzero entry in the fourth row. This implies that c4 = 0 holds for every steady state in
V (Ie). We conclude that there are no steady states on the boundary of the polyhedron Pc.

Remark 4.5.3. In this proof we did not need the detailed description of the chamber complex,
because of the special combinatorial structure in the Wnt shuttle model. In general, when
studying chemical reaction networks that arise in systems biology, an analysis like Proposition
4.5.1 is requisite for gaining information about possible zero coordinates in the steady states.

4.6 Parameter Estimation
Question 6 asks: What information does species concentration data give us for parameter
estimation? This question is of particular importance to experimentalists, as species concen-
trations depend on initial conditions, whereas parameter values are intrinsic to the biological
process being modeled. Identifiability of parameters has been studied in many contexts, no-
tably in statistics [16] and in biological modeling [39]. Sometimes, as in [39], parameters are
determined from complete time-course data of the dynamical system, making a differential
algebra approach desirable. In the present treatment, we focus on the steady state variety,
so we consider data collection only at steady state. We assume that there is a true but
unknown parameter vector k∗ ∈ R31 of rate constants, and our data are sampled from the
positive real points x on the variety in R19 that is defined by the 19 polynomials in (4.1).

Complete Species Information.

The first algebraic question we answer: To what extent is the true parameter vector k∗

determined by points on its steady state variety?
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To address this question, we form the polynomial matrix F (x) of format 19× 31 whose
entries are the coefficients of the right-hand sides of (4.1), regarded as linear forms in k.
With this notation, our dynamical system (4.1) can be written in matrix-vector product
form as

ẋ = F (x) · k.

Our data points are sampled from{
x ∈ R19

>0 : F (x) · k∗ = 0
}
. (4.8)

Let x1,x2,x3, . . . denote generic data points in (4.8). The set of all parameter vectors k that
are compatible with these data is a linear subspace of R31, namely it is the intersection

kernel(F (x1)) ∩ kernel(F (x2)) ∩ kernel(F (x3)) ∩ · · · (4.9)

The best we can hope to recover from sampling data is the following subspace containing k∗:⋂
x in (4.8)

kernel(F (x)) ⊂ R31. (4.10)

We refer to (4.10) as the space of parameters compatible with k∗. A direct computation
reveals:

Proposition 4.6.1. The space of all parameters compatible with k∗ is a 14-dimensional
subspace of R31. If x is generic then the kernel of F (x) is a 17-dimensional subspace of R31.

This has the following noteworthy consequence for our biological application:

Corollary 4.6.2. The parameters of the Wnt shuttle model are not identifiable from steady
state data, but there are 14 degrees of freedom in recovering the true parameter vector k∗.

Our next step is to gain a more precise understanding of the subspaces in Proposition
4.6.1. To do this, we shall return to the combinatorial setting of matroid theory. We
introduce two matroids on the 31 reactions in Table 4.2. The common ground set is K =
{k1, k2, . . . , k31}. The one-point matroid Mone is the rank 17 matroid on K defined by the
linear subspace kernel(F (x)) of R31 where x ∈ R19 is generic. The parameter matroidMpar

is the rank 14 matroid on K defined by the space (4.10) of all parameters compatible with
a generic k∗. The following result, obtained by calculations, reflects the block structure of
the matrix F (x).

Proposition 4.6.3. The one-point matroidMone is the graphic matroid of the graph shown
in Figure 4.1 a). Its seven connected components are matroids of ranks 3, 3, 7, 1, 1, 1, 1. The
rank 14 parameter matroidMpar is obtained fromMone by specializing the rank 7 component
to the rank 4 matroid on 11 elements whose affine representation is shown in Figure 4.1 b).
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Figure 4.1: Graphic rep. ofMone, and affine rep. of the rank 4 component ofMpar.

This characterizes the combinatorial constraints imposed on the parameters k by mea-
suring the species concentrations at steady state. For a single measurement x, the result
onMone tells us that the 19 × 31-matrix F (x) has rank 14 = 31 − rank(Mone). After row
operations, it block-decomposes into two matrices of format 3 × 6, one matrix of format
4 × 11, and four matrices of format 1 × 2. Each of these seven matrices is row-equivalent
to the node-edge cycle matrix of a directed graph, with underlying undirected graph as in
Figure 4.1 (a).

Consider the graph with edges 9, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31. The cycle {22, 23, 30, 31}
reveals that our measurement x imposes one linear constraint on k22, k23, k30, k31. If we take
further measurements, as in (4.9), then six of the seven blocks of F (x) remain unchanged.
Only the 4× 11-block of F (x) must be enlarged, to a 7× 11-matrix. The rows of that new
matrix specify the affine-linear dependencies among 11 points in R3. That point configu-
ration is depicted in Figure 4.1 (b). For instance, the points {9, 10, 11} are collinear, the
points {20, 21, 22} are collinear, but these two lines are skew in R3. From the other line
we see that that repeated measurements at steady state impose two linear constraints on
k22, k23, k30, k31.

Circuit Data.

The second question we address in this section: Given partial species concentration data, is
any information about parameters available? In Section 7.1, all 19 concentrations xi were
available for a steady state. In what follows, we suppose that xi can only be measured for
indices i in a subset of the species, say C ⊂ {1, . . . , 19}. In our analysis, it will be useful
to take advantage of the rank 5 algebraic matroid in Proposition 4.4.1, since that matroid
governs dependencies among the coordinates x1, . . . , x19 at steady states.

We here focus on the special case when C is one of the 951 circuits of the algebraic



CHAPTER 4. BIOLOGY: CHEMICAL REACTION MATROID 71

matroid of Ĩm. Let fC be the corresponding circuit polynomial, as in Table 4.5. We regard
fC as a polynomial in x whose coefficients are polynomials in Q[k]. Suppose that fC has
r monomials xa1 , . . . ,xar . We write FC ∈ Q[k]r for the vector of coefficients, so our circuit
polynomial is the dot product fC(k,x) = FC(k) · (xa1 , . . . ,xar). We write VC ⊂ Rr for the
algebraic variety parametrized by FC(k). Thus VC is the Zariski closure in Rr of the set
{FC(k′) : k′ ∈ R31}.

Our idea for parameter recovery is this: rather than looking for k compatible with the
true parameter k∗, we seek a point y = FC(k) in VC that is compatible with FC(k∗). And,
only later do we compute a preimage of y under the map R31 → Rr given by FC . Most
interesting is the case when VC is a proper subvariety of Rr. Direct computations yield the
following:

Proposition 4.6.4. For precisely 288 of the 951 circuits C of the algebraic matroid of the
steady state ideal Ĩm, the coefficient variety VC is a proper subvariety in its ambient space
Rr. In each of these cases, the defining ideal of VC is of one of the following four types:

〈y2y6 − y3y5〉 (4.11)
〈y5y6 − 2y3y7, y

2
5 − 4y2y7, y3y5 − 2y2y6, y2y

2
6 − y23y7〉 (4.12)

〈y3y25 − y2y5y6 + y1y
2
6〉 (4.13)

〈2y3y4 − y2y5, y2y3 − 2y1y5, y
2
2 − 4y1y4〉 (4.14)

Example 4.6.5. Consider the circuit C = {6, 10, 18}. The circuit polynomial fC equals

(k13k20k22 + k20k22k30) · x6x10 + k11k20k22 · x6x18 − k12k20k22 · x6
+(k13k21k23 + k13k22k23 + k21k23k30 + k22k23k30 + k13k21k31 + k13k22k31) · x10

+(k11k21k23 + k11k22k23 + k11k21k31 + k11k22k31) · x18
− (k12k21k23 + k12k22k23 + k12k21k31 + k12k22k31).

Here r = 6 and we write FC(k) = (y1, y2, y3, y4, y5, y6) for the vector of coefficient polynomi-
als. The variety VC is the hypersurface in R5 defined by the equation y2y6 = y3y5.

We now sample data points xi from the model with the true (but unknown) parameter
vector k∗. Each such point defines a hyperplane {y ∈ Rr : y · (xa11 , . . . ,xarr ) = 0}. The
parameter estimation problem is to find the intersection of these data hyperplanes with the
variety VC . That intersection contains the point y∗ = FC(k∗), which is what we now aim to
recover.

Noisy Circuit Data.

The final question we consider in this section is: Given partial species concentration data
with noise, is any information about parameters available?

As in Section 7.2, we fix a circuit C of the algebraic matroid in Section 4.4, and we
assume that we can only measure the concentrations xj where j ∈ C. Each measurement



CHAPTER 4. BIOLOGY: CHEMICAL REACTION MATROID 72

xi ∈ RC still defines a hyperplane y · (xa1i , . . . ,x
ar
i ) = 0 in the space Rr. But now the true

vector y∗ = FC(k∗) is not exactly on that hyperplane, but only close to it. Hence, if we take
s repeated measurements, with s > r, the intersection of these hyperplanes should be empty.

We propose to find the best fit by solving the following least squares optimization problem:

Minimize
s∑
i=1

(
y · (xa1i , . . . ,x

ar
i )
)2 subject to y ∈ VC ∩ Sr−1, (4.15)

where Sr−1 = {y ∈ Rr : y21 + y22 + · · · + y2r = 1} denotes the unit sphere. When the variety
VC is the full ambient space Rr, this is a familiar regression problem, namely, to find the
hyperplane through the origin that best approximates s given points in Rr. Here “best”
means that the sum of the squared distances of the s points to the hyperplane is minimized.
This happens for 663 of the 951 circuits C, and in that case we can apply standard techniques.

However, for the 288 circuits C identified in Proposition 4.6.4, the problem is more
interesting. Here the hyperplanes under consideration are constrained to live in a proper
subvariety. In that case we need some algebraic geometry to reliably find the global optimum
in (4.15).

Our problem is to minimize a quadratic function over the real affine variety VC∩Sr−1. The
quadratic objective function is generic because the xi are sampled with noise. The intrinsic
algebraic complexity of our optimization problem was studied by Draisma et al. in [10]. That
complexity measure is the ED degree of VC ∩ Sr−1, which is the number of solutions in Cr to
the critical equations of (4.15). Here, by ED degree we mean the ED degree of VC ∩ Sr−1,
when considered in generic coordinates. This was called the generic ED degree in [44].

We illustrate our algebraic approach by working out the first instance (4.11) in Proposi-
tion 4.6.4.

Example 4.6.6. Suppose we are given s noisy measurements of the concentrations x6, x10, x18.
In order to find the best fit for the parameters k, we employ the circuit polynomial fC in Ex-
ample 4.6.5. We compute y ∈ R6 by solving the corresponding optimization problem (4.16).
This problem is to minimize a random quadratic form subject to two quadratic constraints

y2y6 − y3y5 = y21 + y22 + y23 + y24 + y25 + y26 − 1 = 0. (4.16)

We solve this problem using the method of Lagrange multipliers. This leads to a system of
polynomial equations in y. Using saturation, we remove the singular locus of (4.16), which
is the circle {y ∈ R6 : y21 + y24 − 1 = y2 = y3 = y5 = y6 = 0}. The resulting ideal has
precisely 40 zeros in C6. In the language of [10, 44], the generic ED degree of the variety
(4.16) equals 40.
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4.7 From Algebra to Biology
The aims of this chapter have been: (1) to demonstrate how biology can lead to interesting
questions in algebraic geometry, and (2) to apply new techniques from computational algebra
in biology. So far, our tour through (numerical) algebraic geometry, polyhedral geometry
and combinatorics has demonstrated the range of mathematical questions to explore. In
this section, we will focus on translating our analysis into applicable considerations for the
research cycle in systems biology, which is illustrated in Figure 4.7. In what follows we
discuss some concrete applications and results pertaining to the steps (a), (b) and (c) in
Figure 4.7.

Figure 4.2: Schematic diagram for systems biology research.

Analysis of the Model: Before any experiments are performed, our techniques inform
the modeler of the global steady-state properties of the model. The number of real solutions
to system (4.1)–(4.2), stated in Theorem 4.0.3, governs the number of observable steady
states. Various sampling schemes demonstrated that most parameter values lead to only one
observable steady state. We produced a set of parameter values and conserved quantities
with three real solutions, and two solutions are also attainable. If the “true" parameters k∗
and c∗ admit multiple real solutions, then multistationarity of the system is theoretically
possible.

If multiple states are observed experimentally, then the model must be capable of mul-
tistationarity. In the Wnt shuttle model, the system is capable of multiple steady states;
however, based on parameter sampling, the frequency of this occurrence is low, and parame-
ters in this regime are somewhat stable under perturbation. The discriminant of the system
is a polynomial of degree 34 in c, and our analysis along a single line in c-space illustrates the
high degree of complexity inherent in the full stratification of the 36-dimensional parameter
space.

Experimental Design: In Section 4.5, the combinatorial structure of the various sto-
ichiometric compatibility classes was fully characterized. As the conserved quantities c =
(c1, . . . , c5) range over all positive real values, the set of all compatible species-concentration
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vectors x will take one of 19 polyhedral shapes Pc. This may find application in identifying
multiple steady state solutions for specific rate constants k. A natural choice for initial
conditions when performing experiments is on or near the vertices of the 14-dimensional
polyhedron Pc.

Example 4.7.1. Suppose the conserved quantities vector lies in the bipyramid, e.g. c =
(1, 2, 2, 2, 3). The preimage of c in x-space is a product of the orthant R≥0{e10, e11} and a
12-dimensional polytope with 400 vertices: (1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0), and
399 of its permutations. This product is the polyhedron Pc. If we have control over initial
conditions, beginning near the vertices positions us to find interesting systems behavior.

In the laboratory, the experimentalist makes choices of what to measure and what not
to measure. For instance, measuring a particular xi may be infeasible, or there may be a
situation in which measuring concentration xi can preclude measuring concentration xj.

For every strategy, we fix a cost vector, listing the costs of making each measurement.
We use the symbol N to indicate infeasible measurements. Suppose there are two different
ways to run the experiment; then we have a 2 × 19 cost matrix P , whose rows are cost
vectors for each experiment. We multiply P by the 0-1-incidence matrix for the 951 circuits
of Proposition 4.4.1. That matrix has a 1 in row i and column j if circuit j contains species
i, and 0 otherwise. The product is a matrix of size 2 × 951. For N → ∞, the 2 × 951
matrix has a finite entry in position (i, j) precisely when the strategy i can measure the
circuit j. Minimizing over those finite cost entries selects the most cost-effective experiment
to measure a circuit.

Example 4.7.2. Suppose that none of the intermediate complexes x13, . . . , x19 are measur-
able, and that we are able to measure only one Phosphatase concentration (x4 or x8) in each
experimental setup. A corresponding cost matrix might look like

P =

[
1 1 1 N 1 1 1 1 1 1 1 1 N N N N N N N
1 1 1 1 1 1 1 N 1 1 1 1 N N N N N N N

]
Multiplying by the circuit support matrix of size 19× 951 reveals 82 feasible experiments: 50
using the first row of P , and 32 using the second. With more refined cost assignment, this
would decide not only feasibility but also optimal cost. In this way, the matroid allows us to
choose cost-minimal experiments to obtain meaningful information for the model.

Model and data compatibility: After an experiment is performed, the task of the
modeler is to test the data with the model. One possible outcome is model rejection. If
the data are compatible, then another outcome is parameter estimation. Both may provide
insights for biology. The role of algebraic geometry is seen in [19, 21] and shown in the next
two examples.

Example 4.7.3 (Model Rejection). Suppose that rate parameters ki are all known to be 1,
and that we have collected data for variables x1, x4, x14. The circuit polynomial is k1k3x1x4 +
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(−k2k4− k2k5)x14, which specializes to x1x4− 2x14. If the evaluation of the positive quantity
|x1x4− 2x14| lies above a threshold ε, then we can reject the model as not matching the data.

Every circuit polynomial of the matroid is a steady state invariant ; depending on which
experiment was performed, the collection of measured variables must contain some circuit.
Even if one can measure all 19 species at steady state, it is not possible to recover all 31 kinetic
rate constants, but we do have relationships that must be satisfied among parameters [36].

Example 4.7.4 (Parameter Estimation). Suppose that rate parameters are unknown, and
that we have collected data for x6, x10, x18. The corresponding circuit polynomial fC is shown
in Example 4.6.5. We know that the coefficients of fC satisfy the constraint y2y6 = y3y5.
Suppose our experiments lead to the following ten measurements for the vector (x6, x10, x18):

{(.715335, 4.06778, 14.6806), (.390982, 4.83152, 6.08251), (.706539, 4.98107, 3.83617),
(.14316, 4.30851, 12.5809), (.995583, 4.01222, 15), (.413817, 4.08114, 14.902), (.232206, 3.38274, 23.3162),

(.219045, 5.06008, 3.67175), (.704106, 3.52804, 21.1037), (.648732, 3.6505, 19.7008)}

The data lead us to the following function to optimize in (4.15):

57.2345y21 + 376.181y1y2 + 801.672y22 − 27.5625y1y3 − 96.4429y2y3
+3.36521y23 + 179.49y1y4 + 564.034y2y4 − 42.729y3y4 + 178.839y24 + 564.034y1y5

+2424.31y2y5 − 144.7y3y5 + 1054.49y4y5 + 2263.2y25 − 42.729y1y6
−144.7y2y6 + 10.339y3y6 − 83.8072y4y6 − 269.749y5y6 + 10y26

The global minimum of this quadratic form on the codimension 2 variety (4.16) has
coordinates

y1 = 0.183472, y2 = 0.152416, y3 = 0.959232, y4 = 0.038042, y5 = 0.00335267, y6 = 0.211.

Given these values, one now has three degrees of freedom in estimating the nine parameters
ki that appear in the circuit polynomial fC . The other ten coordinates of k are unspecified.

The main agenda of this chapter was to show the range of algebraic tools that can be used
to analyze chemical reaction networks. In the process, algebraic matroids showed themselves
to be a vital part of the applied algebraic geometry toolkit.
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Chapter 5

Further Directions

This thesis has aimed to provide the reader with background and tools to compute algebraic
matroids for varieties arising in nature. The explorations in Chapters 3 and 4 then gave
particular examples where these tools were put to effective use. At the conclusion of this
dissertation, a plethora of questions remain, both about sharpening our tools and our under-
standing, as well as new areas where the computation of algebraic matroids may be useful.
We will compile all open questions from throughout the text, along with other directions not
yet mentioned, that we hope to explore in future work.

I. Base Degrees and Circuit Polynomials.

1. Given a prime ideal of a certain form, for example, ideals generated by k forms of
degree d and variable support of size r, what is the expected distribution of base
degrees and circuit degrees?

2. What constraints are there on this collection of degrees? (Page 8)

3. Specifically, what is the full set of Chow polytopes allowed given a particular ma-
troid?

4. Are there “local” properties of the matroid polytope that we can use to find bases
of high degree without computing the full list of base degrees? Since high-degree
bases have demonstrated nice symmetry (e.g. in the Plackett-Luce matroid, and the
matroid of Gr(3, 6)), this may give important insights.

5. Describe the prime ideals for which the set of circuits are a minimal generating set
for the ideal. When does a proper subset of circuits generate the ideal?

6. Fix some prime ideal P . Suppose the set of circuit polynomials do not generate P .
How many components will be in the ideal they do generate?
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II. Algebraic Representability:

1. Is the class of algebraic matroids closed under taking duals? This problem is a long-
standing one, but some progress may be possible with the help of computations.

2. In particular, we might answer the simpler question: Is the Tic-Tac-Toe matroid
algebraic? The dual of this matroid is known to be non-algebraic [22], so sampling
from the right space and computing the algebraic matroid may turn up a counterex-
ample.

3. SupposeM is a certain algebraic, non-linear matroid. What is the minimal integer
d such that an algebraic representation exists for M with all circuit polynomials
having degree at most d? What is the smallest field that can serve as the ground
field for this representation?

III. Geometry.

1. What hyperplane sections induce a truncation of the algebraic matroid? Intuition
dictates that almost all hyperplanes would lead to a truncation; characterizing the
subvariety of the projective space of hyperplanes that would induce a different ma-
troid seems very interesting but nontrivial. (Page 46)

2. The Grassmannian is a geometric object whose Plücker ideal has fascinating combi-
natorics. We saw that the high-degree base ofM(Gr(3, 6)) was highly symmetric.
Why does this symmetry translate into a higher degree fiber? Are there any other
Grassmannians with unusually high-degree projections? (Page 22)

3. The non-matroidal locus is the set of points where the coordinate projections line
up with the tangent space of the variety. For a variety of dimension r and degree d,
what number of components of what degree does the non-matroidal locus have?

IV. Statistics.

1. Characterize the matroid for the Plackett-Luce model PLn for all n, as we did for
n = 4. (Page 15)

2. Characterize the matroid of the variety of rank 2 matrices with entries summing to
1, as we did for rank 1 matrices. (Page 47)

3. Characterize the matroid of the variety of rank 1 tensors with entries summing to
1, as we did for rank 1 matrices. (Page 49)

4. Gaussoids were introduced in [34] to study Gaussian graphical models. The graphs
themselves give rise to a graphic matroid. Finally, these models also give rise to
ideals relating the various correlations, which in turn produce algebraic matroids.
What is the relationship among the gaussoid, the graphical matroid and the algebraic
matroid of a graphical model?
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V. Biology.

Two distinct matroids arise in the definition of a chemical reaction network: first, the
directed graph of the network defines a graphical matroid. second, the ordinary differ-
ential equations define an algebraic matroid. What properties do these two matroids
share?
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