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Abstract
Purpose Attenuation correction is a critically important step in data correction in positron emission tomography (PET) 
image formation. The current standard method involves conversion of Hounsfield units from a computed tomography (CT) 
image to construct attenuation maps (µ-maps) at 511 keV. In this work, the increased sensitivity of long axial field-of-view 
(LAFOV) PET scanners was exploited to develop and evaluate a deep learning (DL) and joint reconstruction-based method 
to generate µ-maps utilizing background radiation from lutetium-based (LSO) scintillators.
Methods Data from 18 subjects were used to train convolutional neural networks to enhance initial µ-maps generated using 
joint activity and attenuation reconstruction algorithm (MLACF) with transmission data from LSO background radiation 
acquired before and after the administration of 18F-fluorodeoxyglucose (18F-FDG) (µ-mapMLACF-PRE and µ-mapMLACF-POST 
respectively). The deep learning-enhanced µ-maps (µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST) were compared against 
MLACF-derived and CT-based maps (µ-mapCT). The performance of the method was also evaluated by assessing PET 
images reconstructed using each µ-map and computing volume-of-interest based standard uptake value measurements and 
percentage relative mean error (rME) and relative mean absolute  error (rMAE) relative to CT-based method.
Results No statistically significant difference was observed in rME values for µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST 
both in fat-based and water-based soft tissue as well as bones, suggesting that presence of the radiopharmaceutical activity 
in the body had negligible effects on the resulting µ-maps. The rMAE values µ-mapDL-MLACF-POST were reduced by a factor 
of 3.3 in average compared to the rMAE of µ-mapMLACF-POST. Similarly, the average rMAE values of PET images recon-
structed using µ-mapDL-MLACF-POST  (PETDL-MLACF-POST) were 2.6 times smaller than the average rMAE values of PET images 
reconstructed using µ-mapMLACF-POST. The mean absolute errors in SUV values of  PETDL-MLACF-POST compared to  PETCT 
were less than 5% in healthy organs, less than 7% in brain grey matter and 4.3% for all tumours combined.
Conclusion We describe a deep learning-based method to accurately generate µ-maps from PET emission data and LSO 
background radiation, enabling CT-free attenuation and scatter correction in LAFOV PET scanners.

Keywords LAFOV PET · CT-less PET · Deep learning · Attenuation correction · Simultaneous reconstruction

Introduction

Attenuation correction of PET emission data is one of the 
essential corrections in PET image formation for accurate 
quantification. In the early generation of PET scanners, 
attenuation of 511 keV annihilation photons was measured 
from a separate transmission scan using an external radionu-
clide-based source (i.e. germanium-68) [1] and an attenua-
tion map (µ-map) was generated. Although this method was 
able to directly measure the attenuation factors at the same 
energy with the annihilated photons, it suffered from noisy 
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data and long acquisition times [2]. With the introduction 
of combined PET/CT systems [3], linear attenuation coef-
ficients (LACs) at 511 keV are estimated from CT images 
(µ-mapCT) using a bilinear relationship with Hounsfield unit 
values [4, 5].

Recently introduced long axial field-of-view (LAFOV) 
PET/CT systems have enabled total-body PET imaging 
using a single bed position [6, 7]. In addition to large ana-
tomical coverage that includes major body organs without 
the need for any bed movement, these systems markedly 
increase system sensitivity and noise equivalent count rates 
compared to standard axial FOV (SAFOV) PET scanners 
[8–11]. Furthermore, LAFOV was shown to provide PET 
images with superior image quality compared to SAFOV 
systems. These technological advancements can be utilized 
in a clinical setting by reducing the activity of the injected 
radiotracer without compromising the image quality and 
quantification accuracy [12, 13] and reducing the PET exam-
ination time [14–16]. However, the benefits of low-dose PET 
examinations using LAFOV PET systems can be hindered 
by the dose associated with the CT scans performed for 
attenuation correction. While the CT provides important 
additional diagnostic information and accurate anatomical 
localization of PET findings, there are potentially numerous 
situations in which the requirement for CT can be waived: 
for example, where an anatomical CT scan is available from 
previous examinations performed during the work-up of the 
patient. Furthermore, CT-less protocols could be desirable 
in low dose PET/CT examinations for screening or in pae-
diatric scans to minimize the ionization radiation-induced 
risks in the health of young patients or in research protocols.

The development of lutetium-based scintillators, such 
as lutetium oxyorthosilicate (LSO) scintillators [17], and 
introduction of silicon-based photomultipliers (SiPM) [18] 
resulted in substantial improvements in coincidence timing 
resolution with values close to 200 ps [10, 19], increasing 
the accuracy and robustness of PET image reconstruction 
process with time-of-flight (TOF) PET reconstruction algo-
rithms [20, 21]. These advances also pushed the potential 
of methodologies which seek to jointly estimate the activ-
ity and attenuation from TOF-PET data [22–24] such as 
maximum likelihood estimation of attenuation and activity 
(MLAA) or maximum likelihood estimation of activity and 
attenuation correction coefficients (MLACF). Previous work 
has shown that incorporation of prior information, such as 
anatomical information derived from magnetic resonance 
imaging (MRI) data or other sources, can be used to improve 
the robustness of joint reconstruction methods, scatter cor-
rection in particular, by providing initial conditions [25–27]. 
Hwang et al. have shown that MLAA derived µ-maps from 
a PET/MRI scanner can be used as an input data to a deep 
learning-based method to synthesize more accurate attenu-
ation maps [28].

The radioisotope lutetium-176 (176Lu) found in LSO scin-
tillators of PET detectors decays with a half-life of 38 billion 
years, emitting gamma rays with 307, 202, and 88 keV dur-
ing the process [29]. We have previously demonstrated that 
this LSO background radiation can be detected using a high 
sensitivity LAFOV PET scanner and developed a method to 
generate µ-maps using MLACF algorithm with LSO trans-
mission (LSO-TX) data (µ-mapMLACF) [30]. In this paper, 
we extend the previous method by incorporating a deep 
learning-based model to synthesize enhanced whole-body 
µ-maps (µ-mapDL-MLACF) based on µ-mapMLACF images. 
We perform a quantitative comparison of µ-maps gener-
ated using the proposed deep learning-enhanced MLACF 
method against µ-maps generated using the MLACF and CT-
based methods. Secondly, we evaluate the performance of 
the proposed method using pre- and post-injection LSO-TX 
measurements. Finally, we compare the PET images recon-
structed using µ-maps based on MLACF-, DL-MLACF-, 
and CT-based methods and assess their quantitative perfor-
mance on healthy and malignant tissues.

Materials and methods

Patient population

Within this study, 18 oncological patients (age: 60.6 ± 14.7, 
12 males/6 females, weight: 76.7 ± 18.5  kg [range: 
53–130  kg], body mass index (BMI): 24.9 ± 5.6  kg/m2 
[range: 17.3–42.0 kg/m2]) underwent PET scans as part 
of standard care PET/CT examinations at the University 
Clinic for Nuclear Medicine, Inselspital, Bern. The patient 
demographics together with their diagnoses are included 
in Table 1. All patients provided written informed consent 
and the local Institutional Review Board approved the study 
(KEK 2019–02,193).

Imaging protocol

The data used within this work were acquired using a 
dynamic PET protocol where the tracer administration 
was performed in the scanner. The protocol is illustrated in 
Fig. 1. Before the administration of 18F-fluorodeoxyglucose 
(18F-FDG) activity, a 5-min long LSO-TX acquisition was 
performed using a special acquisition protocol with open 
energy (160–725 keV) and coincidence timing windows 
(6.64 ns). Following, the 18F-FDG was injected from the 
left or right arm (average activity: 234.6 ± 54.9 MBq, target 
dose: 3 MBq/kg) and list-mode PET data were acquired for 
65 min using Biograph Vision Quadra (Siemens Health-
ineers, Hoffman Estates, IL, USA) LAFOV PET/CT system. 
In this work, we only used the PET emission data from 55 to 
65 min post injection. After the PET acquisition, a second 
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set of LSO-TX list-mode data was acquired for 5 min (65 to 
70 min post injection). At the end of the study, low-dose CT 
(pitch factor: 1, maximum voltage: 120 kV, maximum tube 
current 90 mAs, CareDose4D, CarekV) data were acquired 
as part of the clinical examination. The CT images were 
reconstructed with a voxel size of 1.52 × 1.52 × 1.65  mm3.

Attenuation maps

Figure 2 depicts the different methods used to generate atten-
uation maps in this work. CT-based µ-maps were generated 
by converting the Hounsfield units (HU) of the reconstructed 
CT images to attenuation correction factors using a bi-lin-
ear transformation [5]. These µ-maps were resampled to 
440 × 440 × 645 matrix with a voxel size of 1.65 × 1.65 × 1.65 
 mm3, as used in standard PET reconstructions.

MLACF‑derived µ‑maps

The list-mode data acquired with wide-open energy and 
coincidence-timing windows were post processed and two 
LSO-TX sinograms, corresponding to LSO-TX at 307 keV 

and 202 keV, were generated by extracting events using 
energy windows of 275 to 355 keV and 165 to 247 keV 
respectively. Two initial µ-maps were reconstructed from 
these sinograms using maximum likelihood for transmis-
sion tomography method [31] with 8 iterations and 3 sub-
sets. These µ-maps were mapped to 511 keV, and then 
averaged and smoothed using a Gaussian filter with a full 
width half maximum (FWHM) of 4 mm. The resulting 
LSO-TX derived µ-map and the TOF emission sinogram 
were used as inputs to MLACF algorithm to jointly recon-
struct a PET image and an MLACF-derived attenuation 
map using 20 global iterations [30]. Two sets of MLACF-
derived attenuation maps were generated by using the 
LSO-TX data acquired pre- and post- 18F-FDG injection, 
referred as µ-mapMLACF-PRE and µ-mapMLACF-POST in the 
rest of the paper respectively. To minimize the effects of 
motion artefacts, MLACF-derived µ-maps were co-regis-
tered to CT-derived µ-maps by applying a combination of 
rigid and non-rigid registration using NiftyReg package 
[32]. The bending energy weight was set to 0.1% to con-
strain the degrees of freedom of the non-rigid deformation 
[33].

Table 1  Overview of patient 
demographics (Ca, cancers)

Patient no Age (y) Sex (M/F) BMI (kg/m2) Weight (kg) Injected dose (MBq) Diagnosis

1 44 F 20 55 182 Breast Ca
2 70 F 21 53 167 Lung Ca
3 62 M 24.2 70 213 Lymphoma
4 85 M 24.6 78 249 Lymphoma
5 80 F 32.5 94 275 Fallopian tube Ca
6 77 M 26.1 81 261 Lymphoma
7 29 M 42 130 398 Lymphoma
8 64 M 22.6 80 247 Gastric Ca
9 53 M 22.2 68 208 Lung Ca
10 48 F 18.4 52 171 Breast Ca
11 59 M 26.2 85 276 Lymphoma
12 40 F 17.3 63 191 Cervical Ca
13 54 M 24.9 79 247 Lymphoma
14 66 M 28.4 94 279 Lung Ca
15 51 M 24.2 80 240 Lymphoma
16 68 M 25.5 79 227 Lymphoma
17 73 F 22.5 59 197 Breast Ca
18 68 M 25.5 80 227 Melanoma
Mean ± SD 60.6 ± 14.7 24.9 ± 5.6 60.6 ± 14.7 236.4 ± 53.8

Fig. 1  PET protocol used in this 
study. LSO transmission data 
were acquired for 5 min just 
prior to administration of 18F-
FDG and 65 min post injection

4492 European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:4490–4502

1 3



Deep learning based µ‑maps

Convolutional neural networks (CNNs) were trained to 
enhance the MLACF-derived µ-maps using the paired 
µ-mapCT as target images. To achieve this, we used a three 
dimensional UNET architecture [34, 35] with five down-
sampling and five up-sampling layers, and parametric rec-
tified linear unit (PReLU) used as the activation function. 
Multiple patches with a matrix size of 64 × 64 × 64 were used 
in the training. The input images were normalized to zero 
mean and unity variance. We performed data augmentation 
by randomly applying ± 20% image scaling and ± 10% image 
rotation. We trained and tested the networks using fivefold 
cross-validation, where for each fold, the data were split to 
14 training (78% of the data) and 4 testing sets (22% of the 
data). Separate models were trained using µ-mapMLACF-PRE 
and µ-mapMLACF-POST images as input images and same 
cross-validation folds were used across these models. The 
predicted attenuation maps from models trained using 
µ-mapMLACF-PRE and µ-mapMLACF-POST images are referred 
as µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST respectively.

PET image reconstruction

The PET emission data from 55 to 65 min post injection 
were reconstructed using µ-mapMLACF-PRE, µ-mapMLACF-POST, 
µ-mapDL-MLACF-PRE, µ-mapDL-MLACF-POST and µ-mapCT 
for each subject. The PET images reconstructed using the 
different µ-map methods are referred as  PETMLACF-PRE, 
 PETMLACF-POST,  PETDL-MLACF-PRE,  PETDL-MLACF-POST, and 
 PETCT. The PET images were reconstructed with PSF + TOF 
algorithm using 4 iterations and 5 subsets using a dedi-
cated image reconstruction software prototype (e7-tools, 
Siemens Healthineers). The emission data were corrected 

for decay, randoms, and scatter. The image matrix was set 
to 440 × 440 × 645 with a voxel size of 1.65 × 1.65 × 1.65 
 mm3. A Gaussian post-reconstruction filter was applied with 
a FWHM of 2 mm.

Data analysis

The generated attenuation maps and PET images were evalu-
ated using regional analyses. The percentage relative mean 
error (rME) and relative mean absolute error (rMAE) values 
were calculated using Eqs. 1 and 2:

where  Ix represents µ-maps generated using MLACF- or 
deep learning-based methods or PET images reconstructed 
using these µ-maps. Similarly,  Iref represents µ-mapCT or 
 PETCT.

The µ-mapCT images were segmented into 3 VOIs: water-
based soft tissue, fat-based soft tissue and bones using a 
thresholding algorithm. Bones were segmented by only 
including voxels with a LAC greater than 0.105  cm−1 fol-
lowed by a flood-fill operation to include the bone marrow in 
the segmentations. Fat- and water-based soft tissue segmen-
tations were obtained by thresholding voxels with LAC val-
ues outside 0.080–0.090  cm−1 range and 0.090–0.105  cm−1 
range respectively. Furthermore, three dimensional seg-
mentations of liver, lungs, kidneys, spleen, grey and white 
matter of the brain were obtained using a semi-automatic 

(1)rME(%) = 100

Ix − Iref

Iref

(2)rMAE(%) = 100

|
|
|
Ix − Iref

|
|
|

Iref

Fig. 2  Brief overview of methodology used to generate MLACF- and deep learning-enhanced MLACF-based attenuation maps
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method [36, 37]. Hypermetabolic tumour lesions (n = 24) 
were delineated by a qualified nuclear medicine physician 
using an isocontour tool (PMOD 4.1, threshold set to 50% 
of max value).

Statistical tests

Nonparametric two-sided Wilcoxon signed-rank tests were 
used to assess differences between different µ-maps and 
reconstructed PET images. Statistically significance was 
considered for P-values lower than 0.05. Spearman’s rank 
correlation was used to assess any potential relationship 
between the accuracy of the method and patient BMI and 
Spearman’s rank coefficient  (rs) and P-values are reported.

Results

Attenuation maps generated using CT- (µ-mapCT), 
MLACF- (µ-mapMLACF-PRE and µ-mapMLACF-POST) and 
deep learning-enhanced MLACF (µ-mapDL-MLACF-PRE and 
µ-mapDL-MLACF-POST) methods and corresponding rME 
maps for a representative subject are shown in Fig.  3. 
There were no visual differences between µ-mapMLACF-PRE 
and µ-mapMLACF-POST, and between µ-mapDL-MLACF-PRE 
and µ-mapDL-MLACF-POST. The µ-maps generated using 
the MLACF-based method had some artefacts, where the 
attenuation correction factors in the skull, skin, and blad-
der of the patient were overestimated. These artefacts were 
significantly improved in the µ-maps generated using the 
deep learning-based method. In overall, the deep learning-
enhanced MLACF method produced µ-maps with less noise 
and a good visual resemblance to µ-mapCT.

These findings were further validated with the quantita-
tive VOI-based assessments shown in Fig. 4. It is shown 

Fig. 3  Top row: attenuation maps of a representative subject gener-
ated using the CT-, MLACF-, and deep learning-enhanced MLACF-
based methods. Attenuation maps from pre- and post-injection LSO-

TX acquisitions are shown separately. Bottom row: voxelwise maps 
of relative error   distribution of MLACF- and DL-MLACF-based 
µ-maps relative to CT-based µ-map
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that the rMAE was reduced by a factor of 4.3 in fat-based 
soft tissue, 3.3 in water-based soft tissue and 2.4 in bones in 
µ-mapDL-MLACF-POST compared to µ-mapMLACF-POST. Similar 
improvements were also seen between µ-mapDL-MLACF-PRE 
and µ-mapMLACF-PRE images. No significant differences were 
seen between the µ-mapDL-MLAC-PRE and µ-mapDL-MLACF-POST 
rME values (P = 0.29 in fat-based soft tissues, P = 0.16 in 

water-based soft tissues and P = 0.28 in bones), suggesting 
that the presence of radiopharmaceutical activity did not 
induce any major artefacts in the resultant attenuation maps. 
The µ-mapDL-MLACF-POST had an rMAE of 3.6% in fat-based 
soft tissues, 3.2% in water-based soft tissues and 6.0% in 
bones. The rMAE values for water-based soft tissues and 
bones were 2-times higher for the patient with a BMI of 

A

B

Fig. 4  Box-and-whisker plots of VOI-based %rME and %rMAE for 
different attenuation maps. For each box, edges represent 25th and 
75th percentiles and whiskers represent rest of the distribution with-

out the outliers. Central horizontal line mark represents the median. 
Outliers are plotted using individual points
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42 kg/m2, which was an outlier in terms of rME and rMAE 
values. The µ-maps of this patient and another larger patient 
with a BMI of 32.5 kg/m2 are illustrated in supplementary 
Figs. 1 and 2 respectively.

Figure 5 shows PET images of a representative subject 
reconstructed using CT-, MLACF-, and deep learning-
enhanced MLACF µ-maps together with their rME maps. 
The  PETDL-MLACF-PRE and  PETDL-MLACF-POST images closely 
resembled the  PETCT images. The VOI-based rMAE results 
showed a 3.0-times reduction in fat-based soft tissue, 2.4-
times reduction in water-based soft tissue and 2.5-times 
reduction in bones in  PETDL-MLACF-POST compared to 
 PETMLACF-POST images (Fig. 6). Similar to µ-map results, 
no significant difference was observed between VOI-based 
rMAE values of  PETDL-MLACF-POST and  PETDL-MLACF-PRE 
images (P = 0.78 in fat-based soft tissue, P = 0.91 in water-
based soft tissue and P = 0.98 in bones).

Figure  7 illustrates the average percentage error in 
 SUVmean values in organs of interest and brain grey and white 

matter. The  PETDL-MLACF-POST achieved an average absolute 
error of less than 4% in the liver and spleen, 4.7% in the 
lungs, 6.7% in the grey matter, and 5.6% in the white matter 
of the brain. Figure 8 shows the absolute errors in  SUVmean 
of tumour lesions, grouped per their anatomical location. 
Bone lesions showed a 3.2-times absolute error reduction for 
 PETDL-MLACF-POST compared to  PETMLACF-POST, where tho-
racic lesions demonstrated a 2.7-times absolute error reduc-
tion. In average, the  PETDL-MLACF-POST achieved an abso-
lute percentage error of 3.6% in abdominal, 2.9% in bone, 
4.4% in pelvic, and 4.8% in thoracic lesions. We observed 
larger errors in cervical lesions for all methods, where the 
mean absolute error was 12.7% for  PETDL-MLACF-POST and 
12.9% for  PETDL-MLACF-PRE. However, it should be noted 
that these results were highly influenced by the values from 
the patient with an outlier BMI of 42 kg/m2 with seven 
cervical lesions. Excluding this subject, the average abso-
lute error was 4.2% for  PETDL-MLACF-POST and 3.5% for 
 PETDL-MLACF-PRE. The absolute error, averaged across all 

Fig. 5  Top row: PET images of a representative subject reconstructed 
using the CT-, MLACF-, and deep learning-enhanced MLACF-based 
attenuation maps. PET images reconstructed using MLACF- and 
DL-based µ-maps generated using pre- and post-injection LSO-TX 

data are shown separately. Bottom row: voxelwise maps of relative 
error  distribution of PET images relative to the PET image recon-
structed using the CT-based µ-map
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tumours excluding the outlier patient, was reduced from 9.6 
to 4.3% for  PETDL-MLACF-POST compared to  PETMLACF-POST 
with a statistically significant difference between meth-
ods (P < 0.001). All tumours combined, no significant 
difference was observed between  PETDL-MLACF-PRE and 
 PETDL-MLACF-POST (P = 0.23).

As also described above, we observed relatively larger 
errors in µ-maps and reconstructed PET images of the 

patient with a BMI of 42.0  kg/m2 when MLACF and 
DL-MLACF methods are used (images shown in sup-
plementary Figs. 1 and 2). The results of the correlation 
analysis between BMI and whole-body %rMAE values 
in PET images showed a weak positive association for 
 PETMLACF-PRE (rs = 0.35, P = 0.15) and a positive correlation 
for  PETMLACF-POST (rs = 0.45, P < 0.05). For the deep learn-
ing-based methods, weak positive associations with BMI 

A

B

Fig. 6  Box-and-whisker plots of VOI-based %rME and %rMAE for 
reconstructed PET images. For each box, edges represent 25th and 
75th percentiles and whiskers represent rest of the distribution with-

out the outliers. Central horizontal line mark represents the median. 
Outliers are plotted using individual points
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values were present for both  PETDL-MLACF-PRE (rs = 0.32, 
P = 0.19) and  PETDL-MLACF-POST (rs = 0.16, P = 0.52). Scat-
ter plots of BMI and whole-body %rMAE values of PET 
images reconstructed with different µ-maps are shown in 
supplementary Fig. 3. Contrary to 9.8% whole-body %rMAE 

present in the  PETDL-MLACF-POST of the patient with a BMI 
of 42.0 kg/m2, 3.8% whole-body %rMAE was present in the 
 PETDL-MLACF-POST images of the patient with second highest 
BMI of 32.5 kg/m2 (µ-maps and PET images are shown in 
supplementary Figs. 4 and 5).

Fig. 7  Bar plot of percentage absolute error in  SUVmean values of 
multiple organs of interest and brain grey and white matter from PET 
images reconstructed using pre- and post- injection MLACF- and 

deep learning-enhanced MLACF-based µ-maps compared to PET 
images reconstructed using CT-based µ-maps. Error bars indicate the 
standard deviation of the dataset

Fig. 8  Bar plot of percentage absolute error in  SUVmean values of 
different tumours in PET images reconstructed using pre- and post-
injection MLACF- and deep learning-enhanced MLACF-based 

µ-maps compared to PET images reconstructed using CT-based 
µ-maps. Error bars indicate the standard deviation of the dataset. Data 
points are also plotted individually
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Discussion

The introduction of LAFOV PET scanners with increased 
system sensitivity compared to SAFOV PET scanners 
opens opportunities for low-dose PET imaging protocols. 
Although the risks of the equivalent dose associated with 
nuclear medicine imaging are modest [38], there remains 
sufficient concern to warrant a number of studies exploring 
the potential for lower activity PET scans without com-
promising image quality via a number of approaches [39, 
40]. However, the value of low-dose PET imaging proto-
cols can be hindered by the CT scans required for attenu-
ation correction. Although CT is a critical part of most 
clinical PET/CT studies and delivers important anatomical 
and diagnostic information to the interpreting physician, 
further reductions in the patient dose through omission 
of the CT component could find utility in some specific 
clinical scenarios. For instance, a CT-less method for PET 
attenuation correction might be desirable in longitudinal 
or follow-up PET scans where a CT scan is already avail-
able from the patient’s work up. The higher sensitivity of 
LAFOV systems can be exploited for acquisition of images 
at later time points [41], dual-time-point studies [42, 43], 
or as part of abbreviated dynamic imaging protocols [44]. 
It can also be used for dose reduction in neuroimaging 
studies where an MR scan is often available for anatomi-
cal information or to reduce radiation exposure in cancer 
screening and paediatric studies.

In this work, we exploited the high sensitivity of a 
LAFOV PET system to detect LSO-TX events and used 
a joint reconstruction and deep learning-based method to 
construct attenuation maps from the LSO-TX data. Quali-
tative and quantitative analyses indicate that the deep 
learning-enhanced MLACF method was able to generate 
µ-maps with better resemblance to CT-based µ-maps than 
the µ-mapMLACF, particularly improving the overestima-
tion of the attenuation coefficients in the skin and skull 
of the patients, addressing the crosstalk issues around the 
bladder, and reducing the noise present in µ-mapMLACF. 
PET images reconstructed with µ-mapDL-MLACF-PRE and 
µ-mapDL-MLACF-POST showed less than − 3.6% rME in 
fat-based soft tissue, water-based soft tissue, and bones. 
Furthermore, mean organ and tumour SUV values cal-
culated from  PETDL-MLACF-PRE and  PETDL-MLACF-POST 
images had less than 7% absolute error compared to mean 
SUV values from  PETCT images. Quantitative VOI-based 
comparisons showed no significant differences between 
µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST. These results 
indicate that the presence of PET activity had negligible 
effect on the quality of LSO-TX images and the proposed 
method achieved comparable performance with pre- and 
post-injection LSO-TX data. The LSO-TX data can also 

be acquired simultaneously with PET emission data, in 
our case reducing the total scan duration to five minutes.

The use of deep learning-based methods in PET attenua-
tion correction has been increasingly popular, particularly in 
PET/MRI imaging where lack of CT-based attenuation maps 
introduced significant challenges to accurate PET quantifica-
tion [45]. In previous work, CNNs were trained using co-
registered MR and CT images to generate pseudo-CT based 
µ-maps for head [46, 47] and pelvis [48–50], which were 
shown to be more accurate compared to vendor-provided 
atlas based µ-maps. Besides, the use of supervised deep 
learning techniques such as CNN has limited performance 
in generating whole-body µ-maps as these techniques require 
perfectly aligned MR and CT whole-body images which is 
not straightforward. As an alternative, unsupervised methods 
with cycle-consistent GAN architecture were used to gener-
ate attenuation-corrected PET images from non-attenuation-
corrected PET images [51, 52]. Most related to our work, 
Hwang et al. [28] generated whole-body µ-maps using a 
CNN and initial µ-maps generated using MLAA joint recon-
struction algorithm with TOF emission data. However, the 
lack of an initial attenuation and emission images can cause 
challenges in scatter correction during the joint reconstruc-
tion process and can lead to unscaled µ-maps with inaccu-
rate attenuation factors [27]. In a more recent work, Hwang 
et al. proposed incorporating non-attenuation-corrected PET 
images in their method to estimate the scatter distribution 
[53]. Here, we suggest use of an LSO-TX derived to µ-map 
to provide initial conditions for scatter correction in the 
MLACF joint reconstruction algorithm.

In this work, we used CT-based µ-maps as target images 
during the training and evaluation of the methodology. 
While CT-based PET attenuation correction is often con-
sidered the gold standard, it can also suffer from some 
limitations. Truncation or beam-hardening artefacts can be 
introduced to CT images when the patient’s arms are pre-
sent in the field-of-view [54]. This is particularly an issue 
for patients with large BMIs [3]. Previous work has also 
shown that the use of CT-based AC can lead to some bias 
in linear attenuation coefficients of cancellous and compact 
bones, albeit the minor PET quantification errors caused by 
this might only be clinically significant in quantitative bone 
studies [55]. Furthermore, potential patient motion and the 
respiratory movement of the chest between PET and CT 
acquisitions can lead to spatial mismatch of images which 
can lead to incorrect PET attenuation correction factors [56]. 
In this work, to make a fair comparison, MLACF and DL-
MLACF based µ-maps were co-registered to their CT pairs. 
However, it can be argued that the proposed method is less 
prone to misregistration errors when the LSO-TX data is 
simultaneously acquired with the PET emission data. Fur-
ther evaluation with phantom data is required to assess the 
performance of our method in such scenarios.
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Another limitation of this study was the relatively small 
sample size of our training set. In this work, we used cross-
validation to train and test our method using data from 18 
subjects. Since one of the aims of this work was to evaluate 
the accuracy of the proposed method with LSO-TX data 
acquired pre- and post-tracer administration, the data used in 
this study were acquired using a dynamic 18F-FDG protocol 
where the tracer administration was performed in the scan-
ner. The logistical challenges of these lengthy dynamic scan 
protocols limited the size of our study cohort. In principle, 
the size of the training set can be increased in future studies 
using only post-injection LSO-TX data. We observed larger 
errors for one subject whose BMI was 41% above the aver-
age population BMI, suggesting that the proposed method 
might have limited performance in very large patients (i.e. 
BMI > 40 kg/m2). This can be addressed in future work by 
enlarging the data pool and including more diverse popula-
tion of patient data (i.e. larger patients) in the model training. 
Furthermore, the MLACF-based µ-maps which are used as 
the only input to our model were jointly reconstructed using 
LSO-TX and 18F-FDG emission data. Further investigation 
is needed to assess the performance of our method with other 
PET radiotracers. Finally, introduction of LAFOV PET/CT 
systems demostrates great potential in reducing patient dose 
in PET examinations. Further work includes evaluation of 
the method in PET scans with lower injected activities of 
radiopharmaceuticals.

Conclusion

We present the development and initial validation of a deep 
learning-based method to synthesize CT-free attenuation 
maps using information from LSO transmission and PET 
emission data. We demonstrated that the proposed method 
was able to generate accurate attenuation maps, independent 
of the timing of the LSO-TX scan, with strong correlation to 
CT-based attenuation maps. Results presented in this work 
suggest that the proposed method can enable CT-free quan-
titative PET imaging which might be beneficial in certain 
clinical scenarios and research studies.
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