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Post-approval safety surveillance of medical products using observational
healthcare data can help identify safety issues beyond those found in
pre-approval trials. When testing sequentially as data accrue, maximum sequen-
tial probability ratio testing (MaxSPRT) is a common approach to maintaining
nominal type 1 error. However, the true type 1 error may still deviate from the
specified one because of systematic error due to the observational nature of the
analysis. This systematic error may persist even after controlling for known con-
founders. Here we propose to address this issue by combing MaxSPRT with
empirical calibration. In empirical calibration, we assume uncertainty about the
systematic error in our analysis, the source of uncertainty commonly overlooked
in practice. We infer a probability distribution of systematic error by relying on
a large set of negative controls: exposure-outcome pairs where no causal effect
is believed to exist. Integrating this distribution into our test statistics has previ-
ously been shown to restore type 1 error to nominal. Here we show how we can
calibrate the critical value central to MaxSPRT. We evaluate this novel approach
using simulations and real electronic health records, using H1N1 vaccinations
during the 2009–2010 season as an example. Results show that combining empir-
ical calibration with MaxSPRT restores nominal type 1 error. In our real-world
example, adjusting for systematic error using empirical calibration has a larger
impact than, and hence is just as essential as, adjusting for sequential testing
using MaxSPRT. We recommend performing both, using the method described
here.

K E Y W O R D S

empirical calibration, observational research, sequential testing

1 INTRODUCTION

When new medical products are brought to market, it is important to continue to monitor their safety. The phase 2 and
3 clinical trials preceding marketing may uncover most common adverse events attributable to use of these products,
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but rare adverse events may go undetected due to limited sample size of the trials. Other adverse events may go unde-
tected if they only affect a subpopulation that was excluded from the clinical trials. To catch these types of adverse events
requires post-marketing drug and vaccine safety surveillance, for example using routinely collected healthcare data, such
as administrative claims and electronic health records. To detect adverse events as quickly as possible, data should be
analyzed as they accrue, for example once every month analyzing all data up to that point in time. It is important to real-
ize that such sequential testing for a safety signal is a form of multiple testing that needs to be adjusted for if one aims to
maintain the prespecified type 1 error (ie, if one aims to keep the probability of rejecting the null hypothesis of no asso-
ciation between the adverse event and the product exposure when the null is true at the specified 𝛼-level). A common
approach to adjusting for sequential testing is maximum sequential probability ratio testing (MaxSPRT), often used by
the US Food and Drug Administration (FDA) in its safety surveillance.1

There is, however, another important reason why the true type 1 error rate might deviate from the prespecified 𝛼,
and that is systematic error due to the observational nature of the study.2 Systematic error can manifest from multiple
sources, including confounding, selection bias, and measurement error. For example, in a study comparing vaccinated to
unvaccinated patients, the vaccinated group may differ from the unvaccinated one in terms of age and fragility that impact
the baseline probability of having the adverse event outcome, and failing to adjust for these differences will lead to biased
effect size estimates measuring the association. While there is widespread awareness of the potential for systematic error
in observational studies and a large body of research that examines how to diagnose and statistically adjust for specific
sources of bias, there is no guarantee that even the best-designed observational study does not contain residual systematic
error.

In our prior research we have argued for learning about the potential magnitude and uncertainty of systematic error in
an observational study through negative controls.3 Negative controls are exposure-outcome pairs where no causal effect
is believed to exist, and where therefore the true relative risk is assumed to be 1. By applying the same study design
to negative controls, we can evaluate how far the estimated effect sizes deviate from the truth (ie, no effect). Ideally, a
negative control also has identical confounding to the exposure-outcome pair of interest,4 but we believe that the true
confounding structure is unknowable. Instead, we propose to use a large sample of negative controls comparable to the
exposure-outcome of interest, for example by sharing the same exposure. Although such a sample does not allow quan-
tifying the exact systematic error in a study, it can be used to infer a distribution of systematic error. If we assume the
systematic error for our exposure-outcome of interest draws from this distribution, we can incorporate it in our statistics
to produce calibrated p-values3 and confidence intervals5 that demonstrate close to nominal operating characteristics.
Because we use a data-driven approach to estimate the systematic error distribution, we refer to this process as empirical
calibration. Alternatively, one could calibrate against an expert-elicited systematic error distribution.

In this paper we propose to combine adjusting for sequential testing through MaxSPRT with adjusting for residual sys-
tematic error using empirical calibration. We first introduce an example using real-world data that will be used throughout
the paper. We subsequently explore the nature of systematic error, and detail how a systematic error probability distribu-
tion can be inferred using a set of negative controls. We demonstrate the impact of accounting for systematic error when
performing only a single test (ie, a non-sequential test), before describing how empirical calibration can be applied to
sequential testing. Using simulated and real data, we compare the performance of using both MaxSPRT and empirical
calibration to either adjustment by itself, or no adjustment at all.

2 RUNNING EXAMPLE

To illustrate systematic error in a real-world setting, we use data from the Evaluating Use of Methods for Adverse Events
Under Surveillance (EUMAEUS) project.6 Our data source is the Optum™ de-identified Electronic Health Record dataset
(Optum EHR), containing clinical information, prescriptions, lab results, vital signs, body measurements, diagnoses and
procedures derived from clinical notes from both inpatient and outpatient environments using natural language process-
ing. We identify all vaccinations against 2009 pandemic influenza A (H1N1pdm) virus from September 1, 2009 to May 31,
2010.

We further identify a list of negative control outcomes, outcomes not believed to be caused by H1N1pdm vaccines, and,
therefore, ideally would not be flagged as a signal by a safety surveillance system. To identify negative control outcomes
that match the severity and prevalence of suspected vaccine adverse effects, a candidate list of negative controls was
generated based on similarity of prevalence and percent of diagnoses that were recorded in an inpatient setting (as a
proxy for severity). Manual review of this list by clinical experts created the final list of 93 negative control outcomes (see
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F I G U R E 1 Simulating confounding as systematic error. (A) An example directed acyclic diagram showing exposure X , outcome Y ,
and confounder Z. (B) Effect size estimates when simulating according to the diagram, with no true causal effect and weak confounding,
under various sample sizes.

Supplementary Materials). Positive controls are outcomes known to be caused by vaccines, and ideally would be detected
as signals by a safety surveillance system as early as possible. However, positive controls are problematic for various
reasons.7 First, vaccine adverse effects that are well established are rare. Second, even when an effect is established, the
magnitude is never known with precision. Third, for well-established adverse effects, actions are often taken to mitigate
the risk, such as careful monitoring or even discontinuation of the vaccine, masking these effects in real-world data. For
these reasons we did not include positive controls in our analyses.

Using two different epidemiological designs we compute incidence rate ratios for each vaccine-negative control
outcome pair. Effect sizes are estimated both at the end of the period, as well as cumulatively at 1-month intervals.

The first design is a historical (background rate) comparator design,8,9 comparing outcomes observed in the 28 days
following vaccination to incidence rates of the outcome during the period from September 1, 2008 to May 31, 2009, in the
28 days following one random outpatient visit per person in the database. We standardize the incidence rates by age and
sex to the vaccinated population before computing the incidence rate ratio.

The second design is a self-controlled case series (SCCS),10,11 comparing the rate of the outcome in the 28 days follow-
ing vaccination to the rate in the same individuals during all other time in the September 1, 2009 to May 31, 2010 period.
To avoid bias due to the healthy-vaccinee effect, the 30 days prior to vaccination are excluded from the analysis. Age and
season are adjusted for using 5-knot bicubic splines.

3 ADJUSTING FOR SYSTEMATIC ERROR

3.1 On the nature of systematic error

As a straight-forward illustration of systematic error, we simulate data under the simple model depicted in Figure 1A,
and defined as

Z ∼ N(0, 1),
P(X = 1|Z) = truncate[0,1] (0.3 + 0.1 × Z) and
P(Y = 1|Z) = truncate[0,1] (0.03 + 0.01 × Z) ,

where Z is a continuous confounder, N(a, b) indicates a normal distribution with mean a and variance b, truncate[0,1] ∶
R → [0, 1] denotes truncation to the unit interval, X is a binary exposure, and Y is the binary outcome.

We simulate no causal effect between X and Y , and compute relative risk estimates and 95% confidence intervals (CI)
using logistic regression, for various sample sizes.

Figure 1B shows that, as sample size increases, the CI narrows, and the estimate converges on a value greater than
the true simulated causal effect of 1. We refer to the difference between this asymptotic value and the true effect size as
systematic error. In this case it is caused solely by the simulated (weak) confounder, but other systematic causes such as
selection bias and measurement error can exist. In real life, for any exposure-outcome pair, the true systematic error is
unknown. We could assume our study is unbiased, placing 100% probability that the systematic error is zero, as is the
current implied default. But we argue a more reasonable approach would be to account for our uncertainty about the
systematic error.
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F I G U R E 2 Estimation of the systematic error probability distributions under an historical comparator and self-controlled case series
(SCCS) design using negative control estimates. In the top plots, each dot represents the effect size estimate for a negative control outcome.
The red dashed line indicates where the one-sided p-value is equal to 0.05 under a simple t-test. Estimates below this line are considered
statistically significant (at 𝛼 = 0.05). The bottom plots indicate the systematic error distributions fitted using the negative control estimates.

3.2 Estimating a systematic error distribution from negative control estimates

Defining a formal probability distribution to account for uncertainty about the bias induced by systematic error in a study
is non-trivial. If we want to reason what the correct distribution must be based on expert knowledge alone, we must
understand the sources of bias for which our study design did not sufficiently adjust. In our experience, people are not very
good at guessing how bad the bias in an observational study can be, and tend to severely underestimate bias, especially in
a study they themselves designed. An expert-driven process would also lack reproducibility, with different experts likely
preferring different systematic error probability distributions.

We therefore use a fully data-driven approach to quantifying uncertainty of the systematic error.3,12 This approach
relies on a large set of negative control outcomes, typically between 50 and 100, where we believe the exposure does not
cause or prevent the outcome, based on a lack of any evidence in literature, spontaneous reports and product labels,13 and
expert review. We have no requirements on the systematic error that could be associated with each negative control, which
we believe to be unknowable. In our running example of H1N1pdm vaccines we identify 93 negative control outcomes,
including, for example, “contusion of toe”, and “viral hepatitis C”.

Even though we do not know the systematic error of each individual negative control, we can estimate the distribution
of systematic error as illustrated in Figure 2. We apply our study designs on our data to produce effect size estimates based
on maximizing each designs’ likelihood function and standard errors (linearly related to the width of the asymptotic
CI about the point estimate) for each negative control, or more generally, we can compute the likelihood function for
each outcome as a function of effect size. Note that in this example we were not able to compute estimates for all 93
negative controls, primarily because the outcome is not always observed at least once during the time at risk, leading to
an uninformative likelihood function.

As a starting point, we assume the systematic error distribution is Gaussian, and estimate the parameters of this distri-
bution using the negative control estimates. Formally, for negative control i (i = 1, … ,n), the likelihood of the parameter
of interest 𝛽i (eg, the log incidence rate ratio) is determined by some known likelihood function Li(𝛽i; di), given the data
di. Let 𝜃i denote the log true effect size (assumed 0 for negative controls), and let 𝜏i denote the systematic error. We
assume that the parameter of interest 𝛽i linearly deviates from the true effect size 𝜃i, where the additive deviation term is
𝜏i, that is,

𝛽i = 𝜃i + 𝜏i. (1)
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We further assume that the 𝜏i’s independently arise from a normal distribution with mean 𝜇 and variance 𝜎2, that is,
𝜏i ∼ N(𝜇, 𝜎2). Given the data di’s, we can write out the joint likelihood function with respect to 𝛽i’s, 𝜏i’s, 𝜇 and 𝜎:

(𝜇, 𝜎, 𝝉 , 𝜷;d) ∝
n∏

i=1

[
Li(𝛽i; di)𝜑(𝜏i|𝜇, 𝜎)

]
, (2)

where 𝝉 = {𝜏i}n
i=1, 𝜷 = {𝛽i}n

i=1, d = {di}n
i=1, and 𝜑 denotes the normal density function.

Since for negative control outcomes we believe 𝜃i ≡ 0 and thus 𝛽i = 𝜏i, by assuming independence among all the
analyzed negative controls, we can integrate out the parameters 𝛽i’s and 𝜏i’s and thus obtain a marginal likelihood function
with respect to only 𝜇 and 𝜎:

(𝜇, 𝜎;d) ∝
n∏

i=1
∫

Li(𝜏i; di)𝜑(𝜏i|𝜇, 𝜎)d𝜏i. (3)

Maximizing the function above gives us maximum likelihood estimates (MLEs) for 𝜇 and 𝜎, denoted by �̂� and �̂�. Note
that this is also a generalization of the approach taken in our prior work,3 where the likelihood function Li(𝛽i; di) was
restricted to a normal density function.

An unbiased study design will have a mean �̂� and standard deviation �̂� of the estimated systematic error distribution
both equal zero (in the limit), meaning that the spread of negative control estimates can be fully explained by the random
error expressed in the per-negative-control likelihood functions (eg, as expressed in their confidence intervals) alone. As
shown in Figure 2, the SCCS design is close to this ideal, but the historical comparator design tends to produce wildly
varying levels of systematic error, with an overall tendency to positive systematic error.

We can use the fitted distribution to express our uncertainty about the systematic error in the next exposure-outcome
pair for which we wish to estimate the effect size, assuming the new systematic error will draw from the fitted distribution.
Admittedly, the implied assumption of exchangeability is a leap of faith, but we argue that it is less of a leap than asserting
with 100% certainty that no systematic error exists, which is the current status quo. We can have more confidence in
this assumption if we keep either the exposure or the outcome constant across all exposure-outcome pairs (including the
negative controls). Furthermore, prior evaluations of our approach using a leave-one-out design demonstrate that at least
within sets of negative controls this exchangeability assumption appears to hold.3

3.3 Empirical p-value calibration

By integrating the systematic error probability distribution in our reported statistics about the effect size for the outcome
of interest, such as p-values and CIs, we can take into account both systematic and random errors simultaneously.

For example, suppose we are interested in a previously unseen effect 𝛽n+1 for an exposure-outcome pair of interest
indexed by n + 1, with true effect size 𝜃n+1 and systematic error induced bias 𝜏n+1. Assuming the systematic error term 𝜏n+1
is exchangeable with the biases of previously analyzed n negative controls, we wish to perform the following one-sided
hypothesis test:

H0 ∶ 𝜃n+1 = 0, v.s. H1 ∶ 𝜃n+1 > 0,

which, since 𝛽n+1 = 𝜃n+1 + 𝜏n+1, is equivalent to

H0 ∶ 𝛽n+1 = 𝜏n+1, v.s. H1 ∶ 𝛽n+1 > 𝜏n+1. (4)

Given the estimated empirical distribution N(�̂�, �̂�2) for 𝜏i’s, under the null, the estimand 𝛽n+1 shall follow the same
normal distribution as 𝜏n+1:

𝛽n+1 ∼ N(�̂�, �̂�2) under H0. (5)

For simplicity, we assume that the likelihood L(𝛽n+1, dn+1) induces a normal distribution for the MLE 𝛽n+1 with
standard deviation sn+1 as in our prior work:3

𝛽n+1 ∼ N(𝛽n+1, s2
n+1). (6)
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F I G U R E 3 p-value calibration under an historical comparator and SCCS design. Each dot represents the effect size estimate for a
negative control outcome. The red dashed line indicates where the one-sided p-value is equal to 0.05. When ignoring systematic errors,
estimates below this line are considered statistically significant at 𝛼 = 0.05. The orange solid line indicates calibrated one-sided p(c) = 0.05.

Combining (5) and (6), the marginal distribution for the MLE 𝛽n+1 under the null after integrating out the uncertainty
about bias 𝜏n+1 is then

𝛽n+1 ∼ N(�̂�, �̂�2 + s2
n+1) under H0. (7)

Therefore, we can compute a one-sided p-value as

p(c)(𝛽n+1) = Φ
⎛
⎜
⎜
⎜
⎝

𝛽n+1 − �̂�
√

�̂�
2 + s2

n+1

⎞
⎟
⎟
⎟
⎠

,

where Φ(⋅) denotes the cumulative distribution function (CDF) of the standard normal.
Since this p-value accounts for the uncertainty of bias due to systematic error as well as random sampling error, we

refer to it as the “calibrated p-value” and call such procedure “empirical calibration.”
Figure 3 demonstrates p-value calibration using the fitted systematic error distributions shown in Figure 2. After

calibration, the type 1 error rate is closer to the nominal 5% for the historical comparator design. For the SCCS design,
calibration made little difference, as the type 1 error rate before calibration was already close to nominal.

4 ADJUSTING FOR SEQUENTIAL TESTING USING MAXSPRT

Drug and vaccine safety surveillance often requires sequential testing of hypotheses against data accruing over time. This
form of multiple testing would lead to inflated type 1 error if unadjusted. For this reason, MaxSPRT aims to maintain type
1 error across a predefined number of looks at the data.

For a parameter of interest 𝛽 (eg, a log incidence rate ratio for a specific exposure-outcome pair), MaxSPRT tests the
following hypotheses sequentially:1

H0 ∶ 𝛽 = 0, v.s. H1 ∶ 𝛽 > 0. (8)

Under MaxSPRT, at every look of the data at time t, we first identify the MLE 𝛽 t for 𝛽 using the likelihood L(𝛽, dt), and
then compute the log likelihood ratio (LLR) defined as follows:

LLRt =

{
0 if 𝛽 t ≤ 0
log

(
L(𝛽t , dt)
L(0, dt)

)

otherwise,
(9)

where dt and 𝛽 t are the data and MLE at time t, respectively. Note that the LLRt is set to 0 when 𝛽 t ≤ 0 because this is a
one-sided hypothesis test.
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Before initiating the surveillance, a critical value cv is computed based on the type of model, the desired 𝛼-level, the
number of looks that will be made, and the expected sample size at each look. At every look the LLRt is compared with
the pre-computed cv; as soon as LLRt > cv, we reject H0 and declare a signal.

4.1 Computing the critical value

The computation of cv using exact statistics is described by Kulldorff et al1 and can be performed using the Sequential
package in R. Here we apply a Monte-Carlo approach instead, which we believe is easier to interpret, implement and
extend to other models, including models using empirical calibration. The original MaxSPRT implements several models
when computing the critical values. For the historical comparator example method one would typically use the Poisson
model implementation, which assumes that under the null the observed outcome counts arise from a background rate
that is known with certainty. For the SCCS method the recommended model is the binomial model, where under the
null the ratio of exposed to unexposed cases is assumed to arise from a known probability (of being exposed). Although
models that more closely fit our historical comparator and SCCS designs could be implemented, we decided to not change
too many things about the MaxSPRT as it is currently used. We therefore used the MaxSPRT Poisson model and binomial
model for the historical comparator and SCCS designs, respectively.

4.1.1 Poisson model

We illustrate the specific computation of cv under the Poisson model here first. Similar to the original MaxSPRT, we
assume the number of looks T and the expected adverse event counts et under the null at look t are known. Note that et is
the incremental count, that is, the additional expected counts since the previous look. We run S Monte Carlo simulations,
for example S = 106, and for each simulation s = 1, … , S we conduct the following steps:

1. At each look t, sample the observed event count o(s)t given the expected count et, assuming the null is true:

o(s)t ∼ Poisson(et), (10)

where Poisson(𝜆) denotes the Poisson distribution with rate 𝜆;
2. At each look t, compute the log-likelihood ratio LLR(s)t following (9):

LLR(s)t =
⎧
⎪
⎨
⎪
⎩

0 if O(s)
t ≤ Et

log

(
fPoisson

(

O(s)
t ; O(s)

t

)

fPoisson

(

O(s)
t ; Et

)

)

otherwise,
(11)

where fPoisson(⋅; 𝜆) denotes the Poisson probability mass function for a Poisson(𝜆) distribution, and O(s)
t =

∑t
u=1o(s)u and

Et =
∑t

u=1eu denote the cumulative observed and expected counts;
3. Take the maximum across all look t’s for each simulation:

LLR(s)max = max
t=1,… ,T

LLR(s)t . (12)

Finally, we select the lowest cv where the fraction of all LLR(s)max’s that exceed the cv is equal to or smaller than the
desired significance level 𝛼.

4.1.2 Binomial model

Similar to the original MaxSPRT, we assume that we know the number of looks T, the total expected adverse event counts
et across both exposed and unexposed subjects under the null at look t, and the proportion p of exposed subjects among
those with adverse events (or in the case of the SCCS, the proportion of patient time considered exposed). Again, et is
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the incremental count, that is, the additional expected number of adverse events since the previous look. Similarly to
the Poisson case, we run S Monte Carlo simulations, and for each simulation s = 1, … , S we conduct the following
steps:

1. At each look t, sample the observed number of events for exposed subjects, o(s)t , given the expected total event count et
and the proportion of exposed p, assuming the null is true:

o(s)t ∼ Binomial(et, p), (13)

where Binomial(N, q) denotes a binomial distribution with total trial size N and incidence probability q;
2. At each look t, compute the log-likelihood ratio LLR(s)t following (9):

LLR(s)t =
⎧
⎪
⎨
⎪
⎩

0 if O(s)
t ≤ Et

log

(
fbinomial

(

O(s)
t ; Et , O(s)

t ∕Et

)

fbinomial

(

O(s)
t ; Et , p

)

)

otherwise,
(14)

where fbinomial(⋅;N, p) denotes the probability mass function for a Binomial(N, q) distribution, and O(s)
t =

∑t
u=1o(s)u and

Et =
∑t

u=1eu denote the cumulative observed and expected counts;
3. Take the maximum across all t’s for each simulation:

LLR(s)max = max
t=1,… ,T

LLR(s)t . (15)

Finally, we select the lowest cv where the fraction of all LLR(s)max’s that exceed the cv is equal to or smaller than the
desired significance level 𝛼.

5 ADJUSTING FOR BOTH SYSTEMATIC ERROR AND SEQUENTIAL
TESTING

The hypothesis test MaxSPRT performs can be considered as a special case of the hypothesis test specified in Section 3.3
— if the distribution for bias term 𝜏n+1 is a normal N(𝜇, 𝜎2) distribution with 𝜇 = 𝜎 = 0, then the hypothesis test in (4)
is reduced to the form of (8). This implies that the original MaxSPRT operates under the assumption that we are 100%
certain that the systematic error induces exactly zero bias; in other words, the bias term 𝜏 takes value 0 with probabil-
ity 1, and simply put, the systematic error is completely ignored. Now, instead, we allow the possibility of the systematic
error inducing nonzero bias, which is captured by the empirical systematic error distribution. Therefore, when the null
hypothesis is true, we assume that the estimable log effect 𝛽 equals the bias term 𝜏 that follows a probabilistic distri-
bution which does not necessarily put all its mass at 0. In other words, under H0, the log effect estimand 𝛽 does not
simply take on a point value 0 but rather follows a null distribution, defined as the systematic error distribution for
the bias term 𝜏. That is, we can combine empirical calibration with MaxSPRT and perform the following hypothesis
test:

H0 ∶ 𝛽 = 𝜏, v.s. H1 ∶ 𝛽 > 𝜏, (16)

where the bias 𝜏 follows a systematic error distribution, which, for simplicity, is assumed to be normal N(𝜇, 𝜎2)with mean
𝜇 and variance 𝜎2.

We adjust our procedure for computing the critical value cv by first specifying the systematic error distribution. For
this, we estimate �̂�t and �̂�2

t following the procedure described in Section 3.2, by analyzing the negative control estimates
obtained at look t. We then sample the systematic error in each simulation s at each look t:

𝜏
(s)
t ∼ N(�̂�t, �̂�

2
t ), (17)

We then sample the data under the null, incorporating the sampled systematic error 𝜏 (s)t to reflect the adjusted null:
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For the Poisson model, under H0 ∶ 𝛽 = 𝜏, we can set the log rate ratio as 𝛽 = 𝜏 (s)t , and thus the updated sampling step is

o(s)t ∼ Poisson(et × exp(𝜏 (s)t )). (18)

For the binomial model, under H0 ∶ 𝛽 = 𝜏, we can set the log odds ratio to 𝛽 = 𝜏 (s)t , which means now the incidence
probability p̃ satisfies p̃∕(1 − p̃) = exp(𝜏 (s)t ) × p∕(1 − p), which means p̃ = p exp(𝜏 (s)t )∕(1 + p(exp(𝜏 (s)t ) − 1)), so the updated
sampling step is:

o(s)t ∼ Binomial(et, p̃). (19)

Then we proceed as before to compute the new, calibrated, critical value cvt. We note that the critical value cvt is
now a dynamic threshold that changes across looks, as we accrue more data and learn more about the systematic error
distribution.

6 SIMULATIONS

6.1 Simulation design

We examine the operating characteristics of calibrated MaxSPRT first through a synthetic experiment. For each sim-
ulation, we simulate 200 outcomes, with true effect sizes of 1, 1.5, 2, and 4 (50 controls per effect size). A simula-
tion uses one of three systematic error distributions, assumed normal with mean 𝜇 and standard deviation (SD) 𝜎,
specified as:

• 𝜇 = 0, 𝜎 = 0 (zero expected bias, no uncertainty);
• 𝜇 = 0, 𝜎 = 0.2 (zero expected bias, some uncertainty);
• 𝜇 = 0.2, 𝜎 = 0.2 (positive expected bias, some uncertainty);

Each simulation uses either a large or small sample size:

• Small: 100,000 exposed subjects for the historical comparator design, 100 exposed cases for SCCS arising uniformly in
time;

• Large: 1,000, 000 exposed subjects for the historical comparator design, 1,000 exposed cases for SCCS arising uniformly
in time.

We take 10 equally-spaced sequential looks in time at the available cases. Critical values for the MaxSPRT are com-
puted using the actual sample sizes at all looks. When not using MaxSPRT, a signal is declared when a p-value at any
look is below the 𝛼 threshold. When using empirical calibration, the systematic error distribution is estimated using the
simulated negative controls (ie, those outcomes having true effect size= 1), using the data up to the point in time the esti-
mates are computed, thus mirroring what would be done in reality. Type 1 and 2 error rates are computed with or without
MaxSPRT, and with or without empirical calibration, using 𝛼 = 0.05. Each scenario (choice of systematic error distribu-
tion, method, and sample size parameter) is repeated 100 times to produce distributions for type 1 and 2 error rates. We
make our simulation R code available in the Supplementary Material.

6.2 Simulation results

Figures 4 and 5 show the results of our synthetic experiment using the historical comparator design and SCCS design,
respectively. Using MaxSPRT always decreases type 1 error rates, while often increasing type 2 error rates. When there
is no systematic error (mean 𝜇 = 0, SD 𝜎 = 0), the type 1 and 2 error rates are very similar with or without empirical
calibration. When systematic error is simulated to be present, empirical calibration has a substantial impact, reducing type
1 error while often increasing type 2 error rates. In these scenarios, the adjustment from empirical calibration is typically
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F I G U R E 4 Violin plots showing type 1 and 2 error rates in simulations of the historical comparator design. Each panel corresponds to
a specific simulation scenario, using a specific sample size (right) and systematic error distribution (top). The violin plots show the
distribution of type 1 or 2 error rates across the 100 simulations per simulation scenario. Colors indicate what adjustments were used. The
dashed line indicates the nominal type 1 error rate (at 𝛼 = 0.05).

much larger than the adjustment for sequential testing. In all simulation scenarios, the combination of MaxSPRT and
empirical calibration achieves a type 1 error rate close to nominal. In the historical comparator simulations, the mean
number of outcomes during the time-at-risk at the end of the study period (after the 10 looks) is 23.1 in the 100,000
sample size simulations, and 231.0 in the 1,000, 000 sample size simulations. In the SCCS simulations, the mean number
of outcomes during the time-at-risk at the end of the study period is 18.1 in the 100 sample size simulations, and 181.0 in
the 1000 sample size simulations.

7 REAL WORLD EXAMPLE

7.1 Real-world design

In our running example of H1N1pdm vaccinations we divide the study period into 9 calendar months, using the data
up to and including a month to compute p-values and LLRs. Critical values for the MaxSPRT are computed using the
actual sample sizes at all looks. When not using MaxSPRT, a signal is declared when a p-value at any look is below the
𝛼 threshold. When using empirical calibration, the systematic error distribution is estimated using the negative controls
using leave-one-out: for each negative control, calibration uses the systematic error distribution fitted using all other
negative controls. Based on the negative controls, type 1 error rate is computed with or without MaxSPRT, and with or
without empirical calibration, using 𝛼 = 0.05. Since we have only negative control outcomes, we cannot compute type 2
error rates. The mean number of outcomes during the time at risk at the end of the study period (after 9 months) is 8.5
and 11.7, for the historical comparator and SCCS analyses, respectively.
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F I G U R E 5 Violin plots showing type 1 and 2 error rates in simulations of the SCCS design. Each panel corresponds to a specific
simulation scenario, using a specific sample size (right) and systematic error distribution (top). The violin plots show the distribution of type
1 or 2 error rates across the 100 simulations per simulation scenario. Colors indicate what adjustments were used. The dashed line indicates
the nominal type 1 error rate (at 𝛼 = 0.05).

T A B L E 1 Type 1 error rates observed for negative control outcomes of the H1N1pdm vaccine with and without empirical calibration
and sequential testing adjustment via MaxSPRT

Type 1 error rate

Historical comparator SCCS

Uncalibrated, no adjustment for sequential testing 28.0% 4.3%

Uncalibrated, MaxSPRT 18.3% 2.2%

Calibrated, no adjustment for sequential testing 10.8% 5.4%

Calibrated, MaxSPRT 5.4% 4.3%

Note: Nominal type 1 error rates should approach 5%.

7.2 Real-world results

Table 1 shows the type 1 error rates when using the various adjustments. For the historical comparator design, the type
1 error rate is much larger than nominal when not adjusting for sequential testing and not using empirical calibration.
Here, empirical calibration again has a larger effect than MaxSPRT in moving the type 1 error rate closer to nominal.
For the SCCS design, neither form of adjustment has a large impact on type 1 error. When combining MaxSPRT with
empirical calibration, type 1 error is close to nominal for both designs.

8 DISCUSSION

A common concern when performing drug or vaccine safety surveillance is inflated type 1 error due to sequential test-
ing. However, when using observational data another important concern is increased type 1 error due to systematic
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error from residual confounding, selection bias, and measurement error. From our recent experience, systematic error
may overshadow inflated type 1 error from sequential testing across several observational designs.6 In prior research,
we proposed empirical calibration as a reproducible way to account for our uncertainty about the systematic error in
an observational study design. In this paper, we demonstrate how empirical calibration can be combined with adjust-
ment for sequential testing using MaxSPRT. Our simulation and real-world results show that adjusting for systematic
error using empirical calibration often has a stronger impact on maintaining nominal type 1 error than adjusting for
sequential testing, and that combining the two types of adjustments leads to close to nominal type 1 error in all evaluated
scenarios.

Our simulations show that, when systematic error is simulated to be present, empirical calibration tends to increase
type 2 error rates in order to maintain type 1 error rates. This is similar to adjustment for sequential testing, which also
tends to increase type 2 error rates, as there exists an intrinsic trade-off between type 1 and type 2 errors. Decision makers
should take this behavior into account.

In our real-world example, empirical calibration has a large effect for the historical comparator design, but hardly
any effect for the SCCS design. This results because we observed hardly any systematic error under the SCCS design.
Our simulations suggest that in such a scenario, when type 1 error needs no adjustment, the type 2 error rate is also not
increased by the calibration, so although calibration in such a scenario does not help, it also does not hurt. We point
out that, without negative controls and their estimates, we would not have known the specific SCCS design we used in
this scenario has little systematic error. We would also not have guessed that the historical comparator design, despite
adjusting for age and sex, and anchoring the historic cohort on outpatient visits to increase comparability, demonstrates
substantial systematic error.

Although one could propose a systematic error probability distribution based on expert knowledge of the exposure,
outcome, design, and data alone, we advise against it. Predicting how large systematic error can be after any adjustments,
such as matching or using a self-controlled design, is not possible. In our experience, actual error is more complex than
one’s assumptions. Instead, we propose empirically learning an approximation of the uncertainty by fitting a distribution
to our negative control estimates.

Our negative controls are required to have no causal relationship between exposure and outcome, but we make no
requirement on the type and magnitude of systematic error because we believe these to be unknowable. A limitation of our
approach is therefore that our negative controls could have very different systematic error than another exposure-outcome
pair for which we estimate an effect. We reduce this concern by using a large sample of negative controls and by having
our negative controls share either the exposure or the outcome with the hypothesis of interest. Although a concern of
exchangeability still remains, we believe it is outweighed by the consequence of doing nothing when systematic error is
likely present in any observational study.

In conclusion, we propose a novel approach for simultaneously adjusting for sequential testing and performing empir-
ical calibration. Our open-source EmpiricalCalbration R package implements this approach, and is available on CRAN.
We believe that when doing drug or vaccine safety surveillance, it is important to include negative controls and to perform
both types of adjustment.
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