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Abstract

Flexible and Efficient Ordinal Regression with Bayesian Nonparametrics

by

Jizhou Kang

Scientific discoveries are advanced by flexible and efficient statistical models.

Grounded on Bayesian nonparametric modeling techniques, this thesis provides a

toolbox for ordinal regression. The toolbox comprises models tailored for various

settings, with shared characteristics of flexibility and efficiency. A key building

block of the proposed models is a sequential mechanism to treat the ordinal re-

sponse. Such mechanism implies a factorization of the response distribution that

allows efficient, scalable computation through (partial) parallel sampling regarding

the response categories. For problems under a cross-sectional setting, we develop

nonparametric mixture models, leveraging the same sequential structure to define

covariate-dependent mixture weights. Even though covariates are incorporated via

linear functions, the mixture models admit flexible ordinal regression relationships,

and they relax parametric assumptions for the response distribution. Moving

towards modeling the dynamic evolution of ordinal responses from longitudinal

studies, the critical insight is to treat the subjects measurements as stochastic

process realizations at the corresponding time points. We propose a hierarchical

framework that models the mean and covariance structure of the processes non-

parametrically and simultaneously, a useful byproduct being a practical method

for making predictions on any time scale. For all proposed models, we craft read-

ily implementable Markov chain Monte Carlo algorithms that avoid specialized

updates or tuning steps. A variety of synthetic and real data examples are used to

illustrate the methods. In particular, the models for cross-sectional ordinal regres-

sion, along with their extensions, are examined in the context of risk assessment
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for developmental toxicity studies. We also present a case study in evolutionary

biology, in which our method for longitudinal ordinal responses is adapted to

identify the impact of temperature on transgenerational responses, using repeated

measurements on fish maturation data.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Analyzing subject responses, along with relevant predictors, constitutes a key

challenge in statistics. In this work, we specifically target ordinal categorical

responses. The setting of the study may be categorized as cross-sectional or

longitudinal. We explore modeling approaches for either type of study.

Recent years have witnessed a rapid growth of ordinal data in a wide range

of applications. Owing to its natural virtue in measuring unobservable features,

such as degree of agreement, propensity in attitudes, and intensity of emotions,

ordinal data is widely used in different fields. Examples include finance (agencies

such as Standard and Poor’s providing credit rating of companies ranging from

“AAA” to “D”), biomedical sciences (the effect of a treatment categorized into

“complete response” “partial response”, “minimum response”, and “no change”),

social sciences (survey respondents giving their opinions on ordinal scale “agree”,

“neutral”, and “disagree”), and environmental sciences (air quality rating such

as “good”, “fair”, and “bad”). These ordinal variables, usually accompanied by

relevant explanatory variables (covariates), form the ordinal regression problem.
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The main objective is to examine the relationship between the ordinal response

and the covariates, while appropriately accounting for the ordinal discrete nature

of the responses.

Cross-sectional and longitudinal studies are both widely encountered in sci-

entific disciplines due to their potential to address different questions of interest.

The defining characteristic of a longitudinal study is that individuals are measured

repeatedly through time, while in a cross-sectional study, a single outcome is mea-

sured for each individual. The major benefit of longitudinal studies is their ability

to distinguish changes over time within individuals (aging effects) from differences

among subjects with their baseline level (cohort effects). The benefit comes at a

price of modeling challenges, especially in the direction of developing models that

permit more general forms of dependence among the repeated measurements.

We identify flexibility and efficiency as the key objectives of the proposed

methodologies. Validating whether the real data structure is compatible with the

model assumptions can be demanding. Hence, flexible models that impose fewer

restrictions on the data distribution are desirbale. Efficiency is another crucial

consideration for practitioners. Models that demand fewer computational resources

and less tuning sophistication are more appreciated in practice. Moreover, in

applied fields, discoveries have been hindered by the available statistical tools,

either because the tools are too restrictive, or because the computational cost is

unaffordable.

Despite its importance, flexible and efficient modeling for ordinal regression

is not sufficiently well developed in the literature. Existing approaches are either

restrictive from a modeling perspective, making strong assumptions on the effect

of covariates on the responses, or computationally demanding, requiring complex

and/or inefficient algorithms to obtain inference.
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Conventionally, methods for cross-sectional ordinal regression are based off of

the generalized linear model (GLM) framework. The log odd ratios of response

categories are linked to the linear predictor x⊤β. Different choices can be made

on the form of odds ratios and link function, resulting in a variety of (parametric)

modeling options (Agresti, 2010). Facilitated by augmented latent variables,

Bayesian inference for such models is fairly efficient (Albert and Chib, 1993; Polson

et al., 2013). However, parametric model formulations restrict flexibility, in terms of

both the ordinal response distribution and the covariate-response relationship. To

overcome such limitations, early work in the literature has explored semiparametric

models (e.g. Basu and Chib, 2003; Choudhuri et al., 2007) and nonparametric

models (e.g. Chib and Greenberg, 2010; Bao and Hanson, 2015). However, the

computationally intensive inferential techniques hinder their popularity in practice.

For example, posterior sampling under the model proposed in Chib and Greenberg

(2010) requires a non-standard Metropolis-Hasting step with tailored proposal

density.

In the context of longitudinal ordinal regression, models are developed under

one of three broad approaches pertaining to marginal models, conditional models,

or subject-specific models, postulating the generalized linear model framework. We

refer to Molenberghs and Verbeke (2006) for a comprehensive review. These models

typically assume a specific mechanism for the ordinal response evolution, and hence

are restrictive in modeling dynamic ordinal regression relationships. Extensions

have been developed in the Bayesian nonparametric literature, by incorporating a

temporally dependent nonparametric prior on cross-sectional ordinal regression

model (e.g. DeYoreo and Kottas, 2018b), through utilizing a smooth spline function

for the regression relationship (e.g. Tang and Duan, 2012), or via embedding a

nonparametric prior as the probability model for the random effects (e.g. Jara

3



et al., 2007). A question here is how to balance model flexibility and computation

tractability.

Despite the general challenge of developing flexible and efficient models, a

specific ordinal regression problem usually exhibits unique features that may bring

further obstacles in modeling. In cross-sectional studies, exploratory data analysis

usually suggests heterogeneity in terms of ordinal regression relationships. In

modern longitudinal studies, it is common that the complete vector of repeated

measurements is not collected on all subjects, leading to unbalanced longitudinal

data. Additionally, overdispersed ordinal responses are widely encountered in

certain applications, such as developmental toxicity studies. We seek to develop a

general modeling framework that can be tailored for particular applications.

Such modeling objectives lead us to Bayesian nonparametrics, a rapidly growing

field that offers a broad modeling framework for flexible and efficient statistical

inference and prediction. An inherent virtue of Bayesian nonparametric models is

their flexibility, which is characterized by large support on the space of relevant

distributions and/or functions. Besides, efficient posterior simulation techniques

for Bayesian nonparametric models have been developed. For reviews that cover

theoretical, methodological and computational aspects of Bayesian nonparametric

models, we refer to Müller et al. (2015) and Ghosal and van der Vaart (2017).

The goal of this thesis is to exploit the advantages of Bayesian nonparamet-

ric models to solve methodologically and practically relevant ordinal regression

problems. We seek to develop a unified toolbox for ordinal regression under cross-

sectional or longitudinal settings, emphasizing the two key aspects of flexibility

and efficiency. The proposed models aim at relaxing restrictive assumptions on

the (evolution of) ordinal response distribution and ordinal regression relationship,

while involving efficient inference algorithms and interpretable expressions for key
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quantities of interest. From the applications perspective, this work contributes to

the analysis of ordinal data, a prevalent problem in several scientific fields.

1.2 Latent Variable Models for Ordinal Responses

In ordinal regression, the order of response categories should be taken into

account. Motivated by exploiting the ordinality, latent variable models have been

developed, postulating either a cumulative link structure or a sequential structure.

In practice, the choice among the two alternatives is typically based on convention

rather than a deliberate decision that takes the context and objectives of the

specific problem into consideration. Here, we contrast these two structures in

terms of handling order, with emphasis placed on the practical and methodological

benefits of each approach.

Consider modeling a univariate ordinal response Y with C categories. We can

equivalently encode the response as a vector of binary variables Y = (Y1, . . . , YC),

such that Y = j is equivalent to Yj = 1 and Yk = 0 for any k ̸= j. It is typical to

assume a multinomial response distribution, denoted by Mult(1, π1, . . . , πC). The

task is to model the response category probabilities πj , acknowledging the order of

the categories.

The cumulative link model (McCullagh, 1980) assumes that the ordinal response

arise from latent continuous random variable through discretization. In particular,

let Z be a continuous variable with cumulative distribution function F . The

observed ordinal variable is determined by Y = j if and only if Z ∈ (κj−1,κj],

for j = 1, . . . , C. Here −∞ = κ0 < κ1 < . . . < κC−1 < κC = ∞ are cut-

off points on the latent scale, where, typically, κ1 = 0 for identifiability. The

term “cumulative link model” is adopted because it is essentially the cumulative

probabilities Pr(Y ≤ j) = π1 + . . .+ πj, j = 1, . . . , C that are linked to the latent
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variable.

The sequential model (Tutz, 1991) starts with introducing C − 1 latent contin-

uous random variables, (Z1, . . . ,ZC−1) ∈ RC−1, where Zj
ind.∼ Fj, j = 1, . . . , C − 1.

The ordinal response is then determined through a sequential dichotomization

mechanism of the latent variables. Specifically, the mechanism allows the ordinal

categories to be reached in consecutive order. To begin with, the ordinal response

Y is allocated to the first category if Z1 > 0. If Z1 ≤ 0, the process continues to

assign Y = 2 if Z2 > 0. Given that category j is reached, the sign of Zj is used to

determined if the process stops or if it continues with higher categories. Note that

because the distribution of the latent variables is allowed to vary with category

and the split is binary, we can fix the cut-off for all latent variables at 0.

A key feature of the sequential model is that it facilitates a factorization of the

multinomial distribution in terms of Binomial distributions. That is,

Mult(Y | 1, π1, . . . , πC) = Bin(Y1 | m1, p1) . . . Bin(YC−1 | mC−1, pC−1),

where m1 = 1, and mj = 1 − ∑j−1
k=1 Yk, for j = 2, . . . , C − 1. Here pj denotes

the conditional probability of response j, given that the response is j or higher,

for j = 1, . . . , C − 1. It is linked with πj through pj = πj/(πj + . . . + πC). This

factorization is also referred to as the continuation-ratio parameterization of the

multinomial distribution (Agresti, 2010).

Through formulated under different assumptions, the two approaches are com-

patible in modeling ordinal responses. In fact, there are scenarios where one can

find equivalence between the two model formulations, i.e., one is a reparameteriza-

tion of the other. Peyhardi et al. (2015) provides several examples, and in Section

2.2.5, we present the explicit reparameterization when the latent continuous vari-

ables are logistically distributed. In practice, the different methods may provide

6



similar results (Agresti, 2010). Nonetheless, given the context of the problem

and/or the relevant scientific questions, one approach might be preferred over the

other.

In general, we should prefer the model whose structure is better equipped to

address the relevant scientific questions of the problem at hand. Consider, for

instance, modeling the ordinal scale air quality index. It is plausible to assume

that a continuous variable measuring air quality has a regression relationship with

covariates. Apart from estimating the ordinal regression relationship, practitioners

may also be interested in determining the responses’ scale. Consequently, the

cumulative link model is more appropriate, because the covariate effects are

invariant to the choice of categories for the ordinal response, making it possible to

compare models using different response scales. On the contrary, ordinal responses

may arise from a sequential mechanism. For example, the disease severeness evolves

from the mildest to the most severe. We can assume there is a sequential binary

splitting process that determines the ordinal severeness level, from the mildest

to the most severe, step by step. The covariate effects enter at every splitting

point. Such a process facilitates direct inference for the covariate effects on the

conditional probability of more severe disease, which is of particular interest in

practice. Accordingly, the sequential model should be preferred.

When proposing models for ordinal data, the specific context of the problem

may be unknown. Even if the context is known, both modeling assumptions could

be equally applicable, or inapplicable, for the objectives. In either scenario, it is

hard to select a model structure based on the essence of the problem. Therefore,

we should also take the methodological objectives into account.

The cumulative link model essentially assumes the covariates affect a single

latent continuous variable, and the cut-off points, which usually do not depend
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on covariates, enter to discretize the latent variable. Because of this structured

assumption on the covariate effects, it is more manageable to incorporate certain

prior beliefs on the form of the covariate effects, such as monotonicity. Besides,

cumulative link models have an immediate connection with regression models

for continuous responses. Studying theoretical properties under the cumulative

link modeling framework is thus more convenient, leveraging the existing results

regarding continuous regression models.

When flexibility and efficiency is the major concern for the proposed method,

the sequential model is arguably the better approach. The sequential model

enables enhanced flexibility in terms of the ordinal regression relationship through

allowing the covariates to affect all the C − 1 latent continuous variables. In

addition, by exploring the distributional assumptions for the latent variables, a

wider scope of ordinal regression models can be developed. In contrast, to achieve

a comparable level of flexibility postulating the cumulative link structure, we

would have to embed covariates or dependence into the cut-off points. This is

more challenging because the cut-off points must exhibit the order restriction.

Critically, the sequential model boosts computation through the implied conditional

independent structure of category-specific parameters, allowing parallel computing

across response categories. Bearing in mind the key objectives of this thesis, we will

adopt the sequential modeling structure as a key building block for our proposed

Bayesian nonparametric modeling methods for ordinal regression.

We note here that the terminologies “cumulative link model” and “sequential

model” represent classes of ordinal regression models. A specific model is deter-

mined in combination with a choice of link function and linear predictor. Besides,

there are approaches other than using latent variables that are appropriate for ordi-

nal regression. For instance, the adjacent categories model (Masters, 1982), which
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is based on the odds ratio between two consecutive categories. A comprehensive

review of approaches accounting for ordinality is presented in Tutz (2022).

1.3 Summary of contributions

This dissertation research focuses on exploiting the theoretical advantages of

Bayesian nonparametric models to solve methodologically and practically relevant

ordinal regression problems. The primary outcomes are Bayesian nonparametric

models for cross-sectional or longitudinal ordinal regression, featuring flexibility

and efficiency. We present thorough studies of the proposed models’ properties.

For all proposed models, we discuss approaches to prior specification and develop

algorithms for conducting posterior inference. The methodologies are illustrated

through a variety of data examples.

We begin in Chapter 2 with models for cross-sectional ordinal regression. We

develop a nonparametric Bayesian modeling approach based on priors placed

directly on the discrete distribution of the ordinal responses. The prior probability

models are built from a structured mixture of multinomial distributions. We

leverage the continuation-ratio logits representation to formulate the mixture kernel,

with mixture weights defined through the logit stick-breaking process (Rigon and

Durante, 2021) that incorporates the covariates through a linear function. The

flexibility of the nonparametric mixture model is demonstrated by studying its

Kullback-Leibler support. Moreover, we design an efficient and relatively easy to

implement posterior simulation method, which also allows partial parallel sampling

for category-specific parameters, prompting additional computational efficiency

gains.

In Chapter 3, we explore modeling approaches for clustered ordinal responses,

which arise, for instance, in developmental toxicology studies. Extra modeling
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challenges emerge due to the extensive heterogeneity from various sources. Using

data from a developmental toxicity experiment, we examine a spectrum of models,

and demonstrate that flexibility is the key for reliable risk assessment. Notably,

the nonparametric mixture models developed in Chapter 2 outshine traditional

Bayesian hierarchical models in delivering coherent uncertainty quantification.

The nonparametric models are then amplified with an overdispersed kernel, which

offers enhanced control of variability. The models are illustrated and contrasted in

drawing a series of inferences relevant to the toxicity study.

Another class of correlated ordinal responses arises from longitudinal studies,

where the primary focus is on accommodating the temporal dependence. We

present in Chapter 4, a flexible and efficient modeling approach for analyzing the

dynamic evolution of the ordinal responses over time. This can be viewed as a

longitudinal ordinal regression problem, where time is the only covariate. We tackle

the problem from a functional data analysis perspective, treating the observations

for each subject as realizations from subject-specific stochastic processes at the

measured times. Leveraging the continuation-ratio logits representation, we model

the discrete space processes through a sequence of continuous space processes.

We utilize a hierarchical framework to model the mean and covariance kernel of

the continuous space processes nonparametrically and simultaneously through a

Gaussian process prior and an Inverse-Wishart process prior, respectively. The

prior structure results in flexible inference for the evolution and correlation of

ordinal responses, while allowing for borrowing of strength across all subjects.

The proposed method for longitudinal ordinal responses is particularly well-

suited to problems in evolutionary biology. Chapter 5 delves into a detailed data

illustration in this field. In particular, the data is taken from an experiment in

which the maturity status of sheepshead minnows is recorded on ordinal scale
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over several weeks. This component of the thesis is particularly compelling as it

showcases the benefits of the flexible and efficient methodology in the context of a

scientifically relevant problem.

The rest of the dissertation is organized as follows. Chapter 2 is devoted to

nonparametric mixture models for cross-sectional ordinal regression. The utilization

of these models, along with their extensions, in risk assessment for developmental

toxicity studies is examined in Chapter 3. Turning to longitudinal settings, Chapter

4 presents a modeling approach for dynamic evolution of ordinal responses. It is

followed by Chapter 5, in which a detailed analysis of a data set on sheepshead

minnows maturation is provided to illustrate the practical benefits of the proposed

model. We conclude with some future perspectives and remarks in Chapter 6.

Technical details on proofs of theoretical results, and posterior simulation methods

are provided in Appendices A and B, respectively.
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Chapter 2

A Structured Mixture Modeling

Framework for Cross-sectional

Ordinal Regression

2.1 Introduction

Ordinal responses are widely encountered in many fields, including economet-

rics and the biomedical and social sciences, typically accompanied by covariate

information. Hence, estimation and prediction of ordinal regression relationships

remains a methodologically and practically relevant problem. The typical ordinal

regression setting consists of a univariate ordinal response Y with C categories, and

a covariate vector x. The modeling challenge for the ordinal regression problem

involves capturing general regression relationships in the response probabilities (es-

pecially for moderate to large C), while at the same time appropriately accounting

for the ordinal nature of the response.

A commonly used approach involves cumulative link models (e.g., Agresti,
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2013), under which the ordinal responses can be viewed as a discretized version of

latent continuous responses, typically assumed normally distributed resulting in

popular cumulative probit models. For Bayesian inference, such data augmentation

facilitates posterior simulation (Albert and Chib, 1993). However, probit models

preclude a flexible analysis of probability response curves, since covariate effects

enter linearly and additively, and the normality assumption implies restrictions

on the marginal response probabilities (e.g., Boes and Winkelmann, 2006). In

general, parametric ordinal regression models sacrifice flexibility in the response

distribution and/or the regression functions for the response probabilities.

To overcome such limitations, early work in the Bayesian nonparametrics

literature has explored semiparametric models, focusing mostly on binary regression.

Such methods relax parametric assumptions for the distribution of the latent

variables (e.g., Basu and Chib, 2003) or for the regression function (e.g., Choudhuri

et al., 2007). As a further extension, Chib and Greenberg (2010) modeled covariate

effects additively by cubic splines, combined with a scale normal mixture for

the latent responses, using the Dirichlet process (DP) prior (Ferguson, 1973) for

the mixing distribution. More general DP mixture priors for the distribution of

the latent continuous responses have been considered in Bao and Hanson (2015)

and DeYoreo and Kottas (2018a). The latter involves a fully nonparametric

Bayesian method under the density regression framework, modeling the joint

distribution of covariates and latent responses with a DP mixture of multivariate

normals. DeYoreo and Kottas (2020) provide a review of the joint response-

covariate modeling approach with categorical variables. The density regression

modeling framework is appealing with regard to the scope of ordinal regression

inferences. However, it involves computationally intensive posterior simulation

which does not scale with the number of covariates, and it is not suitable for
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applications where the assumption of random covariates is not relevant.

The “logits regression family” (Agresti, 2013) offers an alternative approach

to ordinal regression, based on direct modeling of the response distribution. Of

particular interest to our methodology are continuation-ratio logits models. The

continuation-ratio logits parameterization of the multinomial distribution implies

a sequential mechanism, such that the ordinal response is determined through

a sequence of binary outcomes. Starting from the lowest category, each binary

outcome indicates whether the ordinal response belongs to that category or to

one of the higher categories. The continuation-ratio logit for response category j

is the logit of the conditional probability of response j, given that the response

is j or higher. A key consequence is that, in a multinomial continuation-ratio

logits regression model, the response distribution can be factorized into complete

conditionals defined by Binomial logistic regression models.

To our knowledge, continuation-ratio logits have not been explored for general

Bayesian nonparametric methods for ordinal regression. For nominal regres-

sion, Linderman et al. (2015) discussed a semiparametric model that, under the

multinomial response distribution, replaces the linear covariate effects within the

continuation-ratio logits by Gaussian process priors. More relevant to our method-

ology is the dependent DP mixture model in Kottas and Fronczyk (2013), based

on a trinomial kernel that builds from the continuation-ratio logits formulation.

This modeling approach was developed specifically in the context of developmental

toxicity studies, rather than for general ordinal regression problems.

The continuation-ratio logits structure is attractive as a building block for

general nonparametric Bayesian ordinal regression modeling, and this is the primary

motivation for our methodology. We build the response distribution from a

nonparametric mixture of multinomial distributions, mixing on the regression
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coefficients under the continuation-ratio logits formulation for the mixture kernel.

Model flexibility is enhanced through covariate dependent mixture weights, assigned

a logit stick-breaking prior (Rigon and Durante, 2021). The stick-breaking structure,

along with the logistic form for the underlying covariate dependent variables, yields

a continuation-ratio logits regression representation also for the mixture weights.

The similarity in the structure of the mixture kernel and the mixture weights is a

distinguishing feature of the methodology, in terms of model properties and model

implementation. We take advantage of this structure, as well as a latent variable

model formulation, to explore the Kullback-Leibler support of the prior probability

model.

Regarding model implementation, using the Pólya-Gamma data augmentation

approach for logistic regression (Polson et al., 2013), we design an efficient Gibbs

sampling algorithm for posterior inference. The posterior simulation method

is ready to implement, in particular, it does not require specialized techniques

or tuning of Metropolis-Hastings steps. Moreover, the product of Binomials

formulation of the multinomial kernel yields a Gibbs sampler which, given all

other model parameters, allows for separate updates for each set of mixture kernel

parameters associated with each response category. Hence, the complexity of

the inference procedure is not unduly increasing with the number of response

categories.

The model yields flexible probability response curves expressed as weighted

sums of parametric regression functions with local, covariate-dependent weights.

As simplified versions of the general model structure, we explore mixture models

that incorporate the covariates only in the kernel parameters or only in the weights.

We study model properties and use synthetic and real data examples to compare

the different model formulations.
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Our objective is to develop a general toolbox for ordinal regression that allows

flexibility in both the response distribution and the ordinal regression relation-

ships. The toolbox comprises models of different complexity, all of which can be

implemented with relatively straightforward posterior simulation methods. It also

includes prior specification methods that range from a fairly non-informative choice

to more informative options that enable incorporation of monotonicity trends for

the probability response functions.

The rest of the chapter is organized as follows. In Section 2.2, we formulate the

general modeling approach, and discuss prior specification, posterior inference, and

model properties, including Kullback-Leibler support (with technical details given

in Appendix A.1). Section 2.3 presents the two simplified mixture models. The

methodology is illustrated in Section 2.4 with synthetic and real data examples.

Section 2.5 concludes with discussion.

2.2 General Methodology

2.2.1 From Building Blocks to General Model

Consider an ordinal response Y with C categories, recorded along with a

covariate vector x ∈ Rp. We can equivalently encode the response as a vector of

binary variables Y = (Y1, . . . , YC), such that Y = j is equivalent to Yj = 1 and

Yk = 0 for any k ̸= j.

The continuation-ratio logits regression model builds from the factorization of

the multinomial distribution in terms of Binomial distributions,

Mult(Y | 1, π1, . . . , πC) = Bin(Y1 | m1, φ(θ1)) . . . Bin(YC−1 | mC−1, φ(θC−1)),

(2.1)
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where m1 = 1, and mj = 1 − ∑j−1
k=1 Yk, for j = 2, . . . , C − 1, θj ≡ θj(x) = xTβj,

and φ(θ) = exp(θ)/{1 + exp(θ)} denotes the standard logistic function. The two

parameterizations are linked through π1 = φ(θ1), πj = φ(θj)
∏j−1

k=1{1 − φ(θk)}, for

j = 2, . . . , C − 1, and πC = ∏C−1
k=1 {1 − φ(θk)}. For notation simplicity, we use

K(Y | θ), where θ = (θ1, . . . , θC−1), for the continuation-ratio logits representation

of the multinomial distribution.

The parametric model is limited in the response distribution and the form of

covariate effects. A strategy that surpasses these limitations and achieves flexible

inference is to generalize the model via Bayesian nonparametric mixing. Using

the kernel function in (2.1) in conjunction with a nonparametric prior for the

covariate-dependent mixing distribution, we achieve the general nonparametric

extension of the continuation-ratio logits model,

Y | Gx ∼
∫
K(Y | θ) dGx(θ) =

∞∑
ℓ=1

ωℓ(x)K(Y | θℓ(x)). (2.2)

Here, the countable mixture form emerges under the nonparametric prior formula-

tion for the mixing distribution that represents it as a discrete distribution, Gx =∑∞
ℓ=1 ωℓ(x) δθℓ(x), with covariate-dependent atoms, θℓ(x), and weights, ωℓ(x).

The prior formulation for Gx in (2.2) is generic. There are several options for

building the model for the atoms and weights, a stick-breaking formulation for

the latter being the more common strategy. The dependent DP (DDP) prior and

related models (MacEachern, 2000; Quintana et al., 2022) has been explored in

different applications, including simplified “common-weights” or “common-atoms”

versions under which only the atoms or the weights, respectively, depend on the

covariates. Other options include the kernel stick-breaking process (Dunson and

Park, 2008), the probit stick-breaking process (Dunson and Rodríguez, 2011), and

the logit stick-breaking process (Rigon and Durante, 2021).
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As discussed below, for the ordinal regression problem with mixture kernel

K(Y | θ), the logit stick-breaking process (LSBP) prior offers a key advantage in

model structure and in posterior simulation. Therefore, for the general model in

(2.2), we assume the following LSBP prior for the covariate-dependent weights:

ω1(x) = φ(xTγ1), ωℓ(x) = φ(xTγℓ)
ℓ−1∏
h=1

(1−φ(xTγh)), ℓ ≥ 2; γℓ
i.i.d.∼ N(γ0,Γ0)

(2.3)

In addition, the atoms, θℓ(x) = (θ1ℓ(x), . . . , θC−1,ℓ(x)), are built through a linear

regression structure,

θjℓ(x) = xTβjℓ | µj,Σj
ind.∼ N(xTµj,xT Σjx), j = 1, . . . , C − 1, ℓ ≥ 1, (2.4)

with the random variables that define the atoms assumed a priori independent of

those that define the weights. The model is completed with the conjugate prior

for the collection of hyperparameters ψ = {µj,Σj}C−1
j=1 , that is,

Σj
ind.∼ IW (ν0j,Λ−1

0j ), µj | Σj
ind.∼ N(µ0j,Σj/κ0j), j = 1, . . . , C − 1. (2.5)

In Section 2.2.3, we discuss prior specification for {ν0j,Λ0j,µ0j, κ0j}C−1
j=1 , and for

γ0,Γ0.

To point to the benefit of working with the LSBP prior, we examine the

continuation-ratio logits structure in (2.1). As illustrated in Figure 2.1, such

structure implies a sequential mechanism in determining the ordinal response Y .

At a generic step j, a Bernoulli variable Hj ∼ Bern(∆j) is generated to either

set Y = j if Hj = 1, or to allocate Y to {k : k > j} when Hj = 0. The j-th

step can only be reached if Y has not been assigned to 1, . . . , j − 1. To bring in

the covariate effects, we place a logit-normal prior on ∆j, that is, ∆j = φ(xTβj)
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Generate H1 ∼ Bern(∆1),∆1 = φ(xTβ1),β1 ∼ N(µ1,Σ1)

Y = 1

H1 = 1
Generate H2 ∼ Bern(∆2),∆2 = φ(xTβ2),β2 ∼ N(µ2,Σ2)

Y = 2

H2 = 1
Generate H3 ∼ Bern(∆3),∆3 = φ(xTβ3),β3 ∼ N(µ3,Σ3)

Y = 3

H3 = 1
. . .

H3 = 0

H2 = 0

H1 = 0

Figure 2.1: Illustration of the continuation-ratio logits structure.

and βj ∼ N(µj,Σj). This procedure provides a natural way of defining a stick-

breaking process, engendering the LSBP as mentioned in Rigon and Durante (2021).

Consider a configuration variable L, corresponding to Y, that indicates the mixture

component in (2.2) from which Y is generated. The same sequential generative

process applies to L. At generic step ℓ, a Bernoulli variable H∗
ℓ ∼ Bern(ηℓ) is

generated, serving the same role as Hj in determining whether L locates at the

current stage, or moves to later stages. Treating ηℓ as the stick-breaking proportion,

the covariate effects are incorporated through ηℓ(x) = φ(xTγℓ). The resulting

nonparametric model admits the countable mixture representation in (2.2), with

weights and atoms depending on covariates in a similar fashion. We highlight

this correspondence because it paves the way in developing tractable posterior

inference strategies, which will be discussed in Section 2.2.4.

In this section, we consider properties under the general model formulation

in (2.2) comprising the covariate-dependent weights and atoms in (2.3) and (2.4),

respectively. In Section 2.3, we discuss the simpler common-weights and common-

atoms models as a means to address the trade-off between the flexibility of model

(2.2) and its potential computational cost. Our study of model properties and data

illustrations explore such trade-off and suggest scenarios for which the simpler

models may be suitable.
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2.2.2 Model Properties

The covariate-response relationship can be studied through the marginal prob-

ability response curves Pr(Y = j | Gx), for j = 1, . . . , C. Given the ordinal nature

of the response, also of interest are the conditional probability response curves,

Pr(Y = j | Y ≥ j, Gx). Here, we slightly abuse notation by writing Y = j, while

it is actually Y = 1j, the unit vector in RC with the jth element equal to 1.

Based on the particular mixture of multinomial distributions for the general

model in (2.2), the marginal probability response curve for j = 1, . . . , C can be

expressed as

Pr(Y = j | Gx) =
∞∑

ℓ=1
ωℓ(x)

{
φ(θjℓ(x))

∏j−1
k=1[1 − φ(θkℓ(x))]

}
, (2.6)

where the weights, ωℓ(x), and atoms, θjℓ(x), are defined in (2.3) and (2.4), respec-

tively, and we set φ(θCℓ(x)) ≡ 1. Moreover, the conditional probability response

curves are given by

Pr(Y = j | Y ≥ j, Gx) =
∞∑

ℓ=1
wjℓ(x)φ(θjℓ(x));

wjℓ(x) = ωℓ(x)∏j−1
k=1[1 − φ(θkℓ(x))]∑∞

ℓ=1 ωℓ(x)∏j−1
k=1[1 − φ(θkℓ(x))]

(2.7)

Both the marginal and conditional probability response curves admit a weighted

sum representation with component regression functions that correspond to the

parametric continuation-ratio logits model. The covariate-dependent weights in

(2.6) and (2.7) allow for local adjustment over the covariate space, thus enabling

non-standard regression relationships and relaxing the restrictions on the covariate

effects under the parametric model.

A useful observation is that the continuation-ratio logits model plays the role

20



of a parametric backbone for the nonparametric model, in the sense of prior

expectation. More specifically, using (2.6), and the assumptions of the prior model

in (2.2), (2.3) and (2.4),

E(Pr(Y = j | Gx)) =
∞∑

ℓ=1
E(ωℓ(x)) E

{
φ(θjℓ(x))

∏j−1
k=1[1 − φ(θkℓ(x))]

}

= E
{
φ(xTβj)

∏j−1
k=1[1 − φ(xTβk)]

}
,

(2.8)

where the last expectation is taken with respect to βj
ind.∼ N(µj,Σj), j = 1, . . . , C−

1. Hence, the prior expectation for the marginal probability response curves under

the nonparametric model reduces to the prior expectation under the parametric

model. This property facilitates prior specification, as discussed in Section 2.2.3.

The general model can capture a spectrum of inferences, with the parameters

γℓ controling the number of effective mixture components. Suppose the covariates

take values in a bounded region. If γ1 results in φ(xTγ1) effectively equal to

one, then the nonparametric model collapses to its parametric backbone. On the

other hand, if the first several γℓ are such that φ(xTγℓ) are relatively small, a

larger number of effective components is favored, in the extreme utilizing a distinct

multinomial component for each ordinal response. In practice, the strength of the

nonparametric model lies between these two extremes.

2.2.3 Prior Specification

To implement the general model in (2.3), (2.4) and (2.5), we need to specify

the parameters of the hyperpriors, that is, (γ0,Γ0) and {ν0j,Λ0j,µ0j, κ0j}C−1
j=1 .

We set κ0j = ν0j = p + 2 for all j, where p is the dimension of the covariate

vector x (including the intercept). For the other prior hyperparameters, the

proposed strategy is developed by first considering the prior expected probability
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response curves to specify {µ0j,Λ0j}C−1
j=1 , and then using the prior expected weight

placed on each mixing component to determine γ0 and Γ0.

The weights and atoms of the mixture model have the same structure. Specif-

ically, the weights are generated from a stick-breaking process with breaking

proportion ηℓ(x) = φ(xTγℓ), while the atoms can also be viewed as possess-

ing a stick-breaking form with breaking proportion ∆jℓ(x) = φ(xTβjℓ). Taking

the prior into consideration, we have ηℓ(x) ∼ LN(xTγ0,xT Γ0x) and ∆jℓ(x) ∼

LN(xTµ0j, (κ0j + 1)/(κ0j(ν0j − p− 1))xT Λ0jx), where LN(·, ·) denotes the logit-

normal distribution. Therefore, a key quantity in prior specification is the expecta-

tion of a logit-normal distributed random variable, which does not have analytical

form in general.

Nonetheless, if Z ∼ N(0, σ2), then E(φ(Z)) = 0.5, for any value of the variance

σ2 (Pirjol, 2013). This result motivates the default choice of hyperparameters

we use in practice, that is, µ0j = γ0 = 0p, and Λ0j = Γ0 = 102 Ip. We refer to

this specification as the “baseline” prior, which yields E(Pr(Y = j | Gx)) = 2−j,

for j = 1, . . . , C − 1, and E(Pr(Y = C | Gx)) = 2−(C−1), for all x. The prior

expectation of the weight associated with the ℓth mixing component is given by

2−ℓ, for any ℓ.

In general, both the shape of the prior expected probability response curves

and the prior expected weight placed on each mixing component depend on the

expectation of the logit-normal distribution. Even though that expectation does

not have analytical form, it can be readily obtained by simulation. Therefore, we

can tune the prior hyperparameters and evaluate the prior expectation of ηℓ(x)

and ∆jℓ(x). For instance, we can favor prior expected probability response curves

possessing some specific pattern (such as monotonicity) and/or a certain number

of mixture components. The following proposition, which can be obtained using
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(a) Monotonically decreasing function. (b) Monotonically increasing function.

Figure 2.2: Illustration of how the two bounds can be used to set the monotonic
pattern of the prior expected probability response curve.

results from Pirjol (2013), facilitates the tuning of prior hyperparameters.

Proposition 2.1. If Z ∼ N(µ, σ2), then φ(µ− σ2/2) ≤ E(φ(Z)) ≤ φ(µ+ σ2/2).

To illustrate the procedure in detail, we consider a special case where the

covariates vector is x = (1, x)T and the information is available for the first proba-

bility response curve. Suppose the prior hyperparameters are µ01 = (µ01,0, µ01,1)T

and Λ01 = diag(λ01,0, λ01,1). In such a case, the prior expected first probabil-

ity response curve E(Pr(Y = 1 | Gx)) = E(φ(xTβ1)), where xTβ1 ∼ N(µ01,0 +

µ01,1x, (κ01 + 1)/(κ01(ν01 − p − 1))(λ01,0 + λ01,1x
2)). For notation simplicity, let

us denote µs = µ01,s, λs = (κ01 + 1)/(2κ01(ν01 − p− 1))λ01,s, s = 0, 1. Then from

Proposition 2.1, E(Pr(Y = 1 | Gx)) is bounded by

φ(−λ1x
2 + µ1x+ µ0 − λ0) ≤ E(Pr(Y = 1 | Gx)) ≤ φ(λ1x

2 + µ1x+ µ0 + λ0)

Because the logistic function preserves monotonicity, it is helpful to study the

relative position of the two parabolas inside. Indeed, we can choose the prior

hyperparameters such that the two bounds squeeze a small region. The first prior

expected probability response curve pinches through that region, possessing certain

monotonicity, illustrated in Figure 2.2.
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Specifically, suppose the prior guess for the first probability response curve

is a decreasing function with respect to x. As shown in Figure 2.2a, we can

put the range of x inside the two axes of symmetry. In addition, the quantity

d = 2λ0 + µ2
1/2λ1 determines the maximum difference of the two bounds. The two

vertices determine the prior mean at the minimum and maximum value of x. To

summarize, the parameters µ0, µ1, λ0, λ1 can be specified by the equations



µ1

2λ1
= a1, − µ1

2λ1
= −a1

2λ0 + µ2
1

2λ1
= a2

µ0 + λ0 − µ2
1

4λ1
= −a3

µ0 − λ0 + µ2
1

4λ1
= a4

⇐⇒



µ0 = a4 − a3

2
µ1 = −a2 + a3 + a4

2a1

λ0 = a2 − a3 − a4

4
λ1 = a2 + a3 + a4

4a2
1

(2.9)

with positive numbers a1, a2, a3, a4 chosen based on the prior information. Note

that λ0 should be positive, so it imposes the constraint a2 > a3 + a4 on the choice

of these four numbers. Using (2.9), we can specific the prior hyperparameters

µ01,0, µ01,1, λ01,0, λ01,1. The same strategy can be extended for the monotonically

increasing case.

To specify µ0j and Λ0j for j > 1, we can sequentially implement this strategy.

Furthermore, if the dimension of covariates p > 2, it becomes more difficult to

specify hyperparameters, but the same strategy can be applied by considering each

covariate xs, s = 1, . . . , p marginally while fixing xs′ , s′ ̸= s.

As a concrete example, consider an ordinal response with C = 3 categories, and

a single covariate taking values in (−10, 10). Suppose the prior information is that

the first marginal probability response function is decreasing from 1 to 0, whereas

the second is increasing from 0 to 1. For the first decreasing probability curve,

we set a1 = a2 = 10, a3 = 6, a4 = 2 to specify µ01 and Λ01. As for the second
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Figure 2.3: Illustration of the prior specification strategy. In each panel, the red
solid line is the prior expected probability response curve, the blue dashed lines
and shaded region indicate the prior 95% interval estimate, and the green dotted
lines show 5 prior realizations.

probability curve, since E(Pr(Y = 2 | Gx)) = [1 − E(Pr(Y = 1 | Gx))]E[φ(xTβ2)]

and utilizing the specified monotonicity for E(Pr(Y = 1 | Gx)), we focus on

E[φ(xTβ2)]. To force a increasing trend, we further choose µ02 and Λ02 by

applying the strategy for the increasing case with same setting on a1 to a4. After

solving the corresponding equations for hyperparameters, we obtain Figure 2.3,

which shows point and interval estimates that reflect such prior information, with

a fair amount of variability.

2.2.4 Posterior Inference

For Markov chain Monte Carlo (MCMC) posterior simulation, we work with

a truncation approximation of the mixing distribution in the spirit of blocked

Gibbs sampling for stick-breaking priors (Ishwaran and James, 2001). We favor

the blocked Gibbs sampler as it results in practical model implementation and

it allows for full posterior inference for general regression functionals. Hence,

for posterior simulation, the mixing distribution Gx in (2.2) is replaced by GL
x =∑L

ℓ=1 pℓ(x) δθℓ(x), with θℓ(x) defined as before, and pℓ(x) = ωℓ(x), for ℓ = 1, ..., L−1,

whereas pL(x) = 1 −∑L−1
ℓ=1 pℓ(x).

The truncation level L can be chosen to achieve any desired level of accuracy.
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For normal mixtures with LSBP weights, Rigon and Durante (2021) show that,

for fixed sample size and covariates, the L1 distance between the prior predictive

distribution of the sample under Gx and GL
x decreases exponentially in L. The

proof for this result (Theorem 1 in Rigon and Durante (2021)) applies to essentially

any mixture kernel, and it thus also holds for the multinomial LSBP mixture

model defined in (2.2), (2.3) and (2.4).

In practice, we can specify L using the prior expectation for the partial sum of

weights. Under the prior in (2.3), E(∑L
ℓ=1 ωℓ(x)) = 1 − {1 − E(φ(xTγ))}L, where

the expectation on the right-hand-side is with respect to γ ∼ N(γ0,Γ0). Hence, L

can be selected by computing the expectation at a few representative values in the

covariate space. Note that, when γ0 = 0p, E(φ(xTγ)) = 0.5, for any x. We also

recommend monitoring the posterior samples for pL(x) for different values x in

the covariate space. Using a combination of such strategies, we worked with the

(conservative) truncation level of L = 50 for the data examples of Section 2.4.

Denote by Yi = (Yi1, . . . , YiC), where Yij ∈ {0, 1} with ∑C
j=1 Yij = 1, the ith

observed response, and by xi the corresponding covariate vector, for i = 1, . . . , n.

We introduce latent configuration variables, {Li}, such that Li = ℓ if and only if

Yi is assigned to the ℓth mixture component. Then, the hierarchical model for the

data can be expressed as

Yi | {βjℓ},Li
ind.∼ K(Yi | θLi

) =
C−1∏
j=1

Bin(Yij | mij, φ(xT
i βjLi

)), i = 1, . . . , n

Li | {γℓ}
ind.∼

L∑
ℓ=1

piℓ δℓ(Li), i = 1, . . . , n

βjℓ | (µj,Σj) ind.∼ N(µj,Σj), j = 1, . . . , C − 1, ℓ = 1, . . . , L

γℓ
i.i.d.∼ N(γ0,Γ0), ℓ = 1, . . . , L− 1

(µj,Σj) ind.∼ N(µj | µ0j,Σj/κ0j) IW (Σj | ν0j,Λ−1
0j ), j = 1, . . . , C − 1

(2.10)

where mi1 = 1, mij = 1 −∑j−1
k=1 Yik, for j = 2, . . . , C − 1, piℓ = φ(xT

i γℓ)
∏ℓ−1

h=1(1 −
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φ(xT
i γh)), for ℓ = 1, . . . , L− 1, and piL = ∏L−1

ℓ=1 (1 − φ(xT
i γℓ)).

Akin to the ordinal response Yi and its original form Yi, we can view the

latent configuration variable Li as the allocation of its multivariate form Li =

(Li1, . . . ,LiL) ∈ RL, with the connection defined as Li = ℓ ⇐⇒ Li = 1ℓ, the

unit vector in RL with the ℓth element equal to 1. An important observation is

that the prior model for the Li in (2.10) can be equivalently defined through a

continuation-ratio logits regression model for their multivariate images Li. More

specifically,

Li | {γℓ}
ind.∼ Bin(Li1 | 1, η1(xi)) × Bin(Li2 | 1 − Li1, η2(xi)) × . . .

×Bin

(
Li,L−1 | 1 −

L−2∑
k=1

Lik, ηL−1(xi)
)

where ηℓ(xi) = φ(xT
i γℓ), for ℓ = 1, . . . , L− 1.

The form of the hierarchical model for the data, along with the observation

above, elucidate the key model property discussed in Section 2.2.1. Under the

(truncated) LSBP prior for the covariate-dependent weights, we achieve effectively

the same structure for the weights and atoms of the general mixture model. In turn,

this allows us to use the Pólya-Gamma data augmentation approach (Polson et al.,

2013) to update both the atoms parameters as well as the ones for the weights.

In particular, for each response Yi, we introduce two sets of Pólya-Gamma latent

variables, such that conditionally conjugate updates emerge for the parameters

defining both the weights and the atoms. Therefore, all model parameters can be

updated via Gibbs sampling. Moreover, taking advantage of the continuation-ratio

logits model structure for the mixture kernel, parallel computing for the different

mixing components can be adopted, facilitating implementation in applications

where the number of response categories is moderate to large. Details of the

posterior simulation method are presented in Appendix B.1.
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Using the posterior samples for model parameters, we can obtain full inference

for any regression functional of interest. The MCMC posterior samples can also be

used to estimate the posterior predictive distribution for new response Y∗ given

new covariate vector x∗. Using superscript (t) to indicate the tth posterior sample

for the model parameters, the tth posterior predictive sample is obtained by first

sampling the corresponding configuration variable L(t)
∗ , such that L(t)

∗ = ℓ with

probability φ(xT
∗ γ

(t)
ℓ )∏ℓ−1

h=1(1 − φ(xT
∗ γ

(t)
h )), for ℓ = 1, . . . , L− 1 (and L(t)

∗ = L with

the remaining probability), and then sampling Y(t)
∗ from K(· | θ(t)

∗ ), with the jth

element of θ(t)
∗ given by φ(xT

∗ β
(t)
jL(t)

∗
), for j = 1, . . . , C − 1.

2.2.5 Assessing Model Flexibility

In Section 2.2.5.2, we study the Kullback-Leibler (KL) support of the proposed

prior model, using results from Barrientos et al. (2012) for nonparametric mixtures

for continuous responses. This study yields two results of independent interest:

a formulation of the ordinal LSBP mixture model in terms of latent continuous

responses (Section 2.2.5.1); and, a connection between the KL support of a prior for

continuous responses and the induced prior for categorical outcomes arising from

discretizing the continuous responses. Moreover, in Section 2.2.5.3, we contrast

continuation-ratio logit and cumulative logit models. The purpose is to provide

further motivation for the kernel choice of the LSBP mixture model. The proofs

for all theoretical results are given in Appendix A.1.

2.2.5.1 Latent Variable Representation

Recall that the continuation-ratio logits structure implies a sequential mecha-

nism involving binary steps to determine which of its C levels the ordinal response

admits. The mechanism can also be represented through latent continuous vari-
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ables, Z = (Z1, . . . ,ZC−1), and a sequential, binary partition of RC−1, comprising

sets

R1 = R+×RC−2; Rj = (R−)j−1×R+×RC−j−1, j = 2, . . . , C−1; RC = (R−)C−1.

(2.11)

Hence, Z ∈ Rj if its first j− 1 elements take negative values, and the j component

is positive valued. Referring to the description of the continuation-ratio logits

structure from Section 2.2.1, variable Zj plays a similar role to Bernoulli variable

Hj, where now it is the sign of Zj that specifies the ordinal response category,

such that Y = j if-f Zj > 0, given that Zk ≤ 0, for k = 1, . . . , j − 1. As stated in

the following proposition, the multinomial model in (2.1) emerges for independent

logistic variables Zj.

Proposition 2.2. Consider ordinal response Y = (Y1, . . . , YC), where Yj ∈ {0, 1}

with ∑C
j=1 Yj = 1, and continuous random vector Z = (Z1, . . . ,ZC−1) ∈ RC−1.

Assume that: Y | Z ∼ 1(Y = j ⇐⇒ Z ∈ Rj), for j = 1, . . . , C, with the

Rj defined in (2.11); and, Z | θ ∼ ∏C−1
j=1 L(Zj | θj), where θ = (θ1, . . . , θC−1),

and L(· | θ) denotes the logistic distribution with mean θ and scale parameter 1.

Then, marginalizing over Z, Y | θ follows the multinomial distribution with the

continuation-ratio logits parameterization in (2.1).

Proposition 2.2 formalizes the latent variable representation discussed in Tutz

(1991), in particular, it provides the explicit connection between the values of Y and

Z, and the complete distributional assumptions (including independence) for Z.

This result further highlights the benefits of the binary choice, sequential structure.

Because the order of the response variable is preserved in the sequential mechanism,

order restrictions for the latent Zj are not required. This is in contrast with

cumulative link models where the cut-off variables that discretize the single latent
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continuous response must be ordered. The proposition also suggests a direction

for constructing more flexible models by relaxing the parametric assumption for

the distribution of the Zj. Indeed, the next result shows that we can recover the

ordinal regression model of Section 2.2.1 through a LSBP mixture model for Z

with a product logistic mixture kernel.

Proposition 2.3. Consider ordinal response Y = (Y1, . . . , YC), where Yj ∈ {0, 1}

with ∑C
j=1 Yj = 1, and continuous random vector Z = (Z1, . . . ,ZC−1) ∈ RC−1.

Assume that: Y | Z ∼ 1(Y = j ⇐⇒ Z ∈ Rj), for j = 1, . . . , C, with the Rj

defined in (2.11); and, Z | Gx ∼ ∑∞
ℓ=1 ωℓ(x)

{∏C−1
j=1 L(Zj | θjℓ(x))

}
, where the

ωℓ(x) and θjℓ(x) are defined in (2.3) and (2.4), respectively. Then, marginalizing

over Z, Y | Gx follows the multinomial LSBP mixture model in (2.2).

We note that Proposition 2.3 does not simplify posterior simulation; Gibbs

sampling for the model augmented with latent Z i for each observed response Yi

would require imputing the Z i, and it would still involve two sets of Pólya-Gamma

latent variables. However, the latent variable formulation offers an alternative

perspective to model structure, as well as a useful tool to study model properties,

such as KL support discussed in the next section.

2.2.5.2 Kullback-Leibler Support of the LSBP Mixture Model

Consider a prior F on a space of densities F. Density f 0 ∈ F is in the KL support

of F if F(Nϵ(f 0)) > 0, for any ϵ > 0, where Nϵ(f 0) = {f :
∫
f 0(z) log(f 0(z)/

f(z)) dz < ϵ} is the (size ϵ) KL neighborhood of f 0. Keeping the focus on

continuous distributions, the regression setting targets collections of densities

{f 0
x : x ∈ X }, indexed by values in the covariate space X . We defer technical

details to Appendix A.1, but note that the extension of the KL support definition

considers the KL divergence (in the standard definition above) at arbitrary, finite
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sets of values in X (e.g., Barrientos et al., 2012).

Theorem 2.1 establishes the KL support of the multinomial LSBP mixture

prior model defined in (2.2), (2.3) and (2.4). The theorem builds from results in

Barrientos et al. (2012) who examined the KL support of stick-breaking process

mixture models for covariate-dependent densities. It can be shown that the LSBP

mixture with the product logistic kernel, given in Proposition 2.3 for the continuous

random vector Z, satisfies the various conditions required for the KL results in

Barrientos et al. (2012). Thus, the latent variable representation of the ordinal

regression LSBP mixture model yields the key step towards establishing its KL

support. The other step is provided by Lemma 2.1 which connects the KL support

of priors for continuous distributions with the KL support of priors for distributions

of discrete variables induced by discretizing the corresponding continuous variables.

For our purposes, the connection is achieved by starting with a generic prior Fx

for the covariate-dependent distribution of continuous random vector Z ∈ RC−1.

Then, prior Px for the distribution of ordinal response Y = (Y1, . . . , YC) is induced

through 1(Y = j ⇐⇒ Z ∈ Rj), for j = 1, . . . , C, with the Rj defined in (2.11).

Hence, prior Fx for densities fx gives rise to prior Px for ordinal probabilities px

via the mapping

fx 7→ px(y) =
∫

Ry

fx(z) dz, for y = 1, . . . , C. (2.12)

The following lemma relates the KL support of priors Fx and Px.

Lemma 2.1. Consider prior Fx for densities fx, and the prior Px for ordinal

probabilities px induced from (2.12). Assume that densities {f 0
x : x ∈ X } are in

the KL support of Fx, and consider probability mass functions {p0
x : x ∈ X }, where

p0
x is defined from f 0

x according to (2.12). Then, the probability mass functions

{p0
x : x ∈ X } are in the KL support of Px.
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Key to Lemma 2.1 is an inequality that allows us to bound the sum in the KL

divergence for probability mass functions by the integral in the KL divergence for

densities, when the densities and mass functions are related as in (2.12). The result

is not restricted to the specific partition in (2.11), and it thus offers general scope

to study the KL support of priors for categorical distributions arising through

discretization of latent continuous responses.

Finally, combining Lemma 2.1, Proposition 2.3, and results from Barrientos

et al. (2012), we can derive the KL property for our model.

Theorem 2.1. Denote by Px the LSBP mixture prior defined in (2.2), (2.3) and

(2.4), and consider {p0
x : x ∈ X }, a generic collection of covariate-dependent

probabilities for an ordinal response with C categories. Assume that the probability

of each response category is strictly positive. Then, the mass functions {p0
x : x ∈ X }

are in the KL support of Px.

Full KL support is a key theoretical property of the prior model. For priors

on spaces of continuous densities, it is typically the case that various regularity

conditions are required for a generic density to be in the KL support of the prior.

In our context, the underlying regularity conditions in the results from Barrientos

et al. (2012) reduce to the condition that response probabilities are strictly positive.

Finally, as discussed in Appendix A.1, KL support results can also be obtained for

the simplified models of Section 2.3.

2.2.5.3 Continuation-ratio Logits vs Cumulative Logits

As discussed in the Introduction, cumulative link models provide a common

approach to ordinal regression, with the inverse link typically specified through

the distribution function of a continuous variable Z. Then, the ordinal response Y

values can be developed through discretization of the latent continuous response
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Z, in particular, Y = j if and only if Z ∈ (κj−1,κj], for j = 1, . . . , C. Here

−∞ = κ0 < κ1 < . . . < κC−1 < κC = ∞ are cut-off points, where, typically,

κ1 = 0 for identifiability. Key examples are cumulative probit and cumulative

logit models for which the continuous distribution is N(Z | ϑ, 1) and L(Z | ϑ),

respectively. In the absence of covariates, the parameters of cumulative logit and

continuation-ratio logits models can be related as shown in the following result.

Proposition 2.4. Consider the two distinct model formulations for an ordinal

response with C categories given by the cumulative logit model with parameters

(ϑ,κ2, ...,κC−1), and the continuation-ratio logits model in (2.1) with parameters

(θ1, ..., θC−1). Then, the parameters of the two models are connected through

ϑ = −θ1 and the recursive expression κj = log(eκj−1 + eκj−1+θj + eθj−θ1), for

j = 2, . . . , C − 1.

Despite the one-to-one correspondence between the parameters of the two

models, there is a key difference in regression modeling. Under continuation-ratio

logits, covariate effects are modeled through θj = xTβj, for j = 1, ..., C − 1.

Here, the order for the response outcomes is induced by the binary, sequential

mechanism, and thus the regression model specification is not constrained by

restrictions on its parameters. In contrast, under cumulative link models, the order

for the response values requires ordered cut-off points, which makes it challenging

to model them as functions of the covariates. Indeed, cumulative link models

typically incorporate covariates only through the location parameter of the latent

continuous response, e.g, the proportional odds regression model arises under the

L(Z | xTβ) distribution.

On the other hand, sequential models, such as continuation-ratio logits models,

are not invariant under reversal of the order of the response categories, while

cumulative link models are (Peyhardi et al., 2015). Nonetheless, for several
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applications, the order of the ordinal response categories is determined by the

context of the problem and/or the relevant scientific questions. We provide an

example in Section 2.4.3, where the order of the response (disease severeness) is

encoded from the mildest to the most severe, because of primary interest is study

of covariate effects on the progress from mild to severe levels.

We note that existing nonparametric Bayesian methods for ordinal regression

(reviewed in the Introduction) build from cumulative link models. In particular,

the fully nonparametric models in Bao and Hanson (2015) and DeYoreo and

Kottas (2018a) can be expressed as mixtures of cumulative probit regressions,

the former with mixture weights that do not depend on the covariates, the latter

with covariate-dependent mixture weights. The earlier discussion suggests that

the continuation-ratio logits formulation offers wider scope as a building block in

nonparametric mixture modeling for ordinal regression.

2.3 Specific Models for Ordinal Regression

Here, we study simplified model versions, which are naturally suggested given

the two building blocks of the general model. In particular, we discuss ordinal

regression models that arise by retaining covariate dependence only in the atoms

(Section 2.3.1) or only in the weights (Section 2.3.2). The different model versions

are empirically compared in Section 2.4.

2.3.1 The Common-weights Model

As a first simplification, we can remove the covariate dependence from the

mixture weights. That is, the ordinal regression mixture model is built from the

common-weights mixing distribution Gx = ∑∞
ℓ=1 ωℓ δθℓ(x), such that Y | Gx ∼
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∑∞
ℓ=1 ωℓ K(Y | θℓ(x)), where the covariate-dependent atoms are defined as in the

general model in (2.4) and (2.5).

Regarding the prior model for the weights, one option would be to keep the

LSBP structure, that is, reduce xTγℓ in (2.3) to scalar parameter γℓ, with the

γℓ independent and identically normally distributed. We work instead with the

DP prior for the weights: ω1 = V1, and ωℓ = Vℓ
∏ℓ−1

h=1(1 − Vh), for ℓ ≥ 2, where

Vℓ | α i.i.d.∼ Beta(1, α).

Using the DP-induced prior for the weights allows connections with the well-

established literature on DDP mixtures, including the early work with common-

weights DDP priors, e.g., the ANOVA DDP (DeIorio et al., 2004) and the spatial

DP (Gelfand et al., 2005). In particular, the common-weights model can be

equivalently written as a DP mixture model:

Y | F ∼
∫
K(Y | xTβ1, . . . ,xTβC−1) dF (β1, . . . ,βC−1)

where F follows a DP prior with total mass parameter α, and centering distribution

defined through βj | (µj,Σj) ind.∼ N(µj,Σj), for j = 1, . . . , C − 1. The model is

completed with a Gamma(aα, bα) hyperprior for α, and the prior for the (µj,Σj) in

(2.5). For prior specification, we combine the approach for the atoms in the general

model with techniques for specifying the prior for the total mass DP parameter.

The posterior simulation method replaces the steps for updating the weights with

the update for the DP weights under blocked Gibbs sampling. The details can be

found in Appendix B.1.

With the expression for the weights appropriately adjusted, the common-weights

model inherits the properties of the general model, discussed in Section 2.2.2. The

prior expectation in (2.8) is not affected by the form of the weights. However,

the probability response curves admit a potentially less flexible form than the
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one in (2.6) under the general model. We still have a weighted combination of

parametric regression functions, but now without the local adjustment afforded

by covariate-dependent weights. The data analyses in Section 2.4 demonstrate

the practical utility of the general model, but also include examples where the

common-weights model yields practical, sufficiently flexible inference.

2.3.2 The Common-atoms Model

The alternative way to simplify the general model is to use mixing distribution

Gx = ∑∞
ℓ=1 ωℓ(x) δθℓ

, resulting in the common-atoms mixture model:

Y | Gx ∼
∞∑

ℓ=1
ωℓ(x)K(Y | θℓ)

where θℓ = (θ1ℓ, . . . , θC−1,ℓ). The covariate-dependent weights are defined using

the LSBP prior in (2.3). The prior model for the atoms is built from θjℓ |

µj, σ
2
j

ind.∼ N(µj, σ
2
j ), for j = 1, . . . , C − 1, and ℓ ≥ 1. The model is completed with

the conjugate prior for the hyperparameters: σ2
j

ind.∼ IG(a0j, b0j), with a0j > 1,

and µj | σ2
j

ind.∼ N(µ0j, σ
2
j/ν0j), for j = 1, . . . C − 1, where IG(·, ·) denotes the

inverse-gamma distribution.

Model implementation builds from the general model, with appropriate adjust-

ments for the atoms. Here, E(Pr(Y = j | Gx)) = E
{
φ(θj)

∏j−1
k=1(1 − φ(θk))

}
, for

j = 1, . . . , C, where the expectation is taken with respect to θj
ind.∼ N(µ0j, (ν0j +

1)b0j/ν0j(a0j − 1)) (obtained by marginalizing over the prior for (µj, σ
2
j )). Hence,

the prior expected marginal probability response curves are constants over the

covariate space. The prior specification strategy utilizes this property, by setting

{µ0j, ν0j, a0j, b0j}C−1
j=1 such that these constants correspond to prior information

for the ordinal response probabilities. The key quantity is again the expecta-

tion of a logit-normal distributed random variable (discussed earlier in Section
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2.2.3). The posterior sampling scheme is adapted from the general model, with

the normal-inverse-Wishart update for the atoms parameters replaced by the

univariate normal-inverse-Gamma analogue. Details are given in Appendix B.1.

The common-atoms mixture structure offers a parsimonious model formulation,

especially for problems with a moderate to large number of response categories.

On the other hand, the simplified model form involves a potential limitation. The

marginal and conditional probability response curves have the form in (2.6) and

(2.7), respectively, with θjℓ(x) replaced by θjℓ. Hence, the covariates inform the

shape of the regression curves only through the mixture weights. As a practical

consequence, the common-atoms model typically activates a larger number of

effective mixture components to estimate the regression relationship, and it thus

encounters a higher risk of overfitting for problems with a moderate to large number

of covariates. This point is illustrated with the data examples of Section 2.4.

2.4 Data illustrations

2.4.1 Synthetic Data Examples

We consider three simulation examples to demonstrate the modeling framework,

including comparative study of the common-weights, common-atoms, and general

models. The first example is designed to highlight the benefits of local, covariate-

dependent weights in capturing non-standard shapes of probability response curves.

The objective of the second example is to study how the different models handle

the challenge of recovering standard regression relationships for which the non-

parametric mixture model structure is not necessary. The third example compares

the effectiveness of the different models in capturing non-linear and non-additive

covariate effects, including comparison with the density regression model from
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DeYoreo and Kottas (2018a).

2.4.1.1 First Synthetic Data Example

For the first experiment, to facilitate graphical illustrations, we consider an

ordinal response with C = 3 categories, and one (continuous) covariate, where

xi
i.i.d.∼ U(−10, 10), such that with the intercept, the covariate vector is xi =

(1, xi)T . We generate the responses from a three component mixture of multinomial

distributions, expressed in their continuation-ratio logits form. That is, Y ∼∑3
k=1 wk(x)K(Y | θk(x)), where θjk(x) = bjk0 + bjk1x, for j = 1, 2 and k =

1, 2, 3. The covariate dependence is introduced in the weights by computing pjx =

Φ(aj0 + aj1x), for j = 1, 2, where Φ is the N(0, 1) distribution function, and

setting (w1(x), w2(x), w3(x)) = (p1x, (1 − p1x)p2x, (1 − p1x)(1 − p2x)). The weights

and atoms parameters are chosen such that the probability response curves have

non-standard shapes (see Figure 2.4). We consider two sample sizes, n = 200 and

n = 800.

The prior hyperparameters for the atoms are set according to the baseline

choice. For the common-atoms and general models, we specify the LSBP prior

hyperparameters (γ0,Γ0) to favor a priori more mixture components in the interval

of covariate values (−10, 0) where there is more variation in the regression functions.

We note however that the prior specification is still fairly non-informative regarding

the shape of the regression functions. In particular, under all three models, the

prior mean estimates for the probability response curves are flat, and the prior

95% interval estimates span a substantial portion of the unit interval.

Inference results under the general and common-atoms models are contrasted

with the common-weights model in Figure 2.4. As expected, the common-weights

model does not recover well the non-standard regression functions for the first and
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(a) Common-weights and common-atoms models (n = 200).

(b) Common-weights and general models (n = 200).

(c) Common-weights and common-atoms models (n = 800).

(d) Common-weights and general models (n = 800).

Figure 2.4: Synthetic data example. Posterior mean and 95% credible interval
estimates for the marginal probability response curves under the common-weights
(blue line and shaded region), common-atoms (orange line and shaded region), and
general (red line and shaded region) models. In each panel, the green solid line is
the true regression function.

third response categories. The two models that use covariate-dependent mixture

weights perform notably better, with the general model resulting overall in more

accurate estimation. Moreover, increasing the sample size results in more precise

point estimates and more narrow posterior uncertainty bands.
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(a) Common-atoms model.

(b) General model.

Figure 2.5: Synthetic data example (n = 800). Box plots of the posterior samples
for the six largest mixture weights, under the common-atoms and general models.

Focusing on the models with covariate-dependent mixture weights (and the

data set with n = 800), Figure 2.5 explores the posterior distribution of the six

largest weights over the covariate space. For both models, it is essentially the first

three largest weights that, given the data, define the probability vector of weights.

However, we note the more local adjustment in the two largest weights under the

common-atoms model, which becomes more pronounced in parts of the covariate

space where the probability curves change more drastically. This is compatible

with the common-atoms model’s structure that seeks to fit the regression functions

with atoms that do not change across the covariate space.

To further investigate how the proposed models behave in capturing non-
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Table 2.1: First simulation example. Summary of model comparison using the
posterior predictive loss criterion. The values corresponding to the best model are
given in bold.

Model G1(M) P1(M) G2(M) P2(M) G3(M) P3(M)
Common-weights 132.59 141.27 72.76 83.54 136.40 141.91
Common-atoms 90.52 103.84 65.79 82.25 89.45 107.64

General 89.96 96.25 64.14 72.56 88.24 94.39

standard probability response curves, we conduct a formal model comparison

using the posterior predictive loss criterion (Gelfand and Ghosh, 1998). The

criterion contains a goodness-of-fit term and a penalty term. Since the response

variable Y is multivariate, we consider the posterior predictive loss for every

entry of it. Specifically, let Y∗
i denote the replicate response drawn from the

posterior predictive distribution. Then, the goodness-of-fit term is defined as

Gj(M) = ∑n
i=1[Yij − EM(Y∗

ij | data)]2, whereas the penalty term is defined as

Pj(M) = ∑n
i=1 VarM(Y∗

ij | data), for j = 1, . . . , C. The results are summarized

in Table 2.1. The two models with covariate-dependent weights outperform the

common-weights model. The common-atoms model and the general model are

comparable in terms of goodness of fit. However, the common-atoms model

activates more components to compensate for the constant atoms, resulting in a

larger penalty.

2.4.1.2 Second Synthetic Data Example

We generate n = 100 responses from a probit model, that is, we first sample

normally distributed latent continuous variables ỹi, and then discretize the ỹi with

cut-off points to get the ordinal responses Yi, for i = 1, . . . , n. The covariates,

(1, xi)T , with the xi sampled from the Unif(−10, 10) distribution, enter through

the mean of the normal distribution for the latent variables. The objective is

to study how the different models handle the challenge of recovering standard
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(a) Probit model.

(b) Common-weights model.

(c) Common-atoms model.

(d) General model.

Figure 2.6: Second simulation example. Inference results for the marginal
probability response curves. In each panel, the dashed line and shaded region
correspond to the posterior mean and 95% credible interval estimates, whereas the
(green) solid line denotes the true regression function.

regression relationships for which the nonparametric mixture model structure is

not necessary.

The nonparametric mixture models are applied to the data, using the (non-

informative) baseline prior for their hyperparameters. Figure 2.6 plots posterior

point and interval estimates for the marginal probability response curves, includ-

42



Table 2.2: Second simulation example. Summary of model comparison using the
posterior predictive loss criterion. The values correspond to the best model are
given in bold.

Model G1(M) P1(M) G2(M) P2(M) G3(M) P3(M)
Common-weights 6.94 7.94 12.95 13.59 8.41 9.00
Common-atoms 7.35 9.73 13.76 15.43 8.73 11.99

General 7.26 7.38 12.94 12.78 8.51 8.84

ing, as a reference point, estimates under the parametric probit model used to

generate the data. As expected, the nonparametric models result in wider pos-

terior uncertainty bands than the parametric model. In terms of recovering the

underlying regression curves, the common-atoms model is less effective than the

common-weights and the general model. As discussed in Section 2.3.2, this can be

explained from the common-atoms model property that the regression curve shapes

are adjusted essentially only through the mixture weights. The findings from the

graphical comparison are supported by results from formal comparison, using the

aforementioned posterior predictive loss criterion. The results, summarized in

Table 2.2, suggests comparable performance for the common-weights and general

models, whereas both outperform the common-atoms model.

To further explore how the different nonparametric models utilize the mixture

structure, Figure 2.7 shows the posterior distributions of the three largest mixture

weights across covariate values. The general model is the most efficient in terms

of the number of effective mixture components, using a second component (with

small weight) only for covariates values around 0. This is to be expected, since it

is those covariate values that result in practically relevant differences between the

probit regression function (used to generate the data) and the logistic regression

kernel. The common-atoms model activates effectively one extra component for

covariate values where the regression functions are not flat. Compared to the

general model, it places larger weights on the second component to account for the
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(a) Common-weights model.

(b) Common-atoms model.

(c) General model.

Figure 2.7: Second simulation example. Box plots of the posterior samples for
the three largest mixture weights under each of the nonparametric models.

constant atoms. On the other hand, the mixture weights can not change with the

covariates for the common-weights model. Hence, to recover the probit regression

function, this model utilizes effectively three mixture components, with the second

and third assigned larger (global) weight than the other two models.

We also plot the posterior mean of the three largest weights and the correspond-

ing atoms φ(θ1) and φ(θ2) in Figure 2.8. Combining with the posterior predictive

loss criterion for each model, we can diagnose how the three models estimate

the probability response curves. It appears that all three models are dominated

by the mixing component with the largest weight, whose shape is similar to the

truth. (The common-weights model favors two mixing components, but the two

components are close to each other.) Regarding differences, the common-atoms
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(a) Common-weigths model.

(b) Common-atoms model.

(c) General model.

Figure 2.8: Second simulation example. Posterior mean estimates of the three
largest mixture weights and atoms. The red circle, blue plus, and green triangle
correspond to the first, second, and third largest weights, respectively.

model can only adjust the shape of the regression functions through the mixing

weights. It thus uses more effective mixing components with shapes differing

dramatically, yielding larger goodness-of-fit and penalty terms. The general model

is overall the most effective in capturing the actual shape. It uses fewer and similar

effective mixing components, leading to smaller penalty terms.

The sample size for this example was intentionally taken to be relatively small,

in order to study sensitivity to the prior choice, as well as to demonstrate the

practical utility of a more focused prior specification approach. If the monotonicity

of two of the regression functions was in fact available as prior information, such

information can be incorporated into the model, as discussed in Section 2.2.3.
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(a) Common-weigths model.

(b) Common-atoms model.

(c) General model.

Figure 2.9: Second simulation example. Second simulation example. Inference
results for the marginal probability response curves, under the informative prior
specification. In each panel, the dashed line and shaded region correspond to the
posterior mean and 95% credible interval estimates, whereas the (green) solid line
denotes the true regression function.

Indeed, we consider a more information prior choice to reflect a decreasing shape

for the first probability response function, and an increasing trend for the third

response probability function. This set of informative prior hyperparameters leads

to the posterior estimates shown in Figure 2.9. We note the more accurate posterior

mean estimates and the reduction in the width of the posterior uncertainty bands,

the improvement being particularly noteworthy for the common-atoms model.
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Figure 2.10: Third simulation example. The true probability response surface
πj(x1, x2), for j = 1, 2, 3 (from left to right).

2.4.1.3 Third Synthetic Data Example

The purpose of the third simulation example is to investigate the effectiveness

of the proposed models in capturing the joint effect of covariates. We consider two

covariates and sample their values as xis
i.i.d.∼ Unif(0, 1), for s = 1, 2. The responses

are sampled from the multinomial distribution with the continuation-ratio logits

parameterization, where the θj(x), for j = 1, 2, are non-linear functions of the

covariates. Specifically, we take θ1(x) = c11 + c12 sin(a11x1 + a12x2), and θ2(x) =

c21 + c22 exp(a21x1 + a22x2). The covariate effects are non-linear and non-additive,

resulting in non-standard probability response surfaces (displayed in Figure 2.10).

We fit the general LSBP mixture model, as well as its two simplified versions.

Note that covariates enter the mixture model structure linearly and additively,

through the weights (common-atoms model), the atoms (common-weights model),

or both (general model). It is therefore of interest to examine how the proposed

models capture the non-standard probability response surfaces through the mixing

of linear combinations of covariates. We take a fairly large sample size (n = 3000)

to ensure the data is representative of the underlying data generating mechanism.

We set the prior hyperparameters for the atoms according to the baseline choice,

while the hyperparameters for the weights are set to encourage a relatively large
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(a) Common-weights model. (b) Common-atoms model.

(c) General model. (d) Density regression model.

Figure 2.11: Third simulation example. Posterior mean estimates of πj(x1, x2),
for j = 1, 2, 3 (from left to right).

number of effective mixture components. The truncation level is set as L = 50.

Figure panels 2.11a, 2.11b, and 2.11c present the posterior mean estimates of the

probability response surfaces under the common-weights model, the common-atoms

model, and the general model, respectively. Although none of the models include

non-linear or interaction terms for the covariates, the general model captures

the non-linear joint effect particularly well, and the common-atoms model also

demonstrates good estimation performance. These two models involve covariate-

dependent weights, which allow for local adjustment in the regression surface

estimates. As illustrated by this example, such local adjustment is beneficial,

especially when the covariate effects are expected to be non-standard.

Focusing on the two LSBP mixture models with covariate-dependent weights,

Figure 2.12 plots the posterior mean estimates for the three largest weights over

a grid in the covariate space. The common-atoms model has more pronounced

local changes, which is to be expected because it can adjust the shape of the

regression surfaces only through the mixture weights. The general model exhibits

more smooth estimated weight surfaces.
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(a) Common-atoms model. (b) General model.

Figure 2.12: Third simulation example. Posterior mean of the three largest
mixture weights for the common-atoms and general LSBP mixture models.

Focusing on the two LSBP mixture models with covariate-dependent weights,

Figure 2.12 plots the posterior mean estimates for the three largest weights over

a grid in the covariate space. The common-atoms model has more pronounced

local changes, which is to be expected because it can adjust the shape of the

regression surfaces only through the mixture weights. The general model exhibits

more smooth estimated weight surfaces.

As discussed in the Introduction section of the main paper, the literature

contains a relatively small collection of fully nonparametric Bayesian methods for

ordinal regression. Here, we include comparison with the density regression model

from DeYoreo and Kottas (2018a), for which the R code to implement the MCMC

posterior simulation algorithm is available (from the online supplemental material

of the journal article). Under the density regression modeling approach, the joint

distribution of the two covariates and the latent continuous response is modeled

with a DP mixture of trivariate normal densities, mixing on both the mean and

the covariance matrix. The ordinal response probabilities emerge by discretizing

the implied conditional distribution for the latent response given the covariates.

The conditioning results in a model structure for the ordinal response distribution

that can be interpreted as a mixture of probit regressions with covariate-dependent

mixture weights.

The posterior mean estimates for the probability response surfaces are plotted
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in Figure 2.11d. The density regression model captures the general trends, but it

overestimates the local changes of the probability surfaces. This is likely due to both

the different model structure (modeling the joint covariate-response distribution

rather than the conditional response distribution) and to the underlying truth,

which is much more structured than the density regression model. The results in

Figure 2.11d are similar under different prior choices, in particular, under priors

for the DP precision parameter that favor both large and fairly small number of

distinct mixture components.

We further compare models based on their performance in estimating the

probability response surfaces πj(x1, x2), for j = 1, 2, 3. We consider three metrics:

the rooted mean square error (RMSE); the average length of the 95% posterior

credible interval; and, the ratio at which the 95% credible interval covers the true

probability. More specifically, for N grid points on the covariate space, the RMSE

is calculated by

Ēj = N−1

√√√√ N∑
i=1

{π∗
j (x1i, x2i) − π̂j(x1i, x2i)}2

where π∗
j (x1i, x2i) and π̂j(x1i, x2i) denote respectively the posterior mean estimate

and the true value of the j-th category response probability at covariate values

(x1i, x2i). In addition, the average 95% posterior credible interval length regard-

ing the j-th category is obtained as L̄j = N−1 ∑N
i=1{πU

j (x1i, x2i) − πL
j (x1i, x2i)},

with πU
j (x1i, x2i) and πL

j (x1i, x2i) denoting the 97.5th and 2.5th percentiles of the

posterior samples. Finally, the coverage percentage of the 95% posterior credible

interval is calculated by

R̄j = N−1
N∑

i=1
1{πL

j (x1i, x2i) ≤ π̂j(x1i, x2i) ≤ πU
j (x1i, x2i)}.
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Table 2.3: Third simulation example. Summary of model comparison results,
using the RMSE Ēj, average 95% posterior credible interval length L̄j, and the
coverage of the 95% posterior credible interval R̄j, for j = 1, 2, 3. The values that
correspond to the best model are given in bold.

Model Level 1 Level 2 Level 3
Ē1 L̄1 R̄1 Ē2 L̄2 R̄2 Ē3 L̄3 R̄3

Common-weights 4.08 0.09 0.59 2.24 0.03 0.93 2.59 0.09 0.74
Common-atoms 2.26 0.06 0.79 1.69 0.04 0.74 2.15 0.07 0.88

General 1.63 0.04 0.91 0.83 0.02 1.00 1.31 0.04 0.92
Density regression 3.82 0.07 0.95 2.09 0.06 0.97 3.58 0.10 0.92

Table 2.3 reports the metrics values for the four models. Among the LSBP mixture

models, the general model performs better with respect to essentially all metrics,

followed by the common-atoms model. These results reinforce the findings from the

graphical comparison of the posterior mean estimates for the probability response

surfaces. Also consistent with the graphical comparison in Figure 2.11, the general

and common-atoms LSBP mixture models outperform the density regression model

in terms of RMSE. This is also the case with respect to the average 95% posterior

credible interval length. The density regression model achieves the best results for

the coverage criterion, with the general LSBP mixture model a fairly close second.

Overall, the general LSBP mixture model yields the best performance under the

particular simulation scenario.

2.4.2 Credit ratings of U.S. firms

We consider data on Standard and Poor’s (S&P) credit ratings for 921 U.S.

firms in 2005 (Verbeek, 2008). The ordinal response is the firm’s credit rating,

originally recorded on a scale with seven categories. Since there were only 17

firms with rating of 1 or 7, and to facilitate illustration of inference results, we

combine the responses in the first two and last two categories. We thus obtain an
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Table 2.4: Credit ratings data. Summary of the posterior predictive loss criteria
for model comparison. Each pair of numbers corresponds to (Gj(M), Pj(M)),
j = 1, · · · , 5. “Parametric” refers to the continuation-ratio logits model. The
values for model with the smallest Gj(M) + Pj(M) are highlighted in bold.

Parametric Common-weights Common-atoms General
Level 1 (92.65, 90.17) (88.07,92.38) (92.64, 104.97) (86.61, 95.79)
Level 2 (158.71, 158.72) (153.13, 158.92) (156.04, 163.96) (153.10,158.07)
Level 3 (150.18, 150.82) (145.40,150.38) (149.00, 152.03) (148.11, 148.60)
Level 4 (95.95, 96.29) (95.08, 97.23) (97.41, 100.10) (94.20,94.24)
Level 5 (17.80,17.46) (17.85, 20.57) (21.19, 31.04) (17.74, 20.47)

ordinal response scale ranging from 1 to 5, with higher ratings indicating higher

creditworthiness. The data set includes five company characteristics that serve

as covariates: book leverage (ratio of debt to assets), x1; earnings before interest

and taxes divided by total assets, x2; standardized log-sales (proxy for firm size),

x3; retained earnings divided by total assets (proxy for historical profitability), x4;

and working capital divided by total assets (proxy for short-term liquidity), x5.

The three nonparametric models were applied to the data, using the baseline

choice for the atoms prior hyperparameters, and priors for the weights hyperpa-

rameters that favor a moderate to large number of distinct mixture components

n∗ (i.e., number of distinct Li in the notation of Section 2.2.4). Given the number

of covariates, one would expect that the common-atoms model requires larger n∗.

Indeed, the posterior median for n∗ is 8, 12, and 21 under the common-weights,

general, and common-atoms model, respectively; in fact, the common-atoms model

did not produce a posterior draw for n∗ smaller than 10. The relative inefficiency

of the common-atoms model is also reflected in its larger penalty term for the

posterior predictive loss criterion. As detailed in Table 2.4, the model comparison

using the posterior predictive loss criterion essentially does not distinguish between

the general and common-weights models. Here, we discuss results under the

common-weights model.
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Figure 2.13: Credit ratings data. Posterior mean (lines) and 95% interval (shaded
regions) estimates of probability response curves πj(xs). Estimates for all five
response categories are displayed in a single panel for each covariate.

We estimate first-order effects for each covariate xs (denoted by πj(xs), for

j = 1, . . . , 5), by computing posterior realizations for Pr(Y = j | Gx) in (2.6) at

a grid over the observed range for xs, keeping the values of the other covariates

fixed at their observed average. The resulting point and interval estimates are

displayed in Figure 2.13. The estimates reveal some interesting relationships

between the firm’s characteristics and its credit rating. For instance, debt may

help to fuel growth of the firm, while uncontrolled debt levels can lead to credit

downgrades. Hence, an important question pertains to the relevant debt to assets

ratio. The substantial increase in the probability of the lowest credit rating when

book leverage gets larger than 0.4 (top left panel of Figure 2.13) suggests that

the desirable ratio may not exceed 0.4. Moreover, there is a positive association

between standardized log-sales (a proxy for firm size) and the firm’s credit rating.

The probability of the lowest credit rating decreases at a particular rate for low

to moderate log-sales values, with the probability becoming exceedingly small for

larger firms. The probabilities for ratings 2, 3 and 4 peak at increasingly larger

log-sales values, and the probability of the highest rating is practically zero for low

to moderate log-sales values and is increasing for the largest firms.
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Figure 2.14: Credit ratings data. Posterior mean estimates of probability response
surfaces πj(x2, x3), for j = 1, . . . , 5 (from left to right).

Similarly to the first-order effects estimates, we can obtain inference for second-

order probability response surfaces for any pair of covariates (xs, xs′), denoted

by πj(xs, xs′), for j = 1, . . . , 5. As an illustration of the model’s capacity to

accommodate interaction effects among the covariates, Figure 2.14 plots posterior

mean estimates for the second-order effects corresponding to earnings divided by

total assets (x2) and standardized log-sales (x3).

Furthermore, it is also of interest to investigate the model performance on

prediction. The credit rating of firms can be partitioned into two categories:

investment grade (rating score is 3 or higher) and speculative grade. Because many

bond portfolio managers are not allowed to invest in speculative grade bonds, firms

with a speculative rating incur significant costs. It is helpful to check the models’

implied posterior probability of obtaining an investment grade for a particular firm.

We consider five prediction scenarios corresponding to the five covariates. In each

scenario, we evaluate the change in the investment grade probability associated

with one of the covariates changing from the 25th to the 75th percentile of the

observed values, while holding all the other covariates at the average value of all

observations. Figure 2.15 displays the posterior distribution of the probability of

obtaining investment grade under the common-weights model.

Under the common-weights model, the probability moves along the expected
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Figure 2.15: Credit ratings data. Posterior distributions of the probability of
obtaining investment grade rating under the common-weights model. The red
solid lines indicate the posterior mean.

direction concerning all covariates, except for the working capital, which coincides

with the discovery in Verbeek (2008). The results indicate higher leverage, meaning

that a firm is financed relatively more with debt, reduces the expected credit rating.

This is due to the fact that firms with high leverage face substantially higher

debt financing costs. In addition, the larger firms, indicated by larger log-sales,

have significantly better credit ratings than smaller firms, ceteris paribus. Higher

earnings before interest and taxes and higher retained earnings also improve credit

ratings. Furthermore, one would expect that maintaining a high level of working

capital would enhance a company’s credit rating since it reduces risk. However, a

high level of working capital reduces profits, raising concern about the company’s

ability to cover interest payments. This argument suggests a concave relationship

between working capital and credit rating, postulating that firms could have an

optimal working capital ratio. Our result indicates that the optimal ratio lies

between the first and third quartiles.
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2.4.3 Retinopathy data

Problems from clinical research provide a broad application area for which

the proposed modeling approach is particularly well-suited. For such problems,

the severeness of a disease is often recorded in ordinal scale, and it is of interest

to estimate effects of risk factors on disease status. This is a setting where it is

natural to treat ordinal responses sequentially, from which conditional probability

response relationships can be directly explored.

To illustrate the utility of our methodology in this context, we work with

data set retinopathy from the R package “catdata” (Schauberger and Tutz,

2023). The data set is from a 6-year follow-up study of type 1 diabetic patients;

it contains information about 613 patients’ retinopathy status, recorded as: no

retinopathy (ordinal level 1), nonproliferative retinopathy (ordinal level 2), and

advanced retinopathy or blind (ordinal level 3). Also available is information on

four risk factors: smoking status (smoker/non-smoker), diabetes duration (years),

glycosylated hemoglobin (percent), and diastolic blood pressure (mmHg). The

primary scientific question pertains to association between retinopathy and smoking

status, adjusted for the other risk factors.

The standard proportional odds regression model does not appear suitable for

this data set. Descriptive data analysis suggests that the odds of developing the

retinopathy states are not proportional with respect to smoking; see Bender and

Grouven (1998). This is therefore a useful illustrative case for the LSBP mixture

model, which, in contrast to any particular parametric model, supports essentially

any collection of covariate-dependent ordinal response probabilities. We apply the

general model to the data with the ordinal scale for the responses, focusing on

the endpoints of “at least nonproliferative retinopathy” (Y ≥ 2) and “advanced

retinopathy or blind” (Y = 3).
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(a) π̃1s (left) and π̃2s (right). (b) r1s (left) and r2s (right).

Figure 2.16: Retinopathy data. Posterior densities for the probabilities and log
odds ratios of the two retinopathy endpoints for smokers (in red) and non-smokers
(in blue). The dashed line and shaded region correspond to the posterior mean
and 95% credible interval, respectively

Since the main objective is to assess the relationship between smoking and

retinopathy, we focus on inference results for the two retinopathy endpoint proba-

bilities for smokers and non-smokers. Keeping the values for the other risk factors

fixed at their observed average, Figure 2.16a displays the posterior densities for

π̃1s = Pr(Y ≥ 2 | Gx) and π̃2s = Pr(Y = 3 | Gx), where the subscript s = 0, 1

indicates non-smokers and smokers, respectively. These results point to an adverse

effect of smoking on the development of at least nonproliferative retinopathy for

diabetic patients, whereas there is no clear suggestion of an effect on the termi-

nal endpoint (advanced retinopathy of blindness). Indeed, the posterior mean

and 95% credible interval for π̃11 − π̃10 are 0.088 and (0.042, 0.144), whereas the

corresponding estimates for π̃21 − π̃20 are −0.010 and (−0.031, 0.012).

Consider the smoker/non-smoker log odds ratios for the two retinopathy end-

points, that is, r1s = log{π̃1s/(1 − π̃1s)} and r2s = log{π̃2s/(1 − π̃2s)}, for s = 0, 1.

The proportional odds regression model assumes log{Pr(Y ≤ j)/Pr(Y > j)} =

κj − xTβ, for j = 1, 2, where the κj are the cut-off points in the notation of

Section 2.2.5.3, and x comprises the four risk factors. Hence, assuming proportional

odds specifically with regard to the risk factor of smoking imposes the constraint
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r11 − r10 = r21 − r20. As discussed in Bender and Grouven (1998), the proportional

odds model identifies the diabetes duration, glycosylated hemoglobin, and blood

pressure as significant risk factors, but estimates that the effect of smoking is

negligible. Bender and Grouven (1998) question the proportional odds model

assumption (the constraint above) based on descriptive data analysis, and estima-

tion results from fitting separate binary logistic regressions to the two retinopathy

endpoints.

The results from the LSBP mixture model highlight the benefits of flexible

nonparametric Bayesian modeling. Using a probability model for the ordinal

response, we can identify the disease endpoint for which smoking has an adverse

effect (Figure 2.16a), as well as obtain clear evidence against the proportional odds

structure with respect to the smoking risk factor (Figure 2.16b). And, to reiterate,

such model-based inferences arise from a prior probability model that does not

impose restrictions on the ordinal regression relationships, making it practically

useful for applications where it is difficult to check whether the assumptions of a

specific parametric model are compatible with the data generating mechanism.

As one illustration of predictive model assessment of the general LSBP mixture

model, we examine the posterior predictive distribution of the test statistics rj,

j = 1, 2, 3, which represent the proportion of each ordinal response category among

the n responses. That is, for each posterior sample of model parameters, we obtain

posterior predictive samples for all in-sample subjects, and compute the proportion

of each category. We therefore obtain the posterior predictive distribution of each

test statistic, which can be compared with the observed proportion. The results,

displayed in Figure 2.17, suggest that the model generates predictions which are

compatible with the observed responses.
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Figure 2.17: Retinopathy data. Posterior predictive distribution of the propor-
tion for each ordinal response category. The dashed line indicates the observed
proportion.

2.5 Discussion

We have developed Bayesian nonparametric mixture models for ordinal regres-

sion, modeling directly the discrete response distribution. The similarity between

the logit stick-breaking prior and the continuation-ratio logits structure provides

an elegant way of incorporating covariate effects in both the weights and the atoms

of the mixture model, leading to the general model. To investigate the trade-off

between model flexibility and complexity, we introduce two simpler models that

retain covariate dependence only in the atoms (common-weights model) or only in

the weights (common-atoms model). The methods yield a comprehensive toolbox

that spans a wide range of flexibility in modeling ordinal regression relationships.

Viewing the two simpler models as building blocks of the general model enables us

to explore properties and develop inference algorithms under a unified framework.

Full Kullback-Leibler support has been established as a key theoretical model

property. The practical advantage of the proposed models lies in the convenience

in prior specification and the computationally efficient posterior simulation method.

With regard to the latter, the key feature is the combination of the continuation-

ratio logits representation for the mixture kernel with the Pólya-Gamma data

augmentation technique.
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A practical consideration is which model to apply to a specific problem. The

data examples of Section 2.4 were chosen to study different scenarios for suitability

of the simplified models, as they pertain to the complexity of the probability

response curves, the sample size, and the number of covariates. The common-

weights model can not take advantage of the local adjustment offered by covariate-

dependent weights, and this may be an issue for non-standard ordinal regression

relationships. Among the two simpler model specifications, the common-atoms

model is more suitable for complex covariate-response relationships. The caveat is

that this model activates a large number of effective mixture components, thus

increasing the computational cost and facing the potential risk of overfitting.

Inheriting features from both of its building blocks, the general model offers the

most versatile structure, especially for applications with sufficiently large amounts

of data and non-standard regression relationships, as demonstrated by the synthetic

data example of Section 2.4.1. Nonetheless, in applications with small to moderate

sample sizes and moderate to large number of response categories, the two simpler

models are useful options to consider.

The continuation-ratio logits structure boosts computation in two ways. First,

it implies conditional independence for category-specific parameters, allowing

partial parallel computing across response categories. In addition, the MCMC

algorithm can be replaced by a mean-field variational inference approach. Taking

advantage of the Pólya-Gamma technique, the variational strategy for our models

can be framed within the well-established exponential family setting, for which

there exists a closed-form coordinate ascent variational inference algorithm (Blei

et al., 2017). Therefore, there is potential to scale up the proposed models to

handle ordinal regression problems with large amounts of data.

The ordinal regression problem we have explored forms a building block for
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more general model settings involving ordinal responses. In fact, Proposition

2.3 may widen the scope of the building block through alternative distributional

assumptions for the latent variables. A feature of the modeling framework is its

modularity. For example, the model structure can be embedded in a hierarchical

framework to develop nonparametric inference for longitudinal ordinal regression.

Repeated measurements of ordinal responses are typically measured with covariates

over time. A possible way to approach such problems could be built upon models

that allow the ordinal regression relationships at each particular time point to be

estimated in a flexible fashion, combined with a hyper-model for evolving temporal

dynamics. In addition, variable selection can be incorporated into the model

through the priors for the parameters of the mixture kernel and weights, adapting

techniques used for local mixtures of normal densities (e.g., Chung and Dunson,

2009; Heiner and Kottas, 2022). We will report on such extensions in future work.

Finally, the methodology can also be applied to problems where the components

of the ordinal response Y are not necessarily binary. A specific application area

involves developmental toxicity studies. Here, the covariate is the level of a

particular toxin, and, for each pregnant laboratory animal exposed to a specific

toxin level, the typical data structure involves responses recorded for its offspring

on embryolethality, malformation, and normal offspring. The modeling methods

can be elaborated to extend the dependent DP mixture model in Kottas and

Fronczyk (2013) for developmental toxicology data analysis.
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Chapter 3

A Nonparametric Modeling

Approach for Ordinal Regression

with Heterogeneous Responses

3.1 Introduction

3.1.1 Background and Data

Ordinal regression with responses being a sum of ordinal variables is a common

occurrence in biomedical studies. In such a problem, a multivariate ordinal

response Y = (Y1, . . . , YC) is recorded, along with a covariate x. Here, each

component of Y is an integer between 0 and m, and ∑C
j=1 Yj = m. It is typically

assumed that Y ∼ Mult(m,π1, . . . , πC). Contrasting with the ordinal response

described in Chapter 2, we refer to variable of this type as the “extended” ordinal

response. We can equivalently view Y as the sum of m ordinal variables, denoted as

{Ỹq : q = 1, . . . ,m}, where Ỹq represents a standard univariate ordinal response,

encoded by binary variables. In this chapter, we will develop a modeling approach
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that deals with overdispersed Y. That is, responses which we might expect to be

of multinomial form, but which exhibit a variance larger than that predicted by

the multinomial model.

Segment II developmental toxicology studies provide an important area of

application in which data of the aforementioned structure are prevailing. In these

studies, at each experimental dose level, a number of pregnant laboratory animals

(dams) are exposed to the toxin after implantation. Typically, the number of fetuses

on ordered categories (e.g. prenatal death, malformation, and normal) are recorded

as the response. The main objective is to examine the dose-response curve, which

is defined by the (conditional) probability of an endpoint across the dose levels.

Other inferential objectives involve solving the inverse problem, where interest

lies in estimation of the dose level that induces a specified extra risk comparing

to the control dose. Regarding the latter, coherent uncertainty quantification of

the dose-response relationships is the key for ensuring accuracy. We refer to, for

example, Kuk (2004) for a comprehensive discussion about developmental toxicity

studies and the statistical issues therein.

In a standard Segment II developmental toxicology experiment, at each experi-

mental toxin level, xd, a number, nd of pregnant laboratory animals (dams) are ex-

posed to the toxin and the total number of implants, mdi, the number of non-viable

fetuses (undeveloped embryos and/or prenatal deaths), Rdi, and the number of live

malformed (external, visceral or skeletal) pups, ydi, from each dam are recorded.

We use Ydi = (Rdi, ydi,mdi −Rdi − ydi) to denote the ordinal response, for the i-th

animal at dose xd. The data structure, {(xd,Ydi) : d = 1, . . . , N ; i = 1, . . . , nd}

falls in the extended ordinal regression setting, with replicated responses at each

value of the single covariate (toxin level). Hereinafter, we refer to this particular

data structure as the extended setting.
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As an example, we consider the data from a study where ethylene glycol (EG),

an organic solvent, is evaluated for toxic effects in pregnant rats. The study

involves three active toxin levels at 1.25, 2.5, and 5 g/kg, and a control group,

with the respective number of dams assigned to each group being 28, 29, 27 and

28. The number of implants ranges from 1 to 18 across all dams and all dose levels,

with 25th, 50th, and 75th percentiles given by 12, 14, and 15, respectively. We

work with the version of the data given in Table 1 of Fung et al. (1998).

The example data set is visualized in Figure 3.1. For each dam, we plot

the observed proportions of embryolethality, malformation among live pups, and

combined negative outcomes against the dose level. The color is used to facilitate

identifying the same dam across panels. For the dose-response curves corresponding

to these three endpoints, the empirical proportions suggest an overall increasing

trend, although with no obvious parametric form for each dose-response curve.

Moreover, vast variability is evident in the responses, of which the magnitude also

differs across dose levels. Also noteworthy is a potentially different dose-response

relationship for non-viable fetuses and malformed pups. A high dose usually

exhibits an increase in the risk of embryolethality, while causing earlier mortality

that prevents the pups surviving to be observed with malformations. Thus, it is

biologically relevant to jointly model the distinct endpoints.

Because in Segment II toxicity experiments exposure occurs after implantation,

we assume a distribution for the number of implants that does not depend on

the toxin level. Through this chapter, we factorize the joint distribution as

p(mdi, Rdi, ydi | xd) = p(Rdi, ydi | mdi, xd)p(mdi), and adopt a Poisson distribution

with support shifted such that mdi ≥ 1 for p(mdi). The focus here is on exploring

modeling approaches for the toxin-dependent conditional distribution for the

number of non-viable fetuses and malformations, (Rdi, ydi), given mdi.
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Figure 3.1: EG data. In each panel, a circle corresponds to a particular dam and
the size of the circle is proportional to the number of implants. The coordinates of
the circle are given by the toxin level and the proportion of the specific endpoint:
non-viable fetuses among implants (left panel); malformations among live pups
(middle panel); combined negative outcomes among implants (right panel).

3.1.2 Objectives and Outline

A gold mine of modeling challenges presented in the aforementioned data

structure has captured attention in the statistical literature. To address the

common occurrence of overdispersed responses in developmental toxicity studies,

typically used approaches involve mixture models. We investigate a spectrum

of mixture models, with mixing kernel that presumes a factorized multinomial

structure. Starting with continuous mixtures, we examine two popular choices,

namely the model based on Beta-Binomial (BB) distribution and Logistic-Normal-

Binomial (LNB) distribution. We argue that these models preclude reliable risk

assessment in this application, because of their parametric form in both the

response distribution and the dose-response relationship.

Turning to discrete mixture models, the nonparametric mixture models pro-

posed in Chapter 2 serve as a strong initial reference. Specifically, enhanced

flexibility is achieved through a nonparametric mixture of continuation-ratio logits

factorization of multinomial distributions, mixing through a dependent stick-

breaking process prior placed on the probability parameters. Nonetheless, its

kernel is restricted in terms of modeling extended ordinal response, providing
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opportunities for novel models which enable more effective control of the ordinal

responses’ variability.

We consider a combination of these two types of mixture models. Specifically,

we adopt a continuous mixture model as the kernel, which is then encapsulated in

the discrete nonparametric mixing structure. The derived models inherit flexibility

from the discrete mixture models, while potentially allowing an improvement

in accounting overdispersion through the extra set of parameters introduced in

the kernel. Regarding the choice of kernel, the LNB distribution is preferred

from a computational efficiency consideration. Besides expanding a developed

approach, motivation for examining the new model also originates from regulatory

guidance (U.S. EPA, 1991), which requires considering an adequate set of models

for developmental toxicity risk assessment.

Bayesian nonparametric methods have been explored as a powerful tool for

analysis of development toxicology data. Focusing on studies that involve a discrete

response, Dominici and Parmigiani (2001) proposed a product of Dirichlet process

(DP) mxitures approach to deal with combined negative outcomes. Targeting the

same type of responses, Fronczyk and Kottas (2014) built a nonparametric mixture

model from a dependent Dirichlet process (DDP) prior, with the dependence of

the mixing distributions governed by the dose level. Models that jointly consider

various types of responses have also been explored, including, for binary and

continuous responses (Hwang and Pennell, 2014), categorical and continuous

responses (Fronczyk and Kottas, 2017), binary and continuous responses and

litter size (Hwang and Pennell, 2018). The most relevant methodology is the one

discussed in Kottas and Fronczyk (2013), which deals with ordinal responses as

well. They use a product of Binomials as the kernel, to capture the nested structure

of the responses, and a common-weights DDP prior for the dose-dependent mixing
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distributions. We develop different (including more general) mixture models than

the one in Kottas and Fronczyk (2013).

The rest of the chapter is organized as follows. In Section 3.2, we review the

two typical continuous mixture models for accounting for overdispersion in ordinal

responses, and demonstrate their limitations in uncertainty quantification with

the EG data. The discrete nonparametric mixture models with either type of

kernel are formulated and examined in depth in Section 3.3. Section 3.4 introduces

two carefully designed simulation studies that reflect our main contributions. We

compare the performance of the nonparametric mixture models through a series of

risk assessments, conducted on the EG data. The main results are presented in

Section 3.5. Finally, Section 3.6 concludes with a summary and discussion.

3.2 Continuous Mixture Models

This section focuses on providing an appropriate context for the models that

will be examined later in this chapter. We start by reviewing properties of the

classic Beta-Binomial and Logistic-Normal-Binomial distribution. Models built on

them for ordinal responses in developmental toxicity study are also discussed.

3.2.1 Beta-Binomial and Logistic-Normal-Binomial

Both the BB and the LNB distribution can be viewed as a continuous mixture

of the Binomial distribution. Consider modeling the number of positive responses,

denoted by Y , among m trials. Then, the BB model assumes

Y | m, θ, λ ∼ BB(m, θ, λ) :=
∫
Bin(Y | m,ψ)Beta(ψ | λφ(θ), λ(1 − φ(θ)))dψ.
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On the other hand, the LNB model is formulated as

Y | m, θ, σ2 ∼ LNB(m, θ, σ2) :=
∫
Bin(Y | m,φ(ψ))N(ψ | θ, σ2)dψ.

Here, φ(x) = exp(x)/(1 + exp(x)) denotes the standard logistic function. Under a

regression setting, covariate effects can be incorporated into the model by setting

θ = θ(x).

For a deeper comprehension of these distributions, we consider the alternative

encoding of Y with binary indicators {Ỹq : q = 1, . . . ,m}, such that Y = ∑m
q=1 Ỹq.

Both the BB model and the LNB model postulate exchangeability, in lieu of inde-

pendence, for Ỹq, which induces marginal dependence among them. Capitalizing on

overdispersion results for mixtures from exponential families (Shaked, 1980), we can

show that the variance of Y under either of the models is larger than the variance

of Y under a Binomial model, that is, the mixture models achieve overdispersion.

The extent of overdispersion is controlled by the correlation between any pair of

Ỹq and Ỹq′ , for q, q′ ∈ {1, . . . ,m}.

Under the BB distribution, E(Ỹq | θ) = φ(θ), which is the same as the mean

under a Binomial distribution. For the correlation, Corr(Ỹq, Ỹq′ | λ) = (1 + λ)−1.

Therefore, λ controls the dependence among Ỹq, hence the variance of Y , and is

termed the overdispersion parameter.

Because the logit-normal integral in general does not have analytical form,

neither E(Ỹq | m, θ, σ2) nor Corr(Ỹq, Ỹq′ | θ, σ2) are available in closed form for the

LNB distribution. Nonetheless, we have the following approximation based on a

second-order Taylor series expansion, which helps conceptualize the distribution.

Proposition 3.1. Suppose Ỹq | ψ i.i.d.∼ Bern(φ(ψ)), for q = 1, . . . ,m, and ψ |
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θ, σ2 ∼ N(θ, σ2). Then, marginalizing over ψ,

E(Ỹq | θ, σ2) ≈ φ(θ) + σ2

2 φ
′′(θ)

Corr(Ỹq, Ỹq′ | θ, σ2) ≈ σ2φ′(θ)[4−σ2(1−2φ(θ))2]
4+σ2(1−2φ(θ))[2−4φ(θ)−σ2φ′′(θ)] .

(3.1)

The proof is shown in Appendix A.2. Proposition 3.1 reveals features of the

LNB distribution, contrasting to the BB distribution, in two folds. Firstly, the

LNB model introduces a fluctuation in the mean, with the magnitude managed

by σ2. Besides, both σ2 and θ affect the correlation. To be aligned with the BB

distribution, we term σ2 the overdispersion parameter. Note however that the

overdispersion parameter λ of the BB distribution affects only the variance of Y ,

while the LNB distribution σ2 parameter influences both the mean and variance

of Y .

In terms of Bayesian inference, the LNB model is more attractive. When the pri-

ors for hyperparameters are conditionally conjugate, leveraging the Pólya-Gamma

data augmentation approach (Polson et al., 2013), we can obtain posterior samples

of parameters through Gibbs sampling. On the contrary, Bayesian implementation

of the BB model requires tuning Metropolis-Hasting samplers. For this reason, we

choose the LNB distribution as the building block for the nonparametric mixture

model with overdispersed kernel discussed in Section 3.3.2.

3.2.2 Models for Ordinal Responses from Developmental

Toxicity Study

In developmental toxicity studies, the developing fetuses are at risk of fetal

death due to the toxin insult. For those who survive the entire gestation period,

malformation may be exhibited. The sequential nature of the response suggests

factorizing the joint distribution as p(R, y | m) = p(R | m)p(y | R,m). Let
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x = (1, x), where x denotes the dose level. We omitted the subscript d and i

for notation simplicity. The model that assumes each part of the factorization

following a BB distribution is given by

(R, y) | m, θ1(x), θ2(x),λ ∼ BB(R | m, θ1(x), λ1)BB(y | m−R, θ2(x), λ2), (3.2)

where θj(x) = x⊤βj, j = 1, 2, and λ = (λ1, λ2). Here, we assume a separate

mixing distribution for each component, which is the key for effective interpretation

and implementation of the model. Because of its induced interpretation for

the response probabilities, the factorization is termed continuation-ratio in the

literature. Accordingly, we term (3.2) the continuation-ratio Beta-Binomial (“CR-

BB”) model. Similarly, if the LNB distribution is used for each part of the

factorization, the model is formulated as

(R, y) | m, θ1(x), θ2(x),σ2 ∼ LNB(R | m, θ1(x), σ2
1)LNB(y | m−R, θ2(x), σ2

2),

(3.3)

where σ2 = (σ2
1, σ

2
2), and it will be referred to as the continuation-ratio Logistic-

Normal-Binomial (“CR-LNB”) model.

To aid in exploring the relationship between the toxin level and the probability

of the various endpoints, it is helpful to consider the underlying binary responses.

In particular, for a generic dam with m implants exposed to toxin level x, we

denote by R̃ = {R̃q : q = 1, · · · ,m} the non-viable fetus indicators, and ỹ =

{ỹl : l = 1, · · · ,m−∑m
q=1 R̃q} the malformation indicators for the live pups, such

that the extended ordinal response is Y = (R, y,m−R − y), where R = ∑m
q=1 R̃q

and y = ∑m−R
l=1 ỹl. The dose response curves are defined with the alternative

encoding of the responses. Following the standard risk assessment methods in

the literature (e.g. Krewski and Zhu, 1995), we consider the dose-response curves
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(a) “CR-BB” model. (b) “CR-LNB” model.

Figure 3.2: EG data. Posterior mean (dotted line) and 95% interval estimate
(dashed lines) for the dose response curves. The red solid line and shaded region is
the posterior mean and 95% interval estimates obtained under a continuation-ratio
logits model.

of embryolethality, malformation of viable fetus, and combined risk, implicitly

conditioning on m = 1 and the model M, defined respectively as D(x) = Pr(R̃ =

1 | x), M(x) = Pr(ỹ = 1 | R̃ = 0, x), and r(x) = Pr(R̃ = 1 or ỹ = 1 | x) =

Pr(R̃ = 0 and ỹ = 1 | x) + Pr(R̃ = 1 | x).

For the EG data, we fit the “CR-BB” model and the “CR-LNB” model to

obtain posterior inference for the dose-response curves. The resulting point and

interval estimates are displayed in Figure 3.2, where, as a reference point, we also

present the same inference under the continuation-ratio logits model. Without a

mixing structure, the continuation-ratio logits model cannot account for overdis-

persion, leading to very narrow uncertainty bands. In contrast, the “CR-BB” and

“CR-LNB” models provide overly wide interval estimates. This pattern emerges

because the continuous mixture models pool the variability over the dose range,

providing significant uncertainty even at dose levels with relatively small observed

heterogeneity. Moreover, due to their parametric form, these models tend to

overcompensate for the data heterogeneity by increasing the variability in the

response distribution.

Such limitations of parametric continuous mixture models motivate us to

consider discrete nonparametric mixture models, specifically the mixing structure

induced by a dose-dependent stick-breaking process prior. By permitting clustered

71



mixing parameters, the discrete mixture models have the potential to manage the

variability of response distribution more effectively. Next, we explore modeling

approachess in this direction.

3.3 Discrete Mixture Models

3.3.1 Models with Continuation-ratio Logits Kernel

We consider a generalization of the continuation-ratio logits regression model

via Bayesian nonparametric mixing. The model extension is achieved through a

covariate-dependent nonparametric prior, Gx = ∑∞
ℓ=1 ωℓ(x) δ(θ1ℓ(x),θ2ℓ(x)), leading

to the general model

(R, y) | m,Gx ∼
∞∑

ℓ=1
ωℓ(x)Bin(R | m,φ(θ1ℓ(x)))Bin(y | m−R,φ(θ2ℓ(x))). (3.4)

As discussed in Chapter 2, the logit stick-breaking process (LSBP) prior has a

structural similarity with the continuation-ratio logits, which offers key advantages

in model properties and implementation. We assume the following LSBP prior for

the covariate-dependent weights:

ω1(x) = φ(x⊤γ1), ωℓ(x) = φ(x⊤γℓ)
ℓ−1∏
h=1

(1 − φ(x⊤γh)), ℓ ≥ 2; γℓ
i.i.d.∼ N(γ0,Γ0)

(3.5)

In addition, the atoms are built through a linear regression structure,

θjℓ(x) = x⊤βjℓ | µj,Σj
ind.∼ N(x⊤µj,x⊤Σjx), j = 1, 2, ℓ ≥ 1, (3.6)

with the random variables that define the atoms assumed a priori independent of

those that define the weights. The model is completed with the conjugate prior
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for the collection of hyperparameters ψ = {µj,Σj : j = 1, 2}, that is,

Σj
ind.∼ IW (ν0j,Λ−1

0j ), µj | Σj
ind.∼ N(µ0j,Σj/κ0j), j = 1, 2. (3.7)

We refer to the discrete mixture model in (3.4), with mixing weights and atoms

specified respectively in (3.5) and (3.6), as the general mixture of product of

Binomials kernel (“Gen-Bin”) model.

We establish a useful connection of the nonparametric mixture model built for

extended ordinal response, with a model built for the underlying response R̃ and

ỹ. Using the same nonparametric prior specified in (3.5) and (3.6), together with

a product of Bernoullis kernel, the nonparametric mixture model for underlying

binary response can be formulated as

(R̃, ỹ) | m,Gx ∼
∞∑

ℓ=1
ωℓ(x)

m∏
q=1

Bern(R̃q | φ(θ1ℓ(x)))
m−
∑

q
R̃q∏

l=1
Bern(ỹl | φ(θ2ℓ(x))).

(3.8)

We can show that the mixture models (3.4) and (3.8) are equivalent in the sense

that the moment generating function (MGF) of (R, y) under (3.4) is equal to the

MGF of (∑ R̃q,
∑
ỹl) under (3.8). The result is formally stated in Proposition 3.2,

with the proof presented in Appendix A.2.

Proposition 3.2. Let M and M̃ denote the mixture models (3.4) and (3.8),

respectively. With the same m, and Gx formulated by (3.5) and (3.6),

EM(et1R+t2y | m,Gx) = EM̃(et1
∑

R̃q+t2
∑

ỹl | m,Gx) (3.9)

The subscript of the expectation refers to the distribution under which the expectation

is taken.

Proposition 3.2 allows us to examine the dose-response curves for a dam with
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a generic number of fetuses, which of course includes m = 1. Consequently, the

expressions for the dose-response curves of embryolethality D(x), malformation

M(x), and combined risk r(x), under the proposed model, are given by

D(x) = Pr(R̃ = 1 | Gx) =
∞∑

ℓ=1
ωℓ(x)φ(θ1ℓ(x));

M(x) = Pr(ỹ = 1 | R̃ = 0, Gx) =
∞∑

ℓ=1

ωℓ(x)[1 − φ(θ1ℓ(x))]∑∞
ℓ=1 ωℓ(x)[1 − φ(θ1ℓ(x))] φ(θ2ℓ(x));

r(x) = Pr(R̃ = 1 or ỹ = 1 | Gx) = 1 −
∞∑

ℓ=1
ωℓ(x) [1 − φ(θ1ℓ(x))][1 − φ(θ2ℓ(x))],

(3.10)

with ωℓ(x) and θ1ℓ(x), θ2ℓ(x) defined in (3.5) and (3.6), respectively. Note that all

three dose-response curves admit a weighted sum representation with covariate-

dependent weights, which enables local adjustment over the dose level, resulting

in flexible estimation of the dose-response relationships.

Another equivalent encoding of the responses comes from the connection

between the standard and extended ordinal response. Indeed, let {Ỹq : q =

1, · · · ,m} be a collection of standard ordinal responses. That is, Ỹq = (Ỹq1, Ỹq2, Ỹq3),

where Ỹqj are binary, and only one Ỹqj = 1, for j = 1, 2, 3. We can view Ỹq

as the ordinal response from an implant of the dam. They are linked with

Y = (R, y,m−R−y) through Y = ∑m
q=1 Ỹq. In addition, Ỹq are connected with R̃q

and ỹl through the sequential mechanism of the continuation-ratio logits structure,

depicted in Figure 3.3. Introducing Ỹq facilitates the study of overdispersion.

In the context of development toxicology studies, responses from the fetuses

within the same dam are typically assumed to be positively correlated, resulting

in overdispersion. Therefore, relevant modeling methods should promote positive

intracluster correlations. Here, the cluster refers to the dam. Under the proposed

model, the intracluster correlation at category j, j = 1, 2, 3, for any implants q
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Generate R̃q | θ1(x) i.i.d.∼ Bern(φ(θ1(x))), for q = 1, . . . ,m

Ỹq = (1, 0, 0),
for q = 1, · · · ,∑ R̃q

R̃q = 1

Generate ỹl | θ2(x) i.i.d.∼ Bern(φ(θ2(x))), for l = 1, . . . ,m−∑
R̃q

Ỹq = (0, 1, 0),
for q = (m−∑

R̃q + 1), . . . , (m−∑
R̃q − ỹl)

ỹl = 1
Ỹq = (0, 0, 1),

for q = (m−∑
R̃q −∑

ỹl + 1), . . . ,m

ỹl = 0

R̃q = 0

Figure 3.3: Connection between alternative encodings of the ordinal response.

and q′ from the same dam, is given by

Corr(Ỹqj, Ỹq′j | Gx) = E(ỸqjỸq′j | Gx) − E(Ỹqj | Gx)E(Ỹq′j | Gx)
{Var(Ỹqj | Gx)Var(Ỹq′j | Gx)}1/2

, (3.11)

where E(Ỹqj | Gx) = E(Ỹq′j | Gx) = ∑∞
ℓ=1 ωℓ(x) {φ(θjℓ(x))∏j−1

k=1[1 − φ(θkℓ(x))]},

Var(Ỹqj | Gx) = Var(Ỹq′j | Gx) = E(Ỹqj | Gx) − [E(Ỹqj | Gx)]2, and E(ỸqjỸq′j |

Gx) = ∑∞
ℓ=1 ωℓ(x) {φ(θjℓ(x)) ∏j−1

k=1[1 − φ(θkℓ(x)]}2, with φ(θ3ℓ(x)) ≡ 1. Fronczyk

and Kottas (2014) have shown that the intracluster correlation is positive under a

common-weights DDP mixture of Binomial distributions. The required assumptions

are that the variance, Var(Ỹqj | Gx), and correlation, Corr(Ỹqj, Ỹq′j | Gx), are

common within the cluster. These assumptions hold here, since any pair of Ỹqj,

Ỹq′j are associated with the same dose level x. As a result, the positive intracluster

correlations result extends to our case, i.e., Corr(Ỹqj, Ỹq′j | Gx) > 0, ∀ j.

A practically relevant modeling aspect revolves around possible monotonicity

restrictions for the dose-response functions. Developmental toxicity studies involve

a small number of administered toxin levels. Hence, under nonparametric mixture

models for the categorical responses, a monotonic trend in the prior expectation for

the dose-response curves is desirable for effective interpolation and extrapolation

inference. This is discussed in Kottas and Fronczyk (2013) and Fronczyk and

Kottas (2014) under common-weights DDP mixture models, and is also relevant
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in our model setting. Using the prior specification strategy of Section 2.2.3, we

can incorporate a non-decreasing trend in the prior expected dose-response curves.

We note however that prior (and thus posterior) realizations for the dose-response

curves are not structurally restricted to be non-decreasing.

Two simplifications of the general model are discussed in Section 2.3, namely the

common-weights model and the common-atoms model. Due to the monotonicity

restriction of the prior expectation for the dose-response curves, the common-

atoms model is not a practical option. This is because the common-atoms model

adjusts the shape of dose-response curves only through the weights, resulting

in prior expectations that are constant with respect to the toxin level covariate.

Nonetheless, the common-weights model is worth exploring, because it bridges

the general nonparametric mixture model proposed here with the model discussed

in Kottas and Fronczyk (2013). The common-weights mixture with product of

Binomial kernels (“CW-Bin”) model is specified as

(R, y) | m,Gx ∼
∞∑

ℓ=1
ωℓ Bin(R | m,φ(θ1ℓ(x)))Bin(y | m−R,φ(θ2ℓ(x))),

with ω1 = V1, and ωℓ = Vℓ
∏ℓ−1

h=1(1 − Vh), for ℓ ≥ 2, where Vℓ | α i.i.d.∼ Beta(1, α),

and θ1ℓ(x), θ2ℓ(x) defined in (3.6). Kottas and Fronczyk (2013) adopt the same

structure for the weights in their mixture model, while the atoms are chosen as

Gaussian processes with the mean function postulating a linear regression form.

They extend the common-weights model by incorporating a more flexible structure

for the atoms. Note that their model still does not allow the dose-response curves

for the embryolethality and combined negative outcome to have dose-dependent

weights, which is an asset of our general model.

For Markov chain Monte Carlo (MCMC) posterior simulation, we notice that

the blocked Gibbs sampler proposed in Chapter 2 is also applicable to conduct
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posterior simulation with the “Gen-Bin” model and the “CW-Bin” model. Pos-

terior realizations for the dose-response curves and intracluster correlations can

be obtained by evaluating the corresponding expressions with MCMC posterior

samples of model parameters. Moreover, for each endpoint, we can obtain the

posterior distribution of a calibrated dose level for a specified probability, by

(numerically) inverting the posterior realization of the corresponding dose-response

curve. We illustrate the procedure with the EG data in Section 3.5.

The discrete mixing structure in conjunction with the restricted kernel implies

a priori a trade-off between the variability of the response and the variability of

the dose-response curve. Because overdispersion is not admitted in the kernel,

the mixture model seeks to account for the vast variability in the response by

activating more effective components. Contrarily, because of the discrete mixture

structure, more effective components lead to less variability in the prior realizations

of dose response curves, yielding overconfident prior intervals. Seeking coherent

uncertainty quantification for both the response distribution and the dose-response

curves, we consider building discrete mixture models with a kernel that allows

higher level of dispersion.

3.3.2 Models with Overdispersed Kernel

Parallel to the development of the “Gen-Bin” model, we formulate the alter-

native modeling approach with overdispersed kernel starting from its parametric

backbone in (3.3). Amplified with the general dose-dependent nonparametric prior

we obtain

(R, y) | m,Gx,σ
2 ∼

∞∑
ℓ=1

ωℓ(x)LNB(R | m, θ1ℓ(x), σ2
1)LNB(y | m−R, θ2ℓ(x), σ2

2),

(3.12)
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The prior on the weights ωℓ(x) is specified as the same LSBP prior given in (3.5),

while the atoms θ1ℓ(x), θ2ℓ(x) and their prior are specified as in (3.6) and (3.7).

The model formulation is completed with σ2
j

i.i.d.∼ IG(aσ, bσ), for j = 1, 2. This

model formulation shall be referred to as the general mixture with product of LNB

kernel (“Gen-LNB”) model hereinafter.

The “Gen-LNB” model includes both the “CR-LNB” model and the “Gen-Bin”

model as special (limiting) cases. If γ1 is such that φ(xTγ1) is effectively equal to

one, the nonparametric model collapses to the model in (3.3). If we let σ2
j → 0+

for j = 1, 2, the kernel collapses to the continuation-ratio logits model, resulting

in the “Gen-Bin” model. The specific mixing structure allows smooth deviations

from the Binomial, while keeping the extra level of flexibility, brought in by the

discrete (infinite) mixture.

To investigate model properties, we build its connection with the nonparametric

mixture model for the underlying R̃ and ỹ. Specifically, consider the following

model,

(R̃, ỹ) | m,ψ1, ψ2 ∼
m∏

q=1
Bern(R̃q | φ(ψ1))

m−
∑

q
R̃q∏

l=1
Bern(ỹl | φ(ψ2)),

(ψ1, ψ2) | θ1(x), θ2(x),σ2 ∼ N(ψ1 | θ1(x), σ2
1)N(ψ2 | θ2(x), σ2

2),

(θ1(x), θ2(x)) | Gx ∼ Gx, Gx =
∞∑

ℓ=1
ωℓ(x)δ(θ1ℓ(x),θ2ℓ(x)),

(3.13)

with the same prior on Gx and σ2 as for the “Gen-LNB” model. Then, the two

model formulations are equivalent in terms of an equal MGF for the respective

(R, y) and (∑ R̃q,
∑
ỹl).

Proposition 3.3. With the same m and Gx, equation (3.9) holds for M and M̃,

that is, the mixture models defined in (3.12) and (3.13), respectively.

Proposition 3.3 allows us to implicitly condition on m = 1 when conduct-
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ing inference for the dose-response curves. We denote the logit-normal integral∫
φ(ψ)N(ψ | θ, σ2)dψ by ε(θ, σ2). The expressions for dose-response curves at the

aforementioned three endpoints are given by

D(x) = Pr(R̃ = 1 | Gx,σ
2) =

∞∑
ℓ=1

ωℓ(x) ε(θ1ℓ(x), σ2
1);

M(x) = Pr(ỹ = 1 | R̃ = 0, Gx,σ
2) =

∞∑
ℓ=1

ωℓ(x)[1 − ε(θ1ℓ(x), σ2
1)]∑∞

ℓ=1 ωℓ(x)[1 − ε(θ1ℓ(x), σ2
1)] ε(θ2ℓ(x), σ2

2);

r(x) = Pr(R̃ = 1 or ỹ = 1 | Gx,σ
2)

= 1 −
∞∑

ℓ=1
ωℓ(x) [1 − ε(θ1ℓ(x), σ2

1)][1 − ε(θ2ℓ(x), σ2
2)].

Flexible inference for the dose-response curves is again enabled with local-

adjustable mixing weights.

The intracluster correlation under the general model with overdispersed kernel

has a similar form as in (3.11), in which every component should include further con-

ditioning on σ2. Specifically, E(Ỹqj | Gx,σ
2) = ∑∞

ℓ=1 ωℓ(x) {ε(θjℓ(x), σ2
j )∏j−1

k=1[1 −

ε(θkℓ(x), σ2
k)]}, Var(Ỹqj | Gx) = E(Ỹqj | Gx) − [E(Ỹqj | Gx)]2, ∀ q ∈ {1, . . . ,m}. Ad-

ditionally, E(ỸqjỸq′j | Gx,σ
2) = ∑∞

ℓ=1 ωℓ(x) {
∫
φ2(ψj)N(ψj | θjℓ(x), σ2

j )dψj} {∏j−1
k=1∫

[1 − φ(ψk)]2N(ψk | θkℓ(x), σ2
k)dψk}. We set φ(θ3ℓ(x)) ≡ 1 and σ2

3 = 0. The

positive intracluster correlation property can also be established in this context,

as the model continues to assume a shared variance/correlation within the dam.

To obtain meaningful inference, it is important to use a proper, well-calibrated

prior for σ2. This is a challenging task because of the lack of analytical form for

the logit-normal integral. Nonetheless, we propose a general strategy for specifying

the IG(aσ, bσ) prior, based on the approximation in Proposition 3.1, and working

with the mixture kernel, i.e., the LNB distribution. From the second line of (3.1),

and noticing φ(θ) ∈ (0, 1), we can show that for small to moderate (but still

providing enough variability) σ2, the intracluster correlation is approximately σ2/4.
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Simple calculation yields that modeling by LNB in lieu of Binomial provides an

extra (m− 1)σ2/4 folds of the variance In practice, we use a prior guess about the

average variance deviation of R and y from the Binomial across the dose levels, and

set the prior for σ2 accordingly, such that the overdispersion provided by the LNB

kernel is enough to capture the extra variation. The other prior hyperparameters

can be specified in the same fashion as the general model. Specifically, the prior

specification strategy that ensures a monotonic trend in the prior expectation of

dose-response curves can still be applied here.

Another appealing feature of the proposed model comes from the posterior

simulation perspective. The mixing structure of the model is inherited from

the “Gen-Bin” model, rendering the computational techniques developed for it

readily adaptable here. We develop a blocked Gibbs sampler based on the MCMC

algorithm in Appendix B.1, with modifications to account for the extra continuous

mixing at the kernel. The detailed algorithm is presented in Appendix B.2. With

the MCMC samples of model parameters, we can conduct any type of relevant

inference, following the same procedure as the general model with original kernel.

To complete the spectrum of the proposed models, we also consider the simplifi-

cation by removing the dose dependence in the mixing weights. That is, instead of

determining weights through a LSBP prior, we use the stick-breaking formulation

corresponding to the DP. We term this the common-weights mixture with product

of LNB kernel (“CW-LNB”) model.

3.4 Synthetic Data Examples

We conduct simulation experiments to demonstrate the practical benefits of

using nonparametric mixture models in development toxicity study. Specifically,

the first experiment is designed to highlight the benefits of local, dose-dependent
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weights in capturing non-standard dose-response relationships. The objective of

the second experiment is to illustrate the utility of the overdispersed kernel in

capturing the vast heterogeneity of the data.

3.4.1 First Synthetic Data Example

For the first experiment, we consider four active dose level at 0.625, 1.25,

2.5, and 5 g/kg and a control group. We consider a total of n = 100 dams,

evenly distributed across the dose levels. For each dam, the number of implants

are generated from a Poisson distribution with mean 20. Conditioning on the

number of implants, the responses are generated from a three component mixture

of “CR-LNB” model, with dose-dependent model parameters. That is,

(Rdi, ydi) | mdi
ind.∼

3∑
k=1

wk(xd)LNB(Rdi | mdi, θ1k(xd), σ2
1(xd))

× LNB(ydi | mdi −Rdi, θ2k(xd), σ2
2(xd)),

where xd = (1, xd), θjk(xd) = bjk0 + bjk1xd, for j = 1, 2 and k = 1, 2, 3. The dose-

dependent weights are induced by computing pj(xd) = Φ(aj0 + aj1xd), for j = 1, 2,

where Φ(·) denotes the c.d.f. of the standard normal distribution, and setting

(w1(xd), w2(xd), w3(xd)) = (p1(xd), (1 − p1(xd))p2(xd), (1 − p1(xd))(1 − p2(xd))).

Additionally, σ2
j (xd) = cj0 + cj1xd, for j = 1, 2, and the parameters are chosen to

ensure σ2(xd) > 0.

We visualize the simulated data set in Figure 3.4a. For each dam, we plot

the observed Rdi/mdi, ydi/(mdi − Rdi), and (Rdi + ydi)/mdi. In each panel, the

solid line indicates the true dose-response curve. We intentionally set the true

dose-response curves for the malformation and the combined negative outcome

endpoints to exhibit a J-shape, which is referred to as the hormetic dose-response
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relationship in the toxicological sciences. Hormesis is a dose–response phenomenon

characterized by beneficial effect to low exposures to toxins, and thus by opposite

effects in small and large doses. The posterior mean and 95% interval estimates of

dose-response curves under parametric models, i.e., the continuation-ratio logits

model and the “CR-LNB” model, are also shown in Figure 3.4a. As expected, the

standard models cannot capture the dip in the dose-response curves.

Figure 3.4 displays the posterior point and interval estimates of the dose-

response curves under the nonparametric mixture models. All the models consid-

ered here capture the true dose-response curve for the embryolethality endpoint

well, providing point estimates that are almost identical to the true monotonically

increasing function. As for the dose-response curves corresponding to the malforma-

tion and combined risk endpoints, the two nonparametric mixture models without

dose-dependent mixing weights (“CW-Bin” model and “CW-LNB” model) provide

improved point and interval estimates comparing to their parametric backbones,

but still fail in depicting the non-monotonic shape. On the contrary, the “Gen-Bin”

model and the “Gen-LNB” model, permitting more efficient local adjustments,

capture the dip in these dose-response curves. The comparison demonstrates the

benefit of using the mixture model with dose-dependent weights, especially when

the dose-response curves are expected to have non-standard shapes.

To further explore how the different nonparametric models utilize the mixture

structure, Figure 3.5 shows the posterior distributions of the four largest mixture

weights across dose levels. The models without overdispersed kernel generally

activate more mixing components. This is to be expected, because these models

rely on the mixing structure to account for overdispersion. The “Gen-Bin” model

tends to use more mixing components at low dose region to help capture the dip

of the dose-response curves. Equipped with overdispersed kernel, the “CW-LNB”
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(a) Continuation-ratio logits model vs “CR-LNB” model.

(b) “CW-Bin” model vs “CW-LNB” model.

(c) “Gen-Bin” model vs “Gen-LNB” model.

Figure 3.4: First simulation example. Posterior mean and 95% interval estimates
for the dose response curves under the mixture models with different kernel. In
each panel, the posterior mean and interval estimates obtained under the model
with and without overdispersed kernel are given by the blue dotted and dashed
lines and the red dot-dashed line and shaded region, respectively. The green solid
line is the true dose-response curve. In the top panel, a circle corresponds to a
particular dam and the size of the circle is proportional to the number of implants.

model and the “Gen-LNB” model are more efficient in terms of the number of

effective mixture components. Specifically, under the “Gen-LNB” model, we note

the pronounced local adjustment of the mixing weights in the dose region where

the dose-response curves change more drastically. On the contrary, the “CW-LNB”
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Figure 3.5: First simulation example. Box plots of the posterior samples for the
four largest mixture weights at the four observed dose levels and a new dose level,
under each of the nonparametric models.

model does not allow for local adjustable mixture weights, and thus can not capture

as effectively the non-standard local behavior of the malformation and combined

risk dose-response curves.

3.4.2 Second Synthetic Data Example

We consider active dose levels at 0.625, 1.25, 2.5, 3.75, and 5 g/kg, and a control

group. A total of n = 150 dams are randomly assigned across the dose levels with

uniform probability. We adopt the same process with the first simulation example

to generate the number of implants for each dam. Then, the ordinal responses are

obtained by sampling from

(Rdi, ydi) | mdi
ind.∼ BB(Rdi | mdi, θ1(xd), λ1(xd))BB(ydi | mdi−Rdi, θ2(xd), λ2(xd)),

where θj(xd) = bj0 + bj1xd, and λj(xd) = cj0 + cj1xd > 0, for j = 1, 2. The

data are visualized in Figure 3.6a, including the posterior point and 95% interval

estimates under the continuation-ratio logits model and the “CR-BB” model.

Although the true dose-response curves here have relatively standard increasing
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shape, the parametric models suffer in uncertainty quantification, due to the vast

heterogeneity of the data. In particular, the “CR-BB” model is similar to the true

data generating process, but the interval estimates obtained under it are too wide

to be practically useful.

The nonparametric mixture models are applied to the data. Figure 3.6 plots

posterior point and interval estimates for the dose-response curves. The nonpara-

metric mixture models behave comparably in terms of recovering the underlying

regression curves, evidenced by the similar posterior mean for the dose-response

curves. The interval estimates under all the models capture the true dose-response

curves. As expected, models with overdispersed kernel result in wider posterior

uncertainty bands than the models with the continuation-ratio logits kernel. Ob-

serving the extensive dispersion in the data, a wider uncertainty band is arguably

more reasonable.

To further investigate how the nonparametric mixture models behave in cap-

turing the overdispersion of the data, we plot in Figure 3.7 posterior samples

of the intracluster correlation. To facilitate comparison, we calculate the true

intracluster correlations from the data generating process, and add them to the

plot. In general, the models with overdispersed kernel perform better in capturing

the truth. Without the help from overdispersed kernel, the “CW-Bin” model

and the “Gen-Bin” model rely on the mixture structure to account for the extra

dispersion, and are less effective in capturing the variability.

Finally, we conduct a sensitivity analysis regarding the prior of σ2 under the

“CW-LNB” and “Gen-LNB” models. The results discussed above correspond to

prior σ2
j ∼ IG(3, 8/3), for j = 1, 2, leading to an extra 33% variance on average

a priori. We consider a more diffuse prior, namely IG(2, 4/3), which induces the

same level of extra variance on average. The posterior distributions of σ2 are
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(a) Continuation-ratio logits model vs “CR-BB” model.

(b) “CW-Bin” model vs “CW-LNB” model.

(c) “Gen-Bin” model vs “Gen-LNB” model.

Figure 3.6: Second simulation example. Posterior mean and 95% interval
estimates for the dose response curves under the mixture models with different
kernel. In each panel, the posterior mean and interval estimates obtained under
the model with and without overdispersed kernel are given by the blue dotted and
dashed lines and the red dot-dashed line and shaded region, respectively. The green
solid line is the true dose-response curve. In the top panel, a circle corresponds
to a particular dam and the size of the circle is proportional to the number of
implants.

shown in Figure 3.8. These distributions are comparable (and different from the

prior distribution), suggesting effective learning of overdispersion from the data.
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Figure 3.7: Second simulation example. Box plot of the intracluster correlation
posterior distributions at the observed toxin levels. In each panel, estimates under
the “CW-Bin”, “CW-LNB”, “Gen-Bin” and “Gen-LNB” model are shown in red,
blue, green, and purple, respectively. The orange dot marks the truth.

Figure 3.8: Second simulation example. Posterior distributions of the overdisper-
sion parameters σ2 under the “CW-LNB” and the “Gen-LNB” model with prior
IG(3, 8/3) (in red) and IG(2, 4/3) (in blue).

3.5 Real Data Illustrations

Working with the EG data, we illustrate the four nonparametric mixture models

in addressing a spectrum of risk assessment tasks. We work with the (conservative)

truncation level of L = 50 for the blocked Gibbs sampler. Posterior inference

results are based on 5000 MCMC samples obtained every 2 iterations from a chain

of 30000 iterations with a 20000 burn-in period.

We set the prior hyperparameters such that a monotonic increasing trend is

incorporated in the prior expected dose-response curves. In line with this objective,

the key is to specify µ0j and Λ0j, j = 1, 2, by the strategy proposed in Section

2.2.3. The hyperparameters regarding the mixing weights under either the common-
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weights mixture or the general mixture are set such that they favor a priori a

comparable number of distinct components. We use IG(3, 1.2) as the prior for

the overdispersion parameters in σ2, which provides approximately an extra 15%

variance on average. For prior sensitivity analysis, we assume an alternative, more

diffused prior, that is, IG(2, 0.6). Despite the choice of prior and mixing structure,

the posterior distributions of σ2
1 and σ2

2 are comparable.

Posterior estimates of dose-response curves under the discrete mixture models

are displayed in Figure 3.9. The difference among the posterior point estimates of

the dose-response curves is minor. The uncertainty bands provided by the models

with overdispersed kernel are significantly wider, with the width changing across

toxin levels. As shown in Figure 3.1, the variability of the responses increases with

dose level. Uncertainty bands obtained under the “CW-Bin” and “Gen-Bin” model

capture the trend in general, while they seem to underestimate the influence of

the dose levels. Moreover, illustrated by a wider interval compared to that at 5

g/kg, the models with overdispersed kernel intensify the uncertainty at the region

from 3 g/kg to 4 g/kg, where interpolation is actually needed. Without the help of

overdispersed kernel, the models tend to be overconfident at this region. We also

notice that comparing with the estimates under the continuous mixture model

(Figure 3.2), the uncertainty bands obtained here are more plausible, indicating

more effective control of variability under the discrete nonparametric mixture

models.

We display posterior samples of the intracluster correlations at the observed

toxin levels and a new level x = 3.75 g/kg, with the box plots in Figure 3.10. Despite

the model and endpoint, the correlations depict an increasing trend with toxin levels,

consistent with the observed data pattern. Moreover, the intracluster correlation

at the new dose level is approximately the average of the correlations at the two
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(a) “CW-Bin” model vs “CW-LNB” model.

(b) “Gen-Bin” model vs “Gen-LNB” model.

Figure 3.9: EG data. Posterior mean and 95% interval estimate for the dose
response curves under the mixture models with different kernel. In each panel,
the red solid line and shaded region is the posterior mean and interval estimates
obtained under the model with continuation-ratio logits kernel, while the blue
dotted and dashed lines are the estimates from the model with overdispersed
kernel.

observed neighbors, indicating a smooth borrowing of strength across dose levels.

As expected, the distribution of correlations from models with overdispersed kernel

spread a wider range. Also noteworthy is that the magnitude of the intracluster

correlation under the “CW-Bin” model is generally larger than the other models,

which also means a larger variance for the response. However, as shown in Figure

3.9a, the posterior uncertainty for the dose-response curve under the “CW-Bin”

model is shorter. This incongruity indicates a weak control of variability under the

“CW-Bin” model, in which both the mixing structure and the kernel are restricted.

Estimating the effective dose (ED) and the benchmark dose (BMD) is crucial

in developmental toxicity risk assessment. The procedure initiates with specifying

the benchmark response level (BMR), denoted by α. After a dose-response model
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Figure 3.10: EG data. Box plot of the intracluster correlation posterior distribu-
tions at four observed toxin levels and for the new value of x = 3.75 g/kg. In each
panel, estimates under “CW-Bin”, “CW-LNB”, “Gen-Bin” and “Gen-LNB” model
are shown in red, blue, green, and purple, respectively.

is applied to the data, the effective dose EDα is defined as the dose that induces an

excess risk of α over control. As an example, for the embryolethality endpoint, the

ED is found as the solution to the equation D(EDD
α )−D(0)/(1−D(0)) = α. With

posterior samples of D(x), we can numerically solve the equation, and obtain the

posterior distribution of EDD
α . Analogously, we obtain the posterior distribution of

ED corresponds to the malformation and combined risk endpoints, using posterior

realizations of M(x) and r(x), respectively. Then, BMDα is defined as the left

endpoint of the 95% credible interval of EDα. Allen et al. (1994) found that

BMD with α = 5% is similar to the no observed adverse effect level (NOAEL).

Additionally, agencies recommend reporting BMD at the level of 10% extra risk

for dichotomous data (U.S. EPA, 2012). We focus on obtaining the posterior

distribution of ED, and estimating BMD, at the three endpoints, for α = 5% and

α = 10%.

Figure 3.11 plots the posterior distribution of ED and the estimated BMD.

We note that for embryolethality endpoint, the posterior samples of ED include

extrapolation of toxin levels. The models with overdispersed kernel yield more

dispersed distributions, while the models with the same kernel provide comparable

results, despite the mixing structure. The estimated BMDs are summarized in Table
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(a) Embryolethality endpoint.

(b) Malformation endpoint.

(c) Combined risk endpoint.

Figure 3.11: EG data. Posterior distribution of the effective dose with 5% BMR
(in red) and 10% BMR (in blue). The shaded region indicates the 95% credible
interval. The corresponding benchmark dose is marked with “×”.

3.1. Results are generally robust across models. Therefore, it is manifested that

the models themselves, in the absence of incorporating biochemical characteristics,

are adequate for estimating BMD.

Figure 3.12 displays estimates for the probability mass functions corresponding

to the number of non-viable fetuses given a specific number of implants Pr(R |

m = 12, Gx), and the conditional probability mass functions of the number of

malformations given a specified number of implants and the associated number
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Table 3.1: EG data. BMD estimation under different models, based on posterior
samples of ED.

Model Embryolethality Malformation Combined risk
α = 5% α = 10% α = 5% α = 10% α = 5% α = 10%

“CW-Bin” 2.05 2.97 1.02 1.48 0.92 1.38
“CW-LNB” 1.62 2.79 1.08 1.56 0.68 1.32
“Gen-Bin” 2.00 3.03 1.06 1.56 0.92 1.40
“Gen-LNB” 1.64 2.77 1.14 1.60 0.68 1.28

Figure 3.12: EG data. Posterior mean (“◦”) and 95% uncertainty bands (dashed
lines) for the probability mass Pr(R | m = 12, Gx) (top panels) and conditional
probability mass Pr(y | m = 12, R = 2, Gx) (bottom panels), at four observed
toxin levels and for the new value of x = 3.75 g/kg. In each panel, estimates under
“CW-Bin”, “CW-LNB”, “Gen-Bin” and “Gen-LNB” model are shown in red, blue,
green, and purple, respectively.

of non-viable fetuses Pr(y | m = 12, R = 2, Gx). All the models can uncover non-

standard distributional shapes, especially for high toxin levels. Also noteworthy

is the smooth evolution from right to left skewness in the conditional probability

mass functions as the toxin level increases.

For the models considered in this section, we preform posterior predictive

model checking based on cross-validation. Specifically, we use one randomly chosen
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(a) “CW-Bin” model. (b) “CW-LNB” model.

(c) “Gen-Bin” model. (d) “Gen-LNB” model.

Figure 3.13: EG data. Box plots of posterior predictive samples for the embry-
olethality, malformation, and combined risk endpoints at the observed toxin levels.
The corresponding observed proportions are denoted by “◦”.

sample comprising data from 22 dams (approximately 20% of the data) spread

roughly evenly across the dose levels as the test set, denoted by {(m′
di, R

′
di, y

′
di) :

d = 1, . . . , N, i = 1, . . . , n′
d}. After fitting each model to the reduced data, we

obtain, at each MCMC iteration, one set of posterior predictive sample at each

observed dose level, denoted as m∗
d, R∗

d, and y∗
d. This is because the responses

from the nd dams at the d-th dose level share the same covariate xd. Based on

the posterior predictive samples, Figure 3.13 displays box plots of the proportion

of embryolethality R∗
d/m

∗
d, malformation among live pups y∗

d/(m∗
d − R∗

d), and

combined negative outcomes (R∗
d + y∗

d)/m∗
d. The observed proportions from the

test data points are marked by circles. None of these figures show evidence of

ill-fitting.

We consider two types of model comparison, based on either the posterior

predictive loss (PPL) criterion (Gelfand and Ghosh, 1998) or the interval score

(IS) criterion (Gneiting and Raftery, 2007). The PPL criterion focuses on the

first two moments of the predictive distribution, which may not be comprehensive
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Table 3.2: EG data. Summary of comparison among the nonparametric models
using the posterior predictive loss and interval score criteria. The values in bold
correspond to the model favored by the particular criterion.

Endpoint Criterion “CW-Bin” “CW-LNB” “Gen-Bin” “Gen-LNB”

Embryolethality
G(M) 0.72 0.72 0.71 0.72
P (M) 0.56 0.53 0.45 0.58
S(M) 20.73 18.45 20.46 18.73

Malformation
G(M) 1.34 1.39 1.33 1.36
P (M) 1.18 1.10 0.95 1.17
S(M) 16.07 14.97 16.81 14.93

Combined risk
G(M) 1.46 1.50 1.43 1.49
P (M) 1.08 1.01 0.89 1.03
S(M) 25.84 23.50 27.11 20.91

for risk assessment in developmental toxicity studies. As a complement, the IS

criterion considers the quantiles of the predictive distribution, providing a more

comprehensive perspective of the predictive distribution. We conduct model

comparison based on these criteria applied to each of the endpoints. For instance,

consider the embryolethality endpoint, we define the goodness-of-fit term as

G(M) = ∑N
d=1

∑n′
d

i=1{R′
di/m

′
di − E(R∗

d/m
∗
d | data)}, and the penalty term for

model complexity as P (M) = ∑N
d=1 n

′
dVar(R∗

d/m
∗
d | data). The PPL criterion,

comprised by these two terms, favors the model M that minimizes them. The IS

criterion regarding the 95% credible interval is given by

S(M) =
N∑

d=1

n′
d∑

i=1
{(ue

d − led) + 2
α

(led − R′
di

m′
di

)1(R
′
di

m′
di

< led) + 2
α

(R
′
di

m′
di

− ue
d)1(R

′
di

m′
di

> ue
d)},

where led and ue
d denote the lower and upper limit of the posterior predictive 95%

credible interval of the embryolethality endpoint at dose xd, respectively, and

α = 5%. The model with the smallest S(M) is preferred. These terms are defined

analogously for the other two endpoints, based on posterior predictive samples

y∗
d/(m∗

d −R∗
d) and (R∗

d + y∗
d)/m∗

d. We report the results in Table 3.2.
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Based on the PPL criterion, the “Gen-Bin” model is preferred. The two models

with overdispersed kernel have comparable goodness-of-fit, while as expected, have

large penalty terms as well. Interestingly, the “CW-Bin” model also yields large

penalty term. This is because the model imposes the most restricted structure,

and thus tends to activate a larger number of effective components to capture the

heterogeneity of the data. The IS criterion suggests an improvement from the use

of mixture models with overdispersed kernel. In particular, for the malformation

and combined risk endpoints, which exhibit vast variability, the “Gen-LNB” model

that allows for the highest level of flexibility is preferred.

3.6 Summary and Remarks

We have explored a spectrum of modeling approaches that seek to introduce

overdispersion through a mixing structure. We first illustrate that, the popular

continuous mixture models fail in providing reliable uncertainty quantification

for the dose-response curves. Contrarily, discrete mixture models, with mixing

structure induced by dose-dependent stick-breaking process priors, offer a wealth

of practical benefits. Notably, the enhanced flexibility offers rich inference for the

response distributions and for the dose-response curves. Pursuing a more effective

control of variability, we consider combining the two types of mixture models.

Specifically, the general model is formulated with a continuous mixture model as

the kernel in a discrete nonparametric mixing structure. We show that the derived

models inherit the properties of their backbones, while ensuring efficient posterior

inference. Data from a toxicity experiment involving an organic solvent were used

to illustrate the discrete mixture models and to compare their performance with

regard to a series of risk assessment tasks.

A crucial practical aspect entails selecting the appropriate model for a given
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problem. The EG data example presented in Section 3.5 illuminates a plausible

avenue. The “CW-Bin” model imposes restrictions in both the mixing kernel

and the mixing weights, and may struggle with data with vast heterogeneity. If

the risk assessment task only involves the first two moments of the predictive

distribution, the “Gen-Bin” model may be more suitable. The key advantage of

incorporating overdispersed kernel within a nonparametric mixture model lies in

improved posterior predictive interval estimation. Among the two models with

overdispersed kernel, the “Gen-LNB” model offers the most flexible structure for

overdispersion, which is especially helpful if the data exhibit extensive variability.

Overall, in order to obtain the best possible risk assessment in developmental

toxicity studies, a comprehensive exploration of possible modeling options, as we

conducted, is advocated by the regulatory agencies.

The modeling approaches examined in this chapter are directly applicable in

other areas, which may involve more ordered categories and/or more covariates.

For example, in pharmaceutical studies, participants are asked to report their

responses to treatments in ordinal scale multiple times over a time period. The

data comprises the frequency of each category, and may also include features of the

participants. Additionally, if the time for each response is also available, models

for longitudinal ordinal responses may be more appropriate, which is the focus of

the next chapter.
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Chapter 4

A Flexible Modeling Framework

for Longitudinal Ordinal

Responses

4.1 Introduction

Recent years have witnessed a rapid growth of longitudinal studies with binary

and ordinal responses in several disciplines, including econometrics, and the health

and social sciences. In such studies, of primary importance are the probability

response curves, i.e., the probabilities of the response categories that evolve

dynamically over time. This article aims at developing a hierarchical framework,

customized to longitudinal settings, that allows flexible inference for the probability

response curves. In addition, the defining characteristic of longitudinal data is that

repeated measurements on the same subject induce dependence. Hence, a further

objective is to flexibly model lead-lag correlations among repeated measurements.

The development of statistical methods for longitudinal binary and ordinal
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data stems from models for longitudinal continuous responses, postulating the

generalized linear model framework. Analogous to the continuous case, a specific

model is formulated under one of three broad approaches pertaining to marginal

models, conditional models, or subject-specific models. Marginal models provide

alternative modeling options when likelihood-based approaches are difficult to

implement. A conditional model describes the distribution of responses conditional

on the covariates and also on part of the other components of the responses. In

a subject-specific model, the effects of a subset of covariates are allowed to vary

randomly from one individual to another. In the absence of predictor variables,

functions of the observation time are usually used as covariates. We refer to

Molenberghs and Verbeke (2006) for a comprehensive review. In Section 4.2.4,

we elaborate on the connection of our proposed modeling approach with existing

methods.

In this article, we introduce a novel viewpoint for longitudinal binary and

ordinal data analysis. We begin with the model construction for longitudinal

binary responses. The critical insight that distinguishes our methodology from the

majority of the existing literature is functional data analysis. We treat the subjects’

measurements as stochastic process realizations at the corresponding time points.

The benefits are twofold. First, the models can incorporate unbalanced data from

longitudinal studies in a unified scheme; directly inferring the stochastic process

provides a well-defined probabilistic model for the missing values. Secondly, we can

exploit the power of Bayesian hierarchical modeling for continuous functional data

(e.g., Yang et al., 2016). To that end, we adopt the Binomial distribution with

the logit link that connects binary responses to continuous signals, which, subject

to additive measurement error, are then modeled as (conditionally) independent

and identically distributed (i.i.d.) realizations from a Gaussian process (GP) with
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random mean and covariance function. We place an Inverse-Wishart process

(IWP) prior on the covariance function, and conditional on it, use a GP prior

for the mean function. Therefore, the two essential ingredients in longitudinal

modeling, the trend and the covariance structure, are modeled simultaneously and

nonparametrically.

The hierarchical structure allows borrowing of strength across the subjects’

trajectories. We apply a specific setting of hyperpriors for the GP and IWP priors,

such that marginalizing over them, the latent continuous functions have a Student-t

process (TP) prior. The TP enhances the flexibility of the GP (e.g., Shah et al.,

2014). It retains attractive GP properties, such as analytic marginal and predictive

distributions, and it yields predictive covariance that, unlike the GP, explicitly

depends on the observed values. For inferential purposes, we represent the joint

posterior distribution in multivariate form through evaluating the functions on the

pooled grid, resulting in the common normal-inverse-Wishart conditional conjugacy.

In conjunction with the Pólya-Gamma data augmentation technique (Polson et al.,

2013), we develop a relatively simple and effective posterior simulation algorithm,

circumventing the need for specialized techniques or tuning of Metropolis-Hastings

steps.

To extend the model for ordinal responses, we utilize the continuation-ratio

logits representation of the multinomial distribution. Such representation features

an encoding of an ordinal response with C categories as a sequence of C − 1

binary indicators, in which the j-th indicator signifies whether the ordinal response

belongs to the j-th category or to one of the higher categories. We show that fitting

a multinomial model for the ordinal responses is equivalent to fitting separately the

aforementioned model on the binary indicators. Hence, we can conduct posterior

simulation for each response category in a parallel fashion, leading to significant
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computational efficiency gains in model implementation.

In modern longitudinal studies, it is common that the complete vector of

repeated measurements is not collected on all subjects. As a specific example,

in ecological momentary assessment (EMA) studies, emotions and behaviors are

repeatedly measured for a cohort of participants, through wearable electronic

devices (Ruwaard et al., 2018). For instance, in the StudentLife study (Wang

et al., 2014), researchers monitored the students’ mental status through pop-up

questionnaires on their smartphones that prompted multiple times at pseudorandom

intervals during the study period. Since the data collection process is based on

the participants’ conscious responding to prompted questions several times a

day, non-response is inevitable. Missing values are typically considered to be

a nuisance rather than a characteristic of EMA time series. Parametric and

nonparametric Bayesian methods have been developed to handle longitudinal data

with missingness; see Daniels and Xu (2020) for a review. The common issue is

that one has to bear the drawbacks of making either structured or unstructured

assumptions to manage missingness. The unstructured approach leads to flexibility,

yet it may result in difficulties due to a large number of parameters relative to

the sample size. Besides, the majority of the existing literature on longitudinal

studies with missingness focuses on the scenario with continuous responses, and

the extension to discrete responses is not trivial.

Accordingly, our contributions can be summarized as follows: (i) we model

the mean and covariance jointly and nonparametrically, avoiding potential biases

caused by a pre-specified model structure; (ii) we unify the toolbox for balanced and

unbalanced longitudinal studies; (iii) the model encourages borrowing of strength,

preserving systematic patterns that are common across all subject responses; (iv)

we develop a computationally efficient posterior simulation method by taking
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advantage of conditional conjugacy; (v) the model facilitates applications for

ordinal responses with a moderate to large number of categories.

The rest of the chapter is organized as follows. Section 4.2 develops the

methodology for binary responses, including model formulation, study of model

properties, and the computational approach to inference and prediction. Section

4.3 illustrates the modeling approach through carefully designed simulation studies

that reflect our main contributions and an EMA study that focuses on analyzing

students’ mental health through binary outcomes. The modeling extension for

longitudinal ordinal responses is presented in Section 4.4, including an illustration

involving an ordinal outcome from the same EMA study. Finally, Section 4.5

concludes with discussion.

4.2 The Modeling Approach for Binary Responses

Here, we develop the methodology for longitudinal binary responses. The data

consist of repeated binary responses on n subjects, with the observation on subject

i at time τit denoted by Yit. The set of repeated outcomes for the i-th subject

is collected into a Ti-dimensional vector Yi = (Yi1, . . . , YiTi
)⊤. The hierarchical

model construction is presented in Section 4.2.1. In Section 4.2.2, we discuss model

properties related to our inference objectives. Bayesian inference and prediction is

developed in Section 4.2.3. Finally, to place our contribution within the literature,

we discuss in Section 4.2.4 the proposed model in the context of relevant Bayesian

nonparametric approaches.
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4.2.1 Model Specification

We examine the data from a functional data analysis perspective, treating

each observed data vector Yi as the evaluation of trajectory Yi(τ) on grid τi =

(τi1, . . . , τiTi
)⊤, for i = 1, . . . , n. The n trajectories are assumed to be (conditionally)

independent realizations from a continuous-time stochastic process. The prior

probability model is built on the stochastic process. This approach avoids strong

pre-determined assumptions on the transition mechanism within the sequence

of subject-specific responses in Yi, while it is suitable to accommodate repeated

measurements regardless of their observational pattern.

The functional data analysis view of longitudinal data dates back at least to

Zhao et al. (2004), where it is suggested that functional data analysis tools, such

as principal component analysis, can be used to capture periodic structure in

longitudinal data. Indeed, Yao et al. (2005) study functional principal component

analysis (FPCA) for sparse longitudinal data, a method that can provide effective

recovery of the entire individual trajectories from fragmental data. FPCA has been

applied in finance (Ingrassia and Costanzo, 2005), biomechanics (Donà et al., 2009),

and demographic studies (Shamshoian et al., 2020). Its extension to examine

sequences of discrete data is studied in Hall et al. (2008).

Our methodology builds from a GP-based hierarchical model for continuous

functional data (Yang et al., 2016). Regarding mean-covariance estimation, the

model in Yang et al. (2016) can be considered as a Bayesian counterpart of Yao

et al. (2005). The hierarchical scheme enables a natural extension to studies with

binary responses. We assume that, subject to measurement error, the i-th subject’s

responses, Yit ≡ Yi(τit), depend on the i-th trajectory of the underlying process,
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evaluated at times τit, through the following model

Yi(τit) | Zi(τit), ϵit
ind.∼ Bin(1, φ(Zi(τit) + ϵit)), t = 1, . . . , Ti, i = 1, . . . , n,

where φ(x) = exp(x)/{1 + exp(x)} denotes the expit function. The error terms are

i.i.d. from a white noise process, that is, ϵit | σ2
ϵ

i.i.d.∼ N(0, σ2
ϵ ), and independent of

the process realizations Zi(·). The main building block for the model construction

is a hierarchical GP prior for the Zi(·). In particular, given random mean function

µ(·) and covariance kernel Σ(·, ·), the Zi(·) are i.i.d. GP realizations, denoted

by Zi | µ,Σ i.i.d.∼ GP (µ,Σ), for i = 1, . . . , n. The hierarchical GP prior model is

completed with nonparametric priors for the mean function and covariance kernel:

µ | Σ ∼ GP (µ0,Σ/κ), Σ ∼ IWP (ν,Ψϕ), (4.1)

where GP (·, ·) and IWP (·, ·) denote the GP and IWP prior, respectively. The

nonparametric prior reflects the intuition that parametric forms will generally not

be sufficiently flexible for the mean and covariance functions.

We adopt an IWP prior for the covariance kernel, defined such that, on any

finite grid τ = (τ1, . . . , τT ) with |τ | points, the projection Σ(τ , τ ) follows an inverse-

Wishart distribution with mean Ψϕ(τ , τ )/(ν − 2), denoted by IW (ν,Ψϕ(τ , τ )).

Here, Ψϕ(·, ·) is a non-negative definite function with parameters ϕ. Note that we

use the parameterization from Dawid (1981) for the inverse-Wishart distribution,

in particular, ν is the shape parameter and ν + |τ | − 1 is the degrees of freedom

parameter in the more common parameterization. Yang et al. (2016) validate

that this parameterization defines an infinite dimensional probability measure

whose finite dimensional projection on grid τ coincides with the inverse-Wishart

distribution IW (ν,Ψϕ(τ , τ )).
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The model formulation is completed with prior specification for the hyperpa-

rameters. The error variance is assigned an inverse Gamma prior, σ2
ϵ ∼ IG(aϵ, bϵ).

We focus primarily on stationary specifications under the prior structure in (4.1).

In particular, we work with mean function, µ0(τ) ≡ µ0, and isotropic covariance

function, Ψϕ, within the Matérn class, a widely used class of covariance functions

(Rasmussen and Williams, 2006). In general, the Matérn covariance function is

specified by a scale parameter σ2, a range parameter ρ, and a smoothness parame-

ter ι. To encourage smoothness in the probability response curves, we set ι = 5/2,

such that the covariance kernel is given by

Ψϕ(τ, τ ′) = σ2
(

1 +
√

5|τ − τ ′|
ρ

+ 5|τ − τ ′|2

3ρ2

)
exp

(
−

√
5|τ − τ ′|
ρ

)
,

where ϕ = {σ2, ρ}. For hyperparameters µ0, σ2, ρ, we take the commonly used

choice,

µ0 ∼ N(aµ, bµ), σ2 ∼ Gamma(aσ, bσ), ρ ∼ Unif(aρ, bρ).

Finally, we set κ = (ν − 3)−1, such that the continuous-time process for the Zi(·)

is a TP when µ and Σ are marginalized out (see Section 4.2.2 for details). As a

consequence, parameter ν controls the tail heaviness of the marginal process, with

smaller values of ν corresponding to heavier tails. We place a uniform prior on ν,

ν ∼ Unif(aν , bν), with aν > 3 to ensure positive definiteness of Σ/κ.

As discussed in Diggle (1988), the correlation of repeated measurements on

the same subject commonly has the following patterns. First, it should decrease

with respect to the measurements’ separation in time, while remaining positive to

indicate the measurements are from the same subject. This feature is encapsulated

by the form of the covariance kernel Ψϕ. The IWP prior elicits realizations for which
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this property holds a priori, while enabling a flexible estimate of the covariance

structure with information from the data a posteriori. Second, measurements that

are made arbitrarily close in time are subject to imperfect correlation, possibly

caused by subsampling of each subject. This feature is represented by the error

term in our model. Moreover, the motivation for adding the error term arises from

the fact that measurement error is introduced in the estimation of a continuous-time

function based on data collected at discrete time points.

Although the probability model is formulated through stochastic process re-

alizations, posterior simulation is based on the corresponding finite dimensional

distributions (f.d.d.s.). Consequently, to write the model for the data, we need

to represent the likelihood and prior in multivariate forms through evaluating

the functions on finite grids. Denoting Yi(τi) by Yi, Zi(τi) by Zi, and ϵi =

(ϵi1, . . . , ϵiTi
)⊤, the model for the data can be written as

Yi | Zi, ϵi
ind.∼

Ti∏
t=1

Bin(1, φ(Zit + ϵit)), i = 1, . . . , n,

Zi | µ(τi),Σ(τi, τi) ind.∼ N(µ(τi),Σ(τi, τi)), ϵi | σ2
ϵ

ind.∼ N(0, σ2
ϵ I).

(4.2)

Notice that the grids {τi : i = 1, . . . , n} are not necessarily the same for all subjects.

Therefore, the shared GP and IWP prior in (4.1) need to be evaluated on the

pooled grid τ = ∪n
i=1τi. If µ, Σ, and Ψϕ denote µ(τ ), Σ(τ , τ ), and Ψϕ(τ , τ ),

respectively, then

µ | Σ, µ0, ν ∼ N(µ01, (ν − 3)Σ), Σ | ν,ϕ ∼ IW (ν,Ψϕ). (4.3)

The hierarchical model formulation for the data in (4.2) and (4.3) forms the basis

for the posterior simulation algorithm, which is discussed in detail in Section 4.2.3.
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4.2.2 Model Properties

To fix ideas for the following discussion, we refer to Zi(τ) as the signal process

of the binary process Yi(τ), and to Zi(τ) = Zi(τ) + ϵi(τ) as the latent process

of Yi(τ). Since the stochastic process is characterized by its f.d.d.s., we shall

investigate the random vectors Yτ = Yi(τ ), Zτ = Zi(τ ), and Zτ = Zi(τ ), for a

generic grid vector τ = (τ1, . . . , τT )⊤. We surpass the subject index i because the

subject trajectories are identically distributed. Appendix A.3 includes proofs for

the propositions included in this section.

Among the various inference goals in a study that involves longitudinal binary

data, estimating the probability response curve and the covariance structure of the

repeated measurements are the most important ones. In Proposition 4.1, we derive

the probability response curves and covariance matrix of the binary vector Yτ ,

conditional on the signal vector Zτ and error variance σ2
ϵ . The probability response

curve can be defined generically as Pyτ = (Pr(Yτ1 = yτ1 | Zτ , σ2
ϵ ), . . . ,Pr(YτT

=

yτT
| Zτ , σ2

ϵ ))⊤, where yτt is either 0 or 1. Without loss of generality, we focus on

P1τ .

Proposition 4.1. The probability response curve is given by P1τ = E(π(Zτ ) |

Zτ , σ2
ϵ ), where π(x) denotes the vector operator that applies the expit function to

every entry of x. Regarding the covariance matrix, for τ ∈ τ , V ar(Yτ | Zτ , σ2
ϵ ) =

E(φ(Zτ ) | Zτ , σ2
ϵ )−E2(φ(Zτ ) | Zτ , σ2

ϵ ), and for τ, τ ′ ∈ τ , with τ ′ ̸= τ , Cov(Yτ , Yτ ′ |

Zτ , σ2
ϵ ) = Cov(φ(Zτ ), φ(Zτ ′) | Zτ , σ2

ϵ ). The conditional expectations in all of the

above expressions are with respect to distribution, Zτ | Zτ , σ2
ϵ ∼ N(Zτ , σ2

ϵ I).

The practical utility of Proposition 4.1 lies on performing posterior inference

for the probability response curve and the covariance structure of the binary

process, conditioning on the signal process and the noise. With posterior samples

of Zτ and σ2
ϵ , we can simulate Zτ from N(Zτ , σ2

ϵ I) and numerically compute the
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corresponding moments in Proposition 4.1. The entries of Zτ are independent,

given Zτ , and thus simulating Zτ is not computationally demanding, even when

|τ | is large.

We next establish a closer connection between the binary process and the signal

process. Proposition 4.2 reveals that the evolution of the binary process over time

can be (approximately) expressed as a function of the expectation of the signal

process and the total variance. Moreover, the covariance of the binary process is

approximately the covariance of the signal process scaled by a factor related to

the expectation of the signal.

Proposition 4.2. Consider the proposed model as described in (4.2) and denote

µ(τ ) = µ, and Σ(τ , τ ) = Σ. Then, ∀τ, τ ′ ∈ τ ,

Pr(Yτ = 1 | µ,Σ, σ2
ϵ ) ≈ φ(E(Zτ | µ,Σ)) + Var(Zτ | µ,Σ) + σ2

ϵ

2 φ′′(E(Zτ | µ,Σ)),

Cov(Yτ , Yτ ′ | µ,Σ, σ2
ϵ ) ≈ φ′(E(Zτ | µ,Σ))φ′(E(Zτ ′ | µ,Σ)) Cov(Zτ , Zτ ′ | µ,Σ)

− 1
4[Var(Zτ | µ,Σ) + σ2

ϵ ][Var(Zτ ′ | µ,Σ) + σ2
ϵ ]φ′′(E(Zτ | µ,Σ))φ′′(E(Zτ ′ | µ,Σ)).

Here, φ′(x) = dφ(x)
dx

= φ(x)[1−φ(x)] and φ′′(x) = d2φ(x)
dx2 = φ(x)[1−φ(x)][1−2φ(x)].

Our inference results are based on exact expressions, such as the ones in

Proposition 4.1. Nonetheless, the approximate expressions derived in Proposition

4.2 are practically useful to gain more insight on properties of the binary process,

as well as for prior specification. Note that exploring properties of the binary

process is not trivial due to the lack of general analytical forms for moments

of logit-normal distributions. Hence, a connection with properties of the signal

process is useful. For instance, if we specify the covariance for the signal process

to decrease as a function of separation in time, an analogous structure will hold

(approximately) for the binary process.
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The previous discussion focuses on studying the f.d.d.s of the binary process

given the signal process. Therefore, it is important to investigate the marginal

f.d.d.s of the signal process. We show that, under the specification κ = (ν − 3)−1,

the f.d.d.s. of the signal process correspond to a multivariate Student-t (MVT)

distribution, and thus the signal process is a TP. We first state the definition of

the MVT distribution and the TP (see, e.g., Shah et al., 2014). Notice that we

use the covariance matrix as a parameter for the MVT distribution, instead of the

more common parameterization based on a scale matrix.

Definition 4.1. The random vector Z ∈ Rn is MVT distributed, denoted Z ∼

MV T (ν,µ,Ψ), if it has density

Γ(ν+n
2 )

[(ν − 2)π]n/2Γ(ν
2 ) |Ψ|−1/2

(
1 + (Z − µ)T Ψ−1(Z − µ)

ν − 2

)− ν+n
2

where ν > 2 is the degrees of freedom parameter, µ ∈ Rn, and Ψ is an n × n

symmetric, positive definite matrix. Under this parameterization, E(Z) = µ and

Cov(Z) = Ψ.

Consider a process Z(τ) formulated through mean function µ(τ), a non-negative

kernel function Ψ(τ, τ), and parameter ν > 2, such that its f.d.d.s correspond

to the MVT distribution with mean vector and covariance matrix induced by

µ(τ) and Ψ(τ, τ), respectively. Then, Z(τ) follows a TP, denoted by Z(τ) ∼

TP (ν, µ(τ),Ψ(τ, τ)).

Marginalizing over µ and Σ in (4.2) and (4.3), the implied distribution for Zτ

is MVT, with degrees of freedom parameter ν (with ν > 3 in our context), mean

vector µ01, and covariance matrix Ψϕ = Ψϕ(τ , τ ). We thus obtain the following

result for the signal process.

108



Proposition 4.3. Under the model formulation in (4.2) and (4.3), the signal

process follows marginally a TP, that is, Z ∼ TP (ν, µ0,Ψϕ).

Proposition 4.3 is beneficial in terms of both computation and interpretation.

Without a constraint on κ, as in Yang et al. (2016), the marginal distribution

of Zτ does not have analytical form. Hence, for prediction at new time points,

one has to sample from an IWP and a GP, which is computationally intensive,

especially for a dense grid. In contrast, we can utilize the analytical form of the

TP predictive distribution to develop a predictive inference scheme that resembles

that of GP-based models (see Section 4.2.3). Moreover, the result highlights the

model property that the degrees of freedom parameter ν controls how heavy tailed

the process is. Smaller values of ν correspond to heavier tails. As ν gets larger,

the tails resemble Gaussian tails. Additionally, ν controls the dependence between

Zτ and Zτ ′ , which are jointly MVT distributed, with smaller values indicating

higher dependence. Such interpretation of parameter ν facilitates the choice of its

hyperprior.

The local behavior of stochastic process realizations is crucial for interpolation.

Under the longitudinal setting, continuous, or perhaps differentiable, signal process

trajectories are typically anticipated. Evidently, the observed data can not visually

inform the smoothness of signal process realizations. Rather, such smoothness

should be captured in the prior specification that incorporates information about

the data generating mechanism. For weakly stationary processes, mean square

continuity is equivalent to the covariance function being continuous at the origin

(Stein, 1999). And, the process is ι-times mean square differentiable if and only

if the 2ι-times derivative of the covariance function at the origin exists and is

finite. Under our model, the signal process follows a TP marginally. Its covariance

structure is specified by the Matérn covariance function with smoothness parameter
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ι. Referring to the behavior of the Matérn class of covariance functions at the origin,

we obtain the following result for the mean square continuity and differentiability

of the signal process.

Proposition 4.4. Consider the proposed model with marginal signal process

Z ∼ TP (ν, µ0,Ψϕ), where Ψϕ belongs to the Matérn family of covariance functions

with smoothness parameter ι. Then, the signal process is mean square continuous

and ⌊ι⌋-times mean square differentiable.

The results in this section study several properties that are useful in model

implementation. Indeed, the practical utility of such model properties with respect

to prior specification and posterior inference is discussed in the next section.

4.2.3 Prior Specification and Posterior Inference

The model described in Section 4.2.1 contains parameters {σ2
ϵ , µ0, σ

2, ρ, ν}

whose prior hyperparameters need to be specified. We develop a default specifica-

tion strategy that relies on the model properties explored in Section 4.2.2.

First, we set the prior for µ0 such that the prior expected probability response

curve does not favor any category, and the corresponding prior uncertainty bands

span a significant portion of the unit interval. For instance, this can be achieved

with prior µ0 ∼ N(0, 100) which yields prior expected probability of positive

response of about 1/2 across τ . In general, we would not expect to have available

prior information about the variance and correlation structure of the unobserved

signal process, which are controlled by parameters σ2 and ρ. However, Proposition

4.2 suggests an approximate relationship between the covariance structure of the

binary process and the signal process, and we can thus specify the corresponding

priors similarly to GP-based models. In particular, we select the uniform prior for

the range parameter ρ such that the correlation between Zτ and Zτ ′ decreases to
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0.05 when the difference between τ and τ ′ is within a pre-specified subset of the

observation time window. For instance, for the data analysis in Section 4.3.2 where

the total observation window comprises 72 days, we used a Unif(3, 12) prior for

ρ, which implies that the aforementioned correlation decreases to 0.05 when the

time difference ranges from 7 to 31 days. The hyperprior for ν is Unif(aν , bν). We

specify aν > 3 to reflect the constraint for Σ/(ν−3) to be a well-defined covariance

matrix, and bν large enough such that the tail behavior of the marginal TP is

hard to distinguish from that of a GP. For instance, a default choice is aν = 4 and

bν = 30.

We follow Fong et al. (2010) to specify the prior for σ2
ϵ ∼ IG(aϵ, bϵ). Integrating

out σ2
ϵ , the measurement error ϵ is marginally distributed as a univariate Student-t

distribution with location parameter 0, scale parameter bϵ/aϵ, and degrees of

freedom parameter 2aϵ. For a predetermined measurement error range (−R,R)

with degree of freedom υ, we can use the relationship ±tυ1−(1−q)/2

√
bϵ/aϵ = ±R to

obtain aϵ = υ/2 and bϵ = R2υ/[2(tυ1−(1−q)/2)2], where tυq is the q-th percentile of a

Student-t distribution with υ degrees of freedom.

Proceeding to posterior inference, we develop an MCMC algorithm based

on (4.2) and (4.3). We introduce layers of latent variables, beginning with

ξit ∼ PG(1, 0) for every observation Yit, where PG(a, b) denotes the Pólya-

Gamma distribution with shape parameter a and tilting parameter b (Polson

et al., 2013). Denote the collection of Pólya-Gamma variables for each subject by

ξi = (ξi1, . . . , ξiTi
)⊤. Also, introduce Zit = Zit + ϵit, and let Z i = (Zi1, . . . ,ZiTi

)⊤.

Recall that τ = ∪n
i=1τi is the pooled grid. Denote the evaluations on the pooled

grid by Z̃i = Zi(τ ) and let Z∗
i = Z̃i \ Zi. That is, Z∗

i = Zi(τ ∗
i ), where τ ∗

i = τ \ τi

is the set of grid points at which the i-th trajectory misses observations. Then,
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the model for the data {Yit : t = 1, . . . , Ti, i = 1, . . . , n} can be expressed as

Yit | Zit, ξit
ind.∼ B(Zit, ξit), ξit

i.i.d.∼ PG(1, 0), t = 1, . . . , Ti,

Z i | Zi, σ
2
ϵ

ind.∼ N(Zi, σ
2
ϵ ITi

), Z̃i = (Zi,Z∗
i )⊤ | µ,Σ i.i.d.∼ N(µ,Σ), i = 1, . . . , n,

σ2
ϵ ∼ IG(aϵ, bϵ), µ | µ0,Σ, ν ∼ N(µ01, (ν − 3)Σ), µ0 ∼ N(aµ, bµ),

Σ | ν,Ψϕ ∼ IW (ν,Ψϕ), Ψϕ = Ψϕ(τ , τ ), ϕ = {σ2, ρ},

σ2 ∼ Gamma(aσ, bσ), ρ ∼ Unif(aρ, bρ), ν ∼ Unif(aν , bν).

Here, B(Zit, ξit) ∝ exp{(Yit − 0.5) Zit − 0.5 ξitZ2
it} denotes the probability mass

function of Yit conditional on both sets of latent variables, Zit and ξit. Hence, the

joint posterior density of all model parameters can be written as

p({Z i}n
i=1, {ξi}n

i=1, {Z̃i}n
i=1,µ,Σ, σ2

ϵ , µ0, σ
2, ρ, ν | {Yi}n

i=1)

∝
n∏

i=1
{p(Yi | Z i, ξi)p(ξi)p(Z i | Zi, σ

2
ϵ )p(Z∗

i | Zi,µ,Σ)p(Zi | µ,Σ)}

× p(µ | µ0,Σ, ν)p(Σ | σ2, ρ, ν)p(σ2
ϵ )p(µ0)p(σ2)p(ρ)p(ν).

(4.4)

The introduction of the latent variables enables a Gibbs sampling scheme with

conditionally conjugate updates. Denote generically by p(θ | −) the posterior full

conditional for parameter θ. Notice that p(Z i, ξi | −) ∝ p(Yi | Z i, ξi)p(ξi)p(Z i |

Zi, σ
2
ϵ ), which matches the Bayesian logistic regression structure in Polson et al.

(2013). Therefore, p(Z i | −) and p(ξi | −) can be sampled directly. Factorizing the

prior of Z̃i as p(Z̃i|µ,Σ) = p(Z∗
i | Zi,µ,Σ)p(Zi | µ,Σ), results in p(Z∗

i ,Zi|−) ∝

p(Z∗
i | Zi,µ,Σ)p(Zi | µ,Σ)p(Z i | Zi, σ

2
ϵ ). This forms yields ready updates for Z∗

i

and Zi using GP-based predictive sampling. All other model parameters can be

sampled using standard updates. The details of the MCMC algorithm are given in

Appendix B.3.

We have linked the probability response curve and covariance structure of the
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binary process Yi(τ) to the corresponding signal process Zi(τ). To estimate the

signal process, we obtain posterior samples for Z+
i = Zi(τ+), where τ+ ⊃ τ is

a finer grid than the pooled grid. Denote τ̌ = τ+ \ τ as the time points where

none of the subjects have observations, and let Ži = Zi(τ̌ ). Using the marginal

TP result from Proposition 4.3,

Z̃i

Ži

 ∼ MV T

ν,
µ0τ

µ0τ̌

 ,
Ψτ ,τ Ψτ ,τ̌

Ψτ̌ ,τ Ψτ̌ ,τ̌


 ,

where µ0· = µ01|·|, and Ψ·,· denotes the covariance function evaluation Ψϕ(·, ·).

Next, based on the conditionals of the MVT distribution (Shah et al., 2014),

Ži | Z̃i ∼ MV T

(
ν + |τ |, µ̌iτ̌ ,

ν + Siτ − 2
ν + |τ | − 2 Ψ̌τ̌ ,τ̌

)
, (4.5)

with µ̌iτ̌ = Ψτ̌ ,τΨ−1
τ ,τ (Z̃i − µ0τ ) + µ0τ̌ , Siτ = (Z̃i − µ0τ )⊤Ψ−1

τ ,τ (Z̃i − µ0τ ) and

Ψ̌τ̌ ,τ̌ = Ψτ̌ ,τ̌ − Ψτ̌ ,τΨ−1
τ ,τΨτ ,τ̌ . Using (4.5), given each posterior sample for Z̃i, µ0,

ϕ and ν, we can complete the posterior realization for the signal process over the

finer grid. As discussed in Section 4.2.2, we can then obtain full posterior inference

for functionals of the binary process.

The predictive distribution of the signal process also illustrates the information

borrowed across subjects. For the i-th subject, the grid, τ+, where predictions

are made can be partitioned as τi ∪ τ ∗
i ∪ τ̌ , where τ ∗

i = τ \ τi represents the grid

points where subject i does not have observations, while at least one of the other

subjects have observations. Then, we first predict Zi(τ ∗
i ) conditioning on Zi(τi) by

the GP predictive distribution, and next predict Zi(τ̌ ) conditioning on Zi(τi) and

Zi(τ ∗
i ) by the TP predictive distribution. Comparing with the GP, (4.5) suggests

the TP is scaling the predictive covariance by the factor ν+Siτ −2
ν+|τ |−2 . Note that Siτ

is distributed as the sum of squares of |τ | independent MV T1(ν, 0, 1) random
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variables and hence E(Siτ ) = |τ |. Accordingly, if we have made good interpolation

prediction, the predictive covariance for extrapolation of is expected to scale down

and vice versa. Comparing with predicting both Zi(τ ∗
i ) and Zi(τ̌ ) conditioning on

Zi(τi) through the GP predictive distribution, our model allows using information

across subjects to adjust the individual trajectory’s credible interval.

Another crucial benefit of modeling the signal process as a TP emerges when

we consider making predictions at τ̌ , the grid points where none of the subjects

have observations. Under the hierarchical GP prior in Yang et al. (2016), for which

the marginal is not generally a TP, such predictions would require the conditional

distribution Στ̌ ,τ̌ | Στ ,τ from their joint inverse-Wishart distribution, which is not

analytically available. We circumvent this issue by marginalizing out µ and Σ. The

predictions are then based on the conditional Ži | Z̃i from their joint multivariate

t distribution, which is the MVT distribution in (4.5). Hence, for prediction on a

grid denser than the pooled grid τ , the marginal TP specification for the signal

process is a practically important model feature.

4.2.4 Connections with Existing Literature

Our methodology is broadly related with certain Bayesian nonparametric

methods. The proposed model is related to a particular class of conditional models,

known as transition models, which induce the aging effect by allowing past values to

explicitly affect the present observation, usually through autoregressive dynamics.

Di Lucca et al. (2013) studied a class of non-Gaussian autoregression models

for continuous responses, which can be extended to handle binary longitudinal

outcomes by treating them as a discretized version of the continuous outcomes.

DeYoreo and Kottas (2018b) developed a nonparametric density regression model

for ordinal regression relationships that evolve in discrete time. Compared with
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the proposed methodology, these models are more flexible in terms of the binary

response distribution. However, it is demanding to handle higher than first-order

dynamics, and there is no natural way to treat missing data under a discrete

time autoregressive framework, hindering applications for unbalanced longitudinal

studies.

The proposed model is more closely related to subject-specific models, where

the responses are assumed to be independent conditioning on subject-specific

effects. The main approach has been to construct models for longitudinal binary

responses building from the various Bayesian nonparametric models for longitudinal

continuous data, developed under the mixed effects framework (e.g., Li et al., 2010;

Ghosh and Hanson, 2010; Quintana et al., 2016). For instance, embedding a

Dirichlet process mixture of normals prior as the probability model for the latent

variables, Jara et al. (2007) and Tang and Duan (2012) consider binary responses,

and Kunihama et al. (2019) handle mixed-scale data comprising continuous and

binary responses. The proposed model differs in the way of treating subject-specific

effects, and it arguably offers benefits in terms of computational efficiency.

There is a growing trend of adopting functional data analysis tools in longitudi-

nal data modeling. These methods specify observations as linear combinations of

functional principal components (FPCs), with the FPCs represented as expansions

of a pre-specified basis. Bayesian methods include Jiang et al. (2020) for continuous

responses, and Van Der Linde (2009) for binary and count responses. Challenges

include inference which is sensitive to the basis choice, and a complex orthogonality

constraint on the FPCs. Recently, Matuk et al. (2022) proposed an approach that

can serve as foundation for generalized FPC analysis of sparse and irregular binary

responses. Nonetheless, our model involves a more parsimonious formulation,

including the structure with the GP and TP predictive distributions.
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4.3 Data Illustrations with Binary Responses

4.3.1 Synthetic data examples

The principal goal of analyzing longitudinal data is to estimate the mean

and covariance structure of the subject’s repeated measurements. We conduct

simulation studies to evaluate the proposed method on fulfilling this goal. In

particular, Section 4.3.1.1 evaluates the proposed model’s capacity to capture the

fluctuation of the mean structure, and Section 4.3.1.2 explores its performance

in estimating within subject covariance structure. In Section 4.3.1.3, we evaluate

model performance on a scenario where the observations are made on irregular

time points. Unless otherwise specified, the posterior analyses in this section are

based on 5000 posterior samples collected every 4 iterations from a Markov chain

of 30000 iterations, with the first 10000 samples being discarded.

4.3.1.1 Estimating Mean Structure

Consider a generic process of generating longitudinal binary responses,

Yi = Yi(τi) | Zi(τi) ind.∼ Bin(1, η(Zi(τi))), τi = (τi1, . . . , τiTi
), i = 1, . . . , n,

Zi(τi) = Z i = f(τi) + ωi + ϵi ϵi
i.i.d.∼ N(0, σ2

ϵ I),

(4.6)

where η(·) is a generic link function mapping R to (0, 1), f(τ) is a signal function,

and ωi is a realization from a mean zero continuous stochastic process that depicts

the temporal covariance within subject. The objective is twofold. First, to estimate

the subject’s probability response curve, which is defined as the probability of

obtaining positive response, as a function of time. Second, to estimate the true

underlying signal function.
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We consider three data generating processes. The specific choice of η(·), f(τ)

and ωi for each generating process is summarized as follows:

• Case 1: η1(·) = φ(·), where φ(·) is the expit function, f1(τ) = 0.3 +

3 sin(0.5τ) + cos(τ/3), and ωi
i.i.d.∼ N(0, K1(τ , τ )), with covariance kernel

K1(τt, τt′) = exp(−|τt − τt′|2).

• Case 2: η2(·) = Φ(·), where Φ(·) denotes the CDF of standard normal distribu-

tion, f2(τ) = 0.1+2 sin(0.25τ)+cos(0.25τ), and ωi
i.i.d.∼ MV T (5, 0, K2(τ , τ )),

with covariance kernel K2(τt, τt′) = 1
3 exp(−|τt − τt′|2).

• Case 3: a mixture of Case 1 and Case 2, with equal probability of generating

data from each model.

For n = 30 subjects, we simulate T = 31 binary observations at time τ =

0, . . . , 30, following the aforementioned data generating processes. To enforce an

unbalanced study design, we randomly drop out a proportion of the simulated

data. We term the drop out proportion sparsity level, for which we consider 10%,

25% and 50%.

The proposed hierarchical model is applied to the data, with a weakly informa-

tive prior placed on the mean structure. We obtain posterior inference of the prob-

ability response curve and the signal process on a finer grid τ+ = (0, 1
3 ,

2
3 , . . . , 30).

Figure 4.1 plots posterior point and interval estimates of the subject’s probability

response curve for a randomly selected one in each case. Despite the data gener-

ating process and the sparsity level, the model can recover the evolution of the

underlying probability used in generating binary responses. We observe a shrink

in the interval estimate at the set of grid points where at least one subject has

observation, that is, τ . The increase in the credible interval width at τ̌ reflects

the lack of information at those time grids.
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(a) Sparsity level at 10%.

(b) Sparsity level at 25%.

(c) Sparsity level at 50%.

Figure 4.1: Simulation study regarding the mean structure. Inference results
for the probability response curve. In each panel, the dashed line and shaded
region correspond to the posterior mean and 95% credible interval estimates, the
(orange) dot is the original binary data, whereas the (green) cross denotes the true
probability of generating that responses.

We further investigate the model’s ability in out-of-sample prediction, by

estimating the probability response curve for a new subject from the same cohort.

Figure 4.2 shows the posterior point and interval estimates of Pr(Y∗(τ∗t) = 1),

including, as a reference point, the posterior mean estimates of each subject’s

probability response curve Pr(Yi(τit) = 1), i = 1, . . . , n. The true probability

function that triggered the binary response, given as the signal transformed by the
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Figure 4.2: Simulation study regarding the mean structure. Prediction of the
probability response curve for a new subject. In each panel, the dashed lines and
shaded region shows the posterior mean and 95% interval estimates of probability
response curve for a new subject. The solid lines are the posterior mean estimates
of probability response curves for the in-sample subjects. The dotted line is the
true probability function for generating binary responses.

link function, is also shown in the figure. It is obtained with the simulated data

with 10% sparsity, while there is no major difference for the other two sparsity levels.

The behavior of the probability response curve for the new subject is to be expected.

It follows the overall trend depicted by the true underlying probability function,

while suffers from a comparable level of measurement error with the observed

subjects. Here, the point estimates exhibit local, non-smoothing behavior, which

is due to the lack of repeat measurements. Actually, if we observe more responses

per subject, the estimated probability response curve will become smoother.

It is also of interest to assess the model’s ability in recovering the underlying

continuous signal process, since the signal process describes the intrinsic behavior

and is crucial to answer related scientific questions. In our proposed model, the

signal process is modeled nonparametrically through a GP. To further emphasize

the benefits of this model formulation, we compare the proposed model with its

simplified backbone. The simpler model differs from the original one in modeling

the mean function. Instead of modeling the mean function µ through a GP, we

consider the parametric form µ(τ) ≡ µ0, with µ0 ∼ N(aµ, bµ). The model’s ability

in capturing the signal process is summarized by the rooted mean square error
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Figure 4.3: Simulation study regarding the mean structure. Box and violin plots
of the posterior samples of RMSE for different data generating process and sparsity
level combinations. The red box corresponds to the proposed model while the blue
box is for the simplified model.

(RMSE), which is defined by RMSEM =
√

1
n

∑n
i=1

1
|τ+|

∑
τ∈τ+(ẐM

i (τ) − f(τ))2.

Here, ẐM
i (τ) denotes the estimated signal for subject i evaluated at time τ ,

under model M, which can be obtained at every MCMC iteration. Figure 4.3

explores the posterior distribution of the RMSE under the proposed model and

its simplified version, for different data generating process and sparsity level

combinations. Despite the scenario, the proposed model shows a notably smaller

RMSE. Contrasting the performance with the simpler model highlights the practical

utility of including the GP prior layer for the mean function in terms of effective

estimation of the underlying continuous signal process.

4.3.1.2 Estimating Covariance Structure

Since we emphasize the importance of modeling dependence in longitudinal

data, we now explore how well our model works for estimating different covariance

structure. Consider the data generating process in (4.6), with expit link function

and signal f(τ) = 0.1 + 2 sin(0.5τ) + cos(0.5τ). We examine a number of possible

choices for generating ωi, that imply covariance structures which would not be in

the same form as the covariance kernel used in the proposed model. The primary

interest is to exhibit the robustness of covariance kernel choice to different true
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covariance structures. We let Ti = T and τit = τt, namely that all subjects are

observed over the same time grids. For n = 100 subjects, we generate sequences of

length T = 11 at time τ = 0, . . . , 10. We study the following options of generating

ωi:

• Case 1: ωi
i.i.d.∼ N(0, K1(τ , τ )), with squared exponential kernel K1(τt, τt′) =

exp(−|τt − τt′ |2/(2 · 32)). Each realized trajectory is infinitely differentiable.

• Case 2: ωi
i.i.d.∼ N(0, K2(τ , τ )), with exponential kernelK2(τt, τt′) = exp(−|τt−

τt′|/5). Each realization is effectively from a continuous-time AR(1) GP.

• Case 3: ωi
i.i.d.∼ MV T (5,0, K3(τ , τ )), with compound symmetry kernel

K3(τt, τt′) = I{τt=τt′ } + 0.4I{τt ̸=τt′ }. The covariance between two observations

remains a constant, despite their distance.

• Case 4: ωi
i.i.d.∼ MV T (5, 0, K4(τ , τ )), with kernel K4(τt, τt′) = 0.7K2(τt, τt′)+

0.3K3(τt, τt′), a mixture of AR(1) and compound symmetry covariance struc-

ture.

In terms of longitudinal binary responses, the covariance structure can be

elucidated in two senses, namely the covariance between the pair of binary

data (Yi(τt), Yi(τt′)) and between the pair of signal (Zi(τt), Zi(τt′)). We con-

sider the covariance structure of the signal process first. From Proposition 4.3,

Cov(Zi(τt), Zi(τt′)) = Ψϕ(τt, τt′), ∀i, where the covariance function Ψϕ is defined

in (4.2.1). Hence, the signal covariance structure estimated from the model is

also isotropic, facilitating a graphic comparison between the posterior estimate of

Ψϕ(τd) versus the true covariance kernel K(τd), where τd = |τt − τt′ |. The results

are presented in Figure 4.4. As expected, the proposed model recovers the truth,

despite the mis-specification of the covariance kernel. Comparing with the other
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Figure 4.4: Simulation study regarding the covariance structure. Inference results
for the signal covariance kernels. In each panel, the dashed line and shaded region
correspond to the posterior mean and 95% credible interval estimates, whereas the
solid line denotes the true covariance kernel.

three cases, the posterior point estimate of covariance kernel is less accurate in

Case 3. This can be explained by noticing that the constant covariance in that

case violates the model assumption. Nonetheless, the posterior interval still covers

the truth.

As for the covariance between the pair of binary responses, we consider two

measurements, the Pearson correlation coefficient and the tetrachoric correlation

coefficient. For a review of the definitions and properties of these two correlation

coefficients, we refer to Ekström (2011). At each MCMC iteration, we predict a

new sequence of binary responses of length T , denoted as {Y (s)
i∗ (τ ) : s = 1, . . . , S}.

Correspondingly, we also obtain samples of binary sequences from the true data

generating process, denoted by {Ŷ (s)
i∗ (τ ) : s = 1, . . . , S}. Both sets of binary

sequences form S/n datasets that mimic the original samples. From the datasets

comprised by posterior predictive samples Y (s)
i∗ (τ ), we obtain interval estimates of

the two correlation coefficients. In addition, for Ŷ (s)
i∗ (τ ) that are generated from the

truth, we obtain point estimates, which can be viewed as the correlation coefficients

from the data, accounting for the variation in the data generating process. Notice

that marginally the binary process is not guaranteed to be isotropic. Hence, the

correlation coefficients should be calculated for every possible pair of (τt, τt′) ∈ τ .
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(a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

Figure 4.5: Simulation study regarding the covariance structure. Posterior
interval estimate of correlation coefficients (“box”) versus point estimate obtained
from the true data generating process (“⋆”). In each panel, the upper triangle
and the lower triangle are for the Pearson and the rachoric correlation coefficient,
respectively.

The resulting point and interval estimates of both types of correlation coefficients

are displayed in Figure 4.5. All the posterior interval estimates cover the truth,

indicating that the proposed model effectively captures the binary covariance

structure.

The simulation studies have illustrated the benefits of our approach, that is,

avoiding possible bias in covariance structure estimation caused by mis-specification

of the covariance kernel for the signal process. This model feature is driven by

the IWP prior placed on the covariance function. To emphasize this point, we

consider an alternative, simplified modeling approach, with Zi
i.i.d.∼ GP (µ,Ψϕ),

µ ∼ GP (µ0,Ψϕ/κ). That is, instead of modeling the covariance function nonpara-

metrically, we assume a covariance kernel of certain parametric form, specified by

Ψϕ. We consider the centralized signal process ωi = Zi − µ evaluated at a finite

grid τ , denoted as ωi. Under the proposed model, ωi
i.i.d.∼ MV T (ν,0,Ψϕ(τ , τ )),

while under the simplified model, ωi
i.i.d.∼ N(0, (1 + 1

κ
)Ψϕ(τ , τ )). We know the true

distribution of ωi from the data generating process. Therefore, we can compute

the 2-Wasserstein distance between the model estimated distribution of ωi to the

truth. The usage of 2-Wasserstein distance is motivated by its straightforward
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Figure 4.6: Simulation study regarding the covariance structure. Histogram for
the posterior samples of the 2-Wasserstein distance between the f.d.d.s. of the
centralized signal process obtained from the proposed model (upper panel) and
the simplified model (lower panel) to the truth.

interpretation: a 2-Wasserstein distance of d means that coordinatewise standard

deviations differ by at most d (Huggins et al., 2020, Thm. 3.4). Iterating over the

posterior samples of model parameters, we obtain the distributions of 2-Wasserstein

distance between the model estimated distribution of ωi and the truth, which is

shown in Figure 4.6. Clearly, for the proposed model, the 2-Wasserstein distances

are substantially small. Contrasting the performance highlights the practical

benefits of modeling the covariance structure nonparametrically.

4.3.1.3 Model performance with irregular observing points

The simulation studies discussed above focus on longitudinal settings with ob-

servations made at integer time points, which is the typical scenario in longitudinal

studies. To further illustrate the practical benefit of adopting the functional data

analysis perspective, we consider a synthetic scenario in which observations are

made irregularly. Specifically, the pooled grid τ consists of 30 grid points that are

uniformly sampled on the interval (0, 30). We consider n = 50 subjects. For each

of them, we first generate repeated measurements on the pooled grid, following

the scheme described in Section 4.3.1.1 Case 1. The unbalanced setting is imposed
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Figure 4.7: Simulation study with irregular observing points. Visualization of the
repeated measurements for each subject. The blue dot marks a positive response
while the red cross represents a negative response.

by randomly dropping out 30% of the simulated observations. The observed data

are visualized in Figure 4.7, which shows heavily irregular pattern.

To assess the model’s performance in out-of-sample prediction, we plot posterior

point and interval estimates of a new subject’s probability response curve in Figure

4.8, including the posterior mean estimate of each in-sample subjects’ probability

response curves. Similar to the scenarios discussed in Section 4.3.1.1, the predicted

mean captures the true probability function well. Comparing to the cases with

more regular observed time points, the shrinkage of the credible interval at observed

points is less prominent. Nonetheless, the intervals are shorter at the region where

observing points are more concentrated, which is to be expected.

Moreover, we compare our model with a traditional approach, which postulates

a GLMM structure. Specifically, the model used for comparison is formulated as

follows:

Yit | Zit
ind.∼ Bin(1, φ(Zit)), Zit = τ̃⊤

it β +
K∑

k=1
Sitkbk + µi + ϵit, t = 1, . . . , Ti,

for i = 1, . . . , n. The components of this model are set similar to the modeling

approach described in Section 4.3.2.3, except that here the cubic B-spline basis

functions have 4 inner knots that separate the whole observing period into 5 equal
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Figure 4.8: Simulation study with irregular observing points. Posterior inference
of a new subject’s probability response curve. The dashed line and shaded region
show the posterior mean and 95% interval estimates of probability response curve
for a new subject. The dotted line is the true probability function for generating
binary responses. As references, the solid lines are the posterior mean estimates of
probability response curves for the in-sample subjects.

Table 4.1: Simulation study with irregular observing points. Comparison between
the proposed model and the generalized linear mixed effects model using two
different criteria. The values in bold correspond to the model favored by the
particular criterion.

Model Posterior predictive loss CRPS
G(M) P (M) G(M) + P (M)

Proposed 125.78 152.33 278.11 0.12
GLMM 150.55 154.16 304.71 0.14

length intervals. We perform model comparison using the posterior predictive

loss criterion and CRPS, with the results summarized in Table 4.1. Our model is

favored by both criteria. The key distinction between the two models is that we

adopt a flexible, functional data analysis modeling approach, which appears to be

beneficial, especially when the observing time points are highly irregular.

4.3.2 Real Application: Studentlife data

4.3.2.1 Data for Analysis

Studentlife (Wang et al., 2014) is a study that integrates automatic sensing data

and an EMA component to probe students’ mental health status and to study its
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relationship with students’ academic performance and behavior trends. The data

were collected by a smartphone app carried by 48 students over a 10-week term

at Dartmouth College. The dataset is available from the R package “studentlife”

(Fryer et al., 2022).

We focus on a subset of the data that corresponds to assessing the students’

emotional status. In the Studentlife study, the assessment of emotion is conducted

by the Photographic Affect Meter (PAM), a tool for measuring affect in which

users select from a wide variety of photos the one which best suits their current

mood (Pollak et al., 2011). The PAM survey is deployed to the mobile app and

prompts everyday during the study period. The participants either respond to the

survey, or ignore it, introducing missingness. The outcome of the survey contains

two attributes, the PAM valence and the PAM arousal. They are scores of -2 to 2

(excluding 0) that measure the subject’s extent of displeasure to pleasure or state

of activation ranging from low to high, respectively. We dichotomize the valence

and arousal scores by their sign, representing the positive values by 1. In this

section, we focus on analyzing the change of binary valence and arousal responses

to evaluate students’ affects as the term progresses.

The data were collected during the spring 2013 term at Dartmouth college.

We set the study period according to the official academic calendar, from the first

day of classes (March 25, 2013) to the end of the final exam period (June 4, 2013),

resulting in a total of 72 days. We exclude subjects with less than 12 responses,

resulting in 45 students. The longitudinal recordings of valence or arousal of the

i-th student are denoted by Yi(τi), for i = 1, . . . , 45, where the student-specific

grid points are a subset of τ = (0, 1, . . . , 71)⊤, representing the days on which

the measurements are recorded. Several special events occurred during the study

period, and we are particularly interested in investigating the change of students’
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affects on the time intervals around these events. Specifically, the events and

corresponding periods are: (i) Days following the Boston marathon bombing (April

15, 2013 to April 17, 2013); (ii) The Green Key (a spring festival at Dartmouth)

period (May 17, 2013 to May 18, 2013); (iii) The Memorial Day long weekend

(May 25, 2013 to May 27, 2013); (iv) The final examination period (May 31, 2013

to June 3, 2013).

We retrieve the data for the specific responses and study period from the

R package “studentlife” that contains the database for the entire study. Over

all observations, the percentage of missing values is 31.1%. We treat the miss-

ingness as missing-at-random. The main reson is that the responses are from

an ecological momentary assessment (EMA) study (mentioned explicitly in the

original publication (Wang et al., 2014) and the description of the corresponding R

package). To reduce the potential bias caused by nonrandom missing responses, at

the design stage, EMA studies place a premium on obtaining high levels of subject

compliance with the assessment protocol (Shiffman et al., 2008). As a result, one

can assume the occurrence of missing values is driven by a completely random

process (Ruwaard et al., 2018), and therefore ignorable (see e.g. Hedeker et al.,

2009; Shiffman et al., 2009).

For an example of empirical evaluation for the specific data, we plot the

proportion of the three types of responses (positive, negative, and missing) over time,

for valence and arousal scores, aggregated over the subjects. The corresponding

plot is displayed in Figure 4.9. The plots show no strong pattern of missingness

over time, apart from that more missing responses appear at the beginning and

toward the end of the study. Combining with the feature from the design of EMA

studies, the missing-at-random assumption is arguably plausible for our illustrative

data analyses.
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(a) Valence score (b) Arousal score

Figure 4.9: Studentlife data. Proportion of three types of response (positive,
negative, and missing,) over time, for valence and arousal scores.

(a) Valence. (b) Arousal.

Figure 4.10: Studentlife data. Empirical estimate of the correlation coefficients
between binary responses within a week. In each panel, the upper triangle and
the lower triangle are for the Pearson and the tetrachoric correlation coefficient,
respectively.

We further explore the correlations between the binary responses within a

week. We split the whole observation sequence into batches representing a week,

and empirically calculate the Pearson and the tetrachoric correlation coefficient

for each pair of time and distance combinations. Figure 4.10 presents the results.

It suggests that the correlation of the students’ response to valence and arousal

decreases slowly in time.
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4.3.2.2 Analysis and Results

We fit the proposed model for the binary valence and arousal responses sepa-

rately. We specify the prior for the model parameters by the procedure mentioned

in Section 4.2.3. We suggest the default hyperprior for µ0 and ν as µ0 ∼ N(0, 100)

and ν ∼ Unif(4, 30). σ2 and ρ control the covariance structure. Their prior hyper-

parameters can be determined by exploring the covariance structure of the data.

On the other hand, the hyperprior for σ2
ϵ depends on the belief about the range

and the degree of freedom of the measurement error. In general, the measurement

error reflect the remaining variability of the underlying continuous process, whose

major change has been captured by the signal process. Consequently, we assume

the measurement error range should be small, and we pick a moderate value for

the error degree of freedom. Posterior inference results are based on 5000 MCMC

samples obtained every 4 iterations from a chain of 50000 iterations with a 30000

burn-in period (which is conservative).

We first examine in Figure 4.11 the probability response curves, defined as

the probability of obtaining positive valence or arousal as a function of time. For

the valence, the happiness level drops as the term begins and increases when the

term ends. The Boston marathon bombing may have had a minor effect on the

valence. We observe local peaks around the Green Key festival and the Memorial

Day holiday. As the students finish their exams, there is a trend toward happiness.

As for arousal, it is relatively stable at the beginning of the term, and fluctuates as

the term progresses. There is a drop in activation level after the Boston marathon

bombing and during the final exam period, while the activation level reaches a

local maximum at around the Green Key festival and the Memorial Day holiday.

Moreover, we assess the student’s emotional status on specific days. According

to Russell (1980), various states of emotional status can be represented by points
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Figure 4.11: Studentlife data. Posterior mean (dashed line) and 95% interval
estimate (shaded region) of the probability response curve for an out-of-sample
subject. The posterior mean estimates of probability response curves for in-sample
subjects are given by the solid lines. The vertical shaded regions correspond to
the four special time periods (see Section 4.3.2.1).

located at the two dimensional mood coordinate space spanned by valence for

the horizontal dimension and arousal for the vertical dimension. Moods such as

excitement, distress, depression, and contentment, are represented by points in the

quadrants of the space. For each observation, we can map the corresponding pairs

of probabilities for positive valence and arousal onto the unit square in the mood

space. In Figure 4.12, the density heatmap is obtained by the posterior samples

of positive probabilities for a new student of the same cohort, while the posterior

means of the in-sample positive probabilities are marked by crosses. Panels (a)

and (b) suggest the students are mostly excited at the festival and holiday. Moving

from panel (c) to panel (d), we observe that the happiness level increases and the

activation level decreases towards the end of the exam period.

We also obtain the posterior point and 95% interval estimate for the covariance

kernel of the signal process, which is displayed in Figure 4.13. It is noteworthy that

there is a similar decreasing trend for the two distinct binary responses of valence

and arousal. The practical range, defined as the distance at which the correlation

is 0.05, has an estimated mean of 20.99 for valence and 22.97 for arousal.
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(a) Green Key (b) Memorial Day (c) Final exams begin (d) Final exams end

Figure 4.12: Studentlife data. Posterior density estimate of an out-of-sample
subject’s valence and arousal probability over the mood coordinate space on four
specific days. In each panel, the crosses represent the posterior means of the in-
sample subjects’ valence and arousal probability mapped to the mood coordinate
space.

Figure 4.13: Studentlife data. Posterior mean (solid line) and 95% interval
estimate of the signal process covariance kernel.

4.3.2.3 Performance comparisons

For comparison with a traditional approach, we consider an analysis of the

data under the GLMM setting. In particular, we assume, for i = 1, . . . , n,

Yit | Zit
ind.∼ Bin(1, φ(Zit)), Zit = τ̃⊤

it β +
K∑

k=1
Sitkbk + µi + ϵit, t = 1, . . . , Ti,

where τ̃it = (1, τit)⊤, β is the vector of fixed effects, and ϵit
i.i.d.∼ N(0, σ2

ϵ ) is the

measurement error. To allow flexibility in modeling the time effect, we consider

cubic B-spline basis functions with K = 9 knots that separate naturally the ob-

served interval by week; Sitk is the k-th basis associated with time, with parameter
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Table 4.2: Studentlife data. Summary of comparison between the proposed model
and the generalized linear mixed effects model using two different criteria. The
values in bold correspond to the model favored by the particular criterion.

Response Model Posterior predictive loss CRPS
G(M) P (M) G(M) + P (M)

Valence Proposed 428.09 475.31 903.40 0.19
GLMM 456.09 475.83 931.92 0.20

Arousal Proposed 457.62 496.63 954.25 0.20
GLMM 476.17 492.28 968.45 0.21

bk
i.i.d.∼ N(0, σ2

b ). Finally, µi
i.i.d.∼ N(0, σ2

µ) are subject-specific random effects. The

model is implemented using the integrated nested Laplace approximation (INLA)

approach (Rue et al., 2009) with the “INLA” package in R (Rue et al., 2017). We

used the default choices provided by the R package for the prior on β (a flat prior),

and for the values of the variance terms, σ2
ϵ , σ2

b , and σ2
µ.

We perform model comparison using two different metrics: the posterior

predictive loss criterion which combines a goodness-of-fit term, G(M), and a

penalty term, P (M), for model complexity (Gelfand and Ghosh, 1998); and,

the continuous ranked probability score (CRPS), defined in terms of predictive

cumulative distribution functions (Gneiting and Raftery, 2007). Both criteria can

be calculated from the posterior samples for model parameters, and both favor

the model with a smaller value. Table 4.2 summarizes the results. For the valence

response, both criteria favor the proposed model. As for the arousal response, the

proposed model provides a more accurate fit to the data, while being penalized

more than the GLMM with respect to model complexity. Nonetheless, our model is

favored in terms of total posterior predictive loss, as well as by the CRPS criterion.

133



4.4 Model for ordinal responses

4.4.1 The extended model

We extend the model developed in Section 2.2.1 to handle ordinal responses.

Suppose the observation on subject i at time τit, denoted by Yit, takes C possible

categories. We can equivalently encode the response as a vector with binary entries

Yit = (Yi1t . . . , YiCt), such that Yit = j is equivalent to Yijt = 1 and Yikt = 0 for

any k ̸= j. We assume a multinomial response distribution for Yit, factorized in

terms of binomial distributions,

Mult(Yit | mit, ωi1t, . . . , ωiCt) =
C−1∏
j=1

Bin(Yijt | mijt, φ(Zijt + ϵijt)) (4.7)

where mit = ∑C
j=1 Yijt ≡ 1, mi1t = mit, and mijt = mit − ∑j−1

k=1 Yikt. This

factorization bridges the gap between binary and ordinal responses. Similar to the

model for binary responses, we adopt a functional data analysis perspective on

{Zijt}, modeling them separately through the hierarchical framework developed

in Section 2.2.1. That is, Zij(τ) | µj,Σj
i.i.d.∼ GP (µj,Σj), for i = 1, . . . , n, and

µj|Σj
ind.∼ GP (µ0j, (νj − 3)Σj), Σj

ind.∼ IWP (νj,Ψϕj
), where ϕj = {σ2

j , ρj}, for

j = 1, . . . , C − 1. The error terms are modeled as ϵijt | σ2
ϵj

ind.∼ N(0, σ2
ϵj). Hence,

the hierarchical model for the data can be expressed as

Yi|{Zij}, {ϵij}
ind.∼

Ti∏
t=1

C−1∏
j=1

Bin(Yijt | mijt, φ(Zijt + ϵijt)), i = 1, . . . , n,

Zij | µj(τi),Σj(τi, τi) ind.∼ N(µj(τi),Σj(τi, τi)), ϵij | σ2
ϵj

ind.∼ N(0, σ2
ϵj I),

µj | µ0j,Σj, νj
ind.∼ N(µ0j1, (νj − 3)Σj); Σj | νj,Ψj

ind.∼ IW (νj,Ψj),

(4.8)

for j = 1, . . . , C − 1, where Yi = (Yi1, . . . ,YiTi
)⊤, Zij = (Zij1, . . . , ZijTi

)⊤, ϵij =

(ϵij1, . . . , ϵijTi
)⊤, and the collection of the functional evaluations on the pooled grid
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τ are denoted by the corresponding bold letter.

The structure in (4.7) is referred to as the continuation-ratio logits represen-

tation of the multinomial distribution (Tutz, 1991). In the context of Bayesian

nonparametric modeling, it has been used as the kernel of nonparametric mixture

models for cross-sectional ordinal regression (Kang and Kottas, 2022).

Examining model properties reveals the practical utility of the continuation-

ratio logits structure. The factorization in (4.7) allows us to examine the probability

response curves and the within subject covariance structure in the same fashion as

for binary responses. Specifically, the continuation-ratio logit for response category

j is the logit of the conditional probability of response j, given that the response is

j or higher. As a consequence, for any finite grid τ = (τ1, . . . , τT )⊤, the probability

response curves are given by

Pjτ = (Pr(Yτ1 = j | Zτ , σ2
ϵ ), . . . ,Pr(YτT

= j | Zτ , σ2
ϵ ))⊤

= E
(
πjτ | Zjτ , σ

2
ϵj

) j−1∏
k=1

E
(
(1 − πkτ ) | Zkτ , σ

2
ϵk

)
,

(4.9)

where πjτ = (φ(Zj1), . . . , φ(ZjT ))⊤ and Zjτ | Zjτ , σ
2
ϵj ∼ N(Zjτ , σ

2
ϵjIT ), for

j = 1, . . . , C. To avoid redundant expressions, we include the term πCτ and set it

always equal to 1. As for the covariance structure, we study the joint probability of

the repeated measurements on the same subject at time τ and τ ′ taking category

j and j′. Exploiting the conditional independence structure across the categories,

Pr(Yτ = j, Yτ ′ = j′ | {Zjτ}, {σ2
ϵj})

=



E(πjτπjτ ′ | Zjτ , σ
2
ϵj)
∏
k ̸=j

E[(1 − πkτ )(1 − πkτ ′) | Zkτ , σ
2
ϵk] j = j′

E[πjτ (1 − πjτ ′) | Zjτ , σ
2
ϵj] E[(1 − πj′τ )πj′τ ′ | Zj′τ , σ

2
ϵj′ ]

×
∏

k ̸=j,j′
E[(1 − πkτ )(1 − πkτ ′) | Zkτ , σ

2
ϵk] j ̸= j′

.
(4.10)
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Hence, we can explore the covariance of the two ordinal responses Yτ ,Yτ ′ by

studying the pairwise covariance for each entry.

The continuation-ratio logits structure is also key to efficient model imple-

mentation. It implies a sequential mechanism, such that the ordinal response

is determined through a sequence of binary outcomes. Starting from the lowest

category, each binary outcome indicates whether the ordinal response belongs to

that category or to one of the higher categories. This mechanism inspires a novel

perspective on the model implementation. That is, we can re-organize the original

data set containing longitudinal ordinal responses to create C − 1 data sets with

longitudinal binary outcomes. Then, fitting model (4.8) to the original data set is

equivalent to fitting the model of Section 2.2.1 separately on the C−1 re-organized

data sets. The procedure is elaborated below.

Denote the set of all possible subject and time indices by I1, that is, I1 =

{(i, t) : i = 1, . . . , n, t = 1, . . . , Ti}. To build the first re-organized data set with

binary outcomes, we create binary indicators Y (1)
it , such that Y (1)

it = 1 if Yi1t = 1

and Y
(1)

it = 0 if Yi1t = 0. The first data set is then D1 = {Y (1)
it : (i, t) ∈ I1}.

Moving to the second data set, we first filter out the observations that are already

categorized into the smallest scale, and denote the remaining indices set by

I2 = I1 \ {(i, t) : Yi1t = 1}. This is the set of indices with original ordinal

responses belonging to categories higher than or equal to the second smallest scale.

Then, we create new binary indicators Y (2)
it , such that Y (2)

it = 1 if Yi2t = 1, and

Y
(2)

it = 0 if Yi2t = 0. The second data set is obtained as D2 = {Y (2)
it : (i, t) ∈ I2}.

The process is continued until we obtain the (C− 1)-th data set, DC−1 = {Y (C−1)
it :

(i, t) ∈ IC−1}, where IC−1 is the indices set such that the original ordinal responses

belong to either category C − 1 or C. Notice that every re-organized data set Dj,

for j = 1, . . . , C − 1, contains longitudinal binary outcomes for which the model
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of Section 2.2.1 is directly applicable. Provided the priors placed on each ordinal

response category’s parameters are independent, it is straightforward to verify

that fitting separately the model for binary responses to the re-organized data sets

{Dj : j = 1, . . . , C − 1} is equivalent to fitting model (4.8) to the original data set.

We formalize the conclusion in the following proposition.

Proposition 4.5. Fitting the ordinal responses model in (4.8) is equivalent to

fitting the model for binary responses separately, C − 1 times to the data sets

{Dj : j = 1, . . . , C − 1}.

Based on Proposition 4.5, the posterior simulation algorithm for the ordinal

responses model can be parallelized and implemented on separate cores. In

applications where the number of response categories is moderate to large, such a

parallel computing scheme is especially beneficial. Also, since the binary responses

model serves as the backbone for modeling ordinal responses, the prior specification

strategy and the posterior simulation method described in Section 4.2.3 can be

readily extended to model (4.8). Finally, from (4.9) and (4.10), it is clear that the

posterior samples obtained from the C − 1 separate models suffice to obtain full

posterior inference for the ordinal response process.

4.4.2 Data illustration

As an illustration example, we consider the PAM arousal score on the original

scale, which is obtained from the same EMA study discussed in Section 4.3.2. PAM

arousal is a -2 to 2 (excluding 0) score. We examine the same cohort of students

on the same study period as described in Section 4.3.2. Over all observations, the

distribution of arousal scores involves 16.6% for level -2, 27.7% for level -1, 12.6%

for level 1, and 12% for level 2, while 31.1% of the observations are missing.
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To implement model (4.8), we follow the procedure outlined above Proposition

4.5. We re-organize the original data into separate data sets {Dj : j = 1, . . . , 3},

each of them containing the binary responses indicating whether the arousal scores

are at level j or a higher level. Then, the proposed model is fitted to the three

data sets in parallel.

The primary inference focus is on the change of arousal scores as the term

progresses, which is depicted by the probability response curve of each response

level. We display posterior point and interval estimates of Pjτ (defined in (4.9))

in Figure 4.14. The probability of the highest arousal level drops dramatically

as the term begins, indicating that the excitement of a new quarter may vanish

within a week. The Boston marathon bombing slightly triggers higher probability

for moderately low to low arousal level. There is a drop of the probability for

moderately high to high arousal level after the Green Key festival and the Memorial

Day holiday. The exams may have a significant impact on the arousal level. We

observe peaks of arousal at the beginning of the final exam period, and also the

middle of the term, which corresponding to the midterm exam period. Since the

students are taking different courses, the midterm exam times vary, resulting in

some curves with lead or lag peaks compared to the majority. This pattern is not

clear in the analysis of binary arousal scores. Hence, examining the finer ordinal

scale enables us to discover subtle changes of the students activation states.

4.5 Discussion

We have developed a novel Bayesian hierarchical model for analyzing longi-

tudinal binary data. We approach the problem from a functional data analysis

perspective, resulting in a method that is suitable for either regularly or irregu-

larly spaced longitudinal data. The modeling approach achieves flexibility and
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Figure 4.14: Four levels arousal score data. Posterior mean (dashed line) and
95% interval estimate (shaded region) of probability response curve for an out-of-
sample subject. The posterior mean estimates for the probability response curves
of in-sample subjects are given by the solid lines. The vertical shaded regions
correspond to the four special time periods (see Section 4.3.2.1).

computational efficiency in full posterior inference. With regard to the former,

the key model feature is the joint and nonparametric modeling of the mean and

covariance structure. As illustrated by the data application, our approach enables

interpretable inference with coherent uncertainty quantification, and provides

improvement over the GLMM approach. The model formulation enables a natural

extension to incorporate ordinal responses, which is accomplished by leveraging

the continuation-ratio logits representation of the multinomial distribution. This

representation leads to a factorization of the multinomial model into separate bino-

mial models, on which the modeling approach for binary responses can be applied.

The computational benefit is retained, since we can utilize parallel computing

across response categories.
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The proposed methodology for modeling longitudinal binary and ordinal re-

sponses can be elaborated in different directions. We have focused on stationary

specifications for the hierarchical GP prior. Nonstationary model components can

be incorporated through a time-varying mean function µ0 and/or a nonstationary

covariance kernel Ψϕ. Moreover, longitudinal studies typically have predetermined

covariates associated with each subject, or time-varying covariates corresponding

to each observation. The predetermined covariates can be incorporated in the

model through the prior placed on the mean function of the signal process. Using

the functional linear model may be a possible strategy for the more challenging

task of accounting for time-varying covariates.

In the EMA study example discussed in this chapter, the two response attributes

can be modeled jointly. Although such an approach may encourage borrowing of

information and improve uncertainty quantification, it also introduces a challenge,

which is to account for the correlation between the bivariate responses. A potential

solution is to induce correlation through shared hyperparameters. Nonetheless, we

do not pursue this here, but rather choose to emphasize the practical utility of our

flexible modeling framework through this real application.
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Chapter 5

A Case Study: Estimating

Maturity of Sheepshead Minnows

5.1 Introduction

We present a case study using data from a real longitudinal study in population

biology. The purpose is to illustrate, with a concrete example, the benefit of a

flexible and efficient modeling approach in answering relevant questions. The

methodology presented here is also an extension to the model for longitudinal

ordinal responses, discussed in Chapter 4, in terms of incorporating predetermined

(categorical) covariates.

The specific data we study here is about the maturity of male sheepshead

minnows in three states, Connecticut (CT), Maryland (MD), and South Carolina

(SC) (data obtained courtesy of Dr. Steve Munch, NOAA, SWFSC, FED). The

response variable is the discrete ordinal color stage, indicating maturity status

ranging from juvenile to adult. For each fish, its maturity status is measured at

eight equally spaced time points. Corresponding to the responses, three categorical
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experiment conditions (parent temperature, offspring temperature, and exposure

day) are treated as covariates. Of direct interest is estimating differences in trends

in maturity across the treatment combinations.

Because the experiment conditions involve treatment of two consecutive gen-

erations, we are also interested in using the data set to test a theory about

transgenerational plasticity (TGP). In our usage, TGP is manifest as a signif-

icant interaction between parent and offspring environments affecting offspring

phenotype. The existing theory predicts that the magnitude of TGP in response

to temperature on the Atlantic coast of the US, if exists, should decrease with

increasing latitude. To provide evidence supporting the theory, we will estimate

the TGPs for each population, and comparing the magnitude of them.

Before delving into analysis, we start with descriptive and exploratory analysis

of the data. The data consist of complete records for n = 319 (63 from CT, 99

from MD, and 157 from SC) fish. The categorical treatments, parent temperature

(PT, 26 or 32), offspring temperature (OT, 26 or 32), and exposure day (ED, 7, 30,

or 45), naturally divide fish into 12 groups, such that the fish within a group shares

the same treatment combination. The number of fish in each group ranges from 8

to 39. We use the tuple (PT,OT,ED) to refer to the treatments hereinafter.

Male sheepshead minnows go through a sequence of five color stages as they

approach maturity (Lee et al., 2017), resulting in the five-level ordinal response.

To facilitate simple and interpretable model output, we start with a binary version

of the response, representing either immature (first three ordinal levels) or mature

(fourth and fifth ordinal levels). This is also aligned with the goal of examining

TGP, where the primary focus is on differentiating between immature and mature.

Additionally, because we are interested in discerning the effect of treatments on

the transition from less mature to more mature categories, we also assess the finer
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Figure 5.1: Fish maturity data. Proportion of mature fish over time for each
treatment group.

scale ordinal responses.

For the binary version of the responses, we plot the proportion of mature fish

for each population and treatment group in Figure 5.1. While an overall increasing

pattern is observed, individual trajectories differ in terms of slope, monotonicity,

and inflection points. It is also suspectable to assume the effect of covariates are

additive, as evidenced by the intricate appearance of the curves. Therefore, a

flexible model that permits nonstandard evolution of binary responses and imposes

no specific pattern among the treatment groups may be more suitable here.

We further explore the correlations between the binary responses. Over the

observed time grid, we empirically calculate the Pearson and the tetrachoric

correlation coefficient for each pair of time and distance combinations for each

population. Figure 5.2 displays the result. The plots all suggest a fast decreasing

of correlation with time, through no obvious choice for modeling the temporal

correlation. Shown on the diagonals of each panel in Figure 5.2 are the variances

of the binary responses, which suggest nonstationarity.

Moreover, we seek to analyze how treatment affects transitions from lower to

higher categories. As an empirical study, we calculate the transition proportion

matrices based on the observed responses in each treatment group. Displayed

in Figure 5.3a are the empirical proportion matrices under different treatment
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(a) CT Population. (b) MD Population. (c) SC Population.

Figure 5.2: Fish maturity data. Empirical estimate of the correlation coefficients
between binary responses over time. In each panel, the upper triangle and the
lower triangle indicate the Pearson and the tetrachoric correlation coefficient,
respectively, while the numbers on the diagonal are the variances.

conditions, calculated with the original five-level ordinal maturity status. Because

we are not necessarily interested in differentiating between every one of these

maturity levels, and to make the model output simple and more interpretable, we

collapse maturity into 3 ordinal levels, representing juvenile (first ordinal level),

adolescent (second, third, and fourth ordinal levels), and adult (last ordinal level).

With the three-level ordinal responses, the transition proportion matrices based on

the observed responses in each treatment group are shown in Figure 5.3b. From a

biological point of view, fish are supposedly more mature at time t than at time

t− 1. This is also the pattern we observed from both figures. Though, with the

three-level ordinal responses, it is more prominent that the treatment effect differs

by category. Hence, a sequential model for ordinal data, which emphasizes on

contrasting a category with categories from higher levels, is more suitable in the

context of the problem.

The preliminary analyses suggest that it is a challenging problem. From a

methodological perspective, the key is to balance between model flexibility and

interpretability. We need a flexible model to accommodate the nonstandard evolu-

tion of responses over time and the complexities of treatment effects. Meanwhile,
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(a) Original ordinal scale. (b) Collapsed ordinal scale.

Figure 5.3: Fish maturity data. Transition proportion matrix for fish in each
treatment group. The i, j-th entry shows the observed proportion of transitions
from stage i at time t− 1 to stage j at time t. The treatment is specified by the
title of each panel.

the rather sophisticated model structure should not preclude direct answers to

relevant scientific questions. As a related concern, it can be challenging to identify

key quantities of interest in complex models. For instance, while the effect of a

covariate may be represented by the corresponding regression coefficient in a linear

regression model, such a straightforward interpretation may not apply to more

intricate models. We have to explore various options. Besides, the data exhibits

an imbalance in subjects across treatment groups, with some groups having fewer

subjects. In the proposed model, it is crucial to promote the pooling of information

across subjects in disparate groups.

The objectives of this chapter are twofold. Firstly, we address the scientific

relevant questions, specifically, to quantify the variations in maturity trends across

treatment combinations, and to establish evidence indicating a decrease in the

magnitude of TGP with rising latitude. Secondly, we extend the methodology intro-
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duced in Chapter 4 to incorporate predetermined categorical covariates. Because

the categorical covariates naturally partition subjects into groups, the proposed

solution is to adopt the flexible model for temporal evolving binary or ordinal

responses as the building block. The blocks for each group are then interconnected

through priors placed on the model parameters.

Statistical tools have been utilized in studying the effect of some covariates

to fish maturity. The majority of them focus on time-varying covariates, such

as the length of the fish, and use parametric logistic regression or some variant

(see e.g. Bobko and Berkeley, 2004). Under the linear mixed effects framework,

Munch et al. (2021) examined the treatment effects to fish maturity, using age at

maturation as the response variable. Besides, a substantial body of literature is

dedicated to longitudinal binary/ordinal regression, aimed at various applications

across a wide spectrum (see e.g. Barcella et al., 2018, for a Bayesian nonparametric

model with application in a clinical study). A more relevant work is DeYoreo and

Kottas (2018c). Motivated also by an application in fisheries research that involves

longitudinal ordinal responses, their model builds on a dependent Dirichlet process

prior for time-dependent mixing distributions to capture dynamically evolving

relationships between age, length and maturity. Because their approach accounts

for the joint stochastic mechanism of covariates and responses, it is not directly

applicable in our scenario, where the covariates are deterministic.

From an alternative perspective, models can be developed by postulating a

Markov chain structure. Specifically, these models consists of flexible, though

parsimonious, formulation for the marginal probability distribution and the transi-

tion probability matrix (see e.g. Bartolucci et al., 2009). However, these models

usually focus on estimating probability response curves at discrete time grid. In

this application, inferring probability response curves on a continuous scale is more
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beneficial for our objectives.

The reminder of the chapter is organized as follows. We formulate the model

for analyzing the fish maturity data set in Section 5.2, with emphasis placed

on exploring potential modeling options. These modeling options are formally

compared using the real data, and the best model are used to conduct inference to

answer relevant scientific questions. These analyses are presented in Section 5.3.

Finally, we conclude in Section 5.4 with some comments.

5.2 Methodology

We start from formulating the model with binary responses. Let n denote the

total number of fish. Based on their treatment conditions, the fish can be grouped

into G = 12 groups. Let Ygi denote the observed binary maturity status sequence

at grid τ = (τ1, · · · , τT )⊤ of the i-th subject in g-th group for g = 1, · · · , G, and

i = 1, · · · , ng, where ∑G
g=1 ng = n.

At the observed data level, we assume the binomial model, that is,

Ygit | Zgit, ϵgit
ind.∼ Bin(1, φ(Zgit +ϵgit)), t = 1, . . . , T, i = 1, . . . , ng, g = 1, . . . , G.

Here φ(·) denotes the standard logistic function. The error term ϵgit
i.i.d.∼ N(0, σ2

ϵ ).

We assume Zgit is the evaluation of a continuous signal process Zgi(τ) at time t.

We adopt a functional data analysis perspective and focus on modeling the signal

process Zgi(τ), which is the key in our model formulation.

A typical flexible model for the continuous signal process Zgi(τ) is Gaussian

process (GP). Specifically, we assume

Zgi(τ)|µg(τ),Σg(τ, τ) i.i.d.∼ GP (µg(τ),Σg(τ, τ)), i = 1, . . . , ng, g = 1, . . . , G.
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That is, we assume that the signal processes for the subjects within each group are

independent realizations from a GP with the group-specific mean function µg(·),

and covariance kernel Σg(·, ·).

The hierarchical nonparametric prior for the mean and covariance function of

a GP, developed in Section 4.2, is adopt here as the joint prior for µg and Σg, i.e.,

µg(τ)|Σg(τ, τ), µ0g(τ), νg
ind.∼ GP (µ0g(τ), (νg − 3)Σg(τ, τ)),

Σg(τ, τ)|νg,Ψσ2
g ,ρg

(τ, τ) ind.∼ IWP (νg,Ψσ2
g ,ρg

(τ, τ)).
(5.1)

We further assume µ0g(τ) ≡ µ0g, that is, a constant mean function over time.

To encourage smooth estimation of the signal function Zgi(τ), we specify the

covariance kernel of the Inverse-Wishart process (IWP) as Matérn covariance

kernel with smoothness 5/2,

Ψσ2
g ,ρg

(τ, τ ′) = σ2
g(1 +

√
5|τ − τ ′|
ρg

+ 5|τ − τ ′|2

3ρ2
g

) exp(−
√

5|τ − τ ′|
ρg

).

To emphasize the hyperparameters of the prior and to simplify the notation, we

denote the aforementioned joint prior for the mean and covariance function as

JP (µ0g, σ
2
g , ρg, ν0g).

This prior specification yields twofold advantages. First, despite potential

misspecification of a specific mean and covariance structure, the flexibility inherent

in the nonparametric prior enables it to capture both the trend and covariance

of the process. Second, we can show marginally Zgi(τ)s are realizations from

student-t process (TP), i.e,

Zgi(τ) | µ0g, νg,Ψσ2
g ,ρg

(τ, τ) i.i.d. ∼TP (νg, µ0g(τ),Ψσ2
g ,ρg

(τ, τ)). (5.2)

Consequently, we can obtain interpolation of Zgi(τ) on a more denser time grid in
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an efficient way.

Our model formulation facilitate direct answers to the relevant scientific ques-

tions. The model assumes that the observed binary maturity status is related to a

continuous signal process, which is a realization from a TP. Specifically, we use

Z̃g to denote TP (νg, µ0g(τ),Ψσ2
g ,ρg

(τ, τ)). For a generic new subject in group g,

from (5.2), its signal process, denoted by Z∗
g (τ), satisfies Z∗

g (τ) | Z̃g ∼ Z̃g, and

φ(Z∗
g (τ)) is the probability of maturity. We term φ(Z∗

g (τ)) the maturity profile

of treatment corresponding to group g, because it characterizes the evolution

dynamics of maturity. We rely on φ(Z∗
g (τ)) to assess the differences in trends in

maturity across treatment conditions.

We complete the model formulation with a discussion on specifying priors

for the hyperparameters {µ0g, σ
2
g , ρg, νg : g = 1, . . . , G}. Here, we focus on the

induced dependence between groups. Note in one of the extreme case, if we assume

µ0g
ind.∼ π(µ0g), σ2

g
ind.∼ π(σ2

g), ρg
ind.∼ π(ρg), and νg

ind.∼ π(νg), then effectively we are

fitting models separately to each group of data, with no borrowing of information

across groups. It should not be encouraged in this case. Another extreme is to

assume µ0g ≡ µ0 ∼ π(µ0), σ2
g ≡ σ2 ∼ π(σ2), ρg ≡ ρ ∼ π(ρ), and νg ≡ ν ∼ π(ν).

That is, despite the corresponding group, the individual signal processes Zgi(τ) are

all realizations from the same TP. It is not a good choice because the treatment

effects in maturity is ignored. Therefore, a valid option should lie in between these

two extremes. We explore various options.

Prior for µ0g:

Option (a): consider the vector of indicators for each group, denoted by xg =

(1, 1(g=1), . . . , 1(g=G))⊤. We assume µ0g = x⊤
g α, where α = (α0, α1, . . . , αG).

Additionally, α0 ∼ N(a0, b0), α1 is fixed at 0 for identifiability, and αg
i.i.d.∼

Lap(0, σ2
α/λα), for g = 2, . . . , G.
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Option (b): consider the vector of indicators for each treatment condition, denoted

by xg = (1, 1(P T =32), 1(OT =32), 1(ED=30), 1(ED=45)). We assume µ0g = x⊤
g α,

where α = (α0, . . . , α4), and αg
i.i.d.∼ Lap(0, σ2

α/λα), for g = 0, . . . , 4.

Prior for σ2
g :

Option (a): we assume the scale parameter σ2
g of groups that have the same

exposure days are conditionally i.i.d., i.e., σ2
g | θs

i.i.d.∼ Gamma(aσ, aσθ
−1
s ),

and θs
i.i.d.∼ IG(aθ, bθ), for s = 1, 2, 3.

Option (b): we assume that conditioning on a common parameter θ, the scale

parameters σ2
g are i.i.d., i.e., σ2

g | θ ∼ Gamma(aσ, aσθ
−1), and θ ∼ IG(aθ, bθ).

Prior for ρg:

Option (a): we assume the smoothness parameters for each group are i.i.d., i.e.,

ρg
i.i.d.∼ Unif(aρ, bρ).

Option (b): we assume a common smoothness parameter shared by groups, i.e.,

ρg ≡ ρ ∼ Unif(aρ, bρ).

Prior for νg:

Option (a): we assume the degrees of freedom parameters for each group are

i.i.d., i.e., νg
i.i.d.∼ Unif(aν , bν).

Option (b): we assume a common degrees of freedom parameter shared by groups,

i.e., νg ≡ ν ∼ Unif(aν , bν).

Note that for each parameter, option (a) yields a weaker dependence comparing

to option (b). We consider these options for computation efficiency. For all the

scenarios, posterior inference can be conducted through a Gibbs sampler modified

from the algorithm presented in Section 4.2.3.
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We perform a formal model comparison to choose the best one among these

options. We start from priors that induce less dependence among the groups, and

moving towards options that induce more dependence and better performance

under the comparison criteria. For the class of models that assume the continuous

signal process follows a TP, we consider the following specific options for the priors:

• Model M1: option (b) for µ0g, while option (a) for σ2
g , ρg and νg;

• Model M2: option (a) for µ0g, σ2
g , and νg, while option (b) for ρg;

• Model M3: option (a) for µ0g and σ2
g , while option (b) for ρg and νg;

• Model M4: option (a) for µ0g, while option (b) for σ2
g , ρg and νg.

As an alternative modeling approach, we consider a simplified version of the

proposed model. That is, instead of placing a IWP prior on the covariance kernel,

we assume it has the deterministic structure of Ψσ2
g ,ρg

. The structure for the mean

function is unchanged. This alternative approach models the signal process as

realizations from a GP. Under this class of models, we consider two specific choices

which differ by the priors on the hyperparameters:

• Model M5: option (a) for µ0g, while option (b) for σ2
g and ρg;

• Model M6: option (a) for µ0g and ρg, while option (b) for σ2
g .

We consider three model comparison criteria, namely the posterior predictive

loss (PPL), the Watanabe-Akaike information criterion (WAIC), and the Log

Pseudo Marginal Likelihood (LPML) with conditional predictive ordinate on

deviance scale. Note that the PPL and WAIC contain a penalty term for model

complexity, and LPML implicitly punishes complex model because it is based on

leave-one-out cross-validation posterior predictive probability of the data. For all
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Table 5.1: Fish maturity data. Summary of comparison between two classes of
models with different prior specifications using four different criteria. The values
in bold correspond to the model favored by the particular criterion.

Model PPL WAIC LPML
G(M) P (M)

TP models

M1 146.26 234.54 1058.43 1130.85
M2 121.54 197.52 896.01 1042.71
M3 109.56 158.44 790.46 995.01
M4 104.93 163.85 773.62 961.79

GP models M5 177.15 335.04 1337.66 1381.95
M6 159.14 244.93 1121.11 1145.70

three criteria, we prefer the model with smaller value. The result, presented in

Table 5.1, favors the model M4 in the class of TP models. The results presented

hereinafter are based on this selected model.

To handle the three-level ordinal responses, we leverage the continuation-ratio

logits structure to extend the selected model for binary responses. In particular,

we use φ(Z∗
gj(τ)) to model the conditional probability of observing maturity level

j given that the maturity level is higher than j − 1, for j = 1, 2. We assume a full

factorization across response categories, such that the model can be implemented

efficiently through parallelization. We refer to Section 4.4.1 for the technical

details.

5.3 Results

5.3.1 Binary Responses

We first examine in Figure 5.4 the probability response curves, defined as the

probability of maturity as a function of time. In all the groups, individual probabil-

ity response curve exhibits a smooth increasing pattern. The width of uncertainty

bands, as expected, is related to the number of subjects in the corresponding group.
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Figure 5.4: Fish maturity data. Posterior predictive mean (dashed line) and
95% interval estimate (shaded region) of the probability response curve for an
out-of-sample subject. The posterior mean estimates of probability response curves
for in-sample subjects are given by the solid lines. The corresponding treatment is
specified as the title of each panel.

Nonetheless, since the model permits borrowing of information across the groups,

even in groups with fewer subjects, the uncertainty bands are still plausible. The

maturity rate differs by treatment groups. We will elaborate the differences more

because it quantifies the effect of the treatment on the trends in maturity.

The maturity profile for group g is represented by φ(Zg(τ)). Since the standard

logistic function φ(·) is monotonic increasing, we propose to use a measurement

of discrepancy between Zg(τ) and Zg′(τ) to quantify the relative effect of the

treatment for group g to the treatment for group g′ in maturity. We care about
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both the magnitude of the relative effect and the direction of it. Let τ ∗ denote a

time grid on [0, T ] with |τ ∗| intervals. The proposed measurement of discrepancy

is defined as

d∗(Zg(τ), Zg′(τ)) = sign(Zg(τ), Zg′(τ)) × d(Zg(τ), Zg′(τ)),

where d(Zg(τ), Zg′(τ)) = ( T
|τ∗|

∑
τ∈τ∗ ∥Zg(τ) − Zg′(τ)∥2)1/2 measures the magnitude

of the discrepancy. The sign function takes value 1 if Zg(τ) reaches the predeter-

mined threshold (φ−1(0.9)) earlier than Zg′(τ), and is -1 otherwise. Introducing

the sign function enables us to distinguish the relative effects of treatments on fish

maturation, such that the treatment leading to an earlier maturity has a positive

relative effect, and vice versa.

In Figure 5.5, we show selected pairwise comparison of relative effect on

maturity trend. Salinas and Munch (2012) showed that sheepshead minnows from

Florida exhibit thermal TGP such that the fastest growing offspring at a given

temperature are those whose parents were held at the same temperature. Inspired

by their conclusion, we explore pairwise comparison for groups with the same

offspring temperature, controlling the exposure day. We contrast the group with

the same parent temperature to the group with the different temperature, such

that a positive discrepancy meaning the group with the same parent and offspring

temperature mature faster. For 30 or 45 exposure days, displayed in the middle

and right panel of Figure 5.5, the distributions of discrepancy based on posterior

predictive sample of Z∗
g (τ) and Zg′(τ) are mostly positive, suggesting that the

group with the same parent and offspring temperature mature faster than their

counterpart. On the other hand, when exposure day is 7, the distributions of

discrepancy exhibit bimodality, with a positive mode and a negative mode. It

indicates that the thermal TGP is not significant for brief exposure periods.
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(a) Pairwise discrepancy between groups with offspring temperature 26.

(b) Pairwise discrepancy between groups with offspring temperature 32.

Figure 5.5: Fish maturity data. Posterior predictive distribution for
d∗(Z∗

g (τ), Z∗
g′(τ)). In each panel, the black solid line is the kernel density es-

timation. The red dashed line indicates the mean, and the blue dotted lines mark
the 95% interval.

Next, we explore the relationship between the latitude corresponding to each

population and the magnitude of TGP. To distinguish between populations, we

fit the proposed model separately to the three populations, and obtain posterior

samples of Z∗
gl(τ), where l = 1, 2, 3, representing the three population. Munch

et al. (2021) defines the TGP as the regression coefficient corresponding to the

interaction term of parent and offspring temperature in a linear mixed effects

model. With a more advanced model, there is no clear definition of TGP. We

examine two types of inferences.

Firstly, we contrast φ(Z∗
gl(τ)) and φ(Zg′l(τ)) at observed time grid. We focus

on comparing groups with different parent temperature, controlling the offspring

temperature, exposure days, and population. The results, displayed in Figure

5.6, indicate that TGP is also manifested as the fastest growing offspring at a
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(a) CT, with OT = 26. (b) CT, with OT = 32.

(c) MD, with OT = 26. (d) MD, with OT = 32.

(e) SC, with OT = 26. (f) SC, with OT = 32.

Figure 5.6: Fish maturity data. Posterior distribution of φ(Z∗
g (τ)) for fish

of the specified treatment and population at the chosen time point. The red,
blue, green, and purple histograms correspond to treatment (PT = 26,OT = 26),
(PT = 32,OT = 26), (PT = 26,OT = 32), and (PT = 32,OT = 32), respectively.

given temperature are those with the same parent temperature. The magnitude

of TGP, in general, is not significant with 7 exposure days, but significant with

longer exposure period, and also appear to be decrease with increasing latitude.

In Munch et al. (2021), they implemented a linear mixed effects model with the

time to maturity as the response variable. Because maturity status is only observed

on a discrete time grid, they use linear interpolation to obtain a continuous estimate

of maturation time. Inspired by this idea, and to exploit the advantage of our

model in terms of posterior prediction at any time grid, we consider solving the

inverse problem, i.e., finding the smallest time t ∈ τ ∗ such that probability of

maturity φ(Z∗
gl(τ)) exceeds a prespecified threshold. (We use 0.9 in the analysis
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presented later). This time, denoted by τ ∗
gl, is an implicit signal for the maturity

age under our model. Holding the same population, exposure days, and offspring

temperature, we compare posterior distributions of τ ∗
gl for groups with the same or

the different parent temperature. The results are presented in Figure 5.7.

These histograms confirm that, for fish in CT, MD, and SC, we also observe

thermal TGP in such a manner that the fastest growing offspring at a given

temperature are those whose parents were held at the same temperature. The

magnitude of the TGP can be viewed as the separation of the two histograms in

the same panel. In general, for longer exposure period, the separation seems to be

significant, and its magnitude decreases with increasing latitude. These results

provide graphical evidence to support the theory about TGP and latitude.

5.3.2 Three-level Ordinal Responses

Moreover, we analyze the version of data with the three-level ordinal response.

Here, with a finer ordinal response scale, the primary goal is to assess the TGP in

relation to the different stages in the transition from immaturity to maturity. To

evaluate TGP during the transition from juvenile to adolescent, we approach this as

an inverse problem. Specifically, leveraging the posterior samples of the probability

response curves estimated on a high-resolution time grid, we determine the earliest

time point (referred to as“time to adolescen”) at which the probability of reaching

adolescence is 0.99. This high threshold was set because some treatment groups

began with a high probability of being classified as adolescent. Even with this

relatively extreme threshold probability, the TGP is nearly negligible, as evidenced

by the distribution of “time to adolescent”, depicted in Figure 5.8. Overall, the two

histograms in each panel display the expected pattern; however, their separation

is not significant.
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(a) CT, with OT = 26. (b) CT, with OT = 32.

(c) MD, with OT = 26. (d) MD, with OT = 32.

(e) SC, with OT = 26. (f) SC, with OT = 32.

Figure 5.7: Fish maturity data. Posterior empirical distribution for the time
of maturity for fish of the specified treatment and population. The red, blue,
green, and purple histograms correspond to treatment (PT = 26,OT = 26),
(PT = 32,OT = 26), (PT = 26,OT = 32), and (PT = 32,OT = 32), respectively.

Additionally, we perform a similar analysis to evaluate TGP during the tran-

sition from adolescence to adult. We define “time to adul” as the earliest time

point at which the probability of being classified as an adult reaches 0.5. The

distributions of “time to adul” for different treatment groups and locations are pre-

sented in Figure 5.9. Here, even with a more conservative threshold, thermal TGP

appears to be prominent. At each location, TGP is more pronounced with longer

exposure durations, while it is not significant with a 7-day exposure. Furthermore,

across different locations, the magnitude of TGP, as manifested by the separation

of the two histograms in each panel, tends to decrease with increasing latitude. In

conclusion, these results illustrate that thermal TGP influences the maturation of
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(a) CT, with OT = 26. (b) CT, with OT = 32.

(c) MD, with OT = 26. (d) MD, with OT = 32.

(e) SC, with OT = 26. (f) SC, with OT = 32.

Figure 5.8: Fish maturity data with three-level ordinal responses. Posterior
empirical distribution for the time of reaching maturity level 2 for fish of the
specified treatment and population. The red, blue, green, and purple histograms
correspond to treatment (PT = 26,OT = 26), (PT = 32,OT = 26), (PT =
26,OT = 32), and (PT = 32,OT = 32), respectively.

fish from adolescence to adult, but it is less impactful during the transition from

juvenile to adolescence. Reaching this conclusion highlight the practical utility of

analyzing the three-level ordinal responses with a flexible sequential model.

5.4 Comments

With a case study from fishery science, we illustrate the methodology for

dynamic evolution of binary and ordinal responses, developed in Chapter 4, as a

powerful building block for model that takes into account the effect of predetermined
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(a) CT, with OT = 26. (b) CT, with OT = 32.

(c) MD, with OT = 26. (d) MD, with OT = 32.

(e) SC, with OT = 26. (f) SC, with OT = 32.

Figure 5.9: Fish maturity data with three-level ordinal responses. Posterior
empirical distribution for the time of reaching maturity level 3 for fish of the
specified treatment and population. The red, blue, green, and purple histograms
correspond to treatment (PT = 26,OT = 26), (PT = 32,OT = 26), (PT =
26,OT = 32), and (PT = 32,OT = 32), respectively.

experiment conditions. However, we do not enforce nonstationarity in the mean

and covariance structure of the signal process, which is arguably a convincing

assumption, both from the exploratory data analysis and from a biology perspective.

The primary concern here is implementation efficiency. Moreover, lacking sufficient

prior information to account for nonstationarity in a structural way, we are

concerned that the potential benefits may not be enough to compensate the extra

costs on implementation. Nonetheless, we perform the first ever formal statistical

analysis on this data, and the inferences we obtained generally agree with what is

expected to be true biologically and is considered to be plausible.
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The flexible nature of the model offers a model-based approach to contrast the

effect of treatment conditions on maturity, which is not restricted to any particular

form. This approach is more flexible comparing to classic approaches, such as the

linear mixed effects model, under which the effect of a treatment usually has a

parametric form. However, the flexibility induces a challenge, which is to find

appropriate metrics to quantify the effects. In Section 5.3, we explore various

options, which are by no means an exhaustive set. The metrics are also specific

to the questions of interest for this specification, and should differ case-by-case.

Although one may question the general applicability of the proposed flexible

model comparing to the traditional parametric approaches, we see this as an asset

of flexible models. For complex real problems, it is expected that statisticians

collaborating with domain experts to determine the inferences to be derived from

the model.
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Chapter 6

Conclusions

Exploiting the theoretical advantages of Bayesian nonparametric models, we

have developed a suite of statistical models to solve methodologically and practically

relevant ordinal regression problems. Leveraging the sequential treatment of

ordinal responses, induced by the continuation-ratio factorization, we circumvent

the limitations of parametric models by adopting well-crafted nonparametric

priors, leading to flexibility in ordinal response distribution, covariate-response

relationship, and dependence among clustered responses. The proposed models

seek to strike a good balance between model complexity and implementation

difficulty. With regard to the latter, the key feature is the efficient Gibbs sampling

algorithms for all proposed models.

To conclude this dissertation, we discuss some implications and possible exten-

sions of the presented work. The feature of the general model in Section 2.2 of

having effectively the same structure for the mixture weights and atoms is both

theoretically appealing and practically powerful. It emphasizes the structural

similarity between nonparametric priors for discrete distributions and models for

categorical data, linking these two fields that have been parallelly explored in the

literature. We are excited about the great potential of leveraging this similarity to
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boost new nonparametric mixture models for categorical data analysis.

The models discussed in Chapter 2 and Chapter 4 shed light on extending one

another. Seeking more flexible modeling of ordinal regression relationships in a

cross-sectional setting, in lieu of a linear function, we can incorporate covariate

effects through a Gaussian process on the covariate space. A practical concern is

that the resulting model may break the balance between flexibility and efficiency.

This can be addressed by using a more regularized weights structure, such as

the geometric weights prior (Mena et al., 2011). Besides, an alternative path for

developing longitudinal ordinal regression models is built on flexible models for the

cross-sectional setting, extending them with a hyper-model for evolving temporal

dynamics.

In the big data era, many fields have witnessed technological advancements

resulting in snowballing of large-scale data. Although we have proposed efficient

posterior simulation methods scalable with ordinal levels, it remains a challenging

task to scale up inference in the presence of massive data sets within the MCMC

realm. The most popular alternative to MCMC involves variational inference (VI)

algorithms. A key advantage of the proposed methods is that they fall within the

category of conditionally conjugate models, for which there exists a closed-form

coordinate ascent VI algorithm (Blei et al., 2017). We notice the VI algorithms

for some special cases of our models in Linderman et al. (2015) and Rigon and

Durante (2021). Moreover, deriving VI algorithms for the proposed models will

facilitate embedding them in a more complex ordinal regression settings.

This dissertation provides a general toolbox for ordinal regression, comprising

various models tailored for specific problem settings, united under a sequential

treatment for the ordinal responses. We augment model flexibility by nonpara-

metric priors, employing considerable effort to guarantee a parsimonious model
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formulation and efficient model implementation. It was a primary objective out-

lined in the introduction that the methodology developed herein would lead to new

avenues of exploration in other scientific fields. Our impetus toward structured

model specification and implementable computation techniques, coupled with the

development of publicly available software (e.g. R packages), will contribute to

achieving this goal.
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Appendix A

Proofs

A.1 Properties of Models for Cross-sectional Or-

dinal Regression

A.1.1 Proof of Proposition 2.2

Proof. Under the augmented model, we have

Pr(Y = j,Z | θ) = Pr(Y = j | Z) f(Z | θ) = 1(Z ∈ Rj)
C−1∏
j=1

L(Zj | θj).

Integrating out Z, we obtain

Pr(Y = j | θ) =
∫

1(Z ∈ Rj)
C−1∏
j=1

L(Zj | θj) dZ =
∫

Rj

C−1∏
j=1

L(Zj | θj) dZ

=
(∫ ∞

0
L(Zj | θj) dZj

) j−1∏
k=1

(∫ 0

−∞
L(Zk | θk) dZk

)

= φ(θj)
j−1∏
k=1

{1 − φ(θk)},
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for j = 2, . . . , C − 1. Similarly, Pr(Y = 1 | θ) = φ(θ1), and Pr(Y = C | θ) =∏C−1
k=1 {1 − φ(θk)}. Therefore, Y | θ ∼ K(Y | θ), i.e., the ordinal response

distribution is the multinomial with the continuation-ratio logits parameterization.

A.1.2 Proof of Proposition 2.3

Proof. In this scenario, under the augmented model,

Pr(Y = j,Z | Gx) = 1(Z ∈ Rj)
∞∑

ℓ=1
ωℓ(x)

C−1∏
j=1

L(Zj | θjℓ(x)).

Integrating out Z, the probability for the j-th response category becomes

Pr(Y = j | Gx) =
∫

Rj

∞∑
ℓ=1

ωℓ(x)
C−1∏
j=1

L(Zj | θjℓ(x)) dZ

=
∞∑

ℓ=1
ωℓ(x)

∫
Rj

C−1∏
j=1

L(Zj | θjℓ(x)) dZ

=
∞∑

ℓ=1
ωℓ(x)


(∫ +∞

0
L(Zj | θjℓ(x)) dZj

) j−1∏
k=1

(∫ 0

−∞
L(Zk | θkℓ(x)) dZk

)
=

∞∑
ℓ=1

ωℓ(x)

φ(θjℓ(x))
j−1∏
k=1

[1 − φ(θkℓ(x))]

 ,
for j = 2, . . . , C − 1. The function under integration and countable summation

in the first line takes non-negative values, and we can thus switch the order of

the two operations. Similarly, we obtain Pr(Y = 1 | Gx) = ∑∞
ℓ=1 ωℓ(x)φ(θ1ℓ(x)),

and Pr(Y = C | Gx) = ∑∞
ℓ=1 ωℓ(x)

{∏C−1
k=1 [1 − φ(θkℓ(x))]

}
. Hence, Y | Gx ∼∑∞

ℓ=1 ωℓ(x)K(Y | θℓ(x)), i.e., the multinomial LSBP mixture model.
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A.1.3 Proof of Lemma 2.1

Proof. Consider the set of probability densities {f 0
x(z) : x ∈ X } for Z ∈ RC−1. Let

F be the set of all distributions defined on RC−1. A prior Fx = {Fx(w,B) : x ∈ X }

on FX is a stochastic process on an appropriate probability space (W ,F ,Π), such

that for every x ∈ X and almost every w ∈ W , Fx(w, ·) ∈ F. The set of densities

{f 0
x(z) : x ∈ X } having KL property relative to Fx refers to

Π
{
w ∈ W :

∫
f 0

xt
(z) log(f 0

xt
(z)/fxt(z)) dz < ϵ, t = 1, . . . , T

}
> 0, (A.1)

for any ϵ > 0, x1, . . . ,xT ∈ X , T ∈ N+.

Now consider the set of probability masses {px(y) : x ∈ X } for ordinal variable

Y with C categories. Denote the set of all distributions on {1, . . . , C} by P.

Let {R1, . . . ,RC} be a partition of RC−1. To connect with the distribution of

continuous variable, we consider the mapping from FX to PX , given by

fx 7→ px(y) =
∫

Ry

fx(z) dz, y = 1, . . . , C. (A.2)

This mapping induces a prior on PX from Fx. The prior, denoted by Px, is a

P-valued stochastic process on probability space (W ,P,Π). Additionally, let

p0
x(y) denote the discrete distribution induced by f 0

x(z). Following the definition

of KL property for continuous distributions, we say {p0
x(y) : x ∈ X } possesses the

KL property with respect to Px if

Π

w ∈ W :
C∑

y=1
p0

xt
(y) log(p0

xt
(y)/pxt(y)) < ϵ, t = 1, . . . , T

 > 0 (A.3)

for any ϵ > 0, x1, . . . ,xT ∈ X , T ∈ N+.

To prove the lemma, it is adequate to show that every w that satisfies the
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criterion in (A.1) also satisfies the criterion in (A.3).

The proof relies on the following inequality of KL divergence,

∫
A
g1(u) log

(
g1(u)
g2(u)

)
du ≥

∫
A
g1(u) du × log

(∫
A g1(u) du∫
A g2(u) du

)
, (A.4)

where gr(u) is a density of u ∈ Rs, r = 1, 2 and A is a generic subset of Rs.

To show this inequality, let Hr =
∫

A gr(u) du, such that hr(u) = gr(u)/Hr,

r = 1, 2, are densities on A. The left-hand-side of (A.4) can be expressed as

H1
∫

A h1(u) log(H1h1(u)
H2h2(u)) du = H1 log(H1

H2
) + H1

∫
A h1(u) log(h1(u)

h2(u)) du ≥ H1 log(H1
H2

),

because
∫

A h1(u) log(h1(u)
h2(u)) du is the KL divergence between densities h1 and h2.

For any set Ry in the partition of RC−1, from (A.4) we obtain

∫
Ry

f 0
xt

(z) log(f 0
xt

(z)/fxt(z)) dz ≥
∫

Ry

f 0
xt

(z) dz × log
(∫

Ry
f 0

xt
(z) dz∫

Ry
fxt(z) dz

)

= p0
xt

(y) log
(
p0

xt
(y)

pxt(y)

)
,

for y = 1, . . . , C. Consider any w ∈ W satisfying
∫
f 0

xt
(z) log(f 0

xt
(z)/fxt(z)) dz < ϵ,

for t = 1, . . . , T . Then, we have

ϵ >
∫
f 0

xt
(z) log(f 0

xt
(z)/fxt(z)) dz =

C∑
y=1

∫
Ry

f 0
xt

(z) log(f 0
xt

(z)/fxt(z)) dz

≥
C∑

y=1
p0

xt
(y) log

(
p0

xt
(y)

pxt(y)

)
.

We have thus obtained that w also satisfies ∑C
y=1 p

0
xt

(y) log(p0
xt

(y)/pxt(y)) < ϵ, for

t = 1, . . . , T , which completes the argument for the proof.
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A.1.4 Proof of Theorem 2.1

Proof. Based on Proposition 2.3, the multinomial LSBP mixture model can be

formulated in terms of latent continuous responses as follows: Y | Z ∼ 1(Y =

j ⇐⇒ Z ∈ Rj), for j = 1, . . . , C, and

Z | Gx ∼
∞∑

ℓ=1
ωℓ(x)

C−1∏
j=1

L(Zj | θjℓ(x)) =
∫ C−1∏

j=1
L(Zj | θj(x)) dGx(θ),

ω1(x) = φ(xTγ1), ωℓ(x) = φ(xTγℓ)
ℓ−1∏
h=1

(1 − φ(xTγh)), ℓ ≥ 2,

θjℓ(x) = xTβjℓ | µj,Σj
ind.∼ N(xTµj,xT Σjx), j = 1, . . . , C − 1, ℓ ≥ 1.

(A.5)

where {Rj : j = 1, . . . , C} is the partition of RC−1 defined in equation (2.11).

Let Fx be the above LSBP mixture prior for continuous random vector Z ∈

RC−1. The original multinomial LSBP mixture prior on ordinal distributions is

denoted by Px. Consider the set of probability masses {p0
x : x ∈ X } on {1, . . . , C}.

From Lemma 2.1, to show that {p0
x : x ∈ X } has the KL property with respect to

Px, we can utilize the result regarding the KL support of Fx.

Suppose the probability densities {f 0
x : x ∈ X } on RC−1 satisfy the regularity

conditions (v) to (viii) in Barrientos et al. (2012, Theorem 5). We prove that

{f 0
x : x ∈ X } possesses the KL property relative to Fx. The proof consists of

two parts. We first show that Fx falls in the scheme of dependent stick-breaking

process (DSBP) priors (Barrientos et al., 2012, Definition 4). Then, we confirm

that the mixture kernel of the model for Z satisfies the conditions in Barrientos

et al. (2012, Theorem 10).

For the LSBP prior discussed in this paper, we introduce the marginal dis-

tributions V Vℓ
X , G0

X , and the copula functions C Vℓ
X , C θ

X , ℓ = 1, 2, . . ., defined as
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follows:

V Vℓ
X = {N(xTγ0,xT Γ0x) : x ∈ X }, G0

X = {
C−1∏
j=1

N(xTβj,xT Σjx) : x ∈ X },

C Vℓ
X = {Cx1,...,xd

(u1, . . . , ud) = ΦS(x1,...,xd)(Φ−1(u1), . . . ,Φ−1(ud)),x1, . . . ,xd ∈ X },

C θ
X = {Cx1,...,xd

(u1, . . . , ud) =
C−1∏
j=1

ΦRj(x1,...,xd)(Φ−1(u1), . . . ,Φ−1(ud)),x1, . . . ,xd ∈ X },

where Φ is the c.d.f. of the standard normal distribution. In addition, ΦS(x1,...,xd)

and ΦRj(x1,...,xd) denote the c.d.f. of a d−variate normal distribution with mean 0,

variance 1, and correlation matrix S(x1, . . . ,xd), Rj(x1, . . . ,xd), whose (s, t)-entry

is given respectively by

S(x1, . . . ,xd)(s,t) = xT
s Γ0xt√

xT
s Γ0xs

√
xT

t Γ0xt

, Rj(x1, . . . ,xd)(s,t) = xT
s Σjxt√

xT
s Σjxs

√
xT

t Σjxt

Let T denote the transformation induced by the standard logistic function, i.e.

x 7→ φ(x), which is strictly increasing, and define V ηℓ
X := T ◦ V Vℓ

X , C ηℓ
X := C Vℓ

X .

Consequently, it is easy to check that the LSBP prior fits in the definition of DSBP

prior given in Barrientos et al. (2012). Specifically, the LSBP prior can be written

as DSBP (C η
X ,N,C

θ
X ,V

η
X ,N, G

0
X ).

Now, consider the mixing kernel of (A.5), given by

χ(z | θ) =
C−1∏
j=1

e−(zj−θj)

(1 + e−(zj−θj))2 .

We check that the kernel satisfies conditions (i) − (iv) of Barrientos et al. (2012,

Theorem 5). Letting χj(z) = e−(z−θj )

(1+e−(z−θj ))2 , we have

χ′
j(z) = −e−(z−θj)(1 − e−(z−θj))

(1 + e−(z−θj))3 . (A.6)
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Obviously, χ(z | θ) is continuous and strictly positive on RC−1. It is bounded

above by 1
4C−1 because from (A.6), each χj(z) takes its maximum 1

4 at z = θj.

Condition (i) is satisfied. In addition, since χj(z) decreases as z > θj, we can

choose l1 =
√∑C−1

j=1 θ
2
j such that χ(z | θ) decreases as z outside the ball {z :

∥z∥ < l1}. Condition (ii) is also satisfied. As for condition (iii), it is satisfied

because χ′
j(z)/χ(z) → −1 as z → ∞, and χ′

j(z)/χj(z) → 1 as z → −∞. Finally,

condition (iv) is obviously satisfied. Moreover, C ηℓ
X and C θ

X are copulas with

positive density on the appropriate unitary hyper-cubes. Based on Barrientos

et al. (2012, Theorem 10), {f 0
x : x ∈ X } possess the KL property relative to

Fx. Consequently, by Lemma 2.1, the induced distributions on discrete space

{p0
x : x ∈ X } possess the KL property relative to Px.

To complete the proof, we finally consider the required regularity conditions

such that p0
x is in the KL support of Px. We notice that the regularity conditions

for continuous distributions are not necessary in our ordinal regression setting.

In fact, the only condition we need for p0
x is that it comprises strictly positive

probabilities for all response categories. To obtain this result, we first show that

there exists a specific f 0
x that enables the connection with p0

x given in (A.2). Then,

we show that such f 0
x satisfies the regularity conditions (v) to (viii) of Barrientos

et al. (2012, Theorem 5).

For a generic probability mass p0
x on {1, . . . , C}, without loss of generality, we

assume p0
x is positive hereinafter. We define

f 0
x(z) =

C∑
y=1

p0
x(y)1Ry(z)ϕ(z)∫

Ry
ϕ(z) dz

, (A.7)

where ϕ(z) denotes the p.d.f. of the standard C−1 dimensional normal distribution.

It is straightforward to check that
∫

Ry
f 0

x(z) dz = p0
x(y), for y = 1, . . . , C. Hence,

the relationship defined in (A.2) is satisfied.
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We now show that this specific f 0
x(z) satisfies the regularity conditions (v) to

(viii) of Barrientos et al. (2012, Theorem 5). To proceed, we notice that because

ϕ(z) is symmetric around the origin, we have

1
2C−1 ≤

∫
Ry

ϕ(z) dz ≤ 1
2 , y = 1, . . . , C (A.8)

where {Ry : y = 1, . . . , C} is the partition defined in equation (2.11). Hence,

condition (v) follows directly from (A.8). For condition (vi), because log(f 0
x(z)) is

also bounded, we have

∫
f 0

x(z) log(f 0
x(z)) dz =

c∑
y=1

p0
x(y)∫

Ry
ϕ(z) dz

∫
Ry

log(f 0
x(z))ϕ(z) dz < ∞.

To show that condition (vii) holds, let B denote the set of boundaries for the

partition {Ry : y = 1, . . . , C}. The set B has measure 0, and outside B the function

log(f 0
x(z)/hδ(z)) is bounded, where hδ(z) = inf∥z′−z∥<δ f

0
x(z′). Therefore, we can

obtain

∫
f 0

x log(f 0
x(z)/hδ(z)) dz =

∫
B
f 0

x log(f 0
x(z)/hδ(z)) dz +

∫
BC
f 0

x log(f 0
x(z)/hδ(z)) dz

=
C∑

y=1

p0
x(y)∫

Ry
ϕ(z) dz

∫
BC∩Ry

log(f 0
x(z)/hδ(z))ϕ(z) dz < ∞.

Finally, condition (viii) can be verified using the fact that the tails of log(χ(z))

behave like |z|.

Hence, we have proved that the set of generic, positive probability mass

functions {p0
x : x ∈ X } on {1, . . . , C} possesses the KL property with respect to

the proposed nonparametric prior model.

Similarly, we can establish the KL property for the nonparametric prior induced

by the two simpler models. First, it is straightforward to check that the common-
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weights and the common-atoms nonparametric priors fall in the wDDP (Barrientos

et al., 2012, Definition 2) and θDSBP (Barrientos et al., 2012, Definition 4)

framework, respectively. In addition, the mixing kernel is the same as in Theorem

2.1, and therefore the relevant regularity conditions are satisfied as shown earlier.

Hence, by Theorem 5 and Theorem 10 of Barrientos et al. (2012), and Lemma 2.1,

we obtain the following corollary.

Corollary A.1. Denote by wPx the common-weights LSBP mixture prior discussed

in Section 2.3.1, and θPx the common-atoms LSBP mixture prior proposed in

Section 2.3.2. Consider {p0
x : x ∈ X }, a generic collection of covariate-dependent

probabilities for an ordinal response with C categories. Assume that the probability

of each response category is strictly positive. Then, the mass functions {p0
x : x ∈ X }

are in the KL support of wPx and θPx.

A.1.5 Proof of Proposition 2.4

Proof. Denote by Pr(Y = j | M1) and Pr(Y = j | M2), for j = 1, ..., C, the

j-th category response probability under the continuation-ratio logits model and

the cumulative logit model, respectively. The parameter vector for the former

model is (θ1, ..., θC−1), whereas for the latter it is (ϑ,κ2, ...,κC−1). Recall that, for

identifiability, κ1 = 0.

For the first response probability, we have Pr(Y = 1 | M1) = eθ1/(1 + eθ1),

and Pr(Y = 1 | M2) = Pr(Z ≤ 0 | M2) = e−ϑ/(1 + e−ϑ), from which we obtain

ϑ = −θ1. The equality for these two parameters holds true for any value of C, but

this step also establishes the result for the simplest case of C = 2

For C = 3, from the argument above, we have ϑ = −θ1. Now, under the
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continuation-ratio logits model

Pr(Y = 3 | M1) = 1
1 + eθ1

1
1 + eθ2

, (A.9)

while under the cumulative logit model

Pr(Y = 3 | M2) = Pr(Z > κ2 | M2) = 1
1 + eκ2−ϑ

= 1
1 + eκ2+θ1

. (A.10)

Setting (A.9) and (A.10) equal, and solving for κ2, we have

κ2 = log(1 + eθ2 + eθ2−θ1) = log(eκ1 + eκ1+θ2 + eθ2−θ1),

which establishes the result for C = 3.

To prove the proposition by induction, assume the correspondence between

the parameters of the two models holds true for an ordinal response with C − 1

categories, that is, ϑ = −θ1 and κj = log(eκj−1 + eκj−1+θj + eθj−θ1), for j =

2, . . . , C − 2.

Now, assume that the ordinal response has C categories. To complete the

argument, we work with the probability for category C. For the continuation-ratio

logits model:

Pr(Y = C | M1) = 1
1 + eθC−1

C−2∏
k=1

1
1 + eθk

= 1
1 + eθC−1

1
1 + eκC−2+θ1

where the equality ∏C−2
k=1 1/(1 + eθk) = 1/(1 + eκC−2+θ1) is obtained by starting

from the right-hand side and using recursively (for j = C − 2, C − 3, ..., 2) the

induction assumption κj = log(eκj−1 + eκj−1+θj + eθj−θ1). On the other hand,

Pr(Y = C | M2) = Pr(Z > κC−1 | M2) = 1
1 + eκC−1−ϑ

= 1
1 + eκC−1+θ1

.
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Setting the two probabilities equal to each other, we can solve for κC−1, resulting

in

κC−1 = log(eκC−2 + eκC−2+θC−1 + eθC−1−θ1),

thus completing the induction argument.

Note that we can write κj = log(Aeκj−1 +B), where A = 1 + eθj > 1, and B =

eθj−θ1 > 0, from which we can easily confirm the order restriction for the cut-off

points, κj > κj−1, for j = 2, . . . , C − 1.

A.2 Properties of Models for Heterogeneous Or-

dinal Responses

A.2.1 Proof of Proposition 3.1

Proof. By definition, we have

Corr(Ỹq, Ỹq′ | θ, σ2) = E(ỸqỸq′ | θ, σ2) − E(Ỹq | θ, σ2)E(Ỹq′ | θ, σ2)√
Var(Ỹq | θ, σ2)Var(Ỹq′ | θ, σ2)

.

Using law of total expectation/variance,

E(ỸqỸq′ | θ, σ2) = E(φ2(ψ) | θ, σ2);

E(Ỹq | θ, σ2) = E(Ỹq′ | θ, σ2) = E(φ(ψ) | θ, σ2);

Var(Ỹq | θ, σ2) = Var(Ỹq′ | θ, σ2) = E(φ(ψ) | θ, σ2) − {E(φ(ψ) | θ, σ2)}2,

where the expectation is taken with respect to ψ ∼ N(θ, σ2).

Write ψ = θ + ζ, where ζ ∼ N(0, σ2). By Taylor expansion around the mean,

φ(ψ) ≈ φ(θ) + ζφ′(θ) + ζ2

2 φ
′′(θ).
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Then taking expectation yields E(φ(ψ) | θ, σ2) ≈ φ(θ) + σ2

2 φ
′′(θ). Using the same

technique,

φ2(ψ) ≈ φ2(θ) + 2ζφ(θ)φ′(θ) + ζ2{(φ′(θ))2 + φ(θ)φ′′(θ)}.

Taking expectation yields E(ỸqỸq′ | θ, σ2) ≈ φ2(θ) + σ2{(φ′(θ))2 + φ(θ)φ′′(θ)} .

We further notice that φ′(θ) = φ(θ)(1 − φ(θ)), and φ′(θ) = φ(θ)(1 − φ(θ))(1 −

2φ(θ)). The final results emerge after simple algebra.

A.2.2 Proof of Proposition 3.2

Proof. Starting with the moment generating function for ∑m
q=1 R̃q and ∑m−

∑
q

R̃q

l=1 ỹl

under model M̃, we have

EM̃(et1
∑

R̃q+t2
∑

ỹl | m,Gx)

=
∞∑

ℓ=1
ωℓ(x)

{
m∏

q=1

∑
R̃q=0,1

et1R̃qBern(R̃q | φ(θ1ℓ(x)))
}{m−

∑
q

R̃q∏
l=1

∑
ỹl=0,1

et2ỹlBern(ỹl | φ(θ2ℓ(x)))
}

=
∞∑

ℓ=1
ωℓ(x)

{
m∏

q=1

∑
R̃q=0,1

et1R̃qBern(R̃q | φ(θ1ℓ(x)))
}{

1 + φ(θ2ℓ(x))(et2 − 1)
}m−

∑
R̃q

=
∞∑

ℓ=1
ωℓ(x)

[
m∏

q=1

∑
R̃q=0,1

{
et1R̃qBern(R̃q | φ(θ1ℓ(x))){1 + φ(θ2ℓ(x))(et2 − 1)}1−R̃q

}]

=
∞∑

ℓ=1
ωℓ(x)

[
(1 − φ(θ1ℓ(x))){1 + φ(θ2ℓ(x))(et2 − 1)} + et1φ(θ1ℓ(x))

]m

=
∞∑

ℓ=1
ωℓ(x)

m∑
R=0

(
m

R

){
et1φ(θ1ℓ(x))

}R[
(1 − φ(θ1ℓ(x))){1 + φ(θ2ℓ(x))(et2 − 1)}

]m−R

=
∞∑

ℓ=1
ωℓ(x)

{
m∑

R=0
et1RBin(R | m,φ(θ1ℓ(x)))

}[
1 + φ(θ2ℓ(x))(et2 − 1)

]m−R

=
∞∑

ℓ=1
ωℓ(x)

{
m∑

R=0
et1RBin(R | m,φ(θ1ℓ(x)))

}{
m−R∑
y=0

et2yBin(y | m−R,φ(θ2ℓ(x)))
}

= EM(et1R+t2y | m,Gx),
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which completes the argument for the proof.

A.2.3 Proof of Proposition 3.3

Proof. We first show the equality holds on the parametric backbones of the

corresponding nonparametric mixture models. Let M∗ and M̃∗ denote the kernel

of the mixture model M and M̃, respectively. Following the strategy in proving

Proposition 3.2, we start from the MGF for ∑m
q=1 R̃q and ∑m−

∑
q

R̃q

l=1 ỹl,

EM̃∗(et1
∑

R̃q+t2
∑

ỹl | m, θ1(x), θ2(x),σ2)

=
{∫ m∏

q=1

∑
R̃q=0,1

et1R̃qBern(R̃q | φ(ψ1))N(ψ1 | θ1(x), σ2
1)dψ1

}

×
{∫ m−

∑
q

R̃q∏
l=1

∑
ỹl=0,1

et2ỹlBern(ỹl | φ(ψ2))N(ψ2 | θ2(x), σ2
2)dψ2

}

=
∫ ∫ { m∏

q=1

∑
R̃q=0,1

et1R̃qBern(R̃q | φ(ψ1))
}{m−

∑
q

R̃q∏
l=1

∑
ỹl=0,1

et2ỹlBern(ỹl | φ(ψ2))
}

×N(ψ1 | θ1(x), σ2
1)N(ψ2 | θ2(x), σ2

2)dψ1dψ2

=
∫ ∫ { m∑

R=0
et1RBin(R | m,φ(ψ1))

}{
m−R∑
y=0

et2yBin(y | m−R,φ(ψ2))
}

×N(ψ1 | θ1(x), σ2
1)N(ψ2 | θ2(x), σ2

2)dψ1dψ2

=
∫ { m∑

R=0
et1RBin(R | m,φ(ψ1))

}
N(ψ1 | θ1(x), σ2

1)dψ1

×
∫ {m−R∑

y=0
et2yBin(y | m−R,φ(ψ2))

}
N(ψ2 | θ2(x), σ2

2)dψ2

= EM∗(et1R+t2y | m, θ1(x), θ2(x),σ2).

Turning to the nonparametric mixture model, applying the equality for para-

metric model on every mixing component, we have
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EM̃(et1
∑

R̃q+t2
∑

ỹl | m,Gx,σ
2)

=
∞∑

ℓ=1
ωℓ(x)

{∫ m∏
q=1

∑
R̃q=0,1

et1R̃qBern(R̃q | φ(ψ1))N(ψ1 | θ1ℓ(x), σ2
1)dψ1

}

×
{∫ m−

∑
q

R̃q∏
l=1

∑
ỹl=0,1

et2ỹlBern(ỹl | φ(ψ2))N(ψ2 | θ2ℓ(x), σ2
2)dψ2

}

=
∞∑

ℓ=1
ωℓ(x)

[∫ { m∑
R=0

et1RBin(R | m,φ(ψ1))
}
N(ψ1 | θ1ℓ(x), σ2

1)dψ1

]

×
[∫ {m−R∑

y=0
et2yBin(y | m−R,φ(ψ2))

}
N(ψ2 | θ2ℓ(x), σ2

2)dψ2

]

= EM(et1R+t2y | m,Gx,σ
2).

Therefore, we obtaine the desired equation.

A.3 Properties of Models for Longitudinal Ordi-

nal Responses

A.3.1 Proof of Proposition 4.1

Proof. For the probability response curve P1τ , we have

P1τ =
∫

(Pr(Yτ1 = 1 | Zτ ,Zτ , σ2
ϵ ), . . . ,Pr(YτT

= 1 | Zτ ,Zτ , σ2
ϵ ))⊤p(Zτ | Zτ , σ2

ϵ ) dZτ

=
∫
π(Zτ )N(Zτ | Zτ , σ2

ϵ I) dZτ = E(π(Zτ ) | Zτ , σ2
ϵ ).

Then, to find the diagonal and off-diagonal elements for the covariance matrix

of Yτ , we use the law of total variance/covariance. For the diagonal elements, we
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can write

Var(Yτ | Zτ , σ2
ϵ ) = Var[E(Yτ | Zτ ) | Zτ , σ2

ϵ ] + E[Var(Yτ | Zτ ) | Zτ , σ2
ϵ ]

= Var[φ(Zτ ) | Zτ , σ2
ϵ ] + E[φ(Zτ )(1 − φ(Zτ )) | Zτ , σ2

ϵ ]

= E[φ(Zτ ) | Zτ , σ2
ϵ ] − E2[φ(Zτ ) | Zτ , σ2

ϵ ].

Similarly, for the off-diagonal entries, we obtain

Cov(Yτ , Yτ ′ | Zτ , σ2
ϵ ) = Cov[E(Yτ | Zτ ),E(Yτ ′ | Zτ ) | Zτ , σ2

ϵ ] + E[Cov(Yτ , Yτ ′ | Zτ ) | Zτ , σ2
ϵ ]

= Cov[φ(Zτ ), φ(Zτ ′) | Zτ , σ2
ϵ ].

A.3.2 Proof of Proposition 4.2

Proof. To establish the result, we first prove the following lemma.

Lemma A.1. Consider the bivariate vector Z = (Z1, Z2)⊤ that follows N(µ,Σ),

where µ = (µ1, µ2)⊤ and Σ =

 σ2
1 γσ1σ2

γσ1σ2 σ2
2

. Then we have,

E(φ(Zi)) ≈ φ(µi) + σ2
i

2 φ
′′(µi), i = 1, 2,

E(φ(Z1)φ(Z2)) ≈ φ(µ1)φ(µ2) + 1
2[σ2

1φ
′′(µ1)φ(µ2) + 2γσ1σ2φ

′(µ1)φ′(µ2) + σ2
2φ(µ1)φ′′(µ2)].

Proof. To show the result, we write Z = µ + ζ, where ζ ∼ N(0,Σ). By Taylor

expansion around the mean,

φ(Zi) ≈ φ(µi) + ζiφ
′(µi) + ζ2

i

2 φ
′′(µi).

Then taking expectation yields E(φ(Zi)) ≈ φ(µi) + σ2
i

2 φ
′′(µi), i = 1, 2.
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As for E(φ(Z1)φ(Z2)), consider the function f(Z) = φ(Z1)φ(Z2), using the

bivariate version of Taylor expansion,

f(Z) ≈ f(µ) + ▽f(µ)⊤ζ + 1
2ζ

⊤ ▽2 f(µ)ζ.

Similarly, taking expectation with respect to ζ we can obtain the result.

Turning to the proof of Proposition 4.2, we notice that Zτ | µ,Σ ∼ N(µ,Σ).

Marginalizing out Zτ , we have Zτ | µ,Σ, σ2
ϵ ∼ N(µ,Σ + σ2

ϵ I). Therefore, for any

τ, τ ′ ∈ τ , we have

Zτ

Zτ ′

 | µ,Σ, σ2
ϵ ∼ N(

µτ

µτ ′

 ,
Στ,τ + σ2

ϵ Στ,τ ′

Στ ′,τ Στ ′,τ ′ + σ2
ϵ

)

To establish the connection with the mean and covariance of the signal process,

we write

µτ

µτ ′

 =

E(Zτ | µ,Σ)

E(Zτ ′ | µ,Σ)


Στ,τ + σ2

ϵ Στ,τ ′

Στ ′,τ Στ ′,τ ′ + σ2
ϵ

 =

Var(Zτ | µ,Σ) + σ2
ϵ Cov(Zτ , Zτ ′ | µ,Σ)

Cov(Zτ , Zτ ′ | µ,Σ) Var(Zτ ′ | µ,Σ) + σ2
ϵ



Similar to the proof of Proposition 4.1, we can show

Pr(Yt = 1 | µ,Σ, σ2
ϵ ) = E(φ(Zτ ) | µ,Σ, σ2

ϵ )

Cov(Yτ ,Yτ ′ | µ,Σ, σ2
ϵ ) = Cov[φ(Zτ ), φ(Zτ ′) | µ,Σ, σ2

ϵ ]

Applying Lemma A.1, the desired outcome emerges as a direct consequence of

algebraic simplification.
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A.3.3 Proof of Proposition 4.3

Proof. The result is proved by considering the corresponding f.d.d.s. on any finite

grids τ . Let the bold letter denote the corresponding process evaluated at τ . From

the model assumption mentioned in (4.2) and (4.3), we have

Z | µ,Σ ∼ N(µ,Σ), µ|Σ ∼ N(µ01, (ν − 3)Σ), Σ ∼ IW (ν,Ψ).

To obtain the marginal distribution of Z, we have

p(Z) =
∫ ∫

p(Z | µ,Σ)p(µ | Σ)p(Σ) dµ dΣ.

Marginalizing over the mean vector µ, we obtain Z | Σ ∼ N(µ01, (ν−2)Σ). Based

on that,

p(Z) =
∫
p(Z | Σ)p(Σ) dΣ

∝
∫ exp{−1

2Tr[(Ψϕ + (Z−µ01)(Z−µ01)⊤

ν−2 )Σ−1]}
|Σ|(ν+|τ |+1)/2 dΣ

∝ [1 +
(Z − µ01)⊤Ψ−1

ϕ (Z − µ01)
ν − 2 ]−(ν+|τ |)/2,

which can be recognized as the kernel of a MVT distribution. Therefore, the result

holds.
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Appendix B

Implementation Details

B.1 MCMC of Models for Cross-sectional Ordi-

nal Regression

B.1.1 The General Model

The development of the posterior simulation method for the general model

(2.10) relies heavily on effectively the same structure for the weights and atoms of

the mixture model. The Pólya-Gamma data augmentation approach is used to

update parameters defining both the weights and atoms, leading to conditionally

conjugate update for all parameters. Denote the Pólya-Gamma distribution with

shape parameter b and tilting parameter c by PG(b, c). Specifically, for each Yi,

we introduce two groups of Pólya-Gamma latent variables ξi = (ξi1, . . . , ξi,L−1) and

ζi = (ζi1, . . . , ζi,C−1), where ξiℓ
i.i.d.∼ PG(1, 0) and ζij

ind.∼ PG(mij, 0). Proceeding to

the joint posterior, the contribution from Yi is given by

f(Yi | {βjℓ},Li, ζi) ∝
C−1∏
j=1

exp{ζij

2 (xT
i βjLi

− υij/ζij)2},

182



where υij = Yij − mij

2 . Likewise, let ιiℓ = Liℓ − 1
2 , we can write the contribution

from Li as

f(Li | {γℓ}, ξi) ∝
L−1∏
ℓ=1

exp{ξiℓ

2 (xT
i γℓ − ιiℓ/ξiℓ)2}.

These expressions admit closed-form full conditional distributions for {βjℓ} and

{γℓ}.

We outline the MCMC sampling algorithm for the full augmented model. This

process can be achieved entirely with Gibbs updates, by iterating the following

steps. For notation simplicity, we let (ϕ | −) denote the posterior full conditional

distribution for parameter ϕ.

Step 1: update parameters in the atoms. In this step, we update two sets of

parameters, {βjℓ : j = 1, . . . , C − 1, ℓ = 1, . . . , L} and {ζij : i = 1, . . . , n, j =

1, . . . , C − 1}. Denote the set of distinct values of the configuration variables

by {L∗
r : r = 1, . . . , n∗}. Following Polson et al. (2013), it can be done by

(βjℓ | −) ∼ N(µ̃jℓ, Σ̃jℓ) and (ζij | −) ∼ PG(mij,xT
i βjLi

), where

• if ℓ /∈ {L∗
r : r = 1, . . . , n∗} : µ̃jℓ = µj,

Σ̃jℓ = Σj;

• if ℓ ∈ {L∗
r : r = 1, . . . , n∗} : µ̃jℓ = Σ̃jℓ(XT

ℓ υℓ + Σ−1
j µj),

Σ̃jℓ = (XT
ℓ ΩℓXℓ + Σ−1

j )−1.

Here Xℓ is the matrix whose column vectors are given by {xi : Li = ℓ}, Ωℓ

is the diagonal matrix with diagonal elements {ζij : Li = ℓ}, and υℓ is the

vector of {υij : Li = ℓ}. Notice that updating {βjℓ} can be run in parallel

across categories j = 1, . . . , C − 1.

Step 2: update parameters in the weights. Similarly, we update {γℓ : ℓ =

1, . . . , L − 1} and {ξiℓ : i = 1, . . . , n, ℓ = 1, . . . , L − 1} from (γℓ | −) ∼
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N(γ̃ℓ, Γ̃ℓ) and (ξiℓ | −) ∼ PG(1,xT
i γℓ), where γ̃ℓ = Γ̃ℓ(XT

ℓ ιℓ + Γ−1
0 γ0)

and Γ̃ℓ = (XT
ℓ ΞℓXℓ + Γ−1

0 )−1. We denote the diagonal matrix formed by

{ξiℓ : Li = ℓ} as Ξℓ, and the vector of{ιiℓ : Li = ℓ} as ιℓ.

Step 3: update configuration variables. Update Li, for i = 1, . . . , n from

P (Li = ℓ | −) =
piℓ
∏C−1

j=1 Bin(Yij | mij, φ(xT
i βjℓ))∑L

ℓ=1 piℓ
∏C−1

j=1 Bin(Yij | mij, φ(xT
i βjℓ))

where {piℓ : ℓ = 1, . . . , L} are calculated as pi1 = φ(xT
i γ1), piℓ = φ(xT

i γℓ)
∏ℓ−1

h=1(1−

φ(xT
i γh)), ℓ = 2, . . . , L− 1, and piL = ∏L−1

ℓ=1 (1 − φ(xT
i γℓ)).

Step 4: update hyperparameters. By conjugacy, updating hyperparameters

is standard. We update {µj} and {Σj} by (µj | −) ∼ N(µ∗
j ,Σj/κ

∗
j) and

(Σj | −) ∼ IW (ν∗
j , (Λ∗

j)−1), with the parameters given by

µ∗
j = κ0j

κ0j + n∗µ0j + n∗

κ0j + n∗ β̄j, κ
∗
j = n∗ + κ0j, ν

∗
j = n∗ + ν0j

β̄j = 1
n∗

n∗∑
r=1
βjL∗

r
, Sj =

n∗∑
r=1

(βjL∗
r

− β̄j)(βjL∗
r

− β̄j)T ,

Λ∗
j = Λ0j + Sj + n∗κ0j

n∗ + κ0j

(β̄j − µ0j)(β̄j − µ0j)T .

We refer to the above process as the “general process”. From the connec-

tion discussed in Section 2.3, the Gibbs sampler for the two simpler models are

straightforwardly adapted from the general process.
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B.1.2 The Common-weights Model

In the scenario that a common-weights model is adopted, the mixing weights

and the configuration variables are determined by

Li | ω ∼
L∑

ℓ=1
ωlδℓ(Li), ω | α ∼ f(ω | α), α ∼ Gamma(aα, bα),

where f(ω | α) stands for a special case of the generalized Dirichlet distribution

f(ω | α) = αL−1ωα−1
L (1 − ω1)−1(1 − (ω1 + ω2))−1 . . . (1 −

L−2∑
ℓ=1

ωℓ)−1,

while the atoms are the same as in the general model. Hence, we only need to

introduce the group of Pólya-Gamma latent variables {ζi : i = 1, . . . , n}, which

enable the same conjugate update in sampling atoms related parameters. We

keep Step 1 and Step 4 in the general process, whereas the other two steps are

replaced by:

Step 2∗: update parameters in the weights. The parameters to be updated

in this step involve {ωℓ : ℓ = 1, . . . , L− 1} and α. From Ishwaran and James

(2001), it can be done by sample V ∗
ℓ

ind.∼ Beta(1 + Mℓ, α + ∑L
h=ℓ+1 Mh) for

ℓ = 1, . . . , L− 1. Then let ω1 = V ∗
1 , ωℓ = V ∗

ℓ

∏ℓ−1
h=1(1 − V ∗

h ), ℓ = 2, . . . , L− 1

and ωL = 1 − ∑L−1
ℓ=1 ωℓ. In addition, a new sample of α is obtained from

(α | −) ∼ Gamma(aα + L− 1, bα −∑L−1
ℓ=1 log(1 − V ∗

ℓ )).

Step 3∗: update configuration variables. Update Li, i = 1, . . . , n, from

P (Li = ℓ | −) =
ωℓ
∏C−1

j=1 Bin(Yij | mij, φ(xT
i βjℓ))∑L

ℓ=1 ωℓ
∏C−1

j=1 Bin(Yij | mij, φ(xT
i βjℓ))

.
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B.1.3 The Common-atoms Model

If one choose to fit the common-atoms model, the linear regression terms in

the atoms are simplified by θjℓ with prior θjℓ
ind.∼ N(µj, σ

2
j ), j = 1, . . . , C − 1 and

ℓ = 1, . . . , L. We replace Step 1 and Step 4 of the general process with the

following alternatives, while the other steps remain the same.

Step 1∗: update parameters in the atoms. The two sets of parameters {θjℓ :

j = 1, . . . , C − 1, ℓ = 1, . . . , L} and {ζij : i = 1, . . . , n, j = 1, . . . , C − 1} are

now updated by (θjℓ | −) ∼ N(µ̃jℓ, σ̃
2
jℓ) and (ζij | −) ∼ PG(mij, θjLi

), where

• if ℓ /∈ {L∗
r : r = 1, . . . , n∗} : µ̃jℓ = µj,

σ̃2
jℓ = σ2

j ,

• if ℓ ∈ {L∗
r : r = 1, . . . , n∗} : µ̃jℓ = σ̃2

j (∑{i:Li=ℓ} υij + µj/σ
2
j )

σ̃2
jℓ = σ2

j/(σ2
j

∑
{i:Li=ℓ} ζij + 1).

Step 4∗: update hyperparameters. That is, we update {µj : j = 1, . . . , C−1}

and {σ2
j : j = 1, . . . , C − 1} by (µj | −) ∼ N(µ∗

j , σ
2
j/ν

∗
j ) and (Σj | −) ∼

IW (ν∗
j , (Λ∗

j)−1), where

µ∗
j = ν0jµ0j + n∗θ̄j

ν0j + n∗ , ν∗
j = n∗ + ν0j, a

∗
j = aj + n∗/2 θ̄j = 1

n∗

n∗∑
r=1

θjr,

b∗
j = bj + 1

2

n∗∑
r=1

(θjr − θ̄j)2 + n∗ν0j

n∗ + ν0j

(θ̄j − µ0j)2

2 .

Finally, for notation consistency, we should also replace the terms xT
i βjℓ with

θjℓ in Step 3, while keeping the same updating mechanism.

With the posterior samples for model parameters drawn by the MCMC mecha-

nism described above, we can obtain full inference for any regression functional of

interest. For instance, for any j = 1, . . . , C, posterior realizations for the marginal
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probability response curve, Pr(Y = j | Gx), can be computed over a grid in x via

L∑
ℓ=1

{
φ(xTγ

(t)
ℓ )

∏ℓ−1
h=1(1 − φ(xTγ

(t)
h ))

} {
φ(xTβ

(t)
jℓ )

∏j−1
k=1[1 − φ(xTβ

(t)
kℓ )]

}

where φ(xTγ
(t)
L ) = φ(xTβ

(t)
Cℓ) ≡ 1, and the superscript (t) indicates the tth posterior

sample for the model parameters.

B.2 MCMC of Models with Overdispersed Ker-

nel

In this section, we design the posterior simulation steps for the “Gen-LNB”

model, and discuss its modification to accommodate for the “CW-Bin” model.

Consider the data {(xd,Ydi) : d = 1, . . . , N ; i = 1, . . . , nd}. For the continuous

mixing structure in the kernel, and the enveloping discrete mixing structure, we

introduce latent variables {ψdi = (ψdi1, ψdi2)}, and configuration variables {Ldi}.

The model is then formulated hierarchically as

(Rdi, ydi) | ψdi
ind.∼ Bin(Rdi | mdi, φ(ψdi1))Bin(ydi | mdi −Rdi, φ(ψdi2))

ψdi | {βjℓ},Ldi,σ
2 ind.∼

2∏
j=1

N(ψdij | xT
d βjLdi

, σ2
j ), d = 1, . . . , N i = 1, . . . , nd

Ldi | {γℓ}
ind.∼

L∑
ℓ=1

pdℓ δℓ(Li), d = 1, . . . , N i = 1, . . . , nd

βjℓ | (µj,Σj) ind.∼ N(µj,Σj), j = 1, 2, ℓ = 1, . . . , L

γℓ
i.i.d.∼ N(γ0,Γ0), ℓ = 1, . . . , L− 1

(µj,Σj) ind.∼ N(µj | µ0j,Σj/κ0j) IW (Σj | ν0j,Λ−1
0j ), j = 1, 2

σ2
j

i.i.d.∼ IG(aσ, bσ), j = 1, 2
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where pdℓ = φ(xT
d γℓ)

∏ℓ−1
h=1(1 −φ(xT

d γh)), for ℓ = 1, . . . , L− 1, and pdL = ∏L−1
ℓ=1 (1 −

φ(xT
d γℓ)).

The hierarchical model formulation reminds us the Pólya-Gamma data augmen-

tation approach (Polson et al., 2013), which is the key to conditionally conjugate

updates for all parameters. For each response (Rdi, ydi), we introduce two groups of

Pólya-Gamma latent variables ξdi = (ξdi1, . . . , ξdi,L−1) and ζdi = (ζdi1, ζdi2), where

ξdiℓ
i.i.d.∼ PG(1, 0) and ζdi1 ∼ PG(mdi, 0), ζdi2 ∼ PG(mdi − Rdi, 0), independently.

Here PG(b, c) denotes the Pólya-Gamma distribution with shape parameter b and

tilting parameter c.

We outline the MCMC sampling algorithm for the full augmented model. This

process can be achieved entirely with Gibbs updates, by iterating the following

steps. For notation simplicity, we let (ϕ | −) denote the posterior full conditional

distribution for parameter ϕ.

Step 1: update parameters in the atoms. In this step, we update two sets

of parameters, {ψdi : d = 1, . . . , N, i = 1, . . . , nd}, {ζdi : d = 1, . . . , N, i =

1, . . . , nd} and {βjℓ : j = 1, 2, ℓ = 1, . . . , L}. Denote the set of distinct

values of the configuration variables by {L∗
r : r = 1, . . . , n∗}. Following

Polson et al. (2013), it can be done by (ψdij | −) ∼ N(ϕdij, τ
2
dij), with ϕdi1 =

x⊤β1Ldi
+σ2

1(Rdi−
mdi

2 )
1+σ2

1ζdi1
, ϕdi2 = x⊤β2Ldi

+σ2
2(ydi−

mdo−Rdi
2 )

1+σ2
2ζdi2

, τ 2
dij = σ2

j

1+σ2
j ζdij

, j = 1, 2. It

is then followed by updating (ζdi1 | −) ∼ PG(mdi, ψdi1) and (ζdi2 | −) ∼

PG(mdi − Rdi, ψdi2). Finally, we update βjℓ by sampling from (βjℓ | −) ∼
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N(µ̃jℓ, Σ̃jℓ), where

• if ℓ /∈ {L∗
r : r = 1, . . . , n∗} : µ̃jℓ = µj,

Σ̃jℓ = Σj;

• if ℓ ∈ {L∗
r : r = 1, . . . , n∗} : µ̃jℓ = Σ̃jℓ(XT

ℓ ψℓ

σ2
j

+ Σ−1
j µj),

Σ̃jℓ = (XT
ℓ Xℓ

σ2
j

+ Σ−1
j )−1.

Here Xℓ is the matrix whose column vectors are given by {xd : Ldi = ℓ}, and

ψℓ is the vector of {ψdij : Ldi = ℓ}. Notice that updating {βjℓ} can be run

in parallel across categories j = 1, . . . , C − 1.

Step 2: update parameters in the weights. Similarly, we update {γℓ : ℓ =

1, . . . , L − 1} and {ξiℓ : i = 1, . . . , n, ℓ = 1, . . . , L − 1} from (γℓ | −) ∼

N(γ̃ℓ, Γ̃ℓ) and (ξiℓ | −) ∼ PG(1,xT
i γℓ), where γ̃ℓ = Γ̃ℓ(XT

ℓ ιℓ + Γ−1
0 γ0)

and Γ̃ℓ = (XT
ℓ ΞℓXℓ + Γ−1

0 )−1. We denote the diagonal matrix formed by

{ξiℓ : Li = ℓ} as Ξℓ, and the vector of{ιiℓ : Li = ℓ} as ιℓ.

Step 3: update configuration variables. Update Li, for i = 1, . . . , n from

P (Li = ℓ | −) =
piℓ
∏C−1

j=1 Bin(Yij | mij, φ(xT
i βjℓ))∑L

ℓ=1 piℓ
∏C−1

j=1 Bin(Yij | mij, φ(xT
i βjℓ))

where {piℓ : ℓ = 1, . . . , L} are calculated as pi1 = φ(xT
i γ1), piℓ = φ(xT

i γℓ)
∏ℓ−1

h=1(1−

φ(xT
i γh)), ℓ = 2, . . . , L− 1, and piL = ∏L−1

ℓ=1 (1 − φ(xT
i γℓ)).

Step 4: update overdispersion parameters. The posterior full conditional

distribution of σ2
j is given by (σ2

j | −) ∼ IG(a∗
j , b

∗
j), where

a∗
j = aσ +

n∗
j

2 , b
∗
j = bσ +

∑N
d=1

∑nd
i=1(ψdij − x⊤

d βjLdi
)

2 ,

where n∗
1 = ∑N

d=1 nd and n∗
2 = ∑N

d=1
∑nd

i=1 1(mdi −Rdi > 0).
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Step 5: update hyperparameters. By conjugacy, updating hyperparameters

is standard. We update {µj} and {Σj} by (µj | −) ∼ N(µ∗
j ,Σj/κ

∗
j) and

(Σj | −) ∼ IW (ν∗
j , (Λ∗

j)−1), with the parameters given by

µ∗
j = κ0j

κ0j + n∗µ0j + n∗

κ0j + n∗ β̄j, κ
∗
j = n∗ + κ0j, ν

∗
j = n∗ + ν0j

β̄j = 1
n∗

n∗∑
r=1
βjL∗

r
, Sj =

n∗∑
r=1

(βjL∗
r

− β̄j)(βjL∗
r

− β̄j)T ,

Λ∗
j = Λ0j + Sj + n∗κ0j

n∗ + κ0j

(β̄j − µ0j)(β̄j − µ0j)T .

The posterior sampling algorithm for the “CW-LNB” model is adapt from this

sampling scheme, with Step 2 and Step 3 been replaced by Step 2∗ and Step

3∗ described in Appendix B.1, while keeping the other steps unchanged.

B.3 MCMC of Models for Longitudinal Ordinal

Responses

Based on the joint posterior distributions derived from (4.4), we design the

MCMC sampling algorithm for the proposed model with binary responses. This

process can be achieved entirely with Gibbs updates, by iterating the following

steps. For notation simplicity, we let (ϕ | −) denote the posterior full conditional

distribution for parameter ϕ.

Step 1: For i = 1, . . . , n update Z i from N(mi,V i), where V i = (Ωi +(1/σ2
ϵ )I)−1,

and mi = V i(λi + (1/σ2
ϵ )Zi). Here Ωi denote the diagonal matrix of ξi, and

λi = (Yi1 − 1/2, . . . , YiTi
− 1/2)⊤.

Step 2: Update the Pólya-Gamma random variables ξit by sample from PG(1,Zit),

for i = 1, . . . , n and t = 1, . . . , Ti.
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Step 3: Update σ2
ϵ by sample from IG(aϵ +∑n

i=1 Ti/2, bϵ +∑n
i=1(Z i − Zi)⊤(Z i −

Zi)/2).

Step 4: Update Z̃i for i = 1, . . . , n,

• In the case that all the subjects having observations on a common grid,

Z∗
i vanishes and Z̃i = Zi. It has full conditional distribution Zi | − ∼

N(µ̃i, Ṽi), where Ṽi = ((1/σ2
ϵ )I + Σ−1)−1, and µ̃i = Ṽi((1/σ2

ϵ )Z i +

Σ−1µ).

• In the case that the repeated measurements for the subjects are collected

on uncommon grids, we first update Z∗
i from N(µ∗

i ,V
∗

i ), where

µ∗
i = µ(τ ∗

i ) + Σ(τ ∗
i , τi)Σ(τi, τi)−1(Zi − µ(τi)) = BiZi − ui,

V ∗
i = Σ(τ ∗

i , τ
∗
i ) − Σ(τ ∗

i , τi)Σ(τi, τi)−1Σ(τi, τ
∗
i ),

with Bi = Σ(τ ∗
i , τi)Σ(τi, τi)−1 and ui = Biµ(τi) − µ(τ ∗

i ).

Then, to update Zi, we sample from N(µ̃i, Ṽi), where

Ṽi = [(1/σ2
ϵ )I + Σ(τi, τi)−1 + BT

i (V ∗
i )−1Bi]−1,

µ̃i = Ṽi[(1/σ2
ϵ )Z i + Σ(τi, τi)−1µ(τi) + BT

i (V ∗
i )−1(ui + Z∗

i )].

Step 5: Update µ and Σ jointly by sample from N(µ∗,Σ/κ∗) and IW (ν∗,Ψ∗),

respectively, with

µ∗ = κ

κ+ n
µ0 + n

κ+ n
Z̃m, κ∗ = n+ κ, ν∗ = n+ ν

Ψ∗ = Ψ + S + nκ

n+ κ
(Z̃m − µ0)(Z̃m − µ0)T , S =

n∑
i=1

(Z̃i − Z̃m)(Z̃i − Z̃m)top,

where Z̃m denote the mean of {Z̃i}n
i=1.
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Step 6: Update µ0 from N(a∗
µ, b

∗
µ), where b∗

µ = [1⊤[(ν − 3)Σ]−11 + 1
bµ

]−1, and

a∗
µ = b∗

µ[1⊤[(ν − 3)Σ]−1µ+ aµ

bµ
].

Step 7: Update σ2 from Gamma(aσ + (ν+|τ |−1)|τ |
2 , bσ + 1

2tr(ΨρΣ−1)). Here Ψρ

denotes the correlation matrix Ψϕ/σ
2.

Step 8: Using the Griddy-Gibbs sampler by Ritter and Tanner (1992), update ρ

from

P (ρ = cl | −) =
|Ψcl

|(ν+|τ |−1)/2 exp(−1
2tr(Ψcl

Σ−1))∑G
l=1 |Ψcl

|(ν+|τ |−1)/2 exp(−1
2tr(Ψcl

Σ−1))
,

where c1, . . . , cG are grid points on a plausible region of ρ and Ψcl
denotes

the correlation matrix when ρ taking the value cl.

Step 9: Using the Griddy-Gibbs sampler, update ν from

P (ν = cl | −) = N(µ | µ0, (cl − 3)Σ)IW (Σ | cl + |τ | − 1,Ψϕ)∑G
l=1 N(µ | µ0, (cl − 3)Σ)IW (Σ | cl + |τ | − 1,Ψϕ)

.

where c1, . . . , cG are grid points on a plausible region of ν.
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