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ABSTRACT Distinct mammalian RNA viruses trigger Dicer-mediated production of
virus-derived small-interfering RNAs (vsiRNA) and encode unrelated proteins to suppress
vsiRNA biogenesis. However, the mechanism and function of the mammalian RNA inter-
ference (RNAi) response are poorly understood. Here, we characterized antiviral RNAi
in a mouse model of infection with Nodamura virus (NoV), a mosquito-transmissible
positive-strand RNA virus encoding a known double-stranded RNA (dsRNA)-binding viral
suppressor of RNAi (VSR), the B2 protein. We show that inhibition of NoV RNA replica-
tion by antiviral RNAi in mouse embryonic fibroblasts (MEFs) requires Dicer-dependent
vsiRNA biogenesis and Argonaute-2 slicer activity. We found that VSR-B2 of NoV en-
hances viral RNA replication in wild-type but not RNAi-defective MEFs such as
Argonaute-2 catalytic-dead MEFs and Dicer or Argonaute-2 knockout MEFs, indicating
that VSR-B2 acts mainly by suppressing antiviral RNAi in the differentiated murine cells.
Consistently, VSR-B2 expression in MEFs has no detectable effect on the induction of
interferon-stimulated genes or the activation of global RNA cleavages by RNase L. More-
over, we demonstrate that NoV infection of adult mice induces production of abundant
vsiRNA active to guide RNA slicing by Argonaute-2. Notably, VSR-B2 suppresses the bio-
genesis of both vsiRNA and the slicing-competent vsiRNA-Argonaute-2 complex without
detectable inhibition of Argonaute-2 slicing guided by endogenous microRNA, which
dramatically enhances viral load and promotes lethal NoV infection in adult mice either
intact or defective in the signaling by type I, II, and III interferons. Together, our findings
suggest that the mouse RNAi response confers essential protective antiviral immunity in
both the presence and absence of the interferon response.

IMPORTANCE Innate immune sensing of viral nucleic acids in mammals triggers potent
antiviral responses regulated by interferons known to antagonize the induction of RNA
interference (RNAi) by synthetic long double-stranded RNA (dsRNA). Here, we show that
Nodamura virus (NoV) infection in adult mice activates processing of the viral dsRNA
replicative intermediates into small interfering RNAs (siRNAs) active to guide RNA slicing
by Argonaute-2. Genetic studies demonstrate that NoV RNA replication in mouse embry-
onic fibroblasts is inhibited by the RNAi pathway and enhanced by the B2 viral RNAi
suppressor only in RNAi-competent cells. When B2 is rendered nonexpressing or non-
functional, the resulting mutant viruses become nonpathogenic and are cleared in adult
mice either intact or defective in the signaling by type I, II, and III interferons. Our find-
ings suggest that mouse antiviral RNAi is active and necessary for the in vivo defense
against viral infection in both the presence and absence of the interferon response.

KEYWORDS RNA interference, antiviral RNAi, interferons, plus-strand RNA virus, viral
suppressor of RNAi

A common antiviral response in mammals is the production of interferons (IFNs)
triggered by the innate immune receptor sensing of the nonself viral nucleic acids

(1–3). Engagement of IFN by IFN receptors induces STAT1- and STAT2-dependent
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transcription of numerous IFN-stimulated genes (ISGs) to establish an antiviral state.
ISGs with known antiviral activities include those coding for 2=-5=-oligoadenylate
synthetases (OAS) and double-stranded RNA (dsRNA)�dependent protein kinase R (PKR)
that are activated by cytosolic dsRNA. Subsequent RNase L activation and eukaryotic
translation initiation factor 2 � (eIF2�) phosphorylation result in the degradation of viral
and cellular RNAs and the inhibition of global cap-dependent protein translation,
respectively (1–3).

Mammals harbor one Dicer for the biogenesis of both microRNAs (miRNAs)
and small interfering RNAs (siRNAs) and four Argonautes, among which only
Argonaute-2 (Ago2) retains the slicing activity essential for RNA interference (RNAi)
(4–6). Recent studies have shown that infection of mammalian cells with six
positive- and negative-strand RNA viruses from four families triggers Dicer recog-
nition and processing of the viral dsRNA replicative intermediates, leading to
production of abundant virus-derived siRNAs (7–9). Mammalian viral siRNAs (vsiR-
NAs) targeting these viruses are all highly enriched for 22-nucleotide (nt) canonical
siRNA duplexes with 2-nt 3= overhangs (10–15) and require Dicer for their biogen-
esis in mouse embryonic stem cells (mESCs) and human neural progenitor cells
(hNPCs) as well as differentiated murine and human cells (11–14, 16). In counter
defense, Nodamura virus (NoV; Nodaviridae), influenza A virus (IAV; Orthomyxoviri-
dae), human enterovirus 71 (HEV71; Picornaviridae), and dengue virus-2 (DENV2;
Flaviviridae) each encode a viral suppressor of RNAi (VSR), designated protein B2,
NS1, 3A, and 2A, respectively. These VSRs share no primary sequence similarity, but
all act to suppress Dicer processing of the vsiRNA precursors as dsRNA-binding
proteins (10, 12–15). Thus, when VSR is rendered nonexpressing or nonfunctional,
the resulting mutant viruses induce abundant vsiRNAs, replicate less efficiently than
parental viruses in mESCs, mature murine, monkey, and human cells, and/or
newborn mice and are efficiently rescued by knocking out all four Ago genes in
mESCs or Dicer gene in human 293T cells (10, 12–15). Moreover, ebolavirus VP35
and the nucleocapsid protein of yellow fever virus (Flaviviridae), Semliki Forest virus
(Togaviridae), and severe acute respiratory syndrome coronavirus (SARS CoV) and
SARS CoV-2 also display activities of dsRNA-binding VSRs (15, 17–19, 64, 65).
Together, these findings reveal a new mammalian antiviral response mediated by
the RNAi pathway with striking similarities to the siRNA-directed antiviral response
characterized extensively in plants and invertebrates (7–9, 20).

Several key questions remain unresolved on the mechanism and function of mam-
malian antiviral RNAi. For example, it is unknown whether viral infection induces in vivo
production of vsiRNAs in adult mammals, which have an intact IFN response known to
antagonize Dicer processing of artificial long dsRNA (21–25). It is also unknown whether
vsiRNAs made in mammalian antiviral RNAi are in vivo loaded in the RNA-induced
silencing complex (RISC) to guide specific RNA slicing by Ago2. In plants and insects,
vsiRNA-RISC acts in the final step of antiviral RNAi as the effector complex so that
Argonautes are dispensable for vsiRNA biogenesis (26–29). However, activation of the
type I IFN (IFN-I) response by viral infection is inhibitory to miRNA-guided RNA slicing
by Ago2 in cell culture (30), and there are contradictory reports on the antiviral activity
of Ago2 in cultured cells (10–12, 16, 23, 31). Moreover, the validated mammalian VSRs
are all dsRNA-binding proteins and include IAV NS1 and HEV71 3A, known to antago-
nize the IFN-I response (13, 32–34). Thus, it remains unclear whether suppression of
RNAi by these dsRNA-binding VSRs plays an independent role in enhancing viral
replication in vitro and in vivo (1–3, 35).

The understanding of new human antiviral immune responses has often depended
on the mechanistic analysis in animal models of infection with well-characterized
viruses. In this work, we examined the antiviral RNAi response of mice to the infection
with NoV, which is mosquito transmissible and causes flaccid paralysis of the limbs and
death in infant mice similarly to the infection with coxsackie viruses (36, 37). NoV
contains two positive-strand genomic RNAs encoding three functional proteins in total
and is a member of the Nodaviridae characterized extensively in viral RNA replication
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and antiviral RNAi (38–40). Nodaviral capsid protein is encoded by genomic RNA2.
Nodaviral RNA1 codes for both the viral RNA replicase protein A and the VSR protein
B2 and can self-replicate in the absence of RNA2 and produce the subgenomic RNA
(RNA3) as the mRNA of VSR-B2 protein (38–40). We demonstrate that NoV RNA
replication in adult mice induced production of abundant vsiRNAs active to guide
specific RNA slicing by Ago2. We show that VSR-B2 inhibited production of both
vsiRNAs and vsiRNA-RISC and became inactive to enhance NoV RNA replication in the
absence of a functional RNAi pathway. Notably, B2 function is essential for robust NoV
infection of adult mice either intact or defective in the interferon system. We propose
that antiviral RNAi confers protective immunity against viral infection in adult mice.

RESULTS
Inhibition of viral RNA replication by antiviral RNAi requires Dicer-mediated

vsiRNA biogenesis and Argonaute-2 slicer activity. We first investigated the biogen-
esis and function of vsiRNAs in IFN-competent mouse embryonic fibroblasts (MEFs)
commonly used to characterize innate immune antiviral responses (1–3, 35). Wild-type
and RNAi-defective MEFs were transfected with transcripts of R1ΔB2, a mutant genomic
RNA1 of NoV rendered defective in the translation of the B2 protein by three single-
nucleotide substitutions (15, 41). At 3, 8, or 24 h posttransfection (hpt), the accumula-
tion of the viral RNA1 and its subgenomic RNA (RNA3) synthesized after RNA1 self-
replication was detected by Northern blotting or quantitative reverse transcription-PCR
(RT-qPCR). The wild-type and RNAi-defective MEF lines were previously described (42),
including Dicer-knockout (Dicer-KO) and Ago2-knockout (Ago2-KO) MEFs as well as
Ago2 catalytic-dead MEFs (Ago2-CD) where Ago2 is expressed but is defective in RNA
slicing due to substitution of the first aspartic acid in the DDH triad with an alanine
(Ago2D597A).

NoV R1ΔB2 replicated to levels detectable by Northern blotting in wild-type MEFs by
24 hpt but not at 8 hpt (Fig. 1A). In contrast, both the viral RNAs 1 and 3 were readily
detectable at 8 hpt and reached extremely high levels visible by direct RNA staining by
24 hpt in all three lines of RNAi-defective MEFs (Fig. 1A). RT-qPCR analysis revealed that
at 24 hpt, the viral RNA1 accumulated in the three lines of RNAi-defective MEFs at levels
more than 100-fold higher than in wild-type MEFs (Fig. 1B). These results indicate that
NoV RNA1 replication is significantly repressed in the differentiated MEFs by the RNAi
pathway requiring not only Dicer and Ago2 but also the slicer activity of Ago2.

Deep sequencing of small RNAs from wild-type and RNAi-defective MEFs demon-
strated that NoV RNA1 replication triggered production of a typical population of
vsiRNAs not only in wild-type MEFs but also in Ago2-KO and Ago2-CD MEFs (Fig. 1C; see
also Fig. S1A in the supplemental material). The 21- to 23-nt virus-derived small RNAs
from wild-type, Ago2-KO, and Ago2-CD MEFs displayed approximately equal strand
ratios with the 22-nt small RNAs as the most abundant and exhibiting strong enrich-
ment for canonical siRNA duplexes with 2-nt 3= overhangs (Fig. 1C; Fig. S1A). In contrast,
the virus reads from Dicer-KO MEFs were predominantly positive strands and displayed
no preference either in the size range of Dicer products or for canonical siRNA duplexes
(Fig. 1C), suggesting loss of vsiRNA biogenesis in Dicer-KO MEFs. Consistently, we
detected a marked reduction of mouse endogenous miRNAs in Dicer-KO MEFs com-
pared to wild-type MEFs, but both Ago2-KO and Ago2-CD MEFs produced abundant
endogenous miRNAs (see Fig. S2A and Table S1). These results indicate that the vsiRNAs
detected in wild-type, Ago2-KO, and Ago2-CD MEFs were processed by Dicer from viral
dsRNA precursors. Robust viral RNA replication in Ago2-KO and Ago2-CD MEFs induced
production of more abundant vsiRNAs (Fig. 1C), readily detectable by Northern hybrid-
ization (Fig. 2A), than in wild-type MEFs. These findings indicate that in the differenti-
ated murine cells, both the Dicer-mediated production of vsiRNAs and the slicer activity
of Ago2 are essential for antiviral RNAi and that Ago2 is dispensable for the biogenesis
of vsiRNAs.

The viral dsRNA-binding protein B2 enhances viral RNA replication in wild-type
but not RNAi-defective mouse embryonic fibroblasts. To analyze the function of
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FIG 1 Dicer-mediated vsiRNA biogenesis and Ago2-dependent antiviral RNAi in differentiated murine cells. (A)
Accumulation of NoV RNAs 1 and 3 detected by Northern blotting at 8 and 24 h posttransfection (hpt) of wild-type and
homozygous Dicer-KO, Ago2-KO and Ago2-CD MEFs by electroporation with the same amounts of in vitro transcripts of
NoV RNA1ΔB2 (R1ΔB2). Detection of the rRNAs served as loading controls. (B) Accumulation of the mutant viral RNA1
measured by RT-qPCR in the transfected MEFs at 3, 8, and 24 hpt and corrected by using �-actin mRNA as the internal
reference. The results were from three independent experiments and are presented as means � standard errors of the
means (SEMs). A t test was used for statistical analysis. ***, P � 0.001; ns, not significant. Size distributions and
abundances (shown per million of the total reads mapped to mouse and NoV genomes) of total virus reads from the
four lines of MEFs at 24 hpt with R1ΔB2 (C) or wild-type NoV RNA1 (D). (C and D, bottom) The presence of pairs of 22-nt
vsiRNA reads with 2-nt 3= overhangs (�2 peak) by computing as described previously (15). The 5=-terminal nucleotide
of virus reads is indicated by color. The abundance of vsiRNAs (21- to 23-nt) and 1U vsiRNAs, shown as percentage of
the total mapped reads and total vsiRNAs, respectively, are given for those with a dominant population of vsiRNAs.
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dsRNA-binding VSR in differentiated cells, we compared NoV RNA1 replication in the
presence or absence of B2 in wild-type and RNAi-defective MEFs. We measured the
accumulation of the viral RNAs in MEFs by Northern blotting and RT-qPCR 24 h after
transfection with the same amount of wild-type or B2-deficient NoV RNA1 (R1ΔB2)

FIG 2 Function of dsRNA-binding VSR B2 protein in differentiated murine cells. (A) Northern or Western blot
detection of viral RNAs 1 and 3, vsiRNAs, mouse miRNA 22-3p (miR-22), and the B2 VSR in the four lines of
MEFs at 24 h posttransfection (hpt) with the same amounts of in vitro transcripts of wild-type NoV RNA1 or
NoV RNA1ΔB2 (R1ΔB2). Detection of the rRNAs, U6 RNA, and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) served as loading controls. Also shown is methylene blue staining of NoV RNA1 and the full-length
and RNase L-cleaved fragments 28S and 18S rRNAs (indicated by solid and open arrows, respectively,
according to the analysis by Northern blotting presented in Fig. S2 in the supplemental material). (B)
Accumulation of the viral RNA1 (the abundance corrected using �-actin mRNA as the internal reference) and
the mRNA of the IFN-� gene, ISG15, or RIG-I (fold change compared to mock transfection) detected by
RT-qPCR in the MEFs 24 hpt with wild-type NoV RNA1 or R1ΔB2. The results were from three independent
experiments and are presented as mean � SEM.s *, P � 0.05, ***, P � 0.001, ns, not significant.
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(Fig. 2). Known as mutant 1 (41), NoV R1ΔB2 contains the three single-nucleotide
substitutions introduced into NoV RNA1 to eliminate the translational initiation from
the first and second AUG codons of the B2 gene but alter neither the sequences of the
viral replicase and the B1 protein encoded in the �1 reading frame of B2 nor the
transcription of RNA3 (41, 43). Wild-type NoV RNA1 replicated to levels approximately
9-fold higher than R1ΔB2 in wild-type MEFs at 24 hpt (Fig. 2A and B). In contrast, we
found no statistically significant differences between the accumulation levels of wild-
type and VSR-deficient RNA1 in the three lines of RNAi-defective MEFs (Fig. 2A and B).
Western blotting verified expression of VSR-B2 in all lines of MEFs after replication of
wild-type, but not the mutant, NoV RNA1 (Fig. 2A). These genetic studies show that
VSR-B2 enhanced viral RNA replication only in wild-type MEFs active in antiviral RNAi,
indicating that the sole activity of VSR-B2 detectable in the differentiated murine cells
is to suppress antiviral RNAi. Our findings are consistent with previous studies showing
that B2 enhances the accumulation of viral RNA or protein in RNAi-competent cells (10,
15, 44–46) but not Saccharomyces cerevisiae (43), which lacks the RNAi pathway (47, 48).

Interestingly, wild-type NoV RNA1 replicated to significantly higher levels in all three
lines of RNAi-defective MEFs than in wild-type MEFs, although the fold changes were
smaller than that for NoV R1ΔB2 (Fig. 2A and B). These findings revealed the presence
of active antiviral RNAi in wild-type MEFs that inhibited NoV RNA1 replication despite
expression of VSR-B2, indicating that RNAi suppression by VSR-B2 is incomplete. Both
Northern blotting (Fig. 2A) and deep sequencing (Fig. S1 and S2 and Table S1) found
no obvious effect of B2 expression on the accumulation of mouse miRNAs in MEFs. In
contrast to the vsiRNAs induced after NoV R1ΔB2 replication (Fig. 1C), the virus reads
sequenced from wild-type, Ago2-KO, or Ago2-CD MEFs after replication of B2-
expressing NoV RNA1 were predominantly positive strands and displayed no enrich-
ment for canonical siRNA duplexes (Fig. 1D). Consistently, accumulation of vsiRNAs was
not detectable by Northern blotting after replication of NoV RNA1 in the presence of
VSR-B2, even though both wild-type and B2-deficient NoV RNAs replicated to similar
levels in Ago2-KO and Ago2-CD MEFs (Fig. 2A and B). These results indicate that
expression of VSR-B2 suppressed vsiRNA biogenesis in the differentiated murine cells.
Nevertheless, we noted that unlike Dicer-KO MEFs, the low-abundant negative-strand
virus reads from wild-type, Ago2-KO, or Ago2-CD MEFs after replication of NoV RNA1 in
the presence of VSR-B2 exhibited the size distribution of vsiRNAs (Fig. 1D), suggesting
that suppression of vsiRNA biogenesis by VSR-B2 is incomplete.

Potent activation of the OAS/RNase L system by NoV RNA replication in the
presence and absence of VSR-B2. We further determined whether NoV RNA replica-
tion can trigger the IFN response in the immortalized MEFs. RT-qPCR analysis found that
B2 expressed in cis from the replicating viral RNA1 in wild-type, Dicer-KO, Ago2-KO, or
Ago2-CD MEFs had no significant effect on the induction of ISG15 and RIG-I (Fig. 2B),
two ISGs used frequently as the marker for the induction of the IFN response by RNA
virus infection (1–3). B2 expression was associated with a modest decrease in the
induction of the IFN-� gene in the three RNAi-defective MEFs but not wild-type MEFs
(Fig. 2B). As described above (Fig. 2A and B), however, wild-type NoV RNA1 replicated
to significantly higher levels than NoV R1ΔB2 in wild-type MEFs but not in Dicer-KO,
Ago2-KO, or Ago2-CD MEFs, suggesting that the small increase in IFN-� gene expres-
sion was not inhibitory to viral RNA replication in RNAi-defective MEFs.

Strikingly, replication of both wild-type and B2-deficient NoV RNA1 induced strong
RNase L-mediated cleavages of cellular rRNAs in Dicer-KO MEFs at 24 hpt but not 8 hpt
(Fig. 1A and 2A; Fig. S3). These results show that NoV RNA1 replication potently
activated the OAS/RNase L system in both the presence and absence of B2, indicating
that abundant expression of the dsRNA-binding VSR-B2 in Dicer-KO MEFs is unable to
prevent activation of the OAS/RNase L system. Dicer-KO MEFs accumulated highly
abundant, positive-strand viral small RNAs with a wide size distribution during repli-
cation of wild-type and mutant NoV RNA1 (Fig. 1C and D), which may correspond to the
derivatives of RNase L products. Intriguingly, similar RNase L activation was not
observed not only in wild-type MEFs but also in the Ago2-KO and Ago2-CD MEFs that
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supported similarly robust replication of wild-type and mutant NoV RNA1 as in
Dicer-KO MEFs (Fig. 1A and 2A; Fig. S3). Thus, the dramatically enhanced viral RNA
replication alone in either the presence or absence of B2 was insufficient to ensure
potent activation of the OAS/RNase L system. These findings suggest that activation of
the OAS/RNase L system may be attenuated by Dicer processing or Dicer sequestration
of viral dsRNA but not by VSR-B2 expression. Our findings together show that the
dsRNA-binding VSR-B2 enhances viral RNA replication mainly by suppressing antiviral
RNAi in the differentiated murine cells without major effects on the IFN response.

Production and Argonaute loading of abundant vsiRNAs in adult mice with an
intact IFN system. We next explored whether antiviral RNAi is induced by viral
infection in adult mice (6 to 8 weeks old), which are known to activate more-potent IFN
responses than in cultured cells or infant mice (1–3, 35). We found that after intraperi-
toneal injection, wild-type NoV, NoVΔB2, and NoVmB2 all replicated to markedly lower
levels in the limb muscular tissues of wild-type adult mice (C57BL/6) than in mutant
mice knocked out of recombination activating gene 1 (Rag1�/�) (Fig. 3A), which lack
mature B and T lymphocytes to direct adaptive immunity but have an intact IFN system
(49). Whereas B2 is rendered nonexpressing in NoVΔB2, NoVmB2 differs from NoV by
a single nucleotide in RNA1 and expresses a mutant B2 protein defective in dsRNA
binding and RNAi suppression, but the introduced mutation does not alter the amino
acid sequence of the viral replicase and the B1 protein encoded in the �1 reading
frame of B2 (15, 26).

Deep sequencing of total small RNAs showed that in addition to the endogenous
miRNAs (see Fig. S4 and Table S1), Rag1�/� mice produced a typical population of
mammalian vsiRNAs in response to the infection with either NoVΔB2 or NoVmB2
(Fig. 3B). Most of the virus reads cloned from the limb tissues of NoVΔB2- or NoVmB2-
infected Rag1�/� mice at 5 days postinfection (dpi) were in the 21- to 23-nt size range
of Dicer products, among which the 22-nt size species was the most abundant for both
the positive and negative strands and exhibited strong enrichment for canonical siRNA
duplexes with 2-nt 3= overhangs (Fig. 3B; Table S1). Notably, the vsiRNAs from Rag1�/�

mice infected with either NoVΔB2 or NoVmB2 were readily detectable by Northern
blotting (Fig. 3A). The total small RNA reads in NoVΔB2 and NoVmB2 libraries that
mapped to the viral and mouse genomes contained 2.01% to 2.64% vsiRNAs in the 21-
to 23-nt size range (Fig. 3B; Table S1), which were more abundant than those (0.04% to
0.59%) reported in cultured mammalian cells, newborn mice, or adult flies (20).

To date, Ago-loaded mammalian vsiRNAs have been sequenced only in cell culture
(20). We found abundant vsiRNAs in the immunoprecipitants obtained with a pan-Ago
antibody from NoVmB2-infected Rag1�/� mice (Fig. 3B), indicating in vivo Argonaute
loading of mouse vsiRNAs. Of note, adult mouse vsiRNAs (Fig. 3B) exhibited strong
preference for uracil as the 5=-terminal nucleotide (1U), and these 1U-vsiRNAs were
further enriched in Argonaute immunoprecipitants (Fig. 3B; Table S1), similarly to
endogenous miRNAs (50) and influenza vsiRNAs sequenced from cell culture (12). In
support of selective Argonaute loading of vsiRNAs, we found that Ago-bound vsiRNAs
were de-enriched for canonical siRNA duplexes compared to the total vsiRNAs (Fig. 3B).
By comparison, virus genome distribution patterns of the vsiRNA hot spots were more
similar between the total and the Argonaute-bound populations sequenced from
NoVmB2-infected Rag1�/� mice than between the vsiRNAs produced in MEFs and adult
mice (Fig. 3C). Together, these results demonstrate efficient Dicer processing of the viral
dsRNA and subsequent loading of the resulting vsiRNAs into RISC in the infected adult
mice with an intact IFN system.

Both Northern blotting (Fig. 3A) and deep sequencing (Table S1) found no obvious
differences in the accumulation of mouse miRNAs in Rag1�/� mice without or with the
infection by NoVΔB2, NoVmB2, or NoV. NoV infection of Rag1�/� mice in the presence
of B2 induced a detectable population of 22-nt vsiRNA duplexes with 2-nt 3= overhangs
(Fig. 3B). However, these vsiRNAs were low in abundance and undetectable by North-
ern hybridization in contrast to those in mice infected with NoVmB2 or NoVΔB2 (Fig. 3A
and B; Table S1). Moreover, the virus reads found in NoV-infected Rag1�/� adult mice
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exhibited a strong positive-strand bias, and only the negative strands exhibited a weak
size preference for 22 nt (Fig. 3B). Highly abundant endogenous miRNAs accumulated
in Argonaute immunoprecipitants from both NoV- and NoVmB2-infected Rag1�/� mice
(Fig. S4 and Table S1). Compared to that with NoVmB2 infection, however, Argonaute
immunoprecipitants from NoV-infected mice contained much-less-abundant virus
reads, and only the negative strands in the immunoprecipitants showed an obvious size

FIG 3 Potent induction of antiviral RNAi in adult mice with an intact IFN system. (A) Northern or Western blot detection of viral RNA1,
vsiRNAs, mouse miRNA 22-3p (miR-22), and the B2 VSR in the hind limb skeletal muscle tissues of adult mice at 5 dpi with buffer (mock)
or the same amount of NoV, NoVmB2, or NoVΔB2. Detection of 18S rRNA, U6 RNA, and GAPDH served as loading controls. (B) Size
distributions and abundance (shown per million of the total reads mapped to mouse and NoV genomes) of the total and Argonaute-
bound virus reads sequenced from Rag1�/� adult mice 5 days postinfection (dpi) by intraperitoneal injection with the same amounts of
NoVΔB2, NoVmB2, or NoV. (Bottom) The presence of pairs of 22-nt vsiRNA reads with 2-nt 3= overhangs (�2 peak) by computing as
described previously (15). The 5=-terminal nucleotide of virus reads is indicated by color. The abundances of vsiRNAs (21- to 23-nt) and
1U vsiRNAs, shown as percentage of the total mapped reads and total vsiRNAs, respectively, are given. (C) Virus genome distribution of
the total and Argonaute-bound 21- to 23-nt vsiRNAs (per million of total mapped reads) from Rag1�/� adult mice infected with NoVΔB2
or NoVmB2 or from wild-type MEFs after NoV RNA1 replication. The functional proteins encoded by the viral bipartite RNA genome and
transcription of B2 mRNA (RNA3) from RNA1 are shown.

Han et al. ®

July/August 2020 Volume 11 Issue 4 e03278-19 mbio.asm.org 8

https://mbio.asm.org


preference for Dicer products (Fig. 3B). In addition, 1U enrichment was visible for
neither the total nor Argonaute-bound virus reads from NoV-infected mice (Fig. 3B).
These findings indicate that in Rag1�/� mice, expression of VSR-B2 interfered with the
biogenesis of vsiRNAs, but not the endogenous miRNAs, similar to the findings in MEFs
(Fig. 1 and 2).

Viral infection of Rag1�/� mice induces production of vsiRNA-RISC active to
direct specific RNA slicing by Ago2. Dicer processing of the viral dsRNA replicative
intermediates produces multiple overlapping sets of vsiRNAs in the infected cells (26,
51) (Fig. 3C), making it difficult to map Ago2-RISC slicing of the viral RNA guided by
individual vsiRNAs. Thus, we designed an in vitro slicing assay using three synthetic
single-stranded RNAs as the slicing target (Fig. 4A) to determine whether the vsiRNAs
made by adult mice in response to viral infection are active to guide specific RNA slicing
by Ago2 in RISC. Each target RNA contained a central region complementary to a single
vsiRNA or mouse endogenous miRNA 22 (miR-22) known to accumulate in the pan-Ago
immunoprecipitants (IP) after in vivo infection with NoVΔB2 (Fig. 3A) and thus avoided
the targeting by multiple vsiRNAs produced after in vivo infection. We detected the
expected 5= cleavage product of 22 nucleotides long after incubation of T2, the target
RNA of miR-22, with pan-Ago IP from both the mock- and NoVΔB2-infected Rag1�/�

adult mice (Fig. 4B, lanes 5 and 10) but not with IP using the control IgG from the same
mice (Fig. 4B, lanes 4 and 9). These findings indicate that miR-22-RISC isolated from
both the mock- and NoVΔB2-infected adult mice was active in RNA slicing by Ago2.

We found that the vsiRNA target (T1) was efficiently cleaved by the pan-Ago IP from
NoVΔB2-infected Rag1�/� mice, yielding the predicted 22-nt 5= cleavage product
(Fig. 4B, lane 7; Fig. 4C, lane 9). However, the control IgG IP from the same mice was
inactive in the specific slicing of T1 (Fig. 4B, lane 6; Fig. 4C, lane 8). Unlike the slicing of

FIG 4 RNA slicing-competent Ago2-RISC from healthy and infected Rag1�/� adult mice. (A) The nucleotide
sequences of synthetic single-stranded RNAs T1 and T2 labeled at the 5= terminus by 32P to serve as the in vitro
slicing target guided by a cloned vsiRNA (corresponding to nucleotides 26 to 47 of NoV RNA1) and mouse
miR-22-3p, respectively. The expected slicing sites between the nucleotides base paired with the 5=-terminal 10th
and 11th nucleotides of the vsiRNA or miR-22 are marked by an arrowhead, and the resulting 5=-terminal
32P-labeled slicing products (22 nucleotides in length) are underlined. An introduced U¡A single nucleotide
substitution into the vsiRNA target (T1) disrupts the base pairing between the 10th nucleotide of the vsiRNA with
its target (mT1, residue A underlined) known to be essential for slicing. (B to D) In vitro slicing assay using pan-Ago
or mouse control IgG immunoprecipitants from total extracts of hind limb skeletal muscle tissues of Rag1�/� adult
mice 5 days postinoculation with buffer (mock) or the same amounts of NoV, NoVmB2, or NoVΔB2. The positions
of the 22-nt 5= cleavage products are indicated by arrowheads on the right. One fragment (�31 nucleotides) of T1
and mT1 resulting from an unknown cleavage event is marked by *. A longer exposure is shown at the bottom of
panel C.
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the miR-22 target, neither the control IgG IP nor the pan-Ago IP from the mock-infected
Rag1�/� mice was active in the slicing of the vsiRNA target (Fig. 4B and C, lanes 2 and
3). Moreover, the pan-Ago IP from NoVΔB2-infected Rag1�/� mice became inactive in
slicing mT1 RNA, which contained a single nucleotide mutation to disrupt the base
pairing of the vsiRNA target with the 10th nucleotide of the vsiRNA (Fig. 4A and B, lane
8), known to be required for Ago2 slicing of RNAs targeted by an siRNA in mammalian
RNAi (5, 6). These results show that NoVΔB2 infection triggered production of vsiRNA-
RISC active to direct specific RNA slicing by Ago2 and was not inhibitory to Ago2 slicing
programmed by endogenous miRNA in Rag1�/� adult mice.

Expression of a functional VSR-B2 inhibits in vivo production of slicing-
competent RISC programmed by vsiRNA but not endogenous miRNA. We next
determined whether B2 expression in vivo interferes with Ago2 slicing guided by
vsiRNA or miR-22. To this end, we compared T1/T2 RNA slicing by the control and the
pan-Ago IP isolated from Rag1�/� mice after infection with the three strains of NoV
characterized above in the ability to induce production of vsiRNAs. When the vsiRNA
target T1 was incubated with the pan-Ago IP from NoV-infected Rag1�/� mice, the
22-nt 5= cleavage product was detectable only after longer exposure (Fig. 4C, lane 5,
bottom), unlike those from NoVΔB2-infected Rag1�/� mice. In contrast, no obvious
difference was observed in the slicing of the vsiRNA target by the pan-Ago IP
isolated from Rag1�/� mice infected with either NoVΔB2 or NoVmB2 (Fig. 4C,
compare lanes 7 and 9), indicating that unlike wild-type B2, the mutant B2
expressed by NoVmB2 was not inhibitory to the production of the slicing-
competent vsiRNA-RISC. However, the slicing of the miR-22 target was similar after
incubation with the pan-Ago IP isolated from Rag1�/� mice after mock infection
and infection with either NoVΔB2 or NoV (Fig. 4D, lanes 2, 4, and 6). These findings
indicate that expression of an RNAi suppression-competent B2 protein from NoV
inhibits the production of slicing-competent Ago2-RISC programmed by vsiRNA but
not by endogenous miRNA.

Expression of a functional VSR-B2 is essential for high load and lethality of NoV
in adult mice intact or defective in the IFN system. Wild-type C57BL/6 adult mice
displayed no signs of disease after NoV infection (Fig. 5A), as reported previously for the
inoculation of BALB/c mice 21 days after birth or older (36, 37). In contrast, 95% of
Rag1�/� adult mice from independent experiments succumbed within 25 days postin-
fection with NoV, and the infected mice exhibited significant weight loss (Fig. 5A),
indicating a protective role of adaptive immunity in adult mice against NoV. Notably,
NoVΔB2 induced no weight loss or any other signs of disease up to 42 dpi in the
inoculated Rag1�/� adult mice (Fig. 5A). Rag1�/� mice also exhibited no signs of
disease or weight loss after inoculation with NoVmB2 (Fig. 5A). All of the three viruses
accumulated to lower levels in C57BL/6 mice than in Rag1�/� mice at 5 dpi and were
largely cleared in C57BL/6 mice by 10 dpi (Fig. 3A and 5B). B2 was not essential for the
production of infectious virions, as virion preparations from NoV-, NoVΔB2-, or
NoVmB2-infected Rag1�/� adult mice were all able to induce systemic infection in
newborn C57BL/6 mice, in contrast to Flock house virus replication in nonhost hamster
cells (45). At 10 dpi in Rag1�/� mice, NoV titers were approximately 500 times higher
than either NoVΔB2 or NoVmB2 (Fig. 5B). These findings show that expression of a
functional VSR-B2 was required for the high load and lethality of NoV in Rag1�/� adult
mice with an intact IFN system.

We further compared NoV, NoVΔB2, and NoVmB2 infection in STAT1 and STAT2
double-knockout mice (Stat1/2�/�), which are defective in the signaling by type I, II,
and III interferons (2, 3). The results showed that Stat1/2�/� adult mice also were highly
susceptible to NoV and 60% of the Stat1/2�/� mice succumbed within 30 days of
infection with NoV, which was accompanied with significant weight loss (Fig. 5C).
However, neither NoVΔB2 nor NoVmB2 induced weight loss or any other signs of
disease up to 42 dpi in Stat1/2�/� adult mice (Fig. 5C). RT-qPCR (Fig. 5D) and Northern
blotting (Fig. 6A) revealed systemic spread of all three viruses to the limb muscular
tissues of Stat1/2�/� mice after intraperitoneal injection. However, whereas both
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NoVΔB2 and NoVmB2 were largely cleared by 10 dpi, NoV titers remained high in the
infected Stat1/2�/� mice at 10 dpi (Fig. 5D). These results indicate that expression of a
functional VSR-B2 was essential to inhibit the clearance of NoV and induce lethality in
adult mice defective in IFN signaling.

FIG 5 Expression of a functional VSR enhances virus load and promotes lethal NoV infection in adult mice intact
or defective in the IFN system. (A) Survival (left) and body weight changes (right) of wild-type C57BL/6 or Rag1�/�

adult mice after infection by intraperitoneal injections with the same amounts of NoV, NoVΔB2, or NoVmB2. The
infected mice used for survival analysis were C57BL/6 (NoV, n � 18) and Rag1�/� (NoV, n � 19; NoVΔB2, n � 15;
NoVmB2, n � 18) and for body weight analysis were C57BL/6 (NoV, n � 15) and Rag1�/�(NoV, n � 15; NoVΔB2,
n � 15; NoVmB2, n � 10). (B) The viral titers of NoV, NoVΔB2, and NoVmB2 in mouse hind limb skeletal muscle
tissues of C57BL/6 or Rag1�/� adult mice detected at 5 and 10 days postinfection (dpi) by RT-qPCR of the viral RNA1
using �-actin mRNA as the internal reference. (C) Survival (left) and body weight changes (right) of STAT1 and STAT2
double-knockout adult mice (Stat1/2�/�) after infection with the same amount of NoV (n � 15), NoVΔB2 (n � 6), or
NoVmB2 (n � 5). (D) The virus titers of NoV, NoVΔB2, and NoVmB2 in Stat1/2�/� adult mouse hind limb skeletal
muscle tissues detected at 5 and 10 days postinfection (dpi) by RT-qPCR of the viral RNA1 using �-actin mRNA as
the internal reference. Values of individual mice and the means � SEMs are presented. *, P � 0.05; **, P � 0.01;
***, P � 0.001; ****, P � 0.0001; ns, not significant.
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The IFN response is not inhibitory to in vivo production of vsiRNAs or slicing-
competent vsiRNA-RISC. RT-qPCR analysis revealed that the IFN-� gene, RIG-I, and
ISG15 were all induced by infection with both NoV and NoVΔB2 in C57BL/6 and
Rag1�/� mice compared to that with the infection of Stat1/2�/� mice (Fig. 6B). By

FIG 6 Induction and suppression of antiviral RNAi in Stat1/2�/� adult mice. (A) Northern or Western blot detection
of the viral RNA1, vsiRNAs, mouse miRNA 22-3p (miR-22), and the B2 VSR in the hind limb skeletal muscle tissues
of C57BL/6 and Stat1/2�/� adult mice at 5 dpi with buffer (mock) or the same amounts of NoV, NoVmB2, or
NoVΔB2. Detection of 18S rRNA, U6 RNA, and GAPDH served as loading controls. (B) Fold changes of the IFN-� gene
(top), RIG-I (middle), and ISG15 (bottom) mRNAs detected by RT-qPCR in mouse hind limb skeletal muscle tissues
of C57BL/6, Rag1�/�, or Stat1/2�/� adult mice at 5 dpi with the same amounts of NoV, NoVmB2, or NoVΔB2 relative
to that with mock infection. (C and D) In vitro slicing assay using pan-Ago or mouse control IgG immunoprecipitants
from total extracts of hind limb skeletal muscle tissues of Rag1�/� or Stat1/2 �/� adult mice 5 days postinoculation
with buffer (mock) or the same amounts of NoV, NoVmB2, or NoVΔB2. The positions of the 22-nt 5= cleavage
products are indicated by arrowheads on the right. One fragment (�31 nucleotides) of T1 and mT1 resulting from
an unknown cleavage event is marked by *. Values of individual mice and the means � SEMs are presented. *, P �
0.05; **, P � 0.01; ***, P � 0.001; ns, not significant.

Han et al. ®

July/August 2020 Volume 11 Issue 4 e03278-19 mbio.asm.org 12

https://mbio.asm.org


comparison, IFN-�, RIG-I, and ISG15 mRNAs accumulated to higher levels in C57BL/6
and Rag1�/� adult mice after the infection with NoV than with NoVΔB2 (Fig. 6B),
indicating that expression of VSR-B2 from NoV did not inhibit the induction of the IFN
response in adult mice, consistent with the findings from MEFs (Fig. 2).

Northern blot analysis showed that infection with either NoVΔB2 or NoVmB2
induced production of vsiRNAs in Stat1/2�/� adult mice at levels comparable to that in
C57BL/6 mice (Fig. 6A), which accumulated markedly reduced levels of vsiRNAs com-
pared to that in Rag1�/� mice (Fig. 3A). Similarly to that with NoV infection of Rag1�/�

mice (Fig. 3A), vsiRNAs were undetectable by Northern blotting in NoV-infected Stat1/
2�/� mice (Fig. 6A). Consistent with the results of Northern blotting, deep sequencing
of total small RNAs revealed production of a typical vsiRNA population by C57BL/6 and
Stat1/2�/� mice in response to NoVΔB2 infection (see Fig. S5 and Table S1). Low-
abundant negative-strand 22-nt vsiRNAs strongly enriched for canonical siRNA du-
plexes with 2-nt 3= overhangs were also visible in NoV-infected C57BL/6 and Stat1/2�/�

mice (Fig. S5), as was found in NoV-infected Rag1�/� mice (Fig. 3B). Moreover, we
detected active slicing of the vsiRNA target (T1) by the pan-Ago IP from Stat1/2�/� mice
infected with either NoVΔB2 or NoVmB2, but not those from mock-infected Stat1/2�/�

mice (Fig. 6C, lane 5; Fig. 6D, lanes 7 and 9). These findings show that viral infection of
IFN-defective Stat1/2�/� mice induced production of not only vsiRNAs at levels detect-
able by Northern blotting, but also vsiRNA-RISC active to direct specific RNA slicing by
Ago2. However, neither the control nor the pan-Ago IP from NoV-infected Stat1/2�/�

mice directed detectable cleavage of the vsiRNA target (Fig. 6D, lanes 4 and 5),
indicating that expression of a functional VSR-B2 inhibits production of slicing-
competent vsiRNA-RISC in Stat1/2�/� mice.

We noted weaker slicing of the vsiRNA target by the pan-Ago IP from Stat1/2�/�

mice than from Rag1�/� mice in response to NoVΔB2 infection (Fig. 6C, compare lanes
3 and 5), which appeared to correlate with the lower levels of vsiRNAs induced by
NoVΔB2 in Stat1/2�/� mice than in Rag1�/� mice (Fig. 3A and 6A). However, no
obvious differences were observed in the slicing of the miR-22 target by the pan-Ago
IP from either Rag1�/� or Stat1/2�/� mice after mock or NoVΔB2 infection (Fig. 6C,
compare lanes 7 to 9). These findings together indicate that active STAT1/STAT2-
dependent IFN signaling in Rag1�/� adult mice was not inhibitory to the production of
vsiRNAs or slicing-competent Ago2-RISC programmed by either vsiRNA or endogenous
miRNA.

DISCUSSION

Distinct positive- and negative-strand RNA viruses from the Flaviviridae, Nodaviridae,
Orthomyxoviridae, and Picornaviridae induce Dicer-mediated production of vsiRNAs and
encode unrelated dsRNA-binding VSRs to suppress the biogenesis of cognate vsiRNAs
in mammalian cells (10, 12–15). Results from this work provide several important
insights into the mechanism and function of the new mammalian antiviral response.

Early studies, including those characterizing induction of RNAi by artificial long
dsRNA, suggested inhibition of Dicer-mediated biogenesis of vsiRNAs by the IFN
response (8, 10). Here, we demonstrate that when VSR-B2 was rendered nonexpressing
or nonfunctional, NoV RNA replication triggered the production of highly abundant
vsiRNAs not only in IFN-competent MEFs but also in Rag1�/� adult mice with an intact
IFN system. The mouse vsiRNAs made in both MEFs and adult mice were highly
enriched for 22-nt siRNA duplexes with 2-nt 3= overhangs, indicating that they are
processed by Dicer from viral dsRNA precursors. Consistently, we show that the
production of vsiRNAs in MEFs was undetectable in Dicer-KO MEFs. Moreover, Ago2 was
dispensable for vsiRNA biogenesis in the differentiated murine cells. Deep sequencing
of total small RNAs in pan-Argonaute immunoprecipitants from NoVmB2-infected
Rag1�/� mice illustrated that vsiRNAs were in vivo loaded in RISC. Similarly to endog-
enous miRNAs, 1U-vsiRNAs were enriched in NoVmB2-infected Rag1�/� mice, espe-
cially in Argonaute immunoprecipitants, and the selective vsiRNA loading may explain
why Argonaute-bound vsiRNAs from adult mice were de-enriched for vsiRNA duplexes.
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Notably, Northern blot detection of vsiRNAs in NoVmB2- or NoVΔB2-infected adult mice
revealed no enhanced accumulation of vsiRNAs in Stat1/2�/� mice compared to that in
Rag1�/� mice, indicating that the signaling of IFN-I, IFN-II, or IFN-III in Rag1�/� adult
mice is not inhibitory to the production of vsiRNAs. Our findings thus suggest that Dicer
processing of viral dsRNA replicative intermediates into vsiRNAs is distinct from that of
artificial long dsRNA, which is processed into functional siRNAs only in undifferentiated
cells and IFN-defective differentiated cells (21–24, 52).

We further show that infection with NoVΔB2 or NoVmB2 induced in vivo production
of vsiRNA-RISC active to direct Ago2-mediated, vsiRNA-guided specific RNA cleavage in
an in vitro slicing assay. We show that the target RNA slicing by vsiRNA-RISC required
the base pairing of the target RNA with the 10th nucleotide of the vsiRNA. However,
loss of IFN-I, -II, and -III signaling in Stat1/2�/� mice did not enhance RNA slicing by the
in vivo-assembled vsiRNA-RISC compared to that in Rag1�/� mice with an intact IFN
system. Moreover, we observed no obvious differences in Ago2-mediated RNA slicing
by the endogenous miRNA-RISC isolated from Rag1�/� or Stat1/2�/� mice after either
mock or NoVΔB2 infection. It is unclear why our results from the in vivo assembled RISC
are different from an earlier study that demonstrated inhibition of Ago2-mediated RNA
slicing by miRNA-RISC in human 293T cells upon activation of IFN-I signaling (30).
Together, our results indicate, for the first time, that the vsiRNAs produced by adult
mice in response to viral infection are biologically active in RNAi and that the IFN
response is not antagonistic to either the production of the vsiRNAs or the RNA slicing
activity of the in vivo-assembled vsiRNA-RISC.

We show that genetic suppression of RNAi in Dicer-KO and Ago2-KO MEFs as well
as in Ago2-CD MEFs significantly enhanced NoV RNA1 replication and RNA3 transcrip-
tion, indicating that both Dicer-mediated vsiRNA biogenesis and Ago2 slicer activity are
required for antiviral RNAi. Similarly, viral suppression of RNAi by VSR-B2, effective
against RNAi induced by short hairpin RNA (53), also significantly increased the accu-
mulation of both NoV RNA1 and RNA3 in wild-type MEFs. Unlike that in wild-type MEFs,
however, the replication-enhancing activity of VSR-B2 became insignificant in all of the
three lines of RNAi-defective MEFs, as found previously in S. cerevisiae that lacks the
RNAi pathway (43). Thus, VSR-B2 enhances viral RNA replication only in cells when
antiviral RNAi is active, demonstrating that VSR-B2 acts mainly to suppress RNAi.
Consistently, expression of VSR-B2 had no major effect on the induction of ISGs in MEFs,
including Dicer-KO, Ago2-KO, and Ago2-CD MEFs in which B2 was expressed at high
levels.

Moreover, we demonstrate potent activation of the OAS/RNase L system in Dicer-KO
MEFs following NoV RNA replication in both the presence and absence of VSR-B2. Deep
sequencing detected abundant virus-derived small RNAs in the Dicer-KO MEFs, which
exhibit an overwhelmingly positive-strand bias without size preference and thus may
correspond to the derivatives of RNase L products from single-strand RNA (ssRNA)
substrates. Similar populations of viral small RNAs were also detected in MEFs and adult
mice following robust NoV RNA replication in the presence of a functional VSR-B2.
These findings together suggest that in contrast to the known suppression of Dicer
processing of dsRNA (26, 53), the dsRNA-binding VSR-B2 does not suppress dsRNA-
dependent OAS activation or subsequent RNase L-mediated degradation of ssRNAs.
Perhaps, the VSR-B2-bound long dsRNA remains as an efficient activator of OAS but is
poorly recognized by Dicer. Interestingly, the OAS/RNase L system was not potently
activated in Ago2-KO and Ago2-CD MEFs, although both lines of RNAi-defective MEFs
supported similarly robust replication of NoV RNA1 or R1ΔB2 as found in Dicer-KO
MEFs, suggesting that activation of the OAS/RNase L system may be attenuated by
either Dicer processing or Dicer sequestration of viral dsRNA.

Mammalian antiviral RNAi has been documented during infection of either undif-
ferentiated cells with wild-type viruses or differentiated cells and mice with mutant
viruses rendered defective in RNAi suppression (10–15). However, previous studies have
shown that a range of wild-type RNA viruses do not trigger production of a dominant
peak of vsiRNAs in several commonly used lines of mature mammalian cells or replicate
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to higher levels in human 293T cells upon Dicer inactivation (15, 54–58). These findings
led to the hypothesis that antiviral RNAi may not inhibit infection of mature cells by
wild-type viruses. In this work, we show that replication of wild-type NoV RNA1 in the
presence of a functional VSR-B2 triggered the production of low-abundant vsiRNAs and
was significantly enhanced by genetic suppression of RNAi in MEFs. These results
indicate that antiviral RNAi remains partially active in MEFs despite expression of a
functional VSR. Interestingly, Ago4 is also required for antiviral defense in MEFs,
possibly by promoting the production of vsiRNAs or stability of vsiRNA-RISC (59). As
indicated by an earlier study (12), therefore, MEFs appear to serve as a better model for
antiviral RNAi than other cell culture models. Notably, low-abundant vsiRNAs were also
detectable by deep sequencing in wild-type NoV-infected adult mice both before and
after pan-Argonaute co-immunoprecipitation and were able to guide RNA cleavages in
the vsiRNA-RISC purified in vivo. Our findings provide evidence for an antiviral role of
the mammalian siRNA response against infection with a wild-type virus encoding a
functional VSR.

Future work is necessary to develop a conditional knockout system for investigating
the in vivo antiviral function of Dicer or Ago2 because of their essential function in
animal development (5, 6). Nevertheless, several lines of evidence from this work
suggest a natural antiviral function of the RNAi in adult mice. We show that expression
of VSR-B2 in adult mice suppressed the production of both vsiRNAs and RNA slicing-
competent vsiRNA-RISC but had no obvious effect on the function of endogenous
miRNAs or the induction of the IFN-� gene and two ISGs. Notably, VSR-B2 dramatically
enhanced viral load and promoted lethal NoV infection not only in the IFN-competent
Rag1�/� adult mice but also in Stat1/2�/� adult mice defective in the signaling by IFN-I,
-II, and -III. When VSR-B2 was rendered nonexpressing or nonfunctional, the resulting
NoV mutants induced no weight loss or any other signs of disease and were largely
cleared by 10 days postinfection in both Rag1�/� and Stat1/2�/� adult mice. These
results suggest a key function for the RNAi response to confer protective immunity
against viral infection in adult mice either intact or defective in the IFN response.

MATERIALS AND METHODS
Cell lines and mice. Wild-type and Dicer-KO, Ago2-KO, and Ago2-CD mouse embryonic fibroblasts

(MEFs) were described previously (42) and confirmed by genotyping PCR and sequencing in the Ding lab.
C57BL/6, Rag1�/�, and Stat2�/� mice were purchased from the Jackson Laboratory (Sacramento, CA).
Stat1�/� mice were a kind gift from Adolfo Garcia-Sastre (Icahn School of Medicine at Mount Sinai, NY).
Stat1/2�/� double-knockout mice were obtained by crossing Stat1�/� and Stat2�/� single-knockout
mice, with the genotype verified by PCR. Animals were housed and bred in the Animal Resources Facility
under specific-pathogen-free conditions according to the guidelines described under the federal Animal
Welfare Regulations Act. All animal procedures were approved by the Institutional Animal Care and Use
Committee at the University of California, Riverside.

Mouse infection. Nodamura virus (NoV) and its two mutants, NoVmB2 and NoVΔB2, were described
previously (15). NoVΔB2 contains three point mutations in RNA1 to terminate B2 translation, whereas
NoVmB2 expresses a mutant B2 protein defective in dsRNA binding and RNAi suppression; however, the
genetic change in neither mutant virus alters the amino acid sequence of the viral replicase encoded by
RNA1 or the B1 protein, which is identical in sequence to the C-terminal region of the viral replicase and
is translated from RNA3. For all adult mouse infections, sex-matched 6- to 8-week-old mice were infected
by intraperitoneal injection of 150 �l of NoV, NoVmB2, or NoVΔB2 virus particle suspension titrated to
contain 4.5 � 109 copies of the viral genomic RNA1 in 1� Dulbecco’s modified Eagle’s medium (DMEM;
Gibco) supplemented with 0.3% bovine serum albumin (BSA; Invitrogen). Littermates of the same sex
were randomly assigned to experimental groups. For survival and body weight change experiments,
mock- or virus-infected mice were observed for 4 to 6 weeks postinfection. Virus inoculations were
performed under anesthesia, and all efforts were made to minimize animal suffering. Virion preparations
from NoV-, NoVmB2-, or NoVΔB2-infected adult mice were used to inoculate suckling C57BL/6 mice, and
systemic virus infection in the suckling mice was verified by quantitative RT-PCR as described previously
(15, 37, 60). Nucleotide sequencing of the progeny NoVmB2 and NoVΔB2 obtained from Rag1�/� adult
mice at 5 days postinjection indicated no reversal of the introduced mutations after in vivo infection.

In vitro transcription and electroporation. Full-length infectious cDNA clones of NoV and NoVΔB2
were described previously (15). Transcripts of NoV RNA1 and RNA1 ΔB2 (R1ΔB2) were transcribed in vitro
by T7 RNA polymerase with the kit mMESSAGE mMACHINE (AM1344; Invitrogen) according to the
manufacturer’s instructions. After DNase I digestion, RNAs were purified by TRIzol reagent (Sigma) and
analyzed by denaturing agarose gel electrophoresis and NanoDrop measurement. Wild-type and mutant
MEF cell lines as described previously (42) were cultured in DMEM supplemented with 10% fetal bovine
serum, 2 mM L-glutamine (Gibco), and 1� Anti-Anti (Gibco). Electroporation of MEFs with RNA1 tran-
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scripts was conducted essentially as described previously (61). Briefly, 5 million cells were collected and
resuspended in 300 �l of ice-cold 1� phosphate-buffered saline PBS for each electroporation. Immedi-
ately after mixing with 3 �g of RNA1 transcripts in a 2-mm-gap electroporation cuvette (Bio-Rad), cells
were subjected to electroporation with a Gene Pulser II electroporation system (Bio-Rad) under the
conditions of 300 V, 75 �F, two pulses. After electroporation, cells were recovered at room temperature
for 10 min before being resuspended in complete cell culture medium and split into 6-cm cell culture
dishes. Cells were lysed with TRIzol reagent or 1� radioimmunoprecipitation assay (RIPA) buffer at
designed time points and stored at – 80°C for cellular total RNA extraction or protein quantification and
Western blot.

RNA extraction. Immediately after mouse euthanization, the hind limb skeletal muscle tissues were
collected in Eppendorf tubes with metal beads, flash-frozen in liquid nitrogen, and then stored at �80°C.
For RNA extraction, 1 ml of cold TRIzol reagent was added to each tube and homogenized using
TissueLyzer II (Qiagen). After removal of cell debris, total RNA was extracted by TRIzol reagent. Total RNA
was also extracted from MEFs by TRIzol reagent.

Detection of the viral low- and high-molecular-weight RNAs. Northern blotting detection of the
viral low- and high-molecular-weight RNAs was conducted as described (15). Briefly, 20 �g of total RNA
extracted from the limb muscle tissues or MEFs cells were analyzed for the accumulation of the
virus-derived siRNAs and mouse microRNA-22-3p. The probe used for vsiRNA detection in MEFs cells was
the same as described previously (15). The probe used for vsiRNA detection in adult mouse muscle tissue
was a mixture of two synthetic 32P-labeled locked nucleic acid (LNA) oligonucleotides purchased from
Exiqon (Woburn, MA) according to small RNA deep sequencing. These LNA probes corresponded to
nucleotides 1 to 25 of NoV RNA1 and nucleotides 3155 to 3179 of the negative-strand NoV RNA1 (see
Table S2 in the supplemental material). For the detection of the viral genomic RNA1 and subgenomic
RNA3, approximately 4 �g of total RNA was analyzed using a 32P �-dCTP-labeled (PerkinElmer) DNA
fragment corresponding to the B2 coding regions of RNA1 and RNA3.

Western blot analysis. Western blot detection of NoV and mouse proteins was carried out as
described previously with minor modifications (15). Protein lysates of adult mouse hind limb skeletal
muscle tissues were obtained by homogenization in 1� RIPA buffer (Cell Signaling) supplemented with
cOmplete Protease Inhibitor Cocktail (Roche) and phosphatase inhibitor cocktail PhosStop (Roche) using
TissueLyzer II (Qiagen). Protein lysates of MEFs cells were prepared by directly dissolving cells into 1�
RIPA buffer. NoV B2 and coat protein (CP) proteins were probed with house-made polyclonal rabbit
antibodies. Detection of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) by a mouse monoclonal
anti-GAPDH antibody (MA5-15738; Invitrogen) served as the loading control.

Quantitative RT-PCR. One microgram of total RNA was used for cDNA synthesis with an iScript cDNA
Synthesis kit (Bio-Rad). The cDNA products were subjected to quantitative PCR by using iQ SYBR green
Supermix (Bio-Rad). Primers for virus RNAs or host mRNAs are list in Table S2. The detection of NoV RNA1
using �-actin mRNA as the internal reference was as described previously (15). Transcriptional induction
of IFN-�, ISG15, and RIG-I was analyzed by the comparative threshold cycle (2ΔΔCT) method (62) using
�-actin mRNA and mock transfection or infection samples as controls.

Immunoprecipitation. Two milligrams of muscle tissue lysates in 1 ml RIPA buffer was precleared by
incubation with 30 �l of protein A/G PLUS-agarose beads (Santa Cruz Biotechnology) for 30 min.
Precleared lysates were then incubated with 20 �l of anti-pan Ago antibody (MABE56; Millipore) together
with 40 �l protein A/G PLUS-agarose beads for 3 h at 4°C. After washing 3 times, the immunoprecipitates
were used for the in vitro cleavage assay or small RNA library construction.

In vitro cleavage assay. The assay was performed as described previously (63) with minor modifi-
cations. The immunoprecipitates obtained with either anti-pan Ago antibody or normal mouse IgG
(12-371; Sigma) as described above were washed three times with 1� wash buffer and two additional
times in 1� PBS. The resulting beads were mixed with 2 �l of 1 nM 32P-labeled RNA substrate in 1�
cleavage buffer (63) and inoculated at 30°C for 2 h before RNA extraction with TRIzol reagent. Final RNA
extracts were analyzed by 15% denaturing polyacrylamide gel electrophoresis and exposed to a
phosphorimager. RNA ladder (10 to 150 bp, AM7778; Invitrogen) was used as a size marker.

Construction and analysis of small RNA libraries. Libraries of small RNAs were constructed as
described previously (15) from total RNA extracted from MEFs and hind limb muscular tissues either
without or with co-immunoprecipitation by anti-pan Ago antibody (Millipore). RNA reads in 18 to 28
nucleotides were mapped to the virus and mouse genomes and analyzed as described previously (15):
Mus musculus mature miRNAs and miRNA precursors, database miRBase 19; Mus musculus whole
genome, the September 2017 (GRCm38.p6) assembly of the mouse genome (mm10; Genome Reference
Consortium Mouse Build 38 [GCA_000001635.8]).

Quantification and statistical analysis. Unpaired Student’s t test was used for statistical analysis of
RT-qPCR data. Mouse body weight changes were analyzed by two-way analysis of variance (ANOVA)
followed by a post hoc multiple-comparison test. Comparison of survival curves was conducted by using
a log rank (Mantel-Cox) test. All statistical analyses and graph making were performed by using GraphPad
Prism version 7.04.

Data availability. The accession number for the small RNA libraries listed in Table S1 is NCBI
BioProject PRJNA529951.
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FIG S1, PDF file, 1 MB.
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