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through test positivity rate from wastewater

J. Cricelio Montesinos-López,1 Maria L. Daza-Torres,1 Yury E. García,1 César Herrera,2 C. Winston Bess,3 Heather N. Bischel,3 Miriam 
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ABSTRACT Deployment of clinical testing on a massive scale was an essential control 
measure for curtailing the burden of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) infections and the magnitude of the COVID-19 (coronavirus disease 
2019) pandemic during its waves. As the pandemic progressed, new preventive and 
surveillance mechanisms emerged. Implementation of vaccine programs, wastewater 
(WW) surveillance, and at-home COVID-19 antigen tests reduced the demand for mass 
SARS-CoV-2 testing. Unfortunately, reductions in testing and test reporting rates also 
reduced the availability of public health data to support decision-making. This paper 
proposes a sequential Bayesian approach to estimate the COVID-19 test positivity rate 
(TPR) using SARS-CoV-2 RNA concentrations measured in WW through an adaptive 
scheme incorporating changes in virus dynamics. The proposed modeling framework 
was applied to WW surveillance data from two WW treatment plants in California; the 
City of Davis and the University of California, Davis campus. TPR estimates are used 
to compute thresholds for WW data using the Centers for Disease Control and Preven­
tion thresholds for low (<5% TPR), moderate (5%–8% TPR), substantial (8%–10% TPR), 
and high (>10% TPR) transmission. The effective reproductive number estimates are 
calculated using TPR estimates from the WW data. This approach provides insights into 
the dynamics of the virus evolution and an analytical framework that combines different 
data sources to continue monitoring COVID-19 trends. These results can provide public 
health guidance to reduce the burden of future outbreaks as new variants continue to 
emerge.

IMPORTANCE We propose a statistical model to correlate WW with TPR to monitor 
COVID-19 trends and to help overcome the limitations of relying only on clinical case 
detection. We pose an adaptive scheme to model the nonautonomous nature of the 
prolonged COVID-19 pandemic. The TPR is modeled through a Bayesian sequential 
approach with a beta regression model using SARS-CoV-2 RNA concentrations measured 
in WW as a covariable. The resulting model allows us to compute TPR based on WW 
measurements and incorporates changes in viral transmission dynamics through an 
adaptive scheme.

KEYWORDS SARS-CoV-2, COVID-19, test positivity rate (TPR), wastewater-based 
epidemiology (WBE), effective reproductive number, Bayesian sequential data assimila­
tion

E ffectively monitoring the evolution of the COVID-19 (coronavirus disease 2019) 
pandemic and controlling the spread of disease remains a major public health 

challenge. Statistical and mathematical models are important components of effec­
tive monitoring systems to track COVID-19 cases, hospitalizations, and deaths (1, 2). 
Unfortunately, the rapid evolution of severe acute respiratory syndrome coronavirus 
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2 (SARS-CoV-2) and variable community responses to public health interventions 
complicate the development of robust mathematical models. Classic models in 
epidemiology are limited in their ability to capture the complex dynamics of the 
evolving pandemic (3, 4). Data availability and quality have also changed over time 
(5, 6). Deployment of clinical testing on a massive scale (“mass testing”) was an essential 
control measure for curtailing the burden of COVID-19, particularly during its early 
phases. As the pandemic progressed, new interventions and monitoring strategies 
surged, including vaccine programs, wastewater (WW) surveillance (7, 8), and at-home 
COVID-19 antigen tests (9). In this study, we recognize the increasingly important role of 
WW surveillance data in disease monitoring and use WW data and statistical modeling to 
infer public health metrics.

Mass testing, contact tracing, isolation, and mobility restrictions made it possible to 
estimate the burden of disease during the early phases of the pandemic (10, 11). The 
return to “normal” was accompanied by a decrease in COVID-19 clinical testing programs 
and an increase in at-home diagnostic tests. These changes diminished the utility of 
individual case data for public health decision-making. Using the number of confirmed 
cases to determine the prevalence of disease in a community introduces bias since case 
counts depend on the volume of tests conducted, testing priorities, and the timing of 
case detection (12, 13). Test positivity rate (TPR) has been shown to be a better indicator 
of disease spread than confirmed cases because it considers both tests conducted and 
cases detected (14, 15).

During the COVID-19 pandemic, public health officials commonly used the TPR to 
infer the adequacy of population-level testing and the extent of SARS-CoV-2 transmis­
sion in a population (15–17). A low TPR indicates a low level of virus transmission and 
reflects a high surveillance capacity and rapid case identification. In contrast, a higher 
TPR indicates a higher level of virus transmission but also suggests that too few tests are 
being conducted and many infected individuals are likely undetected (18–20).

At the beginning of the pandemic, the World Health Organization (WHO) recommen­
ded a TPR threshold of 5% to declare COVID-19 transmission under control (21). As the 
number of people being tested for COVID-19 declined over time, the TPR alone was 
deemed insufficient to assess community-level transmission. Limited levels of testing 
meant that public health authorities focused on passive case­finding (i.e., only those 
considered most likely to be infected due to symptoms or contacts were tested). As 
a result, TPR tended to be artificially high, and models using TPR as input tended to 
overestimate the proportion of people infected. This is contrary to models based only 
on observed cases, which may underestimate COVID-19 prevalence (22). Despite these 
limitations, TPR can still provide a reasonable estimate of the extent of an outbreak if TPR 
is combined with additional information.

Public health authorities are turning to wastewater-based epidemiology (WBE) as 
an alternative strategy for less-biased population-level surveillance of SARS-CoV-2 RNA. 
WBE uses biomarkers in WW to monitor trends in community-level health indices. WBE 
methods have been used to detect changes in drug consumption (23), dietary patterns 
(24), and the circulation of pathogens like poliovirus and norovirus (25). SARS-CoV-2 
RNA measurements in WW can be used to understand COVID-19 epidemiology because 
infected individuals shed the virus into the sewer system throughout their infection (8). 
During the COVID-19 pandemic, SARS-CoV-2 RNA concentrations in WW were shown to 
correlate strongly with confirmed cases in numerous studies (e.g., 8, 22, 26). However, 
some studies have shown that the relationship between WW and COVID-19 clinical 
cases varies over time (27, 28). This relationship is affected by many factors, including 
testing availability and practices, public health policies, social behaviors, vaccine uptake, 
acquired immunity, and the emergence of new variants that may impact fecal shedding 
(27, 29, 30). Xiao et al. (27) attributed changes in the ratio of WW signal to daily new 
positive clinical tests to insufficient testing in the general population (i.e., inadequate 
testing to capture the exponential growth of actual COVID-19 cases).
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In this paper, we correlate WW with TPR to monitor COVID-19 trends using high-qual­
ity clinical testing and WW data from Davis, California. We pose an adaptive scheme 
to model the nonautonomous nature of the prolonged COVID-19 pandemic. The TPR 
is modeled through a sequential Bayesian approach (3) with a beta regression using 
the WW viral loads as a covariable. The resulting model allows us to compute a TPR 
based on WW measurements and incorporates changes in viral transmission dynamics 
through an adaptive scheme. The TPR estimate is used to calculate values for WW data 
that correspond to TPR thresholds using criteria proposed by the U.S. Centers for Disease 
Control and Prevention (CDC) in 2021 (31). The TPR thresholds indicated low transmis­
sion for a TPR <0.05, moderate transmission for a TPR within a range of 0.05 and 0.08, 
substantial transmission for a TPR within a range of 0.08 and 0.1, and high transmission 
for a TPR ≥0.1. Due to uncertainties in relating WW data to COVID-19 case counts, public 
health authorities typically evaluate trends in WW data to assess changes in infection 
rates rather than absolute thresholds. It may also be helpful for public health authorities 
to interpret WW data in terms of TPR. Our modeling approach provides insights into the 
evolution of virus transmission dynamics and a methodology that combines different 
sources of information to continue monitoring COVID-19 trends.

RESULTS

The analytical framework was developed using data from the City of Davis (Davis) and 
replicated for the University of California, Davis campus (UC Davis). To display changes in 
the relation between TPR and WW signal across variants, we estimate the TPR using the 
proposed sequential model and compute the posterior distribution for the parameter β1 over time (Fig. 1 and 2, top-panel). The results show how the relation of TPR and 
WW signal changed over time, mainly as new variants emerged. Note that while these 

FIG 1 Posterior distribution of β1 (A) and estimated TPR for the City of Davis (B). Red-solid line and blue-shadow area describe the median and 95% prediction 

intervals, respectively.
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were new periods of a variant emerging, this also likely corresponded to a period of 
under-testing when variants began to surge.

The Algorithm 1 was used to compute the thresholds for WW data with the estimated 
TPR in each time window. We did not calculate thresholds for the period of September 
through December 2021 since the corresponding posterior distribution for β1 contained 
zero. In other words, the probability that the β1 parameter will be zero was positive, 
suggesting that there is no significant association between WW data and TPR (Fig. 
1 and 2). We illustrate the estimated thresholds for WW corresponding to low, moder­
ate, substantial, and high transmission thresholds proposed by the CDC (Fig. 3). High 
variability in the threshold estimation coincides with the emergence of new variants. 
This variability is reduced in the period where the variant is dominant. WW thresholds 
were determined by calculating the mean of the estimated thresholds in each period; see 
Table 1. Thresholds are reported as N/PMMoV (N gene copies per gram dry weight solids 
normalized by mild pepper mottle virus gene copies per gram dry weight solids).

Fig. 4 illustrates the effective reproductive number (Re), which was computed 
assuming the median of the predicted TPR multiplied by the average number of tests, N , 
performed per day for Davis (N = 1, 198) and UC Davis (N = 2, 381), in the study period. 
We also compare Re computed with observed cases. Re trends determined from WW 
were similar in magnitude and depicted similar trends for Re calculated using observed 
cases during the periods analyzed.

DISCUSSION

Substantial changes in test availability and test-seeking behavior may confound 
COVID-19 case count estimates in a community (22, 32). The TPR may provide a more 
accurate reflection of the state of the epidemic (15). TPR is an important metric because 

FIG 2 Posterior distribution of β1 (A) and estimated TPR for UC Davis (B). Red-solid line and blue-shadow area describe the median and 95% prediction intervals, 

respectively.
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it indicates how widespread an outbreak is within a particular area where testing is being 
conducted and whether current levels of testing are sufficient to accurately capture 
levels of disease transmission (16, 18). Increments in TPR can indicate that it may be a 
good time to incorporate restrictions to slow the spread of disease (18).

This study proposes a sequential Bayesian framework to model the COVID-19 TPR via 
WW data for near real-time monitoring of the COVID-19 pandemic. The TPR is modeled 
as a reparametrized beta regression, and the parameters are estimated using a Bayesian 
approach. The changing dynamics of the virus and data availability impose challenges in 
the development of actionable mathematical models for the surveillance and 

FIG 3 Wastewater thresholds over time for (A) the City of Davis and (B) UC Davis. Blue, yellow, and red horizontal lines correspond to low, moderate, and high 

transmission thresholds, respectively. Raw (black triangles) and smoothed N/PMMoV WW data (gray dots).

TABLE 1 WW thresholds were determined by calculating the mean of the estimated thresholds in each 
period

Wastewater thresholds

Delta Omicron BA.2–5

Davis
Low < 5.72 × 10−4 < 2.61 × 10−4 < 4.82 × 10−4

Moderate (5.72 × 10−4, 7.76 × 10−4) (2.61 × 10−4, 3.65 × 10−4) (4.82 × 10−4, 6.58 × 10−4)
Substantial (7.76 × 10−4, 8.63 × 10−4) (3.65 × 10−4, 4.10 × 10−4) (6.58 × 10−4, 7.44 × 10−4)
High > 8.63 × 10−4 > 4.10 × 10−4 > 7.44 × 10−4

UC Davis
Low < 5.16 × 10−4 < 3.93 × 10−4 < 3.87 × 10−4

Moderate (5.16 × 10−4, 6.53 × 10−4) (3.93 × 10−4, 5.28 × 10−4) (3.87 × 10−4, 5.36 × 10−4)
Substantial (6.53 × 10−4, 7.17 × 10−4) (5.28 × 10−4, 5.89 × 10−4) (5.36 × 10−4, 6.03 × 10−4)
High > 7.17 × 10−4 > 5.89 × 10−4 > 6.03 × 10−4
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monitoring of COVID-19 (3, 33). Here, we propose an adaptive modeling framework as an 
alternative to overcome some of the limitations of traditional models. The adaptive 
capacity of the model is well suited to capture the variability in virus trends over time by 
leveraging knowledge gained.

We then use the model developed to offer a retrospective estimate of WW thresholds 
(for the settled solids analytical method performed) that corresponded to TPR thresholds 
recommended by the CDC, for community transmission levels of SARS-CoV-2. The WW 
thresholds determined for UC Davis appeared more stable through time and through 
waves of different SARS-CoV-2 variants than WW thresholds estimated for the City of 
Davis. This can be explained by the fact that the UC Davis TPR was nearly always less 
than 5% while the City of Davis TPR exceeded 5% periodically over the study period. 
Confidence in disease dynamics breaks down as TPR rises above 5% (21). The WW 
thresholds estimated for the City of Davis were similar to those for UC Davis when TPR 
remained low but increased dramatically at the end of the study period when clinical 
testing rates declined in Davis, usage of at-home test kits increased, and TPR surpassed 
5%. Mandatory asymptomatic testing continued for UC Davis through the end of the 
study period. In the absence of strong clinical testing programs, the relatively more 
stable WW thresholds. determined over this study period may serve as a future reference 
to assess relative SARS-CoV-2 infection dynamics for these sewersheds. We caution 
against the direct translation of the estimated WW thresholds to other sewersheds and 
analytical methods for WW. Further research is needed to investigate the application of 
this framework to other sewersheds, for alternative WW analytical methods, and other 
respiratory and enteric pathogens present in WW.

There are some limitations that are worth considering in our modeling framework. 
One of the limitations of this framework is that it requires access to both WW and 
test data for continued adaptation, which implies continuous community monitoring 
through testing. The capacity of current testing programs has decreased significantly 
with recent transitions to a new normal and the implementation of prevention and 
surveillance mechanisms such as vaccines, at-home tests, and WW surveillance. New 
limited testing may lead to passive case­finding (i.e., only those most likely to be infected 

FIG 4 Effective Re of (A) the City of Davis and (B) UC Davis computed with observed cases (black line and gray shadow) and with the median of the predicted 

TPR multiplied by the average number of tests performed in the study period (blue lines and blue shadow). Solid lines and shaded regions illustrate the median 

and 95% prediction intervals, respectively.
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are tested). The TPR may thus overestimate the current burden of the disease under 
these conditions. It is important to highlight that reduction in information poses new 
challenges and limitations in COVID-19 monitoring. With reductions in testing, public 
health authorities must decide between an indicator that overestimates the burden of 
the disease (TPR) and a projection that underestimates the burden of the disease (case 
counts). We propose to use the TPR in combination with WW measurements to reduce 
bias in the estimation of the burden of disease. To bypass the inherent limitations of 
TPR in estimating disease spread, one could consider hospitalizations. However, publicly 
available hospitalization is only available at the county level, and only one or maybe a 
few cities may have monitoring for WW, which might not represent the whole county.

In our study, the relationship between WW concentrations and TPR changed when 
TPR increased. This was likely due to changes in test-seeking behavior and test avail­
ability. Viral shedding may also change through time due to changes in vaccination 
status, acquired immunity, and changes in transmission patterns for different viral 
variants—although there is limited evidence available from fecal shedding studies. WW 
thresholds were estimated herein based on TPR for a community where testing rates 
were extraordinarily high, given the population size. While it is not feasible at this 
time to establish a priori public health thresholds based on WW concentrations alone 
to estimate the burden of the disease through time, a record of historical values and 
thresholds provides meaningful context to guide public health authorities as new waves 
of infection arise.

MATERIALS AND METHODS

The City of Davis and UC Davis Campus WW collection areas (commonly referred to 
as sewersheds) are geographically adjacent. The analysis includes laboratory­confirmed 
incident COVID-19 cases and WW data from 1 July 2021, to 1 July 2022, for Davis and UC 
Davis. This period of study captured three waves of the pandemic, namely the Delta variant 
(dominant from 1 July 2021 to 14 December 2022), the Omicron variant BA.1 (dominant 
from 15 December 2021, to 15 March 2022), and Omicron variants BA.2, BA.3, BA.4, and BA.5 
(dominant from 16 March 2022, to 1 July 2022); hereafter Omicron variants will be denoted 
as one BA.2–5 wave. These periods were defined according to the dominance of a variant as 
reported by the California Department of Public Health (34).

Daily COVID-19 cases and tests for Davis were provided by Healthy Davis Together 
(HDT) (35). HDT is the community pandemic response program launched in Davis from 
September 2020 to 30 June 2022, to mitigate the spread of COVID-19. HDT involved 
a broad set of interventions, including free saliva-based asymptomatic testing with 
high throughput methods to process large volumes of tests. Testing and cases for UC 
Davis come from the campus community COVID-19 screening program, which includes 
mandatory completion of biweekly asymptomatic tests to access campus facilities. The 
study site is thus unique compared with most WW surveillance regions in that there was 
an extraordinarily high number of clinical tests performed in both sewersheds during the 
study period (Fig. 5) for relatively small population size (425,314 tests were performed 
over the study period by Davis and 835,785 for UC Davis for approximately 66,799 
residents in the combined surveillance regions). The high number of tests resulted 
in TPR ≤0.05 for the majority of the study period in both locations (Fig. 6). These 
conditions provide a useful context for estimating WW thresholds corresponding to the 
CDC­defined TPR thresholds for community transmission levels of SARS-CoV-2 (31). The 
WHO contends that disease dynamics based on case data can be confidently tracked 
when TPR ≤0.05 (21). Otherwise, when TPR ≥0.05, WW measurements offer a more 
robust measure of true disease dynamics (19).

Wastewater settled solids methods

WW settled solids for the Davis wastewater treatment plant (WWTP) were collected daily 
from the primary clarifier, transported on the same day of collection to the analytical 
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laboratory, and processed within 24 h as previously described (36). WW settled solids 
were obtained from daily composite influent samples from UC Davis WWTP. Composite 
influent samples were collected using a refrigerated autosampler (Hach Sigma 900 MAX) 
located at the WWTP headworks and programmed to collect flow­weighted influent sample 
volumes every 20 min for a total volume of 19 L in 24 h. Composite influent samples were 
then transferred to one or two 4 L low-density polyethylene containers (LDPE Cubitainers, 
Thermo Scientific I-Chem) and stored at 4°C prior to settling (up to 6 d of storage). Each 
4 L sample was pasteurized in a 60°C water bath for 45 min immediately prior to settling. 
Pasteurized influent samples were inverted to mix, poured into a 3-gallon high-density 
polyethylene conical vessel equipped with a sampling port (FF3G, FastFerment), and left to 
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settle for 2 h. Settled solids were obtained from either 4 L or 8 L of influent from a single 
day (two 4 L samples were combined into one settling vessel when 8 L was used). Settled 
solids were collected by dispensing from the bottom of the settling vessel into one or two 
50 mL polypropylene centrifuge tubes (for 4 L or 8 L initial volume, respectively). If two 
tubes of settled solids were obtained, the supernatants were carefully decanted from each, 
and the remaining settled solids were combined. Between sampling episodes, the settling 
tanks were emptied, and the tank and sampling port valves were bleached (10% commercial 
bleach for 1 h), rinsed with deionized water, and left to air dry. Samples of settled solids were 
stored at 4°C and subsequently transported on ice in a cooler by a courier to the laboratory. 
Sample processing was completed within 8 d of initial sample collection. Sample RNA 
extraction, purification, and droplet digital reverse transcriptase PCR (ddRT-PCR) followed 
the same protocol as for the Davis samples. These protocols are described in detail elsewhere 
(37, 38).

We normalize the SARS-CoV-2 RNA concentration determined (N gene copies per 
gram dry weight solids) by the concentration of mild pepper mottle virus (PMMoV 
gene copies per gram dry weight solids) to yield the dimensionless metric, N/PMMoV. 
The N gene is present in all variants of the virus. PMMoV is a highly abundant RNA 
virus detected broadly in WW (39, 40). PMMoV serves as a process control such that 
normalization of N by PMMoV for each sample helps correct SARS-CoV-2 concentrations 
for virus extraction efficiency. PMMoV is also often used to account for variations in 
population size, rainfall, and water usage between different WW collection areas (41). We 
expect these latter factors to have less of an effect on N gene concentrations determined 
herein because water is removed from the WW settled solids samples prior to sample 
analysis and concentrations are reported in terms of the dry weight of the dewatered 
solids. Fig. 5 shows the normalized N gene concentration.

Given that WW signals are often noise corrupted, we applied a 7-d trimmed mean 
for daily WW data (smoothed N/PMMoV) to reduce uncertainty and minimize daily 
fluctuations. The smoothed data are later correlated to raw TPR (Fig. 6).

Table 2 illustrates Pearson’s correlation coefficient between the WW data (smoothed 
N gene and smoothed N/PMMoV) and clinical data (cases and TPR) in different waves. 
An improvement in correlation is observed when using TPR, compared with other cases. 
In general, an increase in correlation is also observed when using the normalized signal 
(N/PMMoV). Additionally, Table 2 highlights a notable change (from Omicron to BA.2–5 
wave) in the correlation between WW and case data, while the correlation between WW 
data and TPR showed a relatively small change. These observations suggest that one of 
the primary factors responsible for the shift in the WW-to-cases relationship could be the 
reduction in the number of tests conducted during the second wave (see Fig. 5).

Statistical model

We model TPR as a beta distribution using WW viral loads as a covariate, assuming a 
Bayesian approach. We assume Yi as the TPR at day i, defined as the ratio of the number 
of new positive cases among the number of tests performed at day i. Beta regression 
is a good choice of model for continuous data with response variables expressed as 
proportions.

The beta distribution is reparametrized as Yi ∼ ℬ(μi, ϕ), with mean μi and variance σi2 = μi(1 − μi)/(1 + ϕ), ϕ is known as the precision parameter since, for fixed μi, the 

larger the ϕ value, the smaller the variance of Y i; ϕ−1 as a dispersion parameter (42). 

The mean μi can be expressed as a function of the linear predictor ηi = βTxi, where β = (β0, β1,…, βp)T is a (p + 1)-dimensional vector of unknown regression coefficients 

(including the intercept), and xi = (1, x1,…, xp)T is the vector of covariates plus a one 
for the intercept. In this study, only the 7 d trimmed mean of the WW data (smoothed 
N/PMMoV), denoted as Ci, is included in the linear predictor (p = 1). Thus, the linear 
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predictor is given by ηi = β0 + β1Ci, and the logit link, the inverse of the logistic function, 

is used in the beta regression (i.e.,  logit(μi) = log μi
1 − μi = ηi).

The aim of this inference problem is to estimate θ = (β0, β1) from measurements of 
WW data, C = (C1, C2,…, Cn), and COVID-19 TPR, Y = (y1, y2,…, yn). Thus, the likelihood 
function for the previous model is given by:

L(θ|C, Y) = i = 1

n 1
B(ai, bi)yiai − 1(1 − yi)bi − 1,

where ai = μiϕ, bi = ϕ − ai, μi = 1/(1 + exp − ηi  is the mean (logistic function), ηi = β0 + β1Ci is the linear predictor, and ϕ is the dispersion parameter.

Bayesian statistical approach

We adopt a Bayesian statistical approach, which is well suited to model multiple sources 
of uncertainty and allows for incorporating background knowledge of the model’s 
parameters. In this framework, a prior distribution, πΘ(θ), is required to account for the 
unknown parameter θ in order to obtain the posterior distribution. Having specified the 
likelihood and the prior, we use Bayes’ rule to calculate the posterior distribution,

πΘ |C, Y(θ |C, Y) = πΘ(θ)L(θ |C, Y)Z(Y) ,
where Z(Y) = πΘ(θ)L(θ |C, Y)dθ is the normalization constant. The posterior 

distribution is simulated using an existing Markov chain Monte Carlo (MCMC) method, 
the t-walk algorithm (43).

Bayesian sequential method

We adapt the sequential approach proposed in reference 3 to our model to update 
forecasts over time. The aim is to train the model using only a subset of the most recent 
data. The forecast is then updated sequentially in a sliding window of data.

We let L be the length in days of the period used to train the model. The data window 
is then moved forward every n day as new data become available. We set t0 as the first 
initial time to start the analysis and the subsequent initial times as tk + 1 = tk + n. The 
training period is taken as [tk, tk + L] and the forecasting period as [tk + L, tk + L + F], 
see Fig. 7.

We denote θk = (β0(k), β1(k)) the model parameters to be inferred and the vectors of 
data asCk, n = (Ck,…, Ck + n), Yk, n = (yk,…, yk + n) at period k. Note that, from the 
beginning, θk is assumed to change in time within each forecast window. If k = 0, we 
postulate a prior distribution πΘk(θk) and a likelihood L(θk | xk, n, Yk, n) previously 

described. The probabilistic prediction of yt, in the forecasting period 

TABLE 2 Correlations between WW data (N gene or N/PMMoV) and daily TPR or COVID-19 positive cases 
(Cases) for Davis and UC Davis by wave

Test positivity rate Cases

All Delta Omicron BA.2–5 All Delta Omicron BA.2–5

Davis
N gene 0.68 0.32 0.70 0.65 0.36 0.42 0.67 0.55
N/PMMoV 0.71 0.35 0.76 0.70 0.39 0.44 0.73 0.55
UC Davis
N gene 0.76 0.22 0.74 0.71 0.64 0.01 0.65 0.51
N/PMMoV 0.77 0.35 0.79 0.71 0.62 0.03 0.70 0.47
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t ∈ [tk + L, tk + L + F], is obtained by using the estimated parameters through the 
MCMC method and the WW data concentration (Ck + L, F).

Afterward, the forecasting window is updated by setting tk + 1 = tk + n, with n as the 
number of days until the next forecast. In the new training window [tk + 1, tk + 1 + L], 
we propose a new prior distribution πΘk + 1(θk + 1) for the model parameters θk + 1 using 

samples from the posterior distribution obtained in the previous forecast. Finally, we set k = k + 1 and repeat the process described above to create a new forecast, see reference 
(3) for implementation details.

Regarding the elicitation of the parameters’ prior distribution for the first forecast, 

at k = 0, we assume a normal distribution for the parameters β0(k), β1(k), with mean and 
standard deviation (0, 0) and (1,000, 1,000), respectively (i.e., noninformative priors). We 
set L to twice the length from symptoms onset to mild disease clinical outcome, namely 
30 d, and F is chosen to be 10 d. The forecasting was updated every n = 10 d.

Action thresholds for WW concentration

We let Y  be the TPR, and C corresponds to the SARS-CoV-2 RNA concentrations 
measured in WW. Then, the cumulative distribution function of Y  given C is defined 
as FY | C(y | c) := P(Y ≤ y | C = c), which represents the probability that TPR is less than 
or equal to y, given that the SARS-CoV-2 RNA concentration in WW is c. Henceforth 
for simplicity, we will use F(y | c) instead of FY | C(y | c) without loss of generality. The 

quantile function F−1 of Y  given C = c is defined by

Fc−1(p) := inf {y ∈ ℝ: F(y |c) ≥ p}, p ∈ (0, 1) .
The p-quantile of a data set is defined as the value where a p fraction of the data is 

below that value and (1 − p) fraction of the data is above that value (e.g., the 0.5 quantile 
is the median).

Using the CDC thresholds for TPR values corresponding to low (Y ≤ 0.05), moderate 
(Y ∈ (0.05, 0.08)), substantial (Y ∈ (0.08, 0.1)), and high (Y ≥ 0.1) transmission levels of 
SARS-CoV-2 and the parameter estimates from the assumed beta regression model, 
we propose a methodology for estimating WW concentrations associated with TPR 
thresholds at a given point in time. We find the value of WW concentrations, c, such 
that with probability 1 − α, the TPR is less than the CDC threshold y ∈ {0.5, 0.8, 0.1} (i.e., 

to find c such that Fc−1(α) = y). Note that α is the precision we set to estimate the 

FIG 7 Schematic illustrating sequential modeling approach. The model is fitted with WW and TPR data from the training period (dark gray, denoted by L) 

starting at time tk. Then, the estimated parameters are used to predict the forecasting period (green, denoted by F). The training window is then moved n days 

forward. When new data become available, we update all forecasts; the latest posterior becomes the newest prior to the next training period.

Research Article mSystems

July/August  Volume 8  Issue 4 10.1128/msystems.00018-23 11

https://doi.org/10.1128/msystems.00018-23


threshold. With α = 0.05, we are being conservative and choose lower bounds of WW 
concentration values associated with TPR thresholds.

The proposed method for finding these thresholds, assuming that we have simula­
tions of the posterior distribution for the parameter θ = (β0, β1), is given in Algorithm 
1. First, we suggest a search grid for the WW viral load concentration. Then, for each 
concentration, we simulate the predicted posterior distribution of the TPR. Lastly, we 
calculate the α-quantile for each concentration level and find the concentration level 
that yields the quantile closest to the value of the desired TPR threshold.

ALGORITHM 1 FINDING THRESHOLD FOR WW USING TPR.

Input: A sample, θ1, θ2,…, θN, from the posterior distribution of Θ, where
     θi = (β0, i, β1, i),  i = 1,…, N . The precision parameter ϕ, the threshold for the
      TPR, Tpr, and the probability α;

Output: Threshold for WW concentration Tww;
Step 1. Generate a grid of WW concentration, c1, c2,…, cL;
for l in 1 to L do
  for i in 1 to N  do

   Step 2. Simulate Y l, i ∼ Beta(μl, i, ϕ), where μl, i = 1
1 + exp −ηl, i  and

     ηl, i = β0, i + β1, icl;
  Step 3. Compute the α-quantile of Yl = (Y l, 1,…, Y l, N), namely Ql;
Step 4. Find l* such that l* = argminx |Ql − Tpr|;
Step 5. Set Tww = cl*

Effective reproductive number

The number of people in a population who are susceptible to infection by an infected 
individual at any particular time is denoted by Re, the effective reproductive number. 
This dimensionless quantity is sensitive to time-dependent variation due to reductions 
in susceptible individuals, changes in population immunity, and other factors. Re can be 
estimated by the ratio of the number of new infections (It) generated at time t, to the 

total infectious individuals at time t, given by ∑s = 1
t It − sws, the sum of new infections up 

to time step t − 1, weighted by the infectivity function ws. We implement the method 
proposed in reference 44 to calculate the Re from the TPR estimated with the WW data.

Note that the TPR is an estimation of the proportion of infected persons. Therefore, if 
we multiply the TPR by a T value, representing the total number of tests carried out in the 
study period, we will have an estimate of the incidence, which we can use to compute 
the Re. Since Re is a scale-free metric, we should get similar results for different T values. 
We use T as the average of the tests carried out in Davis or UC Davis.
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