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Abstract 
 
The current experiment examined whether successful solution 
on one type of problem, indicating the relaxation of a 
constraint, had a negative impact on subsequent problems that 
did not involve the same constraints. One hundred and forty-
five participants solved a series of matchstick arithmetic 
problems. In one group, participants were given three 
relatively simple “chunk decomposition” problems (CD). A 
second group solved one “operator decomposition” (OD) 
problem, involving more constraints, between the baseline 
CD problem and two later problems. The third group solved 
three OD problems, similarly placed. Results indicated that 
successful solution of an OD problem produced negative 
transfer to subsequent CD problems in the form of longer 
solution times. Participants who did not successfully solve 
OD problems did not slow down on subsequent problems; 
they displayed evidence of positive transfer.  The findings 
were interpreted with reference to theories of constraint 
relaxation and its relationship to problem solving 
performance.   

Keywords: mental set; insight problem solving; negative 
transfer 

Procedures in Problem Solving 
Whenever new problems are encountered in everyday life, 
our general approach is to apply procedures or solutions that 
produced successful outcomes in the past. For example, in 
the event that you are moving a couch to a new apartment, it 
is possible that the couch will not fit through a particular 
doorway or up a particular flight of stairs. Solutions that 
worked in the past were to unscrew the feet on the couch, or 
to try the other stairway/doorway into the apartment. If we 
try one of these solutions and it works again, we will likely 
bring them to bear when similar situations arise in the 
future. 

Similarly, procedures or solutions that have worked in 
one context are often evoked and applied to another context. 
In the first author’s most recent move, her bookcase was too 
large to fit up the front staircase, but could be brought up the 
back staircase with little trouble. Because the try-the-other-
staircase procedure worked in a different situation, it may be 

that the procedure becomes generalized, thus making it 
more likely to be employed in a variety of situations. 

However, known procedures do not always apply to new 
situations, and, in fact, may lead to situations of impasse. To 
use one final example, again from the first author’s most 
recent move, her box spring would not fit up the front 
staircase. The back staircase was next attempted with no 
success. She and her movers tried rotating the box spring in 
multiple orientations on each staircase to no avail. Over an 
hour was spent attempting to apply a known procedure that 
was not leading to any progress. Eventually, a neighbor 
suggested using a chainsaw to split the box spring and fold 
it in half. The chainsaw procedure was used and the box 
spring entered the apartment. Thus, a successful procedure 
was applied, but only after lengthy misapplications of 
known, and previously useful, procedures.   

The preceding everyday example of misapplying 
previously successful procedures to the moving of furniture 
is analogous to the sequence that occurs when solving 
insight problems. An individual’s initial representation of an 
insight problem is often faulty because unhelpful prior 
knowledge and experiences are activated by the problem 
(Kershaw & Ohlsson, 2004; Knoblich, Ohlsson, Haider, & 
Rhenius, 1999; Ohlsson, 1992). The individual’s initial 
problem-solving attempts are guided by this unsuitable 
knowledge. These initial attempts are usually unsuccessful 
and the individual then enters a period of impasse, in which 
no overt problem-solving behavior occurs. In order to exit 
the impasse, the individual must relax constraints (Knoblich 
et al., 1999; Ohlsson, 1992) or overcome mental sets caused 
by incorrect application of procedures (Luchins, 1942). The 
likelihood of relaxing constraints or breaking mental set 
depends on the number and strength of the constraints or 
procedures. 

Constraint Relaxation and Breaking Mental 
Set 

The difficulty of a particular insight problem is dependent 
upon several factors. For many insight problems, including 
famous examples such as the nine-dot problem, the necklace 
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problem, and the four tree problem, multiple types of 
constraints interact to make the achievement of solution 
difficult (Kershaw & Ohlsson, 2004). For example, 
Kershaw and Ohlsson identified perceptual (figural integrity 
and other Gestalt laws), knowledge (prior experiences and 
knowledge), and process (size and variability of search 
space) constraints that prevent solution of the nine-dot 
problem. Likewise, Flynn, Gordon, and Kershaw (2010) 
identified perceptual and knowledge constraints in the four 
tree problem.  

Several researchers state that the difficulty of a particular 
problem can be found in the strength of constraints present 
in a particular problem. For example, Knoblich et al. (1999) 
identified three types of constraints in matchstick arithmetic 
problems: value, operator, and tautology. The value 
constraint, the weakest of the three, suggests that numerical 
values on one side of an equation cannot be changed 
without compensatory changes on the other. The operator 
constraint, which is described as having a moderate level of 
strength, signifies that arithmetic functions (operators) 
cannot be arbitrarily changed. The tautology constraint, 
which is the strongest of the three, signifies that arithmetic 
equations should follow a particular format in which a 
calculation is specified. That is, an arithmetic operation on 
one side of the equation should indicate a value on the other 
side of an equation, such as V + I = VI. While statements 
like II = II = II are valid, they are not common in arithmetic 
and therefore violate the tautology constraint. 

Knoblich et al. (1999) also classified the difficulty of 
matchstick arithmetic insight problems by the strength of 
the chunks that had to be decomposed in order to solve the 
problem. People tend to view Roman numerals as perceptual 
chunks, but the strength of these particular chunks depends 
on the numeral or other element of the equation. Tight 
chunks, such as V and I, are composed of single units. 
Loose chunks, such as VII and III, are composed of other 
chunks. For example, VII is composed of three tight chunks, 
V, I, and I. Knoblich et al. also suggest there are 
intermediate chunks, such as operators like the plus sign (+) 
and the equal sign (=). Although these symbols are 
composed of other chunks, people are unlikely to have 
experience decomposing a + into its horizontal and vertical 
components, for example. 

A different explanation of the difficulty of a particular 
problem is the success of the procedures applied to the 
problems that preceded it. In a classic demonstration of 
mental set, Luchins (1942) gave participants a series of 
water jug problems. The first five problems could all be 
solved successfully using a particular procedure, but the last 
five problems either could not be solved using the known 
procedure or could be solved using a simpler procedure. 
Luchins (1942) found that participants continued to apply 
the known procedure to the last five problems, and that over 
half of the participants were unable to solve problems for 
which the known procedure could not be applied. That is, 
participants experienced impasse on some problems and 
were unable to break impasse to reach solution.  

Thus, the difficulty of particular insight problems may be 
due to the number and strength of constraints or procedures 
present. Likewise, the likelihood of relaxing these 
constraints or procedures should also be affected by number 
and strength. Knoblich et al.’s (1999) theory presupposes 
that relaxing one weak constraint will be much easier than 
relaxing multiple strong constraints. Researchers have 
implemented experimental interventions to increase the 
likelihood of constraint and procedure relaxation. For 
example, Kershaw and Ohlsson (2004) and Flynn et al. 
(2010) developed training procedures that targeted 
particular constraints, such as practicing non-dot turns for 
the nine-dot problem (Kershaw & Ohlsson) or comparing 
solved analogs of the four tree problem (Flynn et al.). 
Luchins and Luchins (1950) tried to prevent mental set by 
limiting the amount of liquid available, adding a fourth jar 
to the problems, and giving participants physical objects 
(actual jars and water) instead of using paper-and-pencil 
forms of the problems. Of these three manipulations, only 
adding a fourth jar was successful, because participants 
needed to figure out the amount that each jar could hold for 
each problem. Luchins and Luchins’ other two 
manipulations did not work because participants were poor 
at keeping track of how much liquid they had used or they 
persisted in doing paper-and-pencil calculations prior to 
using the physical materials.  

The Current Experiment 
In the current experiment, we examine the connection 
between the strength of constraints and the effect of mental 
set by using matchstick arithmetic insight problems of two 
types. One type of problem we used required the 
decomposition of loose chunks. For example, to solve VI = 
VII + I, a participant needs to move a single matchstick (I) 
from VII to VI, thus making the solution of the problem VII 
= VI + I. Knoblich et al. (1999) states that these types of 
problems require the relaxation of the value constraint and 
the decomposition of loose chunks. For simplicity sake, we 
refer to these problems as chunk decomposition (CD) 
problems.  

The second type of problem we used required the 
decomposition of the operator in the problem, in this case 
the plus sign (+). For example, to solve VII = VII + I, a 
participant needs to move the vertical matchstick from the + 
to the second VII, thus making the solution of the problem 
VII = VIII – I. Knoblich et al. (1999) note that these type of 
problems require the relaxation of the value and operator 
constraints as well as the decomposition of loose and 
intermediate chunks. We refer to these problems as operator 
decomposition (OD) problems. Although Knoblich et al. 
make a conceptual distinction between constraint relaxation 
and chunk decomposition mechanisms, we group both into 
the general category of constraints in the current work. 
Thus, CD problems contain two constraints and OD 
problems contain four. Because OD problems contain a 
greater number of constraints, as well as stronger 
constraints, they should be harder to solve than CD 
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problems as well as require longer solution times, 
predictions that are supported by Knoblich et al.’s findings. 

In this experiment, all participants solve three CD 
problems. Participants differed in the number of OD 
problems that they received. A baseline group of 
participants did not receive any OD problems, a second 
group received one OD problem, and a third group received 
three OD problems. The groups that received the OD 
problem(s) solved one CD problem, the OD problem(s), 
followed by two additional CD problems, which functioned 
as transfer problems.  

Our first research goal was to examine how the 
sequencing of constraint relaxation types affected solution 
time. In the group that did not receive any OD problems, we 
expected a general decrease in solution time across the CD 
problems because, as stated by Knoblich et al. (1999), once 
constraints are relaxed they will remain relaxed. In the 
groups that receive the OD problem(s), we explored the 
possibility that solving the OD problem(s) would make it 
more difficult to solve the subsequent CD problems. 
Knoblich et al. (1999, cf. Ohlsson, 1992) posit that 
constraint relaxation occurs through the natural spreading of 
activation after persistent failure is experienced via impasse. 
Because activation to memory nodes decays, it is possible 
that the CD solution space might become reconstrained after 
participants spend some time exploring the OD solution 
space. Therefore, successful solution of OD problems may 
make solving subsequent CD problems difficult because the 
constraint would need to be re-relaxed, thus leading to 
longer solution times for the CD problems received after the 
OD problem(s) relative to the CD problem received prior to 
the OD problem(s).  

Our second research goal involved the amount of time 
that participants spent using the procedure needed to solve 
the OD problems. Thus, we manipulated the mental set that 
participants experienced due to the OD problems. Some 
participants only received one OD problem, while others 
received three. We expected that participants who received 
three OD problems would show longer solution times on 
subsequent CD problems than the participants who only 
received one OD problem relative to the CD problem solved 
prior to the OD problem(s). We will refer to these post-OD 
problems as return-to-chunk-decomposition problems and 
therefore they will be labeled RCD1 and RCD2. 

Öllinger, Jones, and Knoblich (2008) explored similar 
questions using matchstick arithmetic problems. In 
Experiment 2 they found that solving a series of CD 
problems did not affect the solution rate for one OD 
problem (type CR1 in their experiment), although they did 
affect the solution rate for other constraint relaxation 
problem types. In Experiment 3 they found that solving a 
series of constraint relaxation problems negatively impacted 
CD problems, but the constraint relaxation problems were of 
a different type than the OD problems used in the current 
experiment. Thus, while Öllinger et al. (2008) explored 
similar questions to the current experiment, the current work 
builds on these findings in terms of providing solvers with 

different problem types and in varying the number of OD 
problems between participants.  

Overall, we made the following predictions for the 
experiment: 
1) Participants who receive OD problems will have slower 
solution times than participants who do not receive OD 
problems on RCD1 compared to the baseline CD problem 
(B). 
2) Participants who receive three OD problems will have 
slower solution times than participants who receive one OD 
problem on RCD1 compared to B. 
3) Participants who do not receive OD problems will show 
faster solution times from B to RCD1 and from RCD1 to 
RCD2. Participants who receive OD problems will not show 
this pattern. 
 

Method 

Participants 
Participants were 145 introductory psychology students who 
received research credit for their participation. Sixty of the 
participants were from the University of Illinois at Chicago 
and 85 of the participants were from the University of 
Massachusetts Dartmouth. No demographic data were 
collected about the participants. 

Materials 
A series of matchstick arithmetic insight problems were 
developed for the study. The problems were of two types, 
chunk decomposition (CD) and operator decomposition 
(OD). Following the terminology of Knoblich et al. (1999), 
the CD problems required the decomposition of loose 
chunks, which are composite Roman numerals (such as IV, 
VII, etc.). In each problem, one matchstick is moved from 
one numeral to another. For example, the problem V = VI + 
I is solved by moving one matchstick from VI to V, thus 
making the answer VI = V + I (an acceptable alternate 
solution is V = IV + I). The CD problems and their solutions 
are in Table 1. 
 

Table 1: CD problems and solutions. 
 
 

 
 
 
 

 
The OD problems were akin to Knoblich et al.’s (1999) 
constraint relaxation (Type B) problems, and specifically 
required the relaxation of the operator constraint by 
decomposing the plus sign (+) into two matches and moving 
the vertical match elsewhere in the location, thus turning the 
operator into a minus sign (-).For example, the problem II = 
VIII + V is solved by moving the vertical matchstick from 
the + to the II, thus making the answer III = VIII – V (an 

Problem Solution(s) 
XI = XII + I XII = XI + I 
V = VI + I VI = V + I, V = IV + I 
VI = VII + I VII = VI + I 
VII = VIII + I VIII = VI + I 
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acceptable alternate solution is II = VIII – VI). The OD 
problems and their solutions are in Table 2.  

 
Table 2: OD problems and solutions. 

 
Problem Solution(s) 

VII = VII + I VII = VIII - I 
II = VIII + V III = VIII – V, II = VIII – VI  
V = VII + I VI = VII – I, V = VII – II  
I = V + III II = V – III, I = IV – III  

Procedure 
Participants were run individually. After completing the 
consent process, participants were given a packet containing 
the experimental materials. Rules for solving matchstick 
arithmetic problems were provided on each problem page in 
the packet. The rules were: 
A) Only one matchstick is to be moved. 
B) A matchstick cannot be discarded; that is, it can only be 
moved from one position in the equation to another. 
C) A slanted stick cannot be interpreted as a vertical 
matchstick. 
D) The result must be a correct arithmetic equation.  
In addition to these rules, participants were given a list of 
Roman numerals and their Arabic numeral equivalents (e.g., 
X = 10). 

The first problem for all participants was XI = XII + I, 
which served as a practice problem. Participants were given 
five minutes to work on the problem and were instructed to 
alert the experimenter when they came up with a solution. If 
the participant correctly solved the problem, the 
experimenter summarized the participant’s actions and 
stated that the solution was correct. The experimenter 
emphasized that one matchstick had been moved to create a 
correct equation. If the participant came up with an incorrect 
solution, the experimenter referred back to the rules to 
explain why the solution was incorrect. For example, the 
participant might be reminded that only one matchstick 
could be moved. If the participant did not solve the practice 
problem correctly within the time limit, the experimenter 
first checked to see if he/she had any questions and then 
gave him/her two more minutes to work on the problem. If, 
after this additional time, no solution was offered, then the 
experimenter explained how to move one matchstick to 
achieve the correct solution, XII = XI + I.  

The second problem in the packet was the baseline chunk 
decomposition problem (B), V = VI + I. Participants had 
four minutes to work on this problem (and all subsequent 
problems). Participants wrote down their start time, worked 
on the problem, and wrote down the end time if they came 
up with a solution. The accuracy of the solution was 
checked by the experimenter. If the solution was incorrect, 
the experimenter used the rules to point out the inaccuracies 
of the solution. 

The penultimate and final problems in the packet were 
also CD problems. As stated previously, the penultimate 
problem, VI = VII + I, will be referred to as the first return-

to-chunk-decomposition problem (RCD1), and the last 
problem, VII = VIII + I, will be referred to as the second 
return-to-chunk-decomposition problem (RCD2). 
Participants received the same instructions and same amount 
of time to solve the B, RCD1, and RCD2 problems. 

The problems in between B and the RCD1, RCD2 
sequence differed by condition. One group of participants 
did not receive any OD problems. A second group of 
participants received one OD problem between B and the 
RCDs. A third group of participants received three OD 
problems between B and RCDs. On all OD problems, 
participants followed the same procedure as used for the CD 
problems by writing down their start and end times and 
checking their solutions with the experimenter.  

After completing RCD2, participants filled out a problem 
familiarity survey, which asked participants if they had seen 
and solved any of the matchstick arithmetic problems prior 
to the experimental session. No participants had any 
familiarity with the matchstick arithmetic insight problems. 
At the end of the session, participants were debriefed and 
thanked for their participation. 

Analysis 
Participants were originally grouped by the number of OD 
problems they received. There were 46 participants who 
received no OD problems, 50 who received one OD 
problem, and 49 who received three OD problems. 
However, initial examination of the data revealed that not 
all participants in the OD conditions solved the OD 
problems. Therefore, participants were regrouped by the 
number of OD problems they solved. If participants did not 
solve the OD problems, we could not expect that they also 
relaxed this constraints associated with these problems. 
Thus, in the final analyses, there were 64 participants who 
solved no OD problems, 35 participants who solved one OD 
problem, and 46 participants who solved three OD 
problems.1 

Time to solve the B, RCD1, and RCD2 problems was 
calculated by subtracting the end time from the start time for 
each problem. If a participant did not solve one of these 
problems, then his/her time data were not included. The 
number of non-solvers was low for each problem: one 
participant did not solve B, five participants did not solve 
RCD1, and three participants did not solve RCD2. The 
time-to-solve data were then screened for outliers, which 
were defined as time to solve values that were greater than 
three standard deviations above the mean. Rather than 
deleting data list-wise, data points were removed case-wise. 
Three time-to-solve values were removed from the B and 
RCD1 values, and four time-to-solve values were removed 
from the RCD2 values.  

Three variables were computed for the planned 
comparisons between the solution times. First, a value was 
   _____________________________________________ 

1 Removing participants who did not conform to their groups  
rather than regrouping participants led to the same pattern of  
results. 

. 

1508



calculated for RCD1 – B, that is, the difference between the 
time needed to solve the baseline and first return to chunk 
decomposition problems. Next, a value was calculated for 
RCD1 – RCD2, that is, the difference between the time 
needed to solve the first and second return to chunk 
decomposition problems. Third, a value was calculated for 
B – RCD2, that is, the difference between the time needed 
to solve the baseline and second return to chunk 
decomposition problems. 

Results 
A one-way analysis of variance (ANOVA) compared 

participants on the difference between the time needed to 
solve the baseline chunk decomposition problem (B) and the 
time needed to solve the first return-to-chunk-
decomposition problem (RCD1). The ANOVA was 
significant, F (2, 135) = 4.44, p < .05, η2 = .06. Tukey post-
hoc tests indicated that participants who solved three OD 
problems showed a significant increase in solution time 
from the B to the RCD1 problems (M = 19.26 seconds, SD = 
43.44) compared to participants who did not solve any OD 
problems (M = -4.18 seconds, SD = 40.99), p < .05. 
Participants who did not solve any OD problems showed a 
decrease in time-to-solve between B and RCD1. There was 
also a marginal difference between participants who did not 
solve any OD problems and those who solved one OD 
problem (M = 15.41 seconds, SD = 45.74), p = .09. 
Importantly, there was no difference between participants 
who solved one OD problem and those who solved three.  

A second analysis compared participants on the difference 
between the time needed to solve RCD1 and RCD2 (RCD1 
– RCD2). A one-way ANOVA did not show any inter-group 
differences, F (2, 129) = .86, p > .05, η2 = .01. 

A third analysis compared participants on the difference 
between the time needed to solve B and RCD2 (B – RCD2). 
A one-way ANOVA showed an overall difference between 
the conditions, F (2, 131) = 4.64, p < .05, η2 = .07. Tukey 
post-hoc tests indicated that participants who did not solve 
any OD problems needed significantly less time to solve 
RCD2 than to solve B (M = 15.14 seconds, SD = 23.08) 
compared to participants who solved three OD problems (M 
= 2.35 seconds, SD = 22.25), p < .05. There was also a 
marginal difference between participants who did not solve 
any OD problems and those who solved one OD problem 
(M = 3.69 seconds, SD = 24.30), p = .07. There was no 
difference between participants who solved one OD 
problem and those who solved three. 

Discussion 
The current work produced four main important findings. 

First, in the absence of successful OD performance, 
participants got progressively faster when solving CD 
problems. This finding suggests that relaxation of the value 
constraint made it easier to solve subsequent value 
constraint problems. In this sense, we found some evidence 
of positive transfer on problems that presumably required 
relaxation of the same constraint. This finding supported our 

third prediction, that participants who did not receive OD 
problems would show faster solution times from B to 
RCD1, while participants who received OD problems would 
not show this pattern. This finding also supports Knoblich et 
al.’s (1999) theory – once a constraint is relaxed, it will 
remain relaxed and affect subsequent performance on 
similar problems. 

Second, the current results provide greater confidence that 
constraint relaxation can also negatively impact subsequent 
problem solving performance, particularly in the event that a 
different, more complex constraint was relaxed. Generally, 
successful solution of OD problems resulted in longer 
subsequent solution of CD problems compared to those who 
did not solve or were not presented with OD problems. 
Thus, the longer solution times indicate that there was at 
least some negative transfer associated with the relaxation 
of the operator constraint. Solution of an OD problem 
appeared to make it more difficult to solve the simple CD 
problems; this difficulty was absent for those who did not 
solve OD problems. This finding supports our first 
prediction, that participants who received OD problems 
would have slower solution times than participants who did 
not receive OD problems on RCD1 compared to B. 
Additionally, this finding replicates and extends the findings 
of Öllinger et al. (2008), who also found successful solution 
of constraint relaxation problems (of a different type) 
affected later problem solving performance.  

Third, as stated previously, we varied the number of OD 
problems that were presented to participants and were 
solved in between the CD problems. Participants who 
solved one and three OD problems displayed similar 
indications of negative transfer on subsequent RCDs, as 
evidenced by longer solution times. This finding did not 
support our second prediction, in which we predicted 
relatively slower solution times for participants who 
received three OD problems than participants who received 
one OD problem. Our finding suggests that, indeed, after 
one successful solution of an OD problem, the operator 
constraint was relaxed. Moreover, there did not seem to be 
an additional slowing associated with solving multiple OD 
trials.  

The final important point is that the negative transfer 
effects associated with the relaxation of the operator 
constraint were relatively lasting. That is to say that 
successful solution not only affected the immediate CD 
problem, but also the problem that followed.  Although the 
current data does not provide an indication of how long-
lasting this kind of negative transfer would be, there did 
seem to be a “downstreaming” effect into subsequent 
problem solving performance, beyond the problem situation 
that immediately followed the constraint relaxation. 

Overall, the findings of this experiment point to the 
manner in which previously appropriate procedures can be 
persistently misapplied to a new situation. As demonstrated 
by Luchins (1942; Luchins & Luchins, 1950), mental set 
can hinder future problem solving. Mental set and other 
interference effects fit within the larger concept of negative 
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transfer, in which prior knowledge and experiences hinder 
learning in new situations that are similar to known 
situations. The type of negative transfer effects shown in 
this experiment are similar to those proposed by Singley and 
Anderson (1989): participants show behavioral slowing due 
to the misapplication of a procedure. However, the 
misapplication is an incorrect method, not a non-optimal 
method, and this misapplication of procedure lasts for more 
than one trial, thus lending some support to Woltz, Gardner, 
and Bell’s (2000) theory of negative transfer.  

Further work is needed to address the direction and 
duration of negative transfer effects. It is possible that 
completing a series of CD problems could lead to negative 
transfer on the OD problems. Likewise, it would be 
interesting to determine if increases in solution time on the 
RCD problems lasts more than two iterations. The negative 
transfer literature is divided on whether negative transfer 
effects are fleeting (e.g., Singley & Anderson, 1989) or 
lingering (e.g., Woltz et al., 2000). Additional studies 
extending the number of to-be-solved CD problems may 
inform on this issue.  

Another future direction for this research would be to 
examine the processes that underlie the interaction between 
constraint relaxation mechanisms. Our findings, as well as 
the findings of Öllinger et al. (2008), show that relaxing 
some constraints hinders the relaxing of other constraints. 
One explanation for these findings is that successful 
solution of OD problems may make solving subsequent CD 
problems difficult because the constraint would need to be 
re-relaxed. Thus, there would be longer solution times for 
the CD problems received after the OD problems relative to 
the CD problem received prior to the OD problems. 
Alternatively, relaxing a stronger constraint, such as the 
operator constraint present in the OD problems, may cancel 
out a weaker constraint, such as the value constraint present 
in the CD problems. Although this a different explanation 
the same effect would be expected, in which solution times 
are longer for the CD problems received after the OD 
problem(s) than for the CD problem received prior to the 
OD problem(s). A third possibility is that the relaxing of 
multiple constraints opens up the problem space too much, 
thus leading to a difficulty in finding a correct solution path 
(c.f. Ohlsson, 1996; Ormerod, MacGregor, & Chronicle, 
2002). This third explanation would also lead to the same 
pattern of results. Future research should address the 
mechanisms that underlie constraint relaxation interactions 
and, if possible, attempt to tease apart which of these three 
possibilities best explains negative transfer in problem 
solving performance.   
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