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ABSTRACT OF THE DISSERTATION 

 

Climate change and California surface hydrology 

 

by 

 

Marla Ann Schwartz 

 

Doctor of Philosophy in Atmospheric and Oceanic Sciences 

University of California, Los Angeles, 2016 

Professor Alexander Dean Hall, Chair 

 

Understanding 21st century changes in California surface hydrology is critical to ensuring 

enough freshwater resources for the state’s municipal, ecological and agricultural purposes and 

assessing future ecosystem health and wildfire risk. To project 21st century surface hydrology 

over California – a region with highly complex topography that is not well captured by global 

climate models (GCMs) – downscaling is necessary. This work projects future changes in 

surface hydrology over the Los Angeles and Sierra Nevada regions through dynamical and 

statistical downscaling techniques.  

Dynamical downscaling is employed over Los Angeles to produce 2-km resolution 

regional projections for the mid-21st-century under an aggressive warming scenario. These 

projections reveal annual mean runoff and actual evapotranspiration are nearly insensitive to 

warming. This insensitivity is an artifact of the region’s Mediterranean-type climate: Because the 

warm season receives almost no precipitation, the strongest warming-induced potential 

evapotranspiration enhancement coincides with dry soils, severely constraining actual 
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evapotranspiration increases. This surprising result highlights that this important semi-arid 

region is less susceptible to long-term changes in runoff and soil moisture due to its 

Mediterranean climate.  

Over the Sierra Nevada Mountains, dynamical downscaling is used to produce high-

resolution (3-km) simulations of end-of-21st-century surface hydroclimate. The high resolution 

and physical realism of these simulations provides unprecedented detail into the elevational 

dependence of hydroclimate changes and allows us to examine hydroclimate changes at the 

watershed level. These downscaled simulations reveal future warming leads to a shift toward 

significantly earlier snowmelt-driven surface runoff timing at each elevation throughout the 

Sierra Nevada, particularly in mid-elevations (2000-2750m) in the western and northern Sierra. 

Moreover, these projections show that any precipitation increases are outweighed by warming 

induced snowpack reductions and evapotranspiration increases, resulting in statistically 

significant drying of spring and summer soils and a substantial lengthening of the summer dry 

period. Relationships and patterns that emerge through dynamical downscaling over the Sierra 

Nevada are exploited to build simple statistical models that mimic dynamical model behavior. 

Using this hybrid dynamical-statistical downscaling model, high-resolution end-of-21st-century 

runoff timing and soil moisture changes are projected for all available GCMs from phase 5 of the 

Coupled Model Intercomparison Project and the four forcing scenarios adopted by the 

Intergovernmental Panel on Climate Change’s Fifth Assessment Report. These multi-model 

projections allow us to quantify and characterize ensemble-mean changes and the associated 

uncertainty due to inter-model GCM spread, as well as the consequences associated with choice 

of emissions scenario. Averaged across the Sierra, April-September soil moisture is projected to 

decrease 17.1% in the 35-model ensemble mean under RCP8.5 (with an approximate intermodel 

range of -12.9% to -21.0%), but only 9.1% with an approximate intermodel range of -5.7% to     

-12.9%) under RCP4.5, a reasonable mitigation scenario. 



	iv	

The dissertation of Marla Ann Schwartz is approved. 

 

 

Steven A. Margulis 

J. David Neelin 

Ulrike Seibt 

Alexander Dean Hall, Committee Chair 

 

 

University of California, Los Angeles 

2016 

 

 

 

 

 

 

 

 

 

 



	v	

Contents 

1. Research Overview 

  

2. Mean surface runoff insensitive to warming in a key Mediterranean-type 

climate: A case study of the Los Angeles Region  

2.1. Introduction X 

2.2. Baseline simulation  

2.2.1. Dynamical downscaling framework X 

2.2.2. Baseline surface hydroclimate X 

2.2.3. Model evaluation  

2.3. Future simulation X 

2.4. Results X 

2.4.1. Small precipitation changes  

2.4.2. Runoff, AET and PET changes X 

2.4.3. Idealized simulations: Limited influence of warming on AET X 

2.5. Summary, discussion and conclusions X 

 

3. Significant and inevitable end-of-21st-century advances in surface runoff 

timing in California’s Sierra Nevada X 

3.1. Introduction X 

3.2. Dynamical downscaling X 

3.2.1. Dynamical model set-up  

1 

 

6 

 

6 

10 

10 

13 

16 

20 

22 

23 

24 

26 

32 

 

36 

 

36 

39 

39 



	vi	

3.2.2. Baseline runoff timing climatology and model evaluation X 

3.2.3. Dynamically downscaled end-of-21st-century changes in runoff 

timing under RCP8.5 X 

3.3. Runoff timing statistical model description, evaluation and results X 

3.3.1. Statistical runoff timing model description and evaluation  

3.3.2. Statistical results for full GCM ensemble and all forcing scenarios  

3.4. Discussion X 

3.4.1. Choice of spring warming as the predictor for runoff timing X 

3.4.2. Importance of warming patterns that consider snow albedo feedback 

in projecting runoff timing X 

3.5. Summary and implications X 

 

4. Future soil moisture drying in the Sierra Nevada X 

4.1. Introduction X 

4.2. Dynamical downscaling framework and evaluation X 

4.2.1. Dynamical downscaling framework X 

4.2.2. Model evaluation  X 

4.3. Dynamically-downscaled end-of-21st-century soil moisture under RCP8.5 X 

4.3.1. Water year and seasonal soil moisture changes X 

4.3.2. Drivers of dry-season soil moisture declines X 

4.4. Hybrid dynamical-statistical soil moisture model X 

4.4.1. Hybrid model description X 

4.4.2. Hybrid model evaluation X 

42 

47 

 

50 

50 

55 

60 

60 

61 

 

65 

 

68 

68 

73 

73 

76 

80 

80 

83 

87 

88 

89 



	vii	

4.5. Hybrid dynamical-statistical soil moisture projections for full GCM 

ensemble, all forcing scenarios 

4.6. Discussion X 

4.6.1. Are soil moisture losses driven by SWE loss or ET increases? 

4.6.2. Increased length of summer dry period X 

4.6.3. Study limitations X 

4.7. Summary and implications X 

 

5. On the relationship between runoff timing and elevation in California’s Sierra 

Nevada X 

5.1. Introduction X 

5.2. Methods X 

5.2.1. Dynamical downscaling framework X 

5.2.2. USGS watershed boundaries  X 

5.2.3. Runoff timing metric X 

5.2.4. Evaluation of downscaling framework’s simulation of runoff timing X 

5.3. Runoff timing and elevation at the gridpoint level 

5.4. Runoff timing and elevation at the watershed level 

5.5. Summary and implications X 

 

6. References X X 

92 

 

95 

95 

98 

100 

100 

 

103 

 

103 

107 

107 

110 

111 

111 

113 

117 

122 

 

124 

 

 



	viii	

List of Figures 
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Topography (m) is shown at the resolution of the 18km domain in color and black 
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2.2 WRF simulation of a) annual accumulated precipitation, and Noah-LSM/WRF 

simulation of annual b) runoff and c) actual evapotranspiration for the baseline period 

(September 1981–August 2001). Unit is mm/yr. The 1000m topography contour is 

highlighted in black. Grid cells with missing values are urban or over water surfaces. 
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2.3 Noah-LSM/WRF simulation of the baseline mean annual cycle of the water balance at 

a point representative of (a) mountain locations and (b) the inland desert. Monthly 
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actual evapotranspiration (green) and potential evapotranspiration (gray) are shown 
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Inlays show baseline mean monthly ratio of precipitation to potential 

evapotranspiration. For the mountain location (a), mean monthly snow water 
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2.4 Evaluation of Noah-LSM/WRF dynamical downscaling of runoff during the baseline 

period for three streamflow gauges. a) Observed (solid) and simulated (dashed) 

monthly mean streamflow over the water year (September to August). b) Observed vs. 

simulated annual mean streamflow, with the line y = x shown in black. Observed 

streamflow data is compared to simulated surface runoff aggregated upstream of the 

gauge within a watershed. Correlation coefficients for each gauge are also presented. 
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(row 1), runoff (row 2) and actual evapotranspiration (row 3) relative to the baseline 

period for five GCMs under RCP8.5: CCSM4, CNRM-CM3, GFDL-CM3, MIROC-

ESM-CHEM and MPI-ESM-LR. Blue shading indicates moistening, while yellow/red 

shading indicates drying. The 1000m topography contour is highlighted. 
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2.6 Scatter plot of mid-21st century change in annual precipitation (mm/yr) vs. annual 

runoff (mm/yr) at all non-urban land surface in the study domain when five GCMs 

under RCP8.5 are downscaled: CCSM4, CNRM-CM3, GFDL-CM3, MIROC-ESM-

CHEM and MPI-ESM-LR. Correlation coefficients are shown in the bottom corner for 

each plot. The line y = x is shown in blue.  
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2.7 Results from three idealized simulations in which Noah-LSM/WRF dynamically-

downscaled output for the baseline (1981-2000) period is perturbed by a uniform 

increase in near-surface air temperature of 2° C (left column, T2 scenario), 4° C 
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2.8 Noah-LSM simulation of the domain-average annual cycle of (a) potential 

evapotranspiration, (b) actual evapotranspiration and (c) runoff over non-urban land 

surfaces for the baseline (1981-2000) simulation (blue) and three idealized simulations 

in which the baseline simulation is perturbed by a uniform increase in near-surface air 

temperature of 2° C (yellow, T2 scenario), 4° C (red, T4 scenario), and 6° C (black, T6 
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3.1 (a) Model setup, with three nested WRF domains at resolutions of 27, 9, and 3 km 

(from the outermost to innermost domain). Topography (m) is shown at the resolution 

of the 27km domain in color and black lines show boundaries for US states. (b) 

Topography (m) of the innermost domain (3-km resolution) of the regional simulation, 

with the state borders of California and Nevada in black. Blue circles show the 

locations of 11 USGS-HCDN 2009 streamflow gauges used for model evaluation. 
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3.2 Baseline (October 1991–September 2001) climatological date of R50, which 

represents the date in the water year  (October 1–September 30) by which 50% of the 

cumulative surface runoff has occurred. The black contour outlines grid points with 

climatological R50 occurring on or after March 1st. 
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3.3 Observed versus WRF-simulated climatological R50 at 11 USGS streamflow gauges 

(water years 1992–2001). Simulated R50 is estimated as the average R50 of grid 

points upstream of a gauge within its watershed. Colors indicate the correlation 

coefficient between the time series or WRF-simulated and observed values of R50. 

The line y = x is shown in black. 
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average, unit: days) in R50 under the RCP8.5 emissions scenario for CNRM-CM5, 

GFDL-CM3, inmcm4, IPSL-CM5A-LR, and MPI-ESM-LR produced from three 

methods. Row 1: Dynamically-downscaled WRF output. Row 2: Statistical projection 

using dynamically-downscaled WRF spring near-surface warming (MAM ΔT2) as 

input. Row 3: Statistical projection using Walton et al. (2016)’s hybrid dynamical-

statistical downscaled MAM ΔT2 as input. Results are shown for locations with 

climatological baseline R50 on or after March 1st, and green through blue shades 

represent advances in R50. Black text shows domain-average in R50. Blue text in rows 

2-3 denotes the mean absolute error compared to row 1. Green text in rows 2-3 

denotes the spatial correlation with row 1 for each GCM. 
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RCP8.5 forcing scenario for CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, 
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3.6 (a) Correlation coefficient between the 5-model dynamically-downscaled change in 

R50 timing (ΔR50) and near-surface March-May warming (MAM ΔT2). (b) Slope of 

the linear regression of the 5-model dynamically-downscaled ΔR50 onto the 5-model 
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MAM ΔT2, or the average expected advance in R50 per degree MAM ΔT2 (unit: 

days/°C). Black text denotes the domain average value. 
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3.7 Scatter plot of observed near-surface temperature anomalies (unit: °C) averaged over 

March – May (MAM T2) and observed R50 anomalies (unit: days) over water years 

1916–2014. The blue line is the linear regression of WY 1916–2014 R50 onto MAM 

T2. Blue text denotes the slope of this linear regression as well as the correlation 

coefficient. MAM 2-m temperature anomalies are calculated from the National 

Oceanic and Atmospheric Administration's National Climatic Data Center’s nClimDiv 

statewide temperature database (ftp://ftp.ncdc.noaa.gov/pub/data/cirs/-climdiv/state-

readme.txt), which includes monthly-mean maximum and minimum temperature 

aggregated at statewide levels for the United States for January 1895 to the present. 

Monthly maximum and minimum temperatures are averaged together to calculate 

monthly mean temperature. MAM T2 anomalies presented here are calculated from 

the detrended MAM time series for California. R50 anomalies are calculated from the 

detrended gauge-averaged R50 time series from available observations at the 11 

USGS-HCDN streamflow gauges in Table 3.1 (described in section 3.2.2). 
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3.8 Row 1: Ensemble-mean statistical projections of end-of-21st-century change (water 

years 2092-2101 average minus 1992-2001 average) in R50 (unit: days) under 

emissions scenarios RCP2.6, 4.5, RCP6.0 and RCP8.5. Row 2: The associated z-score 

for the ensemble-mean change in R50, which is calculated by dividing the mean R50 

change by the standard deviation of R50 of a 20-year baseline (water years 1982-

2001). Black text denotes the domain average value. The number of GCMs included in 

the ensemble-mean is denoted in the title. 
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3.9 Statistical projections of end-of-21st-century change (water years 2092-2101 average 

minus 1992-2001 average) in R50 as a function of elevation (binned every 100m) 

under emissions scenarios RCP2.6, 4.5, RCP6.0 and RCP8.5. Solid colored lines 

represent the ensemble-mean R50 change calculated with hybrid dynamical-statistical 

spring warming as input, while dashed colored lines represent the 10th and 90th 

percentiles of this GCM distribution. Light gray shading denotes the standard 

deviation of R50 for the extended baseline period (water years 1982-2001). The region 

outside of the dark gray shading denotes mean changes in R50 that are significant at 

the 5% level according to a one-tailed t-test. Thin black (green) lines represent the 

ensemble-mean R50 change calculated with BCSD-downscaled (BCCA-downscaled) 

spring warming as input. Results are shown for locations with climatological baseline 

R50 on or after March 1st. The number of GCMs included in the hybrid-downscaled 

GCM ensemble is denoted in the title. 
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3.10 End-of-21st-century change in near-surface March–May temperature (unit: °C) under 

the RCP8.5 forcing scenario averaged over five GCMs (CNRM-CM5, GFDL-CM3, 

INM-CM4, IPSL-CM5A-LR, and MPI-ESM-LR) downscaled using 5 methods: (a) 

WRF dynamical downscaling, (b) Walton et al. (2016)’s statistical downscaling, (c) 

linear interpolation, (d) BCCA, and (e) BCSD. Black text denotes domain-average 

warming within black contoured region. Red text in b-e denotes the spatial correlation 

with (a) within the black contoured region. 

 

 

 

62 



	xiv	

3.11 Statistical projection of end-of-21st-century change in R50 (unit: days) under the 

RCP8.5 forcing scenario averaged over five GCMs (CNRM-CM5, GFDL-CM3, INM-

CM4, IPSL-CM5A-LR, and MPI-ESM-LR) calculated with MAM ΔT2 from (a) WRF 

dynamical downscaling, (b) hybrid dynamical-statistical downscaling of Walton et al. 

(2016), (c) linear interpolation of GCM output, (d) BCCA statistical downscaling, and 

(e) BCSD statistical downscaling. In b-e, a is subtracted to highlight differences. 

Results are shown for locations with climatological baseline R50 on or after March 1st, 

and black text denotes domain-average value. 
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4.1 a) Model setup, showing the two innermost nested domains: D2 (9 km horizontal 

resolution) and D3 (3 km horizontal resolution). Circles show the locations of 7 

NOAA U.S. Climate Reference Network (USCRN) stations (orange) and 13 USDA 

Soil Climate Analysis Network (SCAN) stations (blue) used for model evaluation. (b) 

Topography (m) of the innermost domain of the regional simulation. 
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4.2 Evaluation of the dynamical downscaling framework’s ability to simulate soil 

moisture compared to available in situ observations from stations in the National 

Oceanic and Atmospheric Administration’s U.S. Climate Reference Network and the 

U.S. Department of Agriculture’s National Soil Survey Center’s Soil Climate Analysis 

Network. In situ observations are compared to WRF output at the nearest grid point in 

the 9-km domain over 1992-2015. (a) Correlation of annual mean soil moisture 

between observational stations and the nearest grid point in WRF output. (b) 

Comparison of observed and WRF-simulated monthly climatological soil moisture at 

observational stations (black) and the nearest grid point in WRF (gray). Large circles 

represent station-averages. Small circles represent individual stations. 
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4.3 End-of-21st century relative change in 0–10cm soil moisture (% per year) averaged 

over the water year (October–September, left column), wet season (October–March, 

center column) and dry season (April–September, right column) under the RCP8.5 

forcing scenario according to the five dynamically downscaled models (rows 1-5) and 

the model-average (row 6). Stippling indicates statistical significance at the 95% level 

using a two-tailed Student’s t-test.  Domain-averages are reported in the upper right 

inset of each panel, with brown text denoting domain-average 0–10cm soil moisture 

drying and blue text denoting domain-average 0–10cm soil moisture moistening. 
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4.4 WRF dynamically-downscaled end-of-21st-century monthly (January-December) 

absolute changes (WY 2092–2102 average minus WY 1992–2001 average) in (a) 0–

10cm soil moisture, (b) 2-m air temperature, (c) precipitation, (d) snow and (e) 

evapotranspiration.  Changes reflect averages over the domain (Fig. 4.1b) for the five 

dynamically-downscaled GCMs: CNRM-CM5 (blue), GFDL-CM3 (red), inmcm4 

(purple), IPSL-CM5A-LR (orange) and MPI-ESM-LR (green). Annual mean relative 

changes (% per year) are reported in the bottom right inset for each global climate 

model in (a) and (c-e). Annual mean absolute warming (°C) is reported in (b).  
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4.5 Scatterplot of five-model dynamically downscaled end-of-21st-century RCP8.5 

absolute change in April 1st snow water equivalent (SWE, unit: cm per year) versus 

mean end-of-21st-century change in 2-m temperature averaged over April–July 

(unit: °C per year). Colors indicate the relative change in dry-season (April–

September) 0–10 cm soil moisture (unit: % per year). Results are shown for grid 

points with greater than 1.5cm of baseline climatological April 1st SWE; this region is 

highlighted in brown in the top right inlay. 
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4.6 Relative change in end-of-21st-century dry season (April–September) 0–10cm soil 

moisture under the RCP8.5 emissions scenario for CNRM-CM5, GFDL-CM3, 

inmcm4, IPSL-CM5A-LR and MPI-ESM-LR produced from three methods. Column 

1: Dynamically-downscaled WRF output. Column 2: Statistical projection calculated 

with WRF dynamically-downscaled changes in April 1st SWE and April–July near-

surface warming as input. Column 3: Statistical projection calculated with hybrid 

dynamical-statistical downscaled change in April 1st SWE (Sun et al. 2016) and April–

July near-surface warming (Walton et al. 2016) as input. Results are shown for non-

urban land points. Brown text indicates domain-average relative change in dry season 

soil moisture (unit: % per year); orange text in columns 2-3 indicates the spatial 

correlation coefficient with column 1. 
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4.7 Hybrid dynamical-statistical projections of relative change in end-of-21st-century dry 

season (April–September) 0–10cm soil moisture under emissions scenarios RCP2.6, 

RCP4.5, RCP6.0 and RCP8.5. Unit: % per year. Row 2 presents the ensemble-mean 

change. Rows 1 and 3 present the 10th and 90th percentiles of the GCM distribution, 

respectively. Brown shading indicates soil drying, while blue shading indicated soil 

moistening. The number of GCMs included in the ensemble for each RCP is denoted 

at the top of each column. Brown text in upper right indicates the domain-average 

relative change in dry season soil moisture at non-urban land points. Black stippling 

denotes regions where the absolute change in 0-10cm soil moisture is greater than the 

standard deviation of the baseline (WY 1992–2001) 0-10cm soil moisture. 
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4.8 Spatial pattern of end-of-21st century dry season (April-September) soil moisture 

drying explained by (a) changes in April 1st snow water equivalent (SWE) and (b) 

April-July warming. The spatial pattern in (a) is obtained by multiplying α (average 

expected relative change in dry season soil moisture per centimeter April 1st SWE 

loss) by the dynamically downscaled 5-model ensemble mean absolute change in April 

1st SWE. The spatial pattern in (b) is obtained by multiplying β (average expected 

relative change in dry season soil moisture per degree April-June near-surface 

warming) by the dynamically downscaled 5-model ensemble mean April-July 

warming. The dynamically downscaled 5-model ensemble mean end-of-21st-century 

change in April-September soil moisture relative to the end-of-20th-century is shown 

in (c). The 2000 m topography contour is shown in black. 
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4.9 Bar plot showing the dynamically-downscaled end-of-21st-century change (WY 2092-

2101 minus WY 1992-2001) in the number of days per year with 0-10cm soil moisture 

less than or equal to the (a) 20th and (b) 10th percentiles of baseline daily soil moisture 

distribution. Results are averaged over grid points within 500m elevation bins and over 

the five dynamically downscaled GCMs. Text above each bar denotes ensemble-mean 

change (unit: days), and text within the bar denotes the volumetric soil moisture 

corresponding to the (a) 20th and (b) 10th percentiles of the baseline daily soil moisture 

distribution for the corresponding 500m elevation bin. 
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5.1 (a) Model setup, showing the two innermost nested domains: D2 (9 km horizontal 

resolution) and D3 (3 km horizontal resolution). (b) Topography (m) of the innermost 

domain (3-km resolution) of the regional simulation, with the state borders of 

California and Nevada in black. Blue lines in (b) outline the 47 watersheds of the 

Sierra Nevada Mountains according to the United States Geological Survey’s 

Watershed Boundary Database (http://nhd.usgs.gov/wbd.html), which delineates the 

spatial extent of surface water drainage. 
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5.2 (a) Baseline (October 1991–September 2001) climatological date of R50, which 

represents the date in the water year  (October 1–September 30) by which 50% of the 

cumulative surface runoff has occurred. Black lines outline the 47 watersheds of the 

Sierra Nevada Mountains according to the United States Geological Survey’s 

Watershed Boundary Database (http://nhd.usgs.gov/wbd.html), which delineates the 

spatial extent of surface water drainage. (b) Baseline (October 1991–September 2001) 

climatological date of R50 as a function of elevation (m). Colors in (b) indicate the 

climatological baseline fraction of precipitation as snow. 
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5.3 (a) End-of-21st-century change (water years 2092-2101 average minus 1992-2001 

average, unit: days) in R50 under the RCP8.5 emissions scenario averaged over five 

dynamically downscaled GCMs (CNRM-CM5, GFDL-CM3, inmcm4, IPSL-CM5A-

LR, and MPI-ESM-LR). Gray lines outline the 47 watersheds of the Sierra Nevada 

Mountains. (b) Five model ensemble-mean end-of-21st-century change in R50 (days) 

as a function of elevation (m), colored by the five-model ensemble-mean end-of-21st-

century absolute change in the fraction of precipitation as snow (%). 
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5.4 End-of-21st-century change (water years 2092-2101 average minus 1992-2001 

average, unit: days) in R50 under the RCP8.5 emissions scenario as a function of 

elevation (unit: m). Results are averaged over five dynamically downscaled GCMs. 

The red line shows the average change in R50 for each 100m elevation bin. 
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5.5 End-of-21st-century change (water years 2092-2101 average minus 1992-2001 

average, unit: days) in R50 under the RCP8.5 emissions scenario (a) simulated through 

dynamical downscaling and (b) produced from an elevation-based model. Results are 

averaged over five dynamically downscaled GCMs. (c) Difference between subplots 

(a) and (b), which highlights regions where the elevation-based model underestimates 
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5.6 Dynamically downscaled end-of-21st-century change (water years 2092-2101 average 

minus 1992-2001 average, unit: days) in R50 under the RCP8.5 emissions scenario. 

Watershed average changes are presented for the 47 watersheds of the Sierra Nevada. 

Results are averaged over five dynamically downscaled GCMs (CNRM-CM5, GFDL-

CM3, inmcm4, IPSL-CM5A-LR, and MPI-ESM-LR). Gray lines outline the 47 

watersheds of the Sierra Nevada Mountains. 
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5.7 Watershed average elevation (top, unit: meters), baseline (WY 1992-2001) R50 

(middle) and end-of-21st-century change (water years 2092-2101 average minus 1992-

2001 average, unit: days) in R50 under the RCP8.5 emissions scenario (bottom). 

Watershed names are presented at the bottom of the figure, and are arranged in order 

of watershed-mean elevation. End-of-21st-century changes in R50 are averaged over 

five dynamically downscaled GCMs (CNRM-CM5, GFDL-CM3, inmcm4, IPSL-
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1 Research Overview 

 

The overarching goal of this work is to investigate 21st-century changes in California 

surface hydrology. Global climate models (GCMs) provide insight into future hydroclimate 

trends, but their coarse resolution fails to capture climatic variables at a scale necessary for 

regional-scale analysis (Giorgi and Mearns 1991; Leung et al. 2003). The latest generation of 

GCMs in the World Climate Research Programme’s Coupled Model Intercomparison Project 

Phase 5 (CMIP5; Taylor et al. 2012) have horizontal resolutions between 1° to 2.5° (~ 100 – 250 

km). California’s complex coastlines and topographical features show variation on much smaller 

scales and play a dominant role in shaping regional-scale processes, including orographic 

precipitation, land-sea breezes and valley circulations. Such regional-scale processes have been 

shown to be critical in understanding climate variability in California (Cayan, 1996; Conil and 

Hall, 2006; Hughes et al. 2007). Thus, current GCM resolution is far too low to understand 

surface hydrology at scales relevant for climate change adaptation and planning.  

These limitations have motivated efforts to regionalize GCM climate change signals to 

much higher spatial resolutions through a variety of downscaling methods (Giorgi et al. 1994, 

Snyder et al. 2002, Timbal et al. 2003, Hayhoe et al. 2004, Leung et al. 2004, Tebaldi et al. 2005, 

Duffy et al. 2006, Salathé et al. 2010, Pierce et al. 2013a).  Downscaling aims to determine how 

large-scale climate change signals are expressed on higher resolution spatial scales.  

Downscaling is typically done either (1) dynamically, in which a regional climate model 

is forced at the boundaries by coarse-resolution reanalysis or GCM output, or (2) statistically, in 

which empirical relationships between large-scale predictors and regional-scale predictands are 

developed.  Statistical downscaling has aided previous studies of climate change impacts to 
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surface hydrology, and its low computational cost allows statistical downscaling to be quickly 

applied to many GCMs and forcing scenarios (Pierce and Cayan 2013). However, statistical 

downscaling methods have been criticized because they may miss key physical processes such as 

snow albedo feedback (Walton et al. 2016) and may show substantially reduced accuracy when 

applied to a warmer climate (Gutierrez et al. 2013).  

Dynamical downscaling directly simulates complex fine-scale physical processes that 

emerge from California’s topography and coastlines, like orographic precipitation, snowpack 

accumulation and melt, land-sea breezes and valley circulations. Having more physically 

realistic simulation of these key inputs should improve modeling of surface hydrology 

throughout California. However, running a regional climate model is very computationally 

expensive. As a result, dynamical downscaling studies are usually limited to only one or two 

downscaled GCMs or Representative Concentration Pathway (RCP) forcing scenarios adopted 

by the Intergovernmental Panel on Climate Change’s Fifth Assessment Report (IPCC AR5). This 

provides limited information to quantify and characterize uncertainty in future surface hydrology 

projections due to inter-model GCM spread, as well as the consequences associated with choice 

of emissions scenario. 

Perhaps due to the computational demands of regional climate models, there have been 

limited downscaling-based CMIP5 analyses of 21st century changes to surface hydrology over 

California. The overarching goal of this work is to employ downscaling techniques to make 

high-resolution multi-model projections of climate change at the regional scale for both the Los 

Angeles region (Chapter 2) and Sierra Nevada Mountains (Chapters 3-5), a high-elevation 

mountain range whose seasonal snow cover represents a critical water resource for California. 
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Through these projections, we investigate 21st-century effects of anthropogenic climate change to 

California surface hydrology. 

Chapter 2 employs dynamical downscaling to investigate the sensitivity of surface 

hydrology in the Los Angeles region to climate change. We produce 2-km resolution regional 

projections for the mid-21st century (2041-2060) under the “business-as-usual” (RCP8.5) forcing 

scenario for five CMIP5 GCMs. Future projections are compared to a validated reanalysis-driven 

simulation of a baseline period (1981-2000) to quantify surface hydrology changes. Precipitation 

changes are likely to be small and are within the range of baseline interannual variability. Runoff 

changes are strongly controlled by precipitation changes, suggesting temperature-driven changes 

in actual evapotranspiration are small. A series of temperature sensitivity experiments are 

performed in which a land surface model is forced by the meteorology of the baseline period, but 

with uniform near-surface air temperature increases of 2º, 4º and 6º C. Results from these 

idealized experiments reveal annual mean actual evapotranspiration and runoff are nearly 

insensitive to warming. This insensitivity is an artifact of the region’s Mediterranean-type 

climate: Because the warm season receives almost no precipitation, the strongest warming-

induced potential evapotranspiration enhancement coincides with dry soils, severely constraining 

actual evapotranspiration increases. Surface hydrology in other Mediterranean climate regions 

may respond similarly. This result greatly mitigates a potential vulnerability of water resources 

to a changing climate in an important semi-arid region of the world. It also reveals that a regional 

climate change adaptation strategy relying on local water resources is a viable one. 

Chapter 3 produces runoff timing projections for California’s Sierra Nevada. First, future 

climate change projections (RCP8.5 forcing scenario, 2081–2100 period) from five CMIP5 

GCMs are downscaled dynamically. These projections reveal that future warming leads to a shift 
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toward earlier snowmelt-driven surface runoff timing throughout the Sierra Nevada. 

Relationships between warming and surface runoff timing from the dynamical simulations are 

used to build a simple statistical model that mimics the dynamical model’s projected runoff 

timing changes given GCM or downscaled warming as input. Using this statistical model, we 

project high-resolution end-of-21st-century runoff timing changes for all available CMIP5 GCMs 

and the four forcing scenarios adopted by the IPCC AR5. These multi-model projections allow 

us to quantify ensemble-mean runoff timing changes and its uncertainty due to both intermodel 

variability and choice of forcing scenario. Under a business-as-usual forcing scenario (RCP8.5), 

the ensemble mean domain-average advance in runoff timing is nearly 50 days, which is highly 

likely to be a detectable shift in runoff timing that is significantly distinct from interannual 

climate variability. Changes to surface runoff timing projected in this study have implications for 

surface hydrology, water resources and ecosystems. 

Chapter 4 examines soil moisture in California’s Sierra Nevada, which plays a key role in 

the region’s climate and affects wildfire risk, ecosystem health and agriculture in the surrounding 

areas. A hybrid dynamical-statistical technique that incorporates aspects of both dynamical and 

statistical downscaling techniques is used to project high-resolution (3-km) future changes to 

Sierra Nevada soil moisture. First, we dynamically downscale end-of-21st-century climate 

change signals from five GCMs under RCP8.5. These projections reveal that any precipitation 

increases are outweighed by warming induced snowpack reductions and evapotranspiration 

increases, resulting in statistically significant drying of spring and summer soils. Next, 

relationships between soil moisture, snowpack and near-surface warming from the dynamical 

simulations are exploited to build a statistical model that can project future soil moisture for any 

GCM. This statistical model is applied to all available CMIP5 GCMs and RCPs, producing an 
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ensemble that allows for robust estimates of most likely soil moisture changes and uncertainty 

quantification. For all GCMs and RCPs, strong April-September soil moisture drying occurs at 

elevations between 2000-2500m, despite increasing precipitation in many GCMs. Averaged 

across the Sierra, April-September soil moisture is projected to decrease -14.9% in the 35-model 

ensemble mean under RCP8.5, substantially increasing the length of the summer dry period.  

Chapter 5 relies on the dynamically downscaled multi-model end-of-21st-century surface 

runoff timing projections from Chapter 3. We examine important elevational-variations in 

warming-driven runoff timing changes to explore whether individual watersheds in the Sierra 

Nevada Mountain Range will respond to climate change differently due to the non-uniform 

expression of climate change across the landscape or inherent physical watershed characteristics. 

Through this exploration, we find that the greatest advances in surface runoff timing are found at 

elevations between 1800m to 2500m. We also explore watershed-average changes in runoff 

timing, finding runoff timing in watersheds with mean elevations close to the historical snowline 

(or with a large portion of area close to this snowline) are most sensitive to future warming 

scenarios. This sensitivity arises because those watersheds have regions with elevations high 

enough to sustain and accumulate seasonal snow cover (that contributes to snowmelt-driven 

surface runoff) but not cold enough to remain below freezing under warming scenarios. This 

quantitative information at the watershed scale is critical for water management, and helps to 

bridge the gap between the climate modeling community and state water planners. 

Collectively, these downscaling-based assessments of the CMIP5 ensemble’s projections 

over the Los Angeles and Sierra Nevada Mountain regions offer a high-resolution picture of 

future regional hydroclimate and investigate the response of California surface hydrology to 

future climate change.  
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2  Mean surface runoff insensitive to warming in a key 

Mediterranean-type climate: A case study of the 

Los Angeles Region 

 

2.1 Introduction  

 

Mediterranean-type climate zones (California, lands around the Mediterranean Sea, 

central Chile, southwestern South Africa, and southwestern and southern Australia) are 

characterized by warm, dry summers and cool, rainy winters (Myers et al. 2000; Cowling et al. 

2005; Kottek et al. 2006). The florae of these regions are among the world’s richest, harboring 

almost 20% of all known vascular plant species despite occupying less than 5% of the earth’s 

surface (Cowling et al. 1996). Mediterranean-type climate regions have also been recognized as 

particularly threatened by global climate change (IPCC 2014). 

A potentially unique surface hydrological response to climate change may arise from the 

seasonality of Mediterranean-type hydrology. Projected temperature increases, along with 

increased downward longwave radiation from greater concentrations of greenhouse gases, would 

enhance potential evapotranspiration (PET), the amount of water that would evaporate and 

transpire given an unlimited supply of surface water. As we will show, the PET enhancement is 

especially large in the warm months. However, because rain comes during the cool months, soil 

moisture levels are low during the warm months. As a result, the time of the strongest PET 

enhancement may coincide with the driest soils. Thus it is unclear whether actual 
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evapotranspiration (AET) will respond strongly to warming. Surface runoff may likewise be only 

weakly affected by warming. Therefore, it is important to investigate how climate-change 

induced temperature and precipitation changes will impact surface hydrology in Mediterranean-

type climate regions.  

This study explores the hydrologic response of California’s Los Angeles region as a case 

study. Previous studies have documented observed changes in California’s hydroclimate over the 

past few decades, as well as potential future changes to hydrology and water resources in the 

western United States (Roos 1991; Hamlet et al. 2005; Maurer 2007; Barnett et al. 2008; Bates et 

al. 2008; Adam et al. 2009; Kapnick and Hall 2010). However, a high-resolution assessment of 

the response of surface hydrology in the Los Angeles region to future climate change has not 

been done before. 

This study is informative due to its implications for other Mediterranean-type climate 

zones, and it is crucial for informed local water resources planning. The Greater Los Angeles 

region depends on numerous sources of fresh water, both imported and local.	 Though the 

majority of Los Angeles’ water is imported via the Los Angeles and Colorado River Aqueducts, 

local water accounted for 11% of the Los Angeles Department of Water and Power’s water 

supply from 2005-2010 (Blanco et al. 2012). In some nearby cities within the Greater Los 

Angeles region, local water sources contribute an even larger portion. For example, local water 

supplied about 40% of the overall water demand between 1995 and 2009 in the city of Camarillo 

(City of Camarillo 2010) and 55% of the water demand in Long Beach for 2010 (Long Beach 

Water Department 2010).  

Cities in Mediterranean-type climates outside of California also rely heavily on local 

water, including Cape Town, South Africa, which chiefly depends on dams in the mountains of 
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the southwestern Cape for both industrial and domestic water supply (Ziervogel et al. 2010). 

Adelaide, Australia sources water from neighboring catchments in the Mount Lofty Ranges and 

approximately half of Adelaide’s demand has been supplied from the nearby Myponga, Mount 

Bold, and Happy Valley reservoirs (Paton et al. 2013).  In central Chile, snowpack accumulated 

in the nearby central Andes represents a critical resource for local irrigation, consumption, 

industries and hydroelectric generation (Masiokas et al. 2006). 

General circulation models (GCMs) provide insight into future climate trends, but their 

coarse resolution fails to capture climatic variables at a scale necessary for regional-scale 

analysis (Giorgi and Mearns, 1991). The latest generation of GCMs in the World Climate 

Research Programme’s Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. 

2012) have horizontal resolutions between 1° to 2.5° (~ 100 – 250 km). Los Angeles’ complex 

coastlines and topographical features show variation on much smaller scales and play a dominant 

role in shaping regional-scale processes, including orographic precipitation, land-sea breezes and 

valley circulations. Additionally, local topography introduces large spatial gradients in surface 

and near-surface air temperature, which influence PET. Such regional-scale processes have been 

shown to be critical in understanding climate variability in California (Cayan, 1996; Conil and 

Hall, 2006; Hughes et al. 2007). Thus, current GCM resolution is far too low to understand 

surface hydrology and climate at scales relevant for adaptation and water resources planning.  

Dynamical-downscaling has been used to develop high-resolution regional climate data 

from relatively coarse-resolution GCM output, including in California (Leung et al. 2003; Leung 

et al. 2004; Kanamitsu and Kanamaru 2007; Caldwell et al. 2009; Qian et al. 2010; Pan et al. 

2011; Pierce et al. 2012) and other Mediterranean-type climate regions (Flaounas et al. 2012; 

Barrera-Escoda et al. 2013; Ratnam et al. 2013). The dynamical downscaling studies over 
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California, along with a number of regional studies using hydrological models  (Dettinger et al. 

2004; Vicuna et al. 2007; Young et al. 2009; Huang et al. 2012), have focused primarily on 

future climate change impacts to hydrology in Central and Northern California, rather than the 

Los Angeles region. 

In this study, dynamical-downscaling simulations are performed to obtain high-resolution 

(2-km) climate information for the Los Angeles region. These consist of a validated baseline 

(1981–2000) climate simulation, and downscaling of output from five CMIP5 GCMs under 

Representative Concentration Pathway 8.5 (RCP8.5) for the mid-21st century period (2041–

2060). Idealized temperature sensitivity experiments are also performed, in which the baseline 

climate simulation is perturbed by uniform air temperature increases of 2º, 4º and 6º C. These 

experiments reveal the hydrologic sensitivity to warming in the absence of precipitation change. 

This is a relevant simplification because the projected annual precipitation changes turn out to be 

quite small in this region (Berg et al. 2015).  

This study aims to assess future changes to runoff and AET that result from precipitation 

and temperature changes in the Los Angeles region; the results from this assessment strongly 

suggest that other Mediterranean-type climate regions will respond similarly to precipitation and 

temperature changes. In the process, we will determine the degree to which sensitivity of AET 

and runoff to warming is indeed suppressed by the unique seasonality of Mediterranean-type 

climate. 

This study is part of a larger project that includes separate downscaling studies of the 

CMIP5 ensemble’s mid-21st century and end-of-21st century projections over the Los Angeles 

region for temperature (Walton et al. 2015; Sun et al. 2015a), precipitation (Berg et al. 2015), 
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and snowfall and snowpack (Sun et al. 2015b). Together, these studies provide high-resolution 

information regarding future regional climate trends crucial for developing adaptation strategies. 

This paper is organized as follows: Section 2.2 describes the model configuration and 

observational evaluation for the baseline simulation. Section 2.3 describes the future and 

idealized climate simulations. Section 2.4 presents the results of both the dynamical-downscaling 

simulations and the idealized temperature sensitivity experiments. This section is focused on the 

sensitivity of annual mean AET and runoff to both precipitation and temperature changes, while 

also placing changes within the context of internal interannual variability. Finally, section 2.5 

presents a discussion of the results, as well as a summary of findings.  

 

2.2 Baseline simulation 

 

2.2.1 Dynamical downscaling framework  

 

A dynamical downscaling simulation over the Los Angeles region is performed using the 

Weather Research and Forecasting Model version 3.2 (WRF; Skamarock et al. 2008). We nest 

higher resolution domains within one another (18-km, 6-km and 2-km) to reach a high enough 

resolution to represent the most important features of the region’s complex topography and 

coastlines. Fig. 2.1a shows the three nested domains, as well as the topography at the resolution 

of the outermost domain. The outermost domain spans the entire state of California and the 

adjacent Pacific Ocean at 18-km resolution. The middle domain, at 6-km resolution, covers 

roughly the southern half of the state of California. Finally, the innermost domain, at 2-km 

resolution, focuses on the Los Angeles region (Fig. 2.1b). In the downscaling simulations, the 
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Noah Land Surface Model (Chen and Dudhia 2001) is coupled to WRF to simulate land surface 

processes. For additional information on parameterization options and WRF configuration 

settings used in the baseline simulation, the reader is directed to Walton et al. (2015). 

 
 
Fig. 2.1: a) Model setup, with three nested WRF domains at resolutions of 18, 6, and 2 
km. Topography (m) is shown at the resolution of the 18km domain in color and black 
lines show boundaries for US states. (b) Topography of the innermost domain (2- km 
resolution) of the regional simulation, with the border of Los Angeles County in black. 
In (b), black circles indicate locations of the 3 gauges used for streamflow validation. 
The blue and red circles in (b) indicate the mountain location and desert location, 
respectively, referenced in Fig. 2.3 and section 2.2.2. 
 
 

Using this model configuration, we perform a twenty-year reanalysis-driven “baseline”  

simulation, which runs from September 1981 to August 2001. The baseline climate simulation is 

a dynamical downscaling of the National Centers for Environmental Prediction’s North America 

Regional Reanalysis (NARR; Mesinger et al. 2006). NARR is a coarse-resolution (32-km) 

reanalysis dataset that provides the lateral boundary conditions for the outermost nested WRF 

domain seen in Fig. 2.1a. This simulation reconstructs weather and climate and serves two 
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purposes. First, it allows us to evaluate the model’s ability to simulate regional climate based on 

a comparison to observational data. Second, it serves as a climate state against which we can 

compare future climate simulations to measure climate change.  

WRF is reinitialized each year in August, allowing us to run twenty one-year runs from 

September to August in parallel. This parallelization significantly reduces computational time. 

However, the annual model re-initialization prevents perfect water budget closure. To ensure the 

water budget is precisely closed, WRF data from the innermost (2-km) domain of the twenty 

one-year baseline simulations is used as forcing for a continuous twenty-year simulation using 

the offline 1-dimensional Noah Land Surface Model version 3.3 (Noah-LSM; Ek et al. 2003). 

The baseline Noah-LSM simulation is forced by WRF meteorological data, including near-

surface air temperature, surface pressure, near-surface wind speed and direction, near-surface 

relative humidity, precipitation, and downward longwave and shortwave radiative fluxes at the 

surface. WRF output includes snapshots of 2-dimensional variables every 3 hours and 3-

dimensional variables every 6 hours for each grid point.  

Potential evapotranspiration in Noah-LSM is calculated using a modified version of the 

Penman-Monteith equation that accounts for the influence of atmospheric stability on turbulent 

transport of water vapor (Mahrt and Ek 1984). Surface runoff and infiltration in Noah-LSM are 

parameterized following Schaake et al. (1996), and actual evapotranspiration is estimated 

through a Jarvis (1976)-type parameterization similar to Jacquemin and Noilhan (1990).  Output 

from the offline Noah-LSM simulation forced by WRF output (hereinafter called Noah-

LSM/WRF) precisely satisfies the surface water balance equation, solving the water budget 

closure issue presented by model re-initialization. As the focus of our study is terrestrial surface 

hydrology, we exclude ocean, lake, reservoir and urban grid points in our analysis. 
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Fig. 2.2: WRF simulation of a) annual accumulated precipitation, and Noah-LSM/WRF 
simulation of annual b) runoff and c) actual evapotranspiration for the baseline period 
(September 1981–August 2001). Unit is mm/yr. The 1000m topography contour is 
highlighted in black. Grid cells with missing values are urban or over water surfaces. 

 

2.2.2 Baseline surface hydroclimate   

 

Fig. 2.2 shows spatial patterns of climatological precipitation, runoff and AET for the 

baseline period as simulated by Noah-LSM/WRF. The average annual precipitation received at 

non-urban land points during the baseline period (Fig. 2.2a) is 341 mm/yr, with 91% of the study 

domain’s annual precipitation falling between the months of October and April. The coastal side 

of mountain areas above 1000m receive nearly 3 times the annual precipitation of low-elevation 

coastal areas due to orographic precipitation effects. The coastal areas experience greater than 

200mm more precipitation than the inland desert region, as moisture is wrung out of air passing 

over the mountain ranges toward the inland desert. 

Figs. 2.2b and 2.2c present the partitioning of precipitation for the baseline Noah-

LSM/WRF simulation into runoff and AET, respectively. In this semi-arid domain, 81% of 

annual precipitation falling on non-urban land surfaces is returned to the atmosphere through 
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AET, on average. The ratio of runoff to precipitation is highest in coastal areas above 1000m, 

where runoff accounts for 41% of average incoming annual precipitation. 

The annual cycle of the water balance for the 20-year baseline period is shown in Fig. 2.3 

for two representative points in our study domain: a high-elevation mountain location (Fig. 2.3a) 

and an inland desert location (Fig. 2.3b). These two locations are shown in Fig. 2.1b by blue and 

red circles. The region’s climate is characterized by drastic seasonal precipitation variations 

(especially at the high elevations) and modest seasonal transitions in temperature.  

In the case of the mountain location, monthly precipitation (dark blue) is highest in 

February, and snow water equivalent (pink) peaks in March. Early spring snowmelt then leads to 

maxima in both soil moisture (brown) and runoff (light blue) in March. Increasing PET (gray) in 

the late spring and early summer coincides with moist springtime soils (brown), so AET (green) 

increases in the summer months until the soil moisture is depleted around August. This creates a 

July peak in AET. The ratio of monthly precipitation to potential evapotranspiration (P/PET) is 

also presented (Fig. 2.3a, inlay). P/PET is a simple measure of aridity that suggests whether AET 

should be energy-limited (P>PET) or moisture-limited (P<PET) (Budyko and Miller 1974; Feng 

and Fu 2013; Scheff and Frierson 2015). At the mountain location, AET is limited by available 

energy December through March, but water-limited the remaining months (especially July and 

August, when P/PET is nearly zero). At the desert location (Fig. 2.3b), annual precipitation is 

low, and AET is roughly equal to precipitation, accounting for over 98% of annual mean 

precipitation. The ratio of monthly precipitation to potential evapotranspiration at the desert 

location (Fig. 2.3b, inlay) suggests AET is strongly water-limited throughout the year. The out-

of-phase relationship in the annual cycles of precipitation and PET sets up a unique response to 

temperature changes that will be explored later in this paper. 



	15	

 
Fig. 2.3: Noah-LSM/WRF simulation of the baseline mean annual cycle of the water 
balance at a point representative of (a) mountain locations and (b) the inland desert. 
Monthly accumulated values (unit: mm/month) of precipitation (dark blue), runoff (light 
blue), actual evapotranspiration (green) and potential evapotranspiration (gray) are 
shown with respect to the left y-axis. The climatological monthly soil moisture (unit: 
m3/m3) of the top 2m of the soil column is also shown (brown) with respect to the right 
y-axis. Inlays show baseline mean monthly ratio of precipitation to potential 
evapotranspiration. For the mountain location (a), mean monthly snow water equivalent 
is presented (pink). 
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2.2.3 Model evaluation 

 

Prior to analyzing surface hydrology changes, we evaluate the skill of the 2-km resolution 

baseline (1981-2000) simulation by comparing Noah-LSM/WRF model output to available 

observations.  

We first briefly recapitulate an evaluation of WRF’s precipitation by Berg et al. (2015). 

This downscaling study of precipitation changes over the Los Angeles region uses the same 

baseline dynamical downscaling framework as this study. Berg et al. (2015) demonstrate that this 

modeling framework realistically simulates wet-season (December–March, DJFM) precipitation 

in the study domain using precipitation gauges from the California Department of Water 

Resources’ California Irrigation Management Information System (CIMIS, 

http://www.cimis.water.ca.gov/), and two gridded observational products, NOAA Climate 

Prediction Center Daily US UNIFIED Precipitation (CPC, http://www.esrl.noaa.gov/psd/data/-

gridded/data.unified.html) and the University of Delaware Precipitation product (Udel, 

http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html). They find a high 

domain-average correlation coefficient (r =0.82) between mean DJFM precipitation observed at 

CPC grid cells and that simulated at the nearest corresponding WRF grid cell. Moreover, they 

find that WRF successfully reproduces the CIMIS station-averaged DJFM total precipitation 

over the 12 wet seasons from 1989–2000 (note: CIMIS observations start in 1989), with an 

average bias of +15 mm per year. This bias is not systematic and is quite small in relative terms. 

(CIMIS station-averaged DJFM total precipitation ranges from approximately 120 to 550 

mm/year over 1989–2000.) Overall, they find that WRF simulates monthly precipitation 

variations at thirteen CIMIS gauges in the study domain reasonably well, and that the WRF 

framework realistically simulates interannual variability in wet-season precipitation. 
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Next, we evaluate Noah-LSM/WRF’s simulation of streamflow, relying on the United 

States Geological Survey Hydro-Climatic Data Network-2009 (USGS HCDN-2009, 

http://waterdata/usgs.gov/nwis/) observational dataset. The USGS HCDN-2009 is a network of 

streamflow gauges across the United States identified as having: (1) natural streamflow least 

affected by direct human activities, (2) accurate measurement records, and (3) at least 20 years of 

complete and continuous discharge record through water year 2009 (Slack et al. 1993; Lins 

2012).  

We obtained daily, quality-controlled streamflow data from 3 stations for which data was 

available within our study domain for the baseline period. The locations of these streamflow 

gauges are shown in Fig. 2.1b by black circles.  There is no runoff routing scheme in the Noah-

LSM/WRF framework. To account for this, we compare the observed streamflow measurement 

at a USGS gauge to the sum of simulated surface runoff from all grid points within a watershed 

upstream of the gauge. This rather primitive form of runoff routing does not account for 

groundwater dynamics or interactions between groundwater and surface runoff. 

Fig. 2.4a compares monthly climatological average streamflow for USGS gauges (solid 

lines) with that simulated by Noah-LSM/WRF (dashed lines). Noah-LSM/WRF’s simulation of 

the annual streamflow cycle is consistent with observations for each of the three gauges, with a 

correlation averaged across the gauges of r = 0.88. Noah-LSM/WRF correctly simulates the 

magnitude and phasing of heightened streamflows in the months of February through May (late 

in the wet season), with relatively low flows the rest of the year. The root mean squared error of 

all data points in Fig. 2.4a is 0.28 cubic meters per second. These minor differences may be due 

to observational error or a lack of groundwater dynamics in Noah-LSM/WRF.  
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Fig. 2.4: Evaluation of Noah-LSM/WRF dynamical downscaling of runoff during the 
baseline period for three streamflow gauges. a) Observed (solid) and simulated (dashed) 
monthly mean streamflow over the water year (September to August). b) Observed vs. 
simulated annual mean streamflow, with the line y = x shown in black. Observed 
streamflow data is compared to simulated surface runoff aggregated upstream of the 
gauge within a watershed. Correlation coefficients for each gauge are also presented. 
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Fig. 2.4b compares the annual average streamflow between each USGS gauge and the 

Noah-LSM/WRF simulation of runoff within the watershed for all twenty water years 

(September – August) of the baseline period. Correlations above r = 0.69 are found at all gauges, 

and the gauge-average correlation is r = 0.77. Again, the points fall approximately on the one-to-

one line. Overall, Figs. 2.4a and 2.4b demonstrate Noah-LSM/WRF reproduces the spatial, 

seasonal and interannual variations in surface runoff reasonably well.  

Unfortunately, observational data networks, including FLUXNET (Balhocchi et al. 2001) 

and CIMIS stations, do not provide observations of AET (e.g. through measurement methods 

such as eddy covariance techniques, a scintillometer or lysimeter) in the study domain during the 

baseline period. This prevents us from comparing simulated AET to observations directly. 

However, assuming no mean change in terrestrial water storage on annual time scales, annual 

mean AET must equal annual mean precipitation minus mean runoff. Because of the skill of 

Noah-LSM/WRF in realistically simulating interannual variability in both precipitation (Berg et 

al. 2015) and runoff (Fig. 2.4b), we can infer the model probably also realistically simulates the 

interannual variability in AET. 

Overall, Fig. 2.4 and Berg et al. (2015) show that the Noah-LSM/WRF framework 

simulates the temporal and spatial variations of surface hydrology during the baseline period 

with reasonable accuracy where reliable observational data are available. Previous research also 

demonstrates that the WRF framework used in this study provides realistic simulations of both 

spatial and temporal patterns of temperature (Walton et al. 2015) and snowfall (Sun et al. 2015b). 

Based on this evidence, it seems likely that the model is able to realistically reproduce the 

temporal and spatial variations in AET and runoff across the domain, at locations where 

observations are not available. 
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2.3 Future simulation 
 

Using the same WRF configuration as the baseline climate simulation, we perform a 

second group of climate simulations designed to simulate a range of future regional climate 

states corresponding to the mid-21st century. By looking at differences between the future and 

baseline periods, mid-century changes to surface hydrology relative to the late 20th century can 

be quantified and evaluated. To produce boundary conditions for future simulations, we employ 

a previously used method (Schar et al. 1996; Hara et al. 2008; Kawase et al. 2009; Rasmussen et 

al. 2011), in which future climate is estimated by adding a perturbation reflective of the mean 

climate change to reanalysis data. We apply this technique to output from five CMIP5 global 

climate models (CCSM4, CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM and MPI-ESM-LR) 

under the RCP8.5 emissions scenario for the mid-21st century period. More specifically, we 

perturb the NARR baseline boundary conditions (September 1981 - August 2001) by monthly-

averaged differences between the future and baseline (2041-2060 minus 1981-2000) climate for 

each GCM. This perturbation method assumes no change in synoptic and interannual variability 

at the lateral boundaries. As a result, the frequency of future weather events is very similar to 

that of the baseline simulation (though we cannot exclude the possibility that regional climate 

dynamics might alter local weather events). Thus our analysis focuses on time scales of months 

to years. 

Because it would be prohibitively expensive to perform full twenty-year future 

dynamical-downscaling simulations for each of the five GCMs, we first perform a future twenty-

year simulation (September 2041 to August 2061) using climate change signals in CCSM4. Then 

we examine this experiment to assess whether short simulations can provide statistics robust 

enough to characterize the regional climate change signal of the full twenty-year simulation. 
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Similar to the baseline simulation, this future simulation is reinitialized every August and run in 

parallel as twenty one-year simulations. Using Noah-LSM, we also perform a separate 

continuous twenty-year simulation of the dynamically downscaled output associated with 

CCSM4.  

We find that we are able to capture to a high degree of accuracy the full 20-year runoff 

and AET signals by simulating only three future years of CCSM4. (We select the three water-

year period of September 2058 to August 2061, as its corresponding baseline period, September 

1998 to August 2001, is roughly representative of interannual variations in precipitation and 

temperature during the full 20-year baseline period. Other consecutive three-year periods are also 

likely to be representative of the full 20-year baseline period.) For example, averaged over non-

urban land points, the 20-year and 3-year runoff signals associated with CCSM4 are -17.6 and -

16.3 mm/yr, respectively. Previous analyses of this output found that the 20-year precipitation 

and temperature signals could also be captured with a high degree of precision by only 

dynamically-downscaling three future years (Berg et al. 2015; Walton et al. 2015). Thus, to 

conserve computational resources, we only dynamically downscale the remaining four GCMs 

(CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM and MPI-ESM-LR) for three years. For each 

of these four future simulations, WRF boundary conditions are created by adding the 20-year 

GCM climate change signal (2041–2060 minus 1981–2000) to NARR data corresponding to 

September 1998 to August 2001. Though the future simulations of CNRM-CM5, GFDL-CM3, 

MIROC-ESM-CHEM and MPI-ESM-LR are only three years long, the climate change forcings 

therefore reflect that of a 20-year averaging period. 

Similar to the twenty-year baseline and twenty-year CCSM4 simulations, the three-year 

mid-21st century simulations associated with CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM 
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and MPI-ESM-LR are run as three one-year simulations re-initialized every August. The WRF 

output is then used to force a continuous three-year future climate simulation using Noah-LSM.  

Given projections for little to no ensemble-mean precipitation change in our study 

domain (discussed in section 2.4.1 and Berg et al. 2015), it is useful and relevant to study the 

hydrologic response to warming in isolation from precipitation changes. Thus, we perform three 

idealized twenty-year simulations with Noah-LSM designed to isolate the imprint of warming on 

runoff and AET. The idealized simulations are identical to the twenty-year Noah-LSM baseline 

(1981-2000) simulation forced by WRF data, except with a spatially uniform 2-meter air 

temperature increase of 2 °C, 4 °C and 6 °C at every time step. All other climatic variables are 

unchanged from baseline values. It should be noted that because relative humidity is unchanged 

from baseline values, specific humidity is implicitly allowed to increase with near-surface 

warming.  

The idealized simulations allow us to examine the sensitivity of surface hydrology in the 

Los Angeles region to a range of likely temperature changes (Walton et al. 2015). Increases in 

near-surface air temperature can affect runoff characteristics by altering the form of precipitation, 

AET rate and snowmelt timing. We label the results from the idealized simulations as baseline, 

T2, T4 and T6.  

 

2.4 Results 

 

In this section, we present results from both Noah-LSM/WRF dynamical-downscaling of GCM 

output and the idealized simulations.  
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Fig. 2.5: Noah-LSM/WRF simulation of the mid-21st century change (mm/yr) in 
precipitation (row 1), runoff (row 2) and actual evapotranspiration (row 3) relative to the 
baseline period for five GCMs under RCP8.5: CCSM4, CNRM-CM3, GFDL-CM3, 
MIROC-ESM-CHEM and MPI-ESM-LR. Blue shading indicates moistening, while 
yellow/red shading indicates drying. The 1000m topography contour is highlighted. 

 

2.4.1 Small precipitation changes 

 

Fig. 2.5 (first row) shows annual mean precipitation changes for five GCMs as simulated 

by WRF. The precipitation projections show some intermodel spread, particularly with regard to 

the sign of the change. The ensemble-mean precipitation change for non-urban land surfaces 

across the five GCMs is -6.6 mm/yr, a minute change reflective of a cancellation between 

moistening (CNRM-CM5 and MPI-ESM-LR) and drying (CCSM4, GFDL-CM3 and MIROC-

ESM-CHEM) models. CNRM-CM5 and GFDL-CM3 project the largest precipitation changes, 

with changes of +51 and –39 mm/yr averaged over non-urban land surfaces, respectively.  
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These signals in precipitation changes are modest compared to the region’s interannual 

variability. The standard deviation of baseline (1981-2000) precipitation averaged over non-

urban land surfaces as simulated by WRF is 153 mm/yr, roughly 40% of the climatological mean 

and reflective of the region’s significant interannual hydroclimate variability. Thus the 

downscaled change in average precipitation over non-urban land surfaces as projected by even 

the most extreme model (CNRM-CM5) is only about a third of the baseline interannual 

variability. Berg et al. (2015) further explore the region’s precipitation changes, and conclude 

that the most likely result is a small change in mean precipitation compared to natural variability, 

with the sign of the change being uncertain. Berg et al. (2015) also extend the analysis to include 

the full CMIP5 GCM ensemble through statistical techniques. However, their results are very 

similar to those obtained from dynamically downscaling only these five GCMs.  

 

2.4.2 Runoff, AET and PET changes 

 

Annual mean runoff changes for the five GCMs are shown in Fig. 2.5 (second row). For 

each GCM, the runoff change mirrors the precipitation change in both sign and magnitude. Fig. 

2.6 corroborates this. The spatial patterns of precipitation change and runoff change are tightly 

correlated for all models, with a model-average spatial correlation coefficient of r = 0.88. For all 

five future simulations, the sign of the change in annual runoff is the same as the sign of the 

change in annual precipitation for over 98% of non-urban land grid points in the study domain. 

Discrepancies are greatest over the desert, where a positive precipitation change may lead to a 

slightly negative runoff change due to enhanced AET (e.g. MIROC-ESM-CHEM).  Overall, any 

precipitation change appears to control the runoff change. Because the precipitation changes are 
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modest, so are the runoff change signals. For CNRM-CM5, the model with the strongest 

moistening, the average runoff signal over non-urban land surfaces is 34 mm/yr. The average 

runoff signal over non-urban land surfaces for the driest model, GFDL-CM3, is -21 mm/yr. Both 

values are small compared to the standard deviation of runoff in the baseline period (103 mm/yr). 

 

Fig. 2.6: Scatter plot of mid-21st century change in annual precipitation (mm/yr) vs. 
annual runoff (mm/yr) at all non-urban land surface in the study domain when five 
GCMs under RCP8.5 are downscaled: CCSM4, CNRM-CM3, GFDL-CM3, MIROC-
ESM-CHEM and MPI-ESM-LR. Correlation coefficients are shown in the bottom 
corner for each plot. The line y = x is shown in blue. 
 
 

We now turn to changes in PET and AET. As expected from the relationship between 

temperature and saturation vapor pressure, each future simulation projects a domain-wide 

increase in PET for all non-urban land surfaces (not shown), with an ensemble-mean change of 

186 mm/yr averaged over non-urban land areas. PET increases are highest above 1000m, where 



	26	

decreases in future snow cover and albedo during winter lead to increased absorption of 

downward radiation, providing more energy for PET. Annual mean AET changes are shown in 

Fig. 2.5 (third row). Despite domain-wide PET increases, AET rates are severely limited by 

surface water availability. In fact, for the 5 dynamically downscaled GCMs, the sign of model’s 

precipitation change is the main determinant of the model’s AET change. The partitioning of the 

precipitation change into a runoff change or AET change is largely determined by baseline 

partitioning of precipitation into runoff and AET (Fig. 2.2). However, the relationship between 

the precipitation change and AET change is not as strong as the relationship between the 

precipitation change and runoff change (model-average spatial correlation coefficient of r = 0.61 

vs. r = 0.88).  

 

2.4.3 Idealized simulations: Limited influence of warming on AET 

 

It is noteworthy that the annual mean change in AET for each of the five dynamically-

downscaled GCMs is small and precipitation-determined, even though there is significant near-

surface warming. One would expect warmer surface air temperatures and increased downward 

longwave radiation to enhance AET throughout the domain at least somewhat. We turn to the 

idealized simulations to quantify the sensitivity of runoff and AET to warming in the absence of 

a precipitation change. By looking at differences between the idealized simulations and the 

baseline (1981-2000) simulation, we examine the direct influence of changing temperatures on 

annual mean AET and runoff. 

Fig. 2.7 shows the change in annual 2-meter air temperature (first row) and annual AET 

(second row) for each of the idealized simulations: T2, T4 and T6. Due to a nearly negligible 
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change in infiltration, the surface water balance equation constrains the annual mean runoff 

change for each simulation to be almost identical in magnitude to the annual mean AET change, 

with an opposite sign.  

 

Fig. 2.7: Results from three idealized simulations in which Noah-LSM/WRF 
dynamically-downscaled output for the baseline (1981-2000) period is perturbed by a 
uniform increase in near-surface air temperature of 2° C (left column, T2 scenario), 4° C 
(center column, T4 scenario),  and 6° C (right column, T6 scenario). Changes in annual 
near-surface air temperature (first row, unit: °C) and actual evapotranspiration (second 
row, unit: mm/yr) are shown for each idealized scenario. Precipitation is not perturbed. 
The 1000m topography contour is shown. 
 

For even the most extreme warming case (T6), the domain-average AET change over 

non-urban land surfaces (7.56 mm/yr) pales in comparison to both the baseline mean (276 

mm/yr) and interannual variability (56 mm/yr). Runoff changes are similarly small. From the 

baseline simulation to T6 scenario, the absolute increase in the ratio of domain-average 

evaporation to precipitation (E/P) is 2%, a tiny amount. The AET changes (second row) appear 

to have some spatial structure, in that the strongest AET increases are at high elevations (see 

topography in Fig. 2.1b) as well as at locations with high AET in the baseline (Fig. 2.2c). 
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However, even for a mountain location where the AET signal is stronger (like the location 

referenced in Fig. 2.3a), annual AET in the T6 scenario increases by 11 mm/yr, a mere 2% 

relative increase. Without a precipitation change, surface air temperatures would have to increase 

significantly more than 6º C to have a substantial impact on annual AET and runoff. 

 
Fig. 2.8: Noah-LSM simulation of the domain-average annual cycle of (a) potential 
evapotranspiration, (b) actual evapotranspiration and (c) runoff over non-urban land 
surfaces for the baseline (1981-2000) simulation (blue) and three idealized simulations 
in which the baseline simulation is perturbed by a uniform increase in near-surface air 
temperature of 2° C (yellow, T2 scenario), 4° C (red, T4 scenario), and 6° C (black, T6 
scenario). Unit: mm/month. 
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The insensitivity of surface hydrology to warming is explored further in Fig. 2.8, which 

shows the average annual cycles of (a) PET, (b) AET and (c) runoff over non-urban land 

surfaces for the baseline (1981-2000) simulation (blue), T2 (yellow), T4 (red) and T6 (black). 

PET (Fig. 2.8a) increases significantly in all idealized simulations following the monthly 

temperature distribution. Domain-average annual PET increases by 5%, 10% and 15% for T2, T4 

and T6, respectively.  

In contrast, annual mean AET (Fig. 2.8b) and runoff (Fig. 2.8c) remain largely 

unchanged in all three idealized cases. We argue this is an artifact of Southern California’s 

Mediterranean climate (discussed in section 2.1), in which the annual cycles of precipitation and 

soil moisture are out of phase with that of PET (Fig. 2.3). For each idealized warming scenario, 

AET increases slightly in all months, but the effect is largest from April to June, and diminished 

in the cool season (December to March). In the case of T2, T4 and T6, PET increases are 

strongest during the months of April to October (Fig. 2.8a), yet soil moisture is relatively low 

from July to January (in both the baseline and idealized simulations) due to the seasonality of 

precipitation (Fig. 2.3). In the idealized scenarios, only the months of April through June have 

both enhanced PET and moist enough soils to allow for an AET increase; the remaining months 

of July through March have either too limited soil moisture or relatively low PET, which 

prevents increased PET from having a significant effect on AET.  

For the most extreme warming scenario (T6), the overlap of enhanced PET and soil 

moisture availability in April, May, and June leads to monthly AET increases of 7.8%, 6.5% and 

5%, respectively (Fig. 2.8b). By July and August, AET is severely moisture-limited (based on 

monthly ratios of P/PET), more so than all other months (Fig 2.3); this suggests that even under 

future warming, July-August soil moisture is depleted to the extent that it limits an AET increase. 
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The April to June AET change also accelerates the soil moisture decrease that occurs in the 

baseline simulation from May to July. This exhausts nearly the same amount of soil moisture as 

in the baseline, but earlier in the season, so that future July AET becomes even more moisture-

limited than in the baseline. Given that nearly all annual runoff has occurred by May, increases 

in AET in May and June do almost nothing to reduce annual mean runoff (Fig. 2.8c). 

The particularly small cool-season AET increase can largely be explained by baseline 

annual mean cycles of soil moisture and PET (Fig. 2.3). Baseline soil moisture is very low in 

December and January (Fig. 2.3), consistent with a moisture-limitation on AET. However, 

March AET remains small even though soils are very wet.  This is likely due to cool 

temperatures and low PET.  At the mountain location (Fig. 2.3a), for example, monthly P/PET 

indicates that AET is in fact energy-limited in December- March due to cool temperatures. In the 

idealized warming scenarios, despite warming-driven PET increases in the cool-season, ratios of 

monthly P/PET still indicate AET is energy-limited from December through March.  

In summary, AET increases are slight in all months for each idealized warming scenario, 

although they are noticeable from April-June.  Domain-average annual AET increases also pale 

in comparison to both baseline mean AET and its interannual variability. Thus annual mean 

runoff and AET are largely insensitive to warming. One could imagine a very different situation 

if the study domain received significant summer rainfall, which would cause elevated soil 

moisture values at the same time as the peak in the annual PET cycle. In this case, warming 

could lead to enhanced AET and decreased annual mean runoff. 

This insensitivity of annual mean runoff and AET to future temperature changes in 

Southern California is consistent with other studies over Northern California. Risbey and 

Entekhabi (1996) found annual mean streamflow in the Sacramento River to be nearly 
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insensitive to temperature changes, but very sensitive to precipitation changes. Dettinger et al. 

(2004) found similar results in the Merced, Carson and American river basins of California. 

Together, the dynamically-downscaled GCMs and idealized simulations suggest both annual 

mean runoff and AET in the Los Angeles region are almost insensitive to warming, but highly 

sensitive to changes in annual mean precipitation. 

Lastly, Fig. 2.8c allows us to assess possible warming-driven advances in the timing of 

seasonal runoff due to shifts toward more liquid precipitation and earlier snowmelt. In each 

idealized warming scenario, domain-average runoff increases in both February and March, 

which is compensated by decreased runoff in April and May. Under T6, domain-average 

February runoff increases by 12%, while April runoff decreases by 11%. Changes to runoff 

volume are negligible during the months when baseline runoff is small (July though January). 

Despite these changes, the annual runoff cycle under T6 is generally the same as that of the 

baseline, with heightened runoff in February through May and same peak flow in March.  

To quantify the advance in runoff timing, we consider the date in the water year by which 

50% of the cumulative water year runoff has occurred. This is often called the center of runoff 

volume and widely used within climate science as a metric of snowmelt timing (Stewart et al. 

2004, Stewart et al. 2005, McCabe and Clark 2005). For the most extreme warming scenario 

(T6), the domain-average center of runoff volume advances by a mere 5 days, a rather small 

change given 6 °C warming . This suggests that warming-driven advances in runoff timing in 

this relatively warm region are not significant, likely due to a predominance of liquid rather than 

frozen precipitation.  
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2.5 Summary, discussion and conclusions 

 

Although it has been well documented that climate change is likely to have profound 

impacts on the hydrology of the Western United States, few studies have examined the 

sensitivity of surface hydrology in the Los Angeles region to climate change. Without such 

analysis, the scientific foundation for informed adaptation strategies at the local and regional 

scale is missing. This study aims to close this knowledge gap by exploring sensitivities of both 

annual runoff and AET to regional precipitation and temperature changes.  

This study uses dynamical-downscaling techniques to examine mid-21st century changes 

to surface hydrology over the Los Angeles region under RCP8.5 for five CMIP5 GCMs: CCSM4, 

CNRM-CM5, GFDL-CM3, MIROC-ESM-CHEM and MPI-ESM-LR. Any change in annual 

precipitation is mirrored by a similar, though weaker, change in runoff. However, the average 

annual precipitation change over non-urban land surfaces for each GCM is small compared to 

their range of baseline interannual variability. Despite warming projected by dynamically-

downscaled GCMs in this study, annual mean runoff and AET signals are also found to be well 

within their range of baseline interannual variability. 

Given the small precipitation change, this study includes a series of temperature 

sensitivity experiments to shed light on the hydrologic insensitivity to warming. Three idealized 

simulations are performed in which the baseline climate is perturbed by uniform near-surface air 

temperature increases of 2º, 4º and 6º C. Significant increases in annual mean PET occur with 

increasing temperatures, with strongest increases in the warm months. Despite significantly 

enhanced April to October PET in the idealized warming scenarios, available soil moisture 

confines AET increases to the months of April through June. Small springtime AET increases 
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accelerate soil moisture drying, but exhaust nearly the same amount of moisture, leading to 

miniscule changes in annual mean runoff and AET for all idealized scenarios. This is an artifact 

of the out-of-phase relationship between the annual precipitation and soil moisture cycles and 

annual PET cycle in Mediterranean-type climate zones like the Los Angeles region. 

The finding that annual mean runoff is nearly insensitive to temperature increases in the 

Los Angeles region may have implications for other Mediterranean climate regions. Surface 

hydrology in other Mediterranean climate zones, including most lands around the Mediterranean 

Sea, Western and Southern Australia, and Chile, is similar to that of the Los Angeles region, and 

would likely respond in a similar manner to warming. Previous studies of warming impacts to 

surface hydrology in Mediterranean-type climates outside California have indeed shown similar 

results. Chiew et al. (1995) applied a range of plausible temperature and precipitation changes to 

a rainfall-runoff model to study the sensitivity of runoff and soil moisture in Australian 

catchments to potential changes in climate. They found that compared to precipitation, 

temperature increases alone have negligible impacts on runoff and soil moisture. New (2002) 

examined the sensitivity of runoff in four mountainous catchments in the southwestern Cape of 

South Africa to a range of possible future climate changes, and found that streamflow in all 

catchments is more responsive to precipitation changes than PET changes.  

This study demonstrates that the insensitivity of annual mean runoff to warming in the 

Los Angeles region is an artifact of the region’s Mediterranean climate, but weak changes in 

runoff magnitude associated with climate change may not be unique to the Los Angeles region. 

Previous studies of future runoff changes at the global-scale find that robust changes are 

generally positive or weakly negative, but not strongly negative. In an analysis of coarse-

resolution CMIP5 ensemble-mean projections for annual mean runoff at end-of-21st-century 
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under RCP8.5 compared to end-of-20th-century, Collins et al. (2013) found runoff changes are 

not strongly negative in most regions, including in California, where the ensemble-mean 

projected runoff change is within one standard deviation of internal variability (Collins et al. 

2013). Similarly, in an analysis of output from 14 coupled CMIP5 GCMs under a low-moderate 

emissions scenario (RCP4.5), Zhao and Dai (2015) found that robust projected end-of-21st-

century changes in runoff are generally positive, despite PET increases. Zhao and Dai (2015) 

also found that runoff change patterns are primarily controlled by precipitation changes. 

Although it is difficult to extrapolate from such general global-scale conclusions to individual 

regions, these findings are not inconsistent with ours. 

One potential limitation of this study is that the modeling framework does not take into 

consideration the physiological effects of increased atmospheric carbon dioxide concentrations 

on plant stomatal resistance (i.e. CO! fertilization). Increases in atmospheric carbon dioxide 

concentrations enhance the leaf’s internal carbon dioxide absorption rate. This gives plants the 

flexibility to increase their stomatal resistance to conserve water. CO! fertilization generally 

results in a decrease of canopy transpiration and therefore affects the water balance (Betts et al. 

2007). In our simulations, the CO!  fertilization effect would reduce AET sensitivity to 

temperature increases still further by reducing AET. Therefore, if this study had included CO! 

fertilization effects, the result that annual mean AET and runoff are nearly insensitive to 

temperature increases would hardly change. 

As the focus of this study is future changes to mean surface runoff in the Los Angeles 

region, it has relevance to future changes to local water supply. Small changes to annual mean 

surface runoff suggest that a regional climate change adaptation strategy involving greater 

reliance on local water resources is feasible. However, we did not examine the water demand 
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component of water resource management. In our dynamically-downscaled GCM simulations, 2-

meter relative humidity is projected to decrease by mid-21st-century (not shown). This, coupled 

with large temperature increases and population increases, could greatly increase water demand 

for crops and lawns. Unfortunately, our modeling framework does not take into account water 

management practices, including irrigation. This prevents development of a comprehensive set 

of recommendations regarding future water management, and highlights the need for future 

regional climate modeling that considers climate, hydrology, and water resource management. 

This study diagnoses the sensitivity of the Los Angeles region’s surface hydrology to 

both precipitation and temperature changes. Together, the dynamically-downscaled GCMs and 

idealized simulations suggest both annual mean runoff and actual evapotranspiration in the Los 

Angeles region are almost insensitive to warming, but are instead controlled by possible changes 

in annual mean precipitation. Surface hydrology in other Mediterranean climate regions will 

likely behave similarly. This result greatly mitigates a potential vulnerability of water resources 

to a changing climate in an important semi-arid region of the world. It also reveals that a regional 

climate change adaptation strategy relying on local water resources is a viable one. 
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3  Significant and inevitable end-of-21st-century advances 

in surface runoff timing in California’s Sierra Nevada 

 
3.1 Introduction  

 

Over half of California’s developed water comes from small streams in the ecologically-

sensitive Sierra Nevada (USDA Forest Service 2009). Understanding future changes to 

streamflow in this region is therefore critical to ensuring enough freshwater resources for 

municipal, economic, and ecological purposes in the coming decades. Recent warming has 

already produced detectable changes in the timing, magnitude, and variability of Sierra Nevada 

streamflow (Aguado et al. 1992, Dettinger and Cayan 1995, Cayan et al. 2001, Regonda et al. 

2005, Stewart et al. 2005, McCabe et al. 2005, Maurer et al. 2007, Hidalgo et al. 2009, Kim and 

Jain 2011). In an observation-based study, Stewart et al. (2005) found that from 1948 to 2000, a 

majority of rivers in the Sierra Nevada exhibited earlier timing during the snowmelt season of 

roughly 10-30 days. McCabe et al. (2005) found a similar result for 84 streamflow gauges in the 

Western U.S., with increased April through July temperatures largely accounting for the 

advancement of runoff timing at most sites. Moreover, Cayan et al. (2001) found that the first 

major pulse of snowmelt at high-elevation stream gauges in the Western U.S. advanced by about 

10 days between 1948 and 1995. 

While observed shifts in Sierra Nevada runoff timing have been well documented, few 

studies have produced quantitative estimates of its future changes and the associated uncertainty. 

First, runoff timing in this region is influenced by a complex interplay of climatic and geographic 

factors that are poorly resolved in coarse-resolution global climate models (GCMs). GCM 
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simulations lack important spatial structure in local climatic factors, such as temperature and 

snowpack, which exert dominant controls on runoff timing and its spatial distribution. 

Additionally, GCM resolution is too low to adequately represent physical watershed 

characteristics (e.g. elevation, slope, and vegetation type and coverage) that can also profoundly 

influence runoff timing and its spatial distribution. 

These limitations have motivated efforts to regionalize GCM climate change signals 

through a variety of downscaling methods (Giorgi et al. 1994, Snyder et al. 2002, Timbal et al. 

2003, Hayhoe et al. 2004, Leung et al. 2004, Tebaldi et al. 2005, Duffy et al. 2006, Cabré et al. 

2010, Salathé et al. 2010, Pierce et al. 2013a). In this study, we rely on dynamical downscaling 

to simulate Sierra Nevada hydroclimate. We use a high-resolution regional climate model 

(RCM) to explicitly simulate complex fine-scale physical processes (Caldwell et al. 2009, 

Salathé et al. 2008, Salathé et al. 2010, Arritt and Rummukainen 2011, Pierce et al. 2013a). Our 

RCM framework adequately resolves the Sierra Nevada’s fine-scale topography, the associated 

orographic precipitation and demarcations between solid and liquid forms of precipitation. These 

processes are crucial for accurate representations of accumulated wintertime snowpack and 

spring and summertime runoff. Moreover, it more credibly simulates the strength of the snow 

albedo feedback over high elevations, which has an intricate spatial structure and is also a critical 

influence on runoff timing.  

Previous studies have used RCMs to project future runoff timing changes in the Sierra 

Nevada. Rauscher et al. (2008) used the ICTP Regional Climate Model RegCM3 (Pal et al. 

2007) to investigate future changes in snowmelt-driven runoff over the Western U.S. under the 

A2 emissions scenario (as described in the Special Report on Emissions Scenarios; Nakicenovic 

et al. 2000). They found that increases in January through March temperature of approximately 
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3-5° C could cause runoff to occur as much as two months earlier in the late 21st-century 

compared to a baseline period (1961–1989).  

Future runoff timing projections in Rauscher et al. (2008) are only for one forcing 

scenario and for a small number of GCMs, yielding limited information about most-likely 

outcomes and the associated model spread. Regionalizing a large number of GCMs is necessary 

to quantify ensemble-mean and uncertainty statistics, but is impractical due to the high 

computational cost of RCMs. This shortcoming of RCMs and dynamical downscaling highlights 

the need to develop a technique to project high-resolution future runoff timing in a way that fully 

samples the GCMs without a heavy computational burden. Stewart et al. (2004) provide an 

example of a more computationally feasible method using a statistically-based technique, i.e. 

regression equations between historical precipitation, temperature and runoff timing to project 

future runoff timing. However, they present results for only one climate model under one forcing 

scenario. Moreover, as with nearly all existing statistical techniques, their methodology relies on 

statistical relationships based on historical variability. It is possible those relationships may no 

longer hold in the future, especially for changes in temperature that may far exceed those 

observed during the historical observation period. 

The lack of a high-resolution multi-model analysis of end-of-21st-century runoff timing 

changes over California’s Sierra Nevada serves as the primary motivation for this study. Here is 

a brief overview of our technique. First, five GCMs from the Coupled Model Intercomparison 

Project phase 5 (CMIP5, Taylor et al. 2012) are dynamically downscaled. Then, output from the 

dynamical simulations is used to build a simple statistical model of runoff timing; this model 

takes advantage of dynamical downscaling’s physical credibility but is computationally efficient, 

allowing us to produce a large ensemble of runoff timing projections. Using the statistical model, 
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we project runoff timing changes for all available CMIP5 models and future emissions scenarios 

examined in the IPCC Fifth Assessment Report (Van Vuuren et al. 2011). This allows for the 

quantification of ensemble-mean future runoff timing changes in the Sierra Nevada and its 

associated uncertainty due to inter-model GCM spread, as well as the consequences associated 

with choice of emissions scenarios.    

This chapter is organized as follows: Section 3.2 describes the dynamical downscaling 

model configuration, and provides an observational evaluation of its performance. Section 3.2 

also presents dynamically-downscaled end-of-21st-century changes to runoff timing. Section 3.3 

describes the statistical runoff timing model and its evaluation, as well as statistically-based 

runoff timing projections for the full CMIP5 GCM ensemble under for all forcing scenarios. This 

section quantifies ensemble-mean runoff timing changes, ranges due to intermodel variability, 

and consequences stemming from choice of forcing scenario. Section 3.4 presents a discussion of 

the results. Finally, section 3.5 summarizes the major findings of this study and their 

implications. 

 

3.2 Dynamical model set-up, evaluation and results  

 

3.2.1 Dynamical model set-up 

 

 
Dynamical downscaling is performed using the Weather Research and Forecasting 

(WRF) model version 3.5 (Skamarock et al. 2008). WRF is coupled to the community Noah land 

surface model with multi-parameterization options (Noah-MP, Niu et al. 2011). Three one-way 

nested domains are used to represent the complex topography of California and the Sierra 



	40	

Nevada as accurately as possible (Fig. 3.1a). The outermost domain spans the entire U.S. West 

Coast and adjacent Pacific Ocean at 27 km horizontal resolution. The middle domain, at 9 km 

resolution, covers all of California. Finally, the innermost domain, at 3 km resolution, spans the 

eastern edge of the Central Valley to the leeside of the California Sierra Nevada Mountains (Fig. 

3.1b); this domain is the focus of this study.  

 

 
 
Fig. 3.1: (a) Model setup, with three nested WRF domains at resolutions of 27, 9, and 3 
km (from the outermost to innermost domain). Topography (m) is shown at the 
resolution of the 27km domain in color and black lines show boundaries for US states. 
(b) Topography (m) of the innermost domain (3-km resolution) of the regional 
simulation, with the state borders of California and Nevada in black. Blue circles show 
the locations of 11 USGS-HCDN 2009 streamflow gauges used for model evaluation. 
 

In each domain, all variables within five grid cells from the horizontal lateral boundary 

are relaxed toward the corresponding values at the boundaries. To provide a better representation 

of surface and boundary layer processes, the model’s vertical resolution is enhanced near the 

surface, with 30 out of 43 total sigma-levels below 3 km. WRF parameterization testing has been 

done to optimize the model’s performance in hydroclimate simulations, with the aim of 
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improving the realism of simulated snowpack and streamflow processes in the Sierra Nevada. 

The package of physical parameterizations consists of the New Thompson microphysics scheme 

(Thompson et al. 2008), Dudhia shortwave radiation scheme (Dudhia 1989), Rapid Radiative 

Transfer Model longwave (RRTM) longwave radiation scheme (Mlawer et al. 1997), MYNN 

Level 2.5 surface/boundary layer scheme (Nakanishi and Niino 2006), and Old Kain-Fritsch 

cumulus convection scheme (Kain and Fritsch 1990). Spectral nudging of temperature, zonal and 

meridional winds, and geopotential height is employed above the boundary layer (roughly 850 

hPa) over the outermost 27 km resolution domain.  

Climate changes signals are produced from a single baseline simulation and five future 

simulations. The baseline simulation spans October 1991 to September 2001 (water years 1992–

2001; hereinafter “WY 1992–2001”) and is a dynamical downscaling of the National Centers for 

Environmental Prediction’s 6-hourly North America Regional Reanalysis (NARR; Mesinger et 

al. 2006). NARR is a relatively coarse-resolution (32 km) reanalysis dataset that provides the 

lateral boundary forcings and initial conditions for the outermost WRF domain in Fig. 3.1a. The 

baseline simulation allows us to evaluate the model’s ability to simulate regional runoff timing 

based on a comparison to observational data (Section 3.2.2) and serves as a climate state against 

which we can compare future climate simulations to measure change.  

Using the same model configuration as the baseline, we perform a five-member ensemble 

of dynamical downscaling experiments to simulate a future end-of-21st-century climate. The 

simulations go from October 2091 to September 2101 (water years 2092–2101, hereinafter “WY 

2092–2101”). We dynamically downscale GCM experiments forced by the Representative 

Concentration Pathway 8.5 (RCP8.5) forcing scenario (Riahi et al. 2011). Out of all available 

CMIP5 GCMs forced by RCP8.5, we select five (CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-



	42	

CM5A-LR, and MPI-ESM-LR). These GCMs approximately sample the range of end-of-21st 

century near-surface temperature and precipitation changes over California (Walton et al. 2016).  

To produce boundary conditions for the future WRF simulations, we add a perturbation 

reflecting the mean change in GCM climatology to NARR data for WY 1992–2001, following 

Schar et al. (1996), Hara et al. (2008), Kawase et al. (2009) and Rasmussen et al. (2011). To 

calculate these GCM climate changes, we first quantify the differences in GCM monthly 

climatology between the historical and RCP8.5 experiments (2081–2100 average minus 1981–

2000 average). Differences are calculated for temperature, humidity, zonal and meridional winds, 

and geopotential height. Then, for each of the five dynamically-downscaled GCMs, we perturb 

the baseline 6-hourly NARR reanalysis data for each month by the corresponding monthly mean 

climatological change. The perturbed NARR fields then serve as WRF boundary conditions for 

five future climate simulations. This method allows us to assess how WY 1992–2001 would 

transpire if the mean climate were altered to reflect the climate changes projected by each of five 

GCMs. It allows us to quantify how the climate change signals simulated in the GCMs are 

expressed at the regional scale, without the future simulations being subject to significant biases 

in mean state often found in GCMs. For additional information on model setup, 

parameterizations and design of future simulations, the reader is referred to Walton et al. (2016). 

 

3.2.2 Baseline runoff timing climatology and model evaluation 

 

We first evaluate WRF’s ability to simulate surface runoff timing during the baseline 

period. As a measure of runoff timing, we consider the date in the water year (October 1 – 

September 30; hereinafter WY) by which 50% of the cumulative WY surface runoff has 
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occurred (R50). R50 (often called the center of runoff volume) is widely used as a metric of 

snowmelt timing (Stewart et al. 2004, Stewart et al. 2005, McCabe and Clark 2005, Hayhoe et al. 

2007, Kim and Jain 2011, Khattak et al. 2011). Regonda et al. (2005) suggest that R50 is a more 

robust indicator of snowmelt timing (in its relation to climatic variability and change) than the 

day of peak flow. In this paper, we use R50 both for model evaluation and as a metric to 

diagnose future changes to runoff timing. 

 
 

Fig. 3.2: Baseline (October 1991–September 2001) climatological date of R50, which 
represents the date in the water year  (October 1–September 30) by which 50% of the 
cumulative surface runoff has occurred. The black contour outlines grid points with 
climatological R50 occurring on or after March 1st. 

 

Fig. 3.2 presents the baseline (WY 1992–2001) climatological date of R50 in the 3 km 

domain (seen in Fig. 3.1b). Climatological R50 generally occurs after March 1st throughout the 

Sierra Nevada and shifts to even later in the water year as both elevation and the fraction of 
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precipitation as snow (S/P) increase. At lower elevations in the Northern Sierras where the 

annual S/P (not shown) ranges from 0.6 to 0.8, climatological R50 generally occurs before the 

start of summer. However, mid to high elevations over the Central and Southern Sierras have a 

higher S/P ratio (0.8 to 0.95), which leads to snowmelt-driven surface runoff throughout the 

summer months, pushing back climatological R50. For example, R50 in the mountains just 

southwest of Mono Lake occurs as late as the beginning of July. Throughout the Central Valley, 

Owens Valley and western Great Basin Desert (along the California-Nevada border), annual 

precipitation is low, and any precipitation typically falls as rain (S/P < 0.2), so surface runoff 

timing matches precipitation timing. 

For this study, we consider surface runoff timing changes at locations where surface 

runoff is mostly generated by snowmelt. The March 1st R50 cutoff date segregates snowfall-

dominated grid points from rain-dominated regions or locations with minute climatological 

precipitation. The black contour in Fig. 3.2 denotes locations with climatological baseline R50 

occurring on or after March 1st, indicating snowmelt-dominated runoff. The average baseline 

climatological S/P within the contoured region is 0.86, also indicative of a heavily snowfall-

dominated regime whose accumulated wet-season snowpack generates spring and summer 

snowmelt-dominated runoff. Within the contoured region in Fig. 3.2, the median and mean 

climatological percentage of total water-year runoff that occurs from April through July are 78% 

and 69%, respectively, consistent with other snowmelt-dominated watershed in western North 

America examined by Stewart et al. (2005). We consider only grid points with climatological 

baseline R50 on or after March 1st for the rest of the study. We also exclude inland water 

locations in our analyses. 
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Table. 3.1: Summary of information associated with observational streamflow gauges 
from the United States Geological Survey Hydro-Climatic Data Network-2009 used to 
evaluate the baseline simulation. 
 

The model’s ability to reproduce runoff timing variations during the baseline period is 

assessed by comparing simulated R50 to observations obtained from the United States 

Geological Survey Hydro-Climatic Data Network-2009 (USGS HCDN-2009, 

http://waterdata/usgs.gov/nwis/). The USGS HCDN-2009 is a network of streamflow gauges 

across the United States having the following characteristics: (1) natural streamflow least 

USGS 
HCDN-
2009 ID 

Station  
Name 

Hydrologic 
Unit 

Latitude Longitude Drainage 
area (sq. 
km) 

10308200 East Fork Carson River below 
Markleeville Creek 
 

16050201 38.714 -119.764 716.4 

10336645 General Creek near Meeks Bay, CA 
 

16050101 39.051 -120.118 19.6 

10336660 Blackwood Creek  
near Tahoe City, CA 
 

16050101 39.107 -120.162 29.8 

10336676 Ward Creek at State Highway 89, 
near Tahoe Pines, CA 
 

16050101 39.132 -120.157 24.7 

10336740 Logan House Creek near 
Glenbrook, NV 
 

16050101 39.066 -119.935 5.5 

11230500 Bear Creek near Lake Thomas A. 
Edison, CA 
 

18040006 37.339 -118.973 135.5 

11237500 Pitman Creek below Tamarack 
Creek, CA 
 

18040006 37.198 -119.213 59.8 

11264500 Merced River at Happy Isles 
Bridge, near Yosemite, CA 
 

18040008 37.731 -119.558 468.0 

11266500 Merced River at Pohono Bridge, 
near Yosemite, CA 
 

18040008 37.716 -119.666 833.1 

11315000 Cole Creek near Salt Springs Dam, 
CA 
 

18040012 38.519 -120.212 54.0 

11427700 Duncan Canyon Creek near French 
Meadows, CA 

18020128 39.135 -120.478 25.5 
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affected by direct human activities, (2) accurate measurement records, and (3) at least 20 years of 

complete and continuous records through WY 2009 (Slack et al. 1993; Lins 2012). We obtained 

daily, quality-controlled streamflow data from 11 stations for which data was available within 

our study domain for the baseline period. The locations of the stations are indicated in Fig. 3.1b 

with blue circles, and information associated with each station is summarized in Table 3.1. The 

11 stations represent a variety of elevations, drainage areas and USGS eight-digit Hydrologic 

Unit Codes across Sierra Nevada creeks and rivers. 

 

Fig. 3.3: Observed versus WRF-simulated climatological R50 at 11 USGS streamflow 
gauges (water years 1992–2001). Simulated R50 is estimated as the average R50 of grid 
points upstream of a gauge within its watershed. Colors indicate the correlation 
coefficient between the time series or WRF-simulated and observed values of R50. The 
line y = x is shown in black. 

 

The scatter plot in Fig. 3.3 presents observed climatological R50 versus simulated 

climatological R50 for each of the 11 stations. Simulated climatological R50 is taken to be the 

average R50 of the grid points upstream of a gauge within the USGS Hydrologic Unit to which 
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the gauge belongs. This is equivalent to assuming instantaneous transport of water from the grid 

cell to the stream gauge location. A portion of the biases in our model evaluation are very likely 

due to this primitive river routing scheme. Gauges are colored by the corresponding interannual 

correlation coefficient. For each gauge, simulated R50 is very well correlated with the observed 

R50, with temporal r ranging from 0.75 to 0.96, and the gauge-average r = 0.87. Fig. 3.3 also 

demonstrates that observed and simulated R50 dates are well-correlated spatially (r = 0.62) 

across all gauges. The root-mean-square error between observed and simulated climatological 

R50 is 12 days. While observed dates of climatological R50 range from early-April to early-June 

across all gauges, WRF spans only mid-April to late-May, slightly underestimating the observed 

range. Overall, the agreement between simulated and observed R50 dates indicates that the 

dynamical model is able to capture the main features of spatial and temporal R50 variability 

across the Sierra Nevada. 

 

3.2.3 Dynamically-downscaled end-of-21st-century changes in runoff timing under RCP8.5 

 

Fig. 3.4 (row 1) presents the dynamically-downscaled WRF end-of-21st-century change 

(WY 2092–2101 minus WY 1992–2001) in R50 (ΔR50, unit: days) under the RCP8.5 emissions 

scenario for five GCMs (CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, and MPI-

ESM-LR). For all simulations, advances in R50 are projected at all locations with substantial 

climatological baseline snowmelt-driven surface runoff. GFDL-CM3 (Fig. 3.4b) and IPSL-

CM5A-LR (Fig. 3.4d) project the largest advances, with domain-average advances greater than 

60 days. Advances in domain-average mean R50 for CNRM-CM5 (Fig. 3.4a) and INM-CM4 

(Fig. 3.4c) are smaller, but are still nearly 6 weeks earlier.  
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Fig. 3.4: End-of-21st-century change (water years 2092-2101 average minus 1992-2001 
average, unit: days) in R50 under the RCP8.5 emissions scenario for CNRM-CM5, 
GFDL-CM3, inmcm4, IPSL-CM5A-LR, and MPI-ESM-LR produced from three 
methods. Row 1: Dynamically-downscaled WRF output. Row 2: Statistical projection 
using dynamically-downscaled WRF spring near-surface warming (MAM ΔT2) as input. 
Row 3: Statistical projection using Walton et al. (2016)’s hybrid dynamical-statistical 
downscaled MAM ΔT2 as input. Results are shown for locations with climatological 
baseline R50 on or after March 1st, and green through blue shades represent advances in 
R50. Black text shows domain-average in R50. Blue text in rows 2-3 denotes the mean 
absolute error compared to row 1. Green text in rows 2-3 denotes the spatial correlation 
with row 1 for each GCM. 
 

Advances in mean R50 for all dynamically-downscaled GCMs are greatest in the 

Northern Sierras and the western-facing mountain slopes, and smaller at the highest elevations in 

the Southern Sierras. These spatial patterns can be explained primarily by dynamically-

downscaled 10-year mean near-surface (2-meter) springtime (March-May) warming projections 

(MAM ΔT2). Fig 3.5 (row 1) presents the WRF dynamically-downscaled end-of-21st-century 

change in MAM ΔT2 under the RCP8.5 emissions scenario. For each of the five downscaled 

models, stronger warming is projected in the Northern Sierras and the western-facing mountain 

slopes. These regions have the greatest snow albedo feedback (Walton et al. 2016) and greatest 



	49	

April 1st snow water equivalent (SWE) loss (Sun et al. 2016). This warming leads both decreases 

in annual mean S/P and earlier snowmelt, which together result in large advances in mean R50 in 

those areas. Despite significant future warming (Walton et al. 2016), the highest elevations in the 

Southern Sierras remain well above the freezing line. As a result, changes to S/P and snow 

accumulation are small at the highest elevations, and the weak advances in R50 (10-20 days) at 

those locations are primarily due to earlier snowmelt.  

 
 
Fig. 3.5: End-of-21st-century change (water years 2092-2101 average minus 1992-2001 
average) in near-surface temperature (unit: °C) averaged over March – May under the 
RCP8.5 forcing scenario for CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, 
and MPI-ESM-LR. Row 1: WRF dynamically-downscaled output. Row 2: Hybrid 
dynamical-statistical downscaled output from Walton et al. (2016). Black text shows 
domain-average MAM warming. 
 

Inter-model differences in ΔR50 can also largely be explained by differences in MAM 

ΔT2, as ΔR50 appears to be strongly negatively related to MAM ΔT2. GFDL-CM3 and IPSL-

CM5A-LR project large MAM ΔT2, with domain-average warming of 6.0 °C and 6.9 °C, 

respectively. Some locations warm more than 7 °C. This strong warming explains the sizable 

advances in mean R50 for GFDL-CM3 and IPSL-CM5A-LR. Weaker MAM warming in INM-

CM4 and CNRM-CM5 (domain-average 3.6 °C and 3.7 °C, respectively) corresponds to smaller 

mean R50 advances. (MPI-ESM-LR is moderate in both MAM ΔT2 and change in R50.) This 
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link suggests MAM ΔT2 might be a reasonable predictor for ΔR50, a hypothesis that will be 

explored in the statistical ΔR50 model described in Section 3.3.1. In section 3.4, we also 

consider mean precipitation changes as a predictor for ΔR50; however, precipitation timing 

hardly changes in the downscaled WRF simulations, so inter-model differences in runoff timing 

are likely not attributed to precipitation changes. 

 

3.3 ΔR50 Statistical model description, evaluation and results 

 

Results in the previous section focused only on projections of end-of-21st-century 

changes to mean R50 under the RCP8.5 emissions scenario for five selected GCMs, and have 

shed light on ΔR50 spatial patterns and the relationship between ΔR50 and MAM ΔT2. They do 

not provide enough information to fully assess uncertainty in runoff timing changes due to 

intermodel spread and choice of forcing scenario. To project ΔR50 for all available CMIP5 

GCMs and all forcing scenarios, we develop a computationally efficient yet physically credible 

statistical model. In section 3.3.1, we describe the statistical ΔR50 model and evaluate its ability 

to mimic dynamical results. In section 3.3.2, we use the model to project end-of-21st-century 

ΔR50 under RCPs 2.6, 4.5, 6.0 and 8.5 for all available CMIP5 GCMs. 

 

3.3.1 Statistical ΔR50 model description and evaluation 

 

As noted before, there is a negative relationship between WRF ΔR50 (Fig. 3.4, row 1) 

and MAM ΔT2 (Fig. 3.5, row 1). Fig. 3.6a shows the correlation coefficient for each grid point 

between dynamical ΔR50 and MAM ΔT2. The correlation values reflect a blend of intermodel 
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and interannual variability, as they are calculated from annually-averaged ΔR50 and MAM ΔT2 

values. This produces a sample size of 50 for each grid point (5 models × 10 water years). There 

is a very strong anti-correlation between ΔR50 and MAM ΔT2, with a mean spatial correlation 

coefficient of r = -0.82. That MAM ΔT2 would be a predictor for ΔR50 is physically sensible, as 

climatological baseline R50 for many mountainous locations falls in MAM (Fig. 3.2), and MAM 

runoff accounts for a significant portion of annual runoff throughout much of the Sierras. Thus 

we aim to build a statistical modeling framework that projects ΔR50 given MAM ΔT2 (from raw 

or downscaled GCM output). Section 3.4.1 discusses our choice of MAM ΔT2 as a predictor and 

other predictors we considered. 

 
 
Fig. 3.6: (a) Correlation coefficient between the 5-model dynamically-downscaled 
change in R50 timing (ΔR50) and near-surface March-May warming (MAM ΔT2). (b) 
Slope of the linear regression of the 5-model dynamically-downscaled ΔR50 onto the 5-
model dynamically-downscaled MAM ΔT2. This represents the linear sensitivity of 
ΔR50 to MAM ΔT2, or the average expected advance in R50 per degree MAM ΔT2 
(unit: days/°C). Black text denotes the domain average value. 
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First, we linearly regress the five dynamically-downscaled ΔR50 onto the five 

dynamically-downscaled MAM ΔT2 for each pair of coordinates (i,j) in the 3 km resolution 

domain with climatological baseline R50 on or after March 1st. The slope (α) of this linear 

regression is determined by intermodel and interannual variability, i.e. 50 data points (10 water 

years × 5 models) for each (i,j) pair. Fig. 3.6b presents the spatial pattern of α, the average 

expected advance in mean R50 timing per degree near-surface MAM warming. In calculating α, 

we force the linear relationship to go through (0,0), therefore having no intercept. This is an 

expression of the physical constraint that one would not expect a change in the timing of R50 

without a change in MAM T2. Though the domain average α is -10.2 days/°C, Northern Sierra 

and mid-elevation western slopes are much more sensitive, with projected changes to R50 of 

more than -19 days/°C. The strong sensitivity of R50 to warming at these mid-elevation locations 

is due to the warming-driven S/P decreases and earlier snowmelt, which conspire to advance 

runoff timing. Moreover, these more sensitive regions correspond well to regions of greatest 

projected April 1st SWE decreases (Sun et al. 2016) and greatest snow-albedo-feedback 

enhanced warming and snow cover loss (Walton et al. 2016). After determining α, we then 

predict ΔR50 with following equation: 

ΔR50GCM,i,j j ≅ αi,j * MAM ΔT2 GCM,i,j              (1) 

The relationship between purely interannual R50 and MAM T2 anomalies is linear to a 

very good approximation both in the WRF simulation and observations. In WRF, the domain-

average slope of the linear regression of WY 1992–2001 R50 onto MAM T2 is -11.4 days/°C 

(which is similar to that of the domain-average α of -10.2 days/°C). Observations show a very 

similar sensitivity. Fig. 3.7 presents a scatter plot of observed annual MAM T2 anomalies vs. 

R50 anomalies over WY 1916–2014. Observed interannual R50 and MAM T2 variations in 
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California are well anti-correlated (r = -0.67). Moreover, the observed linear sensitivity of WY 

1916–2014 R50 to MAM T2 is -9.46 days/°C, which closely matches that of the simulated linear 

sensitivity of WY 1992–2001 R50 to MAM T2 (-11.4 days/°C). This agreement provides crucial 

support to the realism of both the WRF simulation and a statistical model based on the linear 

relationships between ΔR50 and MAM ΔT2. 

 

Fig. 3.7: Scatter plot of observed near-surface temperature anomalies (unit: °C) averaged 
over March – May (MAM T2) and observed R50 anomalies (unit: days) over water 
years 1916–2014. The blue line is the linear regression of WY 1916–2014 R50 onto 
MAM T2. Blue text denotes the slope of this linear regression as well as the correlation 
coefficient. MAM 2-m temperature anomalies are calculated from the National Oceanic 
and Atmospheric Administration's National Climatic Data Center’s nClimDiv statewide 
temperature database (ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/state-readme.txt), 
which includes monthly-mean maximum and minimum temperature aggregated at 
statewide levels for the United States for January 1895 to the present. Monthly 
maximum and minimum temperatures are averaged together to calculate monthly mean 
temperature. MAM T2 anomalies presented here are calculated from the detrended 
MAM time series for California. R50 anomalies are calculated from the detrended 
gauge-averaged R50 time series from available observations at the 11 USGS-HCDN 
streamflow gauges in Table 3.1 (described in section 3.2.2). 
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One source of error in the statistical ΔR50 model (Eq. 1) arises from approximating 

ΔR50 as linear function of MAM ΔT2. This error source is likely to be small because the linear 

correlation coefficients between the two variables are very high (Fig. 3.6a). However, we can 

evaluate this error source by projecting ΔR50 using the statistical model with the dynamically-

downscaled MAM ΔT2 under RCP8.5 (Fig. 3.5, row 1) as input. Fig. 3.4 (row 2) presents this 

statistical ΔR50 projection, which can be compared to dynamically-downscaled ΔR50 (Fig. 3.4, 

row 1). Overall, the approximate values of ΔR50 (Fig. 3.4, row 2) almost perfectly mirror the 

dynamically-downscaled values (Fig. 3.4, row 1). The approximate spatial patterns are highly 

correlated with their dynamical counterparts (r > 0.84 for all GCMs). Moreover, the mean 

absolute errors (MAE, calculated by averaging the absolute value of the errors over the region of 

interest) are less than 11 days for all models, small compared to domain-average advances in 

R50 that range between 39 and 66 days. This comparison lends credibility to the choice to model 

ΔR50 as a linear function of MAM ΔT2. 

To apply the statistical ΔR50 model to all GCMs and forcing scenarios, we rely on 

projections of MAM ΔT2 from Walton et al. (2016, hereinafter “W2016”). W2016 produced 3 

km horizontal resolution monthly near-surface warming projections (ΔT2) for our study domain 

for all available CMIP5 GCMs under forcing scenarios RCP8.5, 6.0, 4.5 and 2.6. W2016 used a 

hybrid dynamical-statistical (hereinafter “hybrid”) downscaling technique that relies on two 

large-scale predictors (regional-mean warming and east-west warming contrast) and a 

representation of snow albedo feedback’s significant contribution to elevational variations in 

warming. Fig. 3.5 (row 2) presents end-of-21st-century hybrid downscaled MAM ΔT2 under 

RCP8.5 from W2016. This method captures the spatial pattern and approximate magnitude of 
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MAM ΔT2 for each of the 5 dynamically-downscaled GCMs (Fig. 3.5, row 1), including the 

warming enhancement due to snow albedo feedback at mid-elevations and in the northern Sierras.  

To assess the error associated with the use of W2016’s hybrid downscaled MAM ΔT2 as 

input to our statistical ΔR50 model, we compare the dynamically-downscaled ΔR50 projections 

under RCP8.5 (Fig. 3.4, row 1) to those calculated by the statistical ΔR50 model (Eq. 1) with the 

hybrid downscaled MAM ΔT2 projections of W2016 as input (Fig. 3.4, row 3). Overall, the 

spatial correlations between these ΔR50 patterns and WRF’s dynamically downscaled patterns 

are very high (r > 0.84) and the MAE values are low compared to the magnitude of ΔR50, 

indicating that the use of hybrid downscaled MAM ΔT2 input reproduces dynamically-

downscaled ΔR50 projections reasonably well. Still, we note some minor discrepancies. For 

GFDL-CM3, INM-CM4 and IPSL-CM5A-LR, hybrid projections of MAM ΔT2 by W2016 (Fig. 

3.5, row 2) underestimate the dynamically-downscaled MAM ΔT2 somewhat (Fig. 3.5, row 1). 

As a result, using hybrid downscaled MAM ΔT2 underestimates the magnitude of the 

dynamically-downscaled ΔR50 for those models. Similarly, W2016 slightly overestimates MAM 

ΔT2 for CNRM-CM5 and MPI-ESM-LR, which results in a small overestimation of mean R50 

advances for those GCMs. 

 

3.3.2 Statistical results for full GCM ensemble and all forcing scenarios 

 

Using the statistical ΔR50 model (Eq. 1) with the W2016 hybrid dynamical-statistical 

downscaled MAM ΔT2 as input, we generate projections of mean changes in future runoff 

timing for all available CMIP5 GCMs under four forcing scenarios: RCPs 2.6, 4.5, 6.0 and 8.5. 

Fig. 3.8 (row 1) presents ensemble-mean changes in R50 for RCPs 2.6, 4.5, 6.0, and 8.5. The 
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spatial patterns of ΔR50 are qualitatively similar for each forcing scenario, with the magnitudes 

increasing with forcing scenario. While all locations show some advance, the largest advances 

are found at elevations between 2000 m and 2750 m and are generally on the western slope of 

the Sierra Nevada. In some locations, ensemble-mean R50 is projected to advance by more than 

80 days under RCP8.5. We also note that for RCP8.5, the ensemble-mean domain-average ΔR50 

is -49.2 days, which is very close to that of the five-model dynamically downscaled ensemble (-

51.7 days). This supports the idea that the five GCMs we select for dynamical downscaling 

approximately represent the GCM ensemble, and that hybrid downscaling can be used to capture 

their behavior. 

 

Fig. 3.8: Row 1: Ensemble-mean statistical projections of end-of-21st-century change 
(water years 2092-2101 average minus 1992-2001 average) in R50 (unit: days) under 
emissions scenarios RCP4.5, RCP6.0 and RCP8.5. Row 2: The associated z-score for the 
ensemble-mean change in R50, which is calculated by dividing the mean R50 change by 
the standard deviation of R50 of a 20-year baseline (water years 1982-2001). Black text 
denotes the domain average value. The number of GCMs included in the ensemble-mean 
is denoted in the title. 
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Ensemble mean R50 changes are substantial when compared with the interannual 

variability of the baseline period. To better quantify baseline interannual variability, we extend 

the baseline simulation to span WY 1982–2001. This 20-year simulation uses the same modeling 

framework described in Section 3.2.1, but allows for better quantification of interannual 

variability than the 10-year baseline (WY 1992–2001) used for climate change analysis. Fig. 3.8 

(row 2) presents z-scores associated with the ensemble-mean changes in R50 in Fig. 3.8 (row 1). 

The z-score is calculated by dividing the mean R50 change by the standard deviation of R50 for 

extended baseline period (WY 1982–2001), and therefore represents how far outside the baseline 

WY 1992–2001 R50 distribution an average future R50 is. Under RCP2.6 and 4.5, the domain-

average ensemble-mean z-scores are -0.60 and -0.94, respectively. Under RCP6.0, the domain-

average ensemble-mean z-scores is -1.17, which translates to a future mean R50 equivalent to the 

12th percentile of baseline R50 distribution. Ensemble-mean R50 changes compared to the 

baseline’s interannual variability are most dramatic for RCP8.5, as the domain-average z-score is 

-1.82, approximately the 3rd percentile of baseline R50. Moreover, the ensemble-mean domain-

average R50 is projected to be earlier than that of any baseline year under RCP8.5, indicating a 

dramatic change in runoff timing.  

Fig. 3.9 shows the elevational profile of ΔR50 for the ensemble-mean (thick solid line) 

under the four RCPs. Elevations are binned every 100m, and ΔR50 for a given elevation bin is 

the spatial average across grid cells within the bin. Light gray shading represents the standard 

deviation of R50 over WY 1982–2001 at each elevation, a measure of interannual variability. 

Under RCP8.5 (Fig. 3.9d), ensemble-mean ΔR50 has a greater than one standard deviation 

advance for all elevations above 1400m. Ensemble-mean ΔR50 is outside of one standard 
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deviation in the 2000–3100 m elevation band under RCP6.0 (Fig. 3.9c), but near or less than one 

standard deviation for RCP4.5 and 2.6 (Fig. 3.9a-b).  

 

  
Fig. 3.9: Statistical projections of end-of-21st-century change (water years 2092-2101 
average minus 1992-2001 average) in R50 as a function of elevation (binned every 
100m) under emissions scenarios RCP2.6, 4.5, RCP6.0 and RCP8.5. Solid colored lines 
represent the ensemble-mean R50 change calculated with hybrid dynamical-statistical 
spring warming as input, while dashed colored lines represent the 10th and 90th 
percentiles of this GCM distribution. Light gray shading denotes the standard deviation 
of R50 for the extended baseline period (water years 1982-2001). The region outside of 
the dark gray shading denotes mean changes in R50 that are significant at the 5% level 
according to a one-tailed t-test. Thin black (green) lines represent the ensemble-mean 
R50 change calculated with BCSD-downscaled (BCCA-downscaled) spring warming as 
input. Results are shown for locations with climatological baseline R50 on or after 
March 1st. The number of GCMs included in the hybrid-downscaled GCM ensemble is 
denoted in the title. 
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the GCM spread in ΔR50 when calculated with hybrid downscaled MAM ΔT2. For all forcing 

scenarios, this measure of GCM spread is greatest in the 2000–3000m elevation band, which 

reflects the spread in MAM ΔT2 projections at those elevations (Walton et al. 2016). Under 

RCP8.5, despite an intermodel ΔR50 range of more than 30 days at some elevations, the advance 

in R50 is outside the range of interannual variability for all models in the 2000–3200m elevation 

band. 

To shed light on the significance of these changes, we perform a one-tailed t-test that 

assesses the likelihood that a 10-year sample with a given mean shift in R50 could be drawn 

from the same population as the baseline WY 1982–2001 R50 distribution. To do this, we 

assume the future period is a 20-year sample. The sample size is n = 20, so nineteen degrees of 

freedom are used. The region outside of the dark gray shading in Fig. 3.9 represents changes in 

mean R50 timing that are significant at the 5% level for each elevation. Under RCP6.0 and 8.5 

(Fig. 3.9c-d), ΔR50 is significantly different at the 5% level from the baseline mean for all 

elevations and all GCMs. Although RCP2.6 has smaller absolutely R50 changes, ensemble-mean 

changes are still significant at the 5% level in the 1800-3300m elevation bin, but not for all 

GCMs. Under RCP4.5 (Fig. 3.9b), ensemble-mean ΔR50, despite being within the range of 

interannual variability at most elevations, is significant at all elevations.  

Lastly, under RCP8.5, ΔR50 is significantly different at the 1% level from the baseline 

mean for all elevations and all GCMs (not shown). Estimates of recent global greenhouse gas 

emissions indicate they are closely approaching and possibly exceeding the RCP8.5 pathway (Le 

Quéré et al. 2015). Should emissions continue to follow RCP8.5, it is very likely that future 

advances in snowmelt runoff timing will be dramatically different from internal climate 

variability. 
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3.4 Discussion 

 

In this section, we discuss our choice of MAM ΔT2 as the predictor in the statistical 

ΔR50 model (Eq. 1), as well as some limitations of this choice. We also examine the origin of 

the statistical ΔR50 model’s skill, as well as caveats of this study and our methodology. 

 

3.4.1 Choice of spring warming as the predictor for runoff timing changes 

 

Precipitation changes (especially its seasonality) may also affect future runoff timing, 

thereby suggesting its inclusion as a valid co-predictor. Previous studies have not found robust 

changes in California’s mean precipitation, and have noted only modest projected changes in 

mean precipitation that are small compared to natural variability (Pierce et al. 2013b, Cayan et al. 

2008, Duffy et al. 2006). Nevertheless, testing was done to include mean wet-season 

precipitation changes as a co-predictor along with MAM ΔT2 in the statistical ΔR50 model, but 

little improvement was seen. Using dynamically-downscaled MAM ΔT2 as input to the 

statistical ΔR50 model (Eq. 1), the model-average MAE is 7.2 days (Fig. 3.4, row 2) compared 

to the WRF dynamical ΔR50 projections (Fig. 3.4, row 1). In a statistical model built using both 

MAM ΔT2 and mean wet-season (December-March) precipitation changes as co-regressors and 

input, less than 4% improvement was seen in the model-average MAE. Additional testing was 

done to determine if ΔT2 or precipitation changes averaged over other months produced a more 

skillful model than one that relies on only MAM ΔT2, but no value was gained. Including 

changes to April 1st SWE as a co-predictor also added no value to the model. Overall, this 

indicates that advances in R50 are nearly entirely driven by warming, consistent with previous 
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studies of observed and projected runoff timing changes over the Sierra Nevada and Western 

United States (e.g. Stewart et al. 2004).  

We note that the dynamical downscaling framework imposes identical interannual 

variability levels between the baseline and future time slices. Possible changes to interannual 

variability patterns in the 21st century, for example the El Nino-Southern Oscillation 

phenomenon (Cai et al. 2014), could significantly impact overall precipitation levels and timing 

through atmospheric teleconnections, a factor that is not fully accounted for in this study. 

However, as the focus of this study is the change in mean runoff timing, it is difficult to see how 

the absence of El-Nino-driven changes in overall precipitation would affect the conclusions 

significantly. 

 

3.4.2 Importance of warming patterns that consider snow albedo feedback in projecting ΔR50 

 

The ΔR50 statistical model (Eq. 1) is designed to produce ΔR50 outcomes given MAM 

ΔT2 (from raw or downscaled GCM output) as input. In section 3.3.1, we assessed errors in the 

statistical ΔR50 projections associated with use of the hybrid downscaled MAM ΔT2 projections 

of W2016 as input (Fig. 3.4, row 2) compared to the use of WRF dynamically-downscaled MAM 

ΔT2 projections (Fig. 3.4, row 3). Both WRF dynamically-downscaled and hybrid-downscaled 

MAM ΔT2 projections explicitly consider warming enhancement due to snow albedo feedback 

(SAF) and its intricate spatial structure (Fig. 3.5). Here we quantify the importance of using 

high-resolution warming patterns that explicitly consider SAF as input to the ΔR50 statistical 

model.  
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Fig. 3.10: End-of-21st-century change in near-surface March–May temperature (unit: °C) 
under the RCP8.5 forcing scenario averaged over five GCMs (CNRM-CM5, GFDL-
CM3, INM-CM4, IPSL-CM5A-LR, and MPI-ESM-LR) downscaled using 5 methods: 
(a) WRF dynamical downscaling, (b) Walton et al. (2016)’s statistical downscaling, (c) 
linear interpolation, (d) BCCA, and (e) BCSD. Black text denotes domain-average 
warming within black contoured region. Red text in b-e denotes the spatial correlation 
with (a) within the black contoured region. 

 

 

Fig. 3.11: Statistical projection of end-of-21st-century change in R50 (unit: days) under 
the RCP8.5 forcing scenario averaged over five GCMs (CNRM-CM5, GFDL-CM3, 
INM-CM4, IPSL-CM5A-LR, and MPI-ESM-LR) calculated with MAM ΔT2 from (a) 
WRF dynamical downscaling, (b) hybrid dynamical-statistical downscaling of Walton et 
al. (2016), (c) linear interpolation of GCM output, (d) BCCA statistical downscaling, 
and (e) BCSD statistical downscaling. In b-e, a is subtracted to highlight differences. 
Results are shown for locations with climatological baseline R50 on or after March 1st, 
and black text denotes domain-average value. 

 



	63	

For this exercise, we consider three methods of projecting MAM ΔT2 that do not 

consider SAF, at least not explicitly: linear interpolation of GCM output, Bias Correction and 

Constructed Analogs (BCCA; Hidalgo et al., 2008; Maurer and Hidalgo, 2008) and Bias 

Correction with Spatial Disaggregation (BCSD; Wood et al., 2002; Wood et al., 2004; Maurer, 

2007). BCCA and BCSD are two commonly used statistical downscaling techniques. Linear 

interpolation is a simple and naïve method of downscaling GCM output that represents a baseline 

measure of downscaling skill against which the other methods can be compared. BCCA and 

BCSD temperature projections were obtained online from the archive of Downscaled CMIP3 and 

CMIP5 Climate and Hydrology Projections [Reclamation, 2013]. BCCA temperature projections 

are available as daily maximum and minimum temperatures at 1/8 degree resolution; we average 

these together to produce monthly average temperatures. Similar processing was applied to 

BCSD maximum and minimum temperatures, which are available as monthly averages.  

Fig. 3.10 presents the end-of-21st-century change (WY 2092-2101 average minus WY 

1992-2001 average) in near-surface MAM temperature under the RCP8.5 forcing scenario 

averaged over five GCMs (CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, and MPI-

ESM-LR) downscaled using 5 methods: (a) WRF dynamical downscaling, (b) hybrid 

downscaling, (c) linear interpolation, (d) BCCA and (e) BCSD. Both dynamical downscaling 

(Fig. 3.9a and Fig 3.5a-e) and hybrid downscaling (Fig. 3.9b and Fig. 3.5f-j) reveal warming 

amplification due to snow cover loss, a crucial factor that modulates warming. However, 

warming patterns produced through linear interpolation (Fig. 3.9c), BCCA (Fig. 3.9d) and BCSD 

(Fig. 3.9e) do not feature a warming enhancement at mid-elevations and in the southern Sierras 

linked to snow cover loss and SAF. We note that warming signals produced through BCSD 

downscaling are nearly identical to those produced using linear interpolation. This similarly 
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arises because BCSD applies the same bias correction to both the baseline and future time 

periods, and thus BCSD climate change signals closely match those produced through linear 

interpolation of raw GCM output. For a comprehensive analysis of the difference in warming 

patterns that arise through the various downscaling methods, the reader is referred to W2016. 

Next, we analyze the patterns of runoff timing that arise from the ΔR50 statistical model 

(Eq. 1) calculated with the five methods of downscaled MAM ΔT2 in Fig. 3.10 as input. Fig. 

3.11a presents WRF-generated ΔR50 values averaged over the five GCMs, while Fig. 3.11b-e 

show the differences between WRF ΔR50 outcomes and those produced with MAM ΔT2 from 

the other four downscaling methods. Using W2016’s hybrid downscaled MAM ΔT2 model as 

input to the ΔR50 statistical model produces ensemble-mean ΔR50 outcomes (Fig. 3.11b) very 

similar to those produced with WRF dynamically downscaled MAM ΔT2 as input (domain 

average mean absolute error is only 1.99 days). However, ΔR50 outcomes produced using 

linearly interpolated, BCCA and BCSD (Fig. 3.11c-e) MAM ΔT2 systematically underestimate 

the magnitude of ΔR50 in WRF (Fig. 3.11a), with domain-average differences of 7.67, 13.97 and 

8.41 days, respectively. Differences between ΔR50 outcomes produced using WRF MAM ΔT2 

and those produced using linear interpolation, BCCA and BCSD are greatest in the Northern 

Sierras and at mid-elevations on the western slopes. In these regions, linear interpolation, BCCA 

and BCSD systematically underestimate warming due to their inability to capture warming 

amplification due to SAF. For example, ΔR50 outcomes produced using BCCA MAM ΔT2 are 

20-30 days less than those produced using WRF’s MAM ΔT2 at these locations. However, at the 

highest elevations (>3000 m), WRF’s MAM ΔT2 (Fig. 3.10a) roughly agrees with that of linear 

interpolation (Fig. 3.10c) and BCSD (Fig. 3.10e). This approximate agreement in MAM ΔT2, 

together with a weaker linear sensitivity of ΔR50 to MAM ΔT2 at the highest elevations (Fig. 
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3.6b) are the main reasons ΔR50 calculations from WRF’s MAM ΔT2 are within 10 days of 

those calculated from linear interpolated or BCSD MAM ΔT2 at the highest elevations.  

This idea is further explored in Fig. 3.9, where thin black (green) lines show the 

elevational profile of ensemble-mean ΔR50 calculated with BCSD-downscaled (BCCA-

downscaled) spring warming as input. As mentioned before, the elevational profile of ΔR50 

calculated with BCSD-downscaled spring warming is nearly identical to that produced using 

linearly interpolated GCM spring warming. For each RCP, using BCSD or BCCA downscaled 

MAM ΔT2 as input to the R50 statistical model (black and green lines, respectively) 

underestimates the magnitude of the R50 advance at elevations below 2700m compared to that 

calculated using W2016’s hybrid downscaled MAM ΔT2 (solid colored lines). This is due to the 

underestimation of mid-elevation (2000-2700m) warming in GCMs that stems from their 

inability to resolve SAF. Overall, this exercise and Figs. 3.9-3.11 indicate the importance of 

high-resolution warming patterns that explicitly consider SAF as input to the statistical ΔR50 

model in order to mimic the ΔR50 outcomes projected by WRF (section 3.2.3). 

 

3.5 Summary and Implications 

 

By developing a statistical model for the date in the water year (WY, October 1 – 

September 30) by which 50% of the cumulative WY surface runoff has occurred (R50), we are 

able to create multi-model projections of high-resolution changes to Sierra Nevada runoff timing 

for the end-of-the-21st century under a range of emissions scenarios. Projections are based on 

linear relationships between springtime warming and runoff timing changes (WY 2092–2101 

average minus WY 1992–2001 average) according to five dynamically downscaled GCMs. 
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Hybrid dynamical-statistical downscaled temperature that explicitly accounts for snow albedo 

feedback (Walton et al. 2016) is then used to project runoff timing changes for all GCMs within 

forcing scenarios RCP2.6, 4.5, 6.0, and 8.5. Evaluation of the statistical model for runoff timing 

projections shows that it is able to successfully reproduce dynamically downscaled solutions and, 

moreover, can credibly downscale any GCM given only its regionalized springtime temperature 

change.  

Warming-driven advances in R50 are greatest under RCP8.5, the most aggressive forcing 

scenario. Advances of up to 60 days are projected in the ensemble-mean for the 2000–2750m 

elevation band, with some models projecting advances of over 75 days. Runoff timing over these 

elevations is most sensitive to temperature changes given its proximity to the freezing line, 

where warming enhanced by snow albedo feedback leads to strong shifts toward more liquid 

precipitation and advances in snowmelt timing. Above and below this elevation band, advances 

are still significant, but lower in magnitude (20–50 days). Advances in runoff timing are also 

found in warming scenarios that curtail greenhouse gas emissions, but are significantly less than 

in RCP8.8. For example, under RCP4.5, which is arguably the most realistic mitigation scenario 

given estimates of recent global greenhouse gas emissions (Le Quéré et al. 2015), runoff timing 

advances in the 2000–2750m elevation band are reduced to under 40 days, roughly one-third less 

than under RCP8.5. Similarly, runoff timing advances at higher (e.g. above 2800m) and lower 

(e.g. below 2000m) elevations are less severe in both RCP4.5 and RCP6.0. It is interesting to 

note that under RCP2.6, the most optimistic forcing scenario (and perhaps unrealistically 

optimistic), though mean runoff timing changes are generally within the envelope of interannual 

variability at all elevations, they are still statistically significant in the 1800–3300m elevation 

band. 



	67	

An advance in runoff by 50–70 days is likely to have major implications for California’s 

water resource infrastructure, and it would be helpful from both a societal and policy perspective 

to examine whether the current infrastructure – built on the assumption that the snowpack of the 

Sierras melts gradually throughout the dry season – can accommodate such drastic changes to 

snowmelt timing. Reservoir operational rule curves specify the monthly target water level for 

each reservoir. Rule curves were developed in the mid-1900s when most of California’s dams 

were built, and the historical data used inform them reflects the hydroclimate of only the first 

half of the 20th century (Willis et al. 2011). Given significant changes to snowmelt runoff timing 

found in this study, it will likely be necessary to update rule curves to avoid detrimental and 

wasteful water releases. Changes to runoff timing will also have important consequences for 

water rights tied to specific seasons or months. Lastly, shifts in runoff timing have implications 

beyond California’s water resources, including aquatic ecosystem vitality, wildfire activity (via 

soil moisture changes) and recreational activities throughout the Sierra Nevada. Long-term 

climate and streamflow observations throughout the Sierra Nevada will continue to be crucial for 

detection of runoff timing trends.   
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4 Future soil moisture drying in the Sierra Nevada 
 

4.1 Introduction 
 

Understanding the response of soil moisture (SM) in the Sierra Nevada Mountains to 

future warming scenarios is critical to determining impacts of regional climate change. First, 

wildfire risk in the Western US is strongly linked to SM, as the depletion of SM results in very 

dry foliage and surface fuels, thereby increasing the potential for rife wildfire (Swetnam and 

Betancourt 1998). Second, because SM is critical to plant development and ecosystem 

productivity, changes in SM could cause changes to vegetative cover. Third, SM drying may 

expand the spatial extent, severity and frequency of droughts over the Western US (Sheffield and 

Wood 2008), and droughts have extreme economic and social impacts (Howitt et al. 2014). 

Lastly, because the Sierra Nevada Mountains provide more than 60% of California’s 

consumptive water (Bales et al. 2011), it is critical to assess the response of its snow-dominated 

hydrological cycle to climate change in order to satisfy California’s municipal, agricultural, and 

ecological freshwater demands in the 21st century.  

In the Sierra Nevada, future SM may increase early in the snow melt season (January-

March) due to the thawing of previously frozen landscapes and increased snow melt, with only a 

minor increases in potential evaporation during these months of relatively low net radiation.  

However, later in the melt season (April-August), SM may decrease dramatically, as snow melt 

is exhausted earlier and evaporative demand increases greatly due to the non-linearity of the 

Clausius-Clapeyron relationship (Blankinship et al. 2014, Barnett et al. 2005). This framework 

for understanding seasonal SM changes is complicated by uncertainties in future precipitation 

(P) projections, as GCMs disagree on the sign of future P changes over California (Das et al. 
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2013, Neelin et al. 2013, Berg et al. 2015). Future P decreases would certainly exacerbate 

warming-driven SM losses, though even additional P may not prevent spring/summer SM drying 

given strong warming-driven reductions in snowpack and advances in runoff timing.  

Using output from global climate models (GCMs) in the Coupled Model Intercomparison 

Project Phase 5 (CMIP5, Taylor et al. 2012), several studies have examined the response of SM 

to rising greenhouse gas concentrations in the 21st century. Analyzing output from 11 CMIP5 

GCMs, Dai (2013) found strong model agreement that end-of-21st-century (2080–2099) annual 

surface (upper 10cm) SM over California is projected to decrease around 10% under the 

Representative Concentration Pathway 4.5 (RCP4.5) forcing scenario compared to 1980–1999. 

Similarly, in an analysis of end-of-21st-century projections from 32 CMIP5 GCMs under the 

RCP8.5 forcing scenario, Collins et al. (2013, Figure 12.23) found robust and significant annual 

mean surface SM declines of about 1-2 mm over California; these declines are consistent with 

large-scale regional warming and are expected to increase the risk of agricultural drought. 

Seager et al. (2013) expanded on previous assessments of future annual-mean SM by 

exploring future SM changes, which are important because much of the Sierra Nevada’s water 

storage relies on inflows from winter P, but crops depend on summertime SM. Focusing on near 

future (2021–2040) projections from 16 CMIP5 GCMs under RCP8.5 over California and 

Nevada, Seager et al. (2013) found winter (JFM) ensemble-mean P increases (with little change 

in ensemble median P), which, together with warming-driven JFM evaporation (E) increases, has 

little net effect on JFM SM, runoff and P minus E. However, in the other seasons, Seager et al. 

found most GCMs have both decreasing P and increasing E, which cause spring and summer 

declines in both runoff and SM. Lastly, Seneviratne et al. (2013) examined end-of-21st-century 

regional responses of SM as projected by five Earth System Models in the Global Land-
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Atmosphere Climate Experiment - Coupled Model Intercomparison Project Phase 5 (GLACE-

CMIP5) experiment under RCP8.5. The authors found strong model agreement in declining 

summertime (JJA) SM of 5-15% over the much of Southwestern United States (including parts 

of California), attributed to projected mean changes in JJA P and E.   

While GCMs offer insight into future SM changes under various emissions scenarios, 

their coarse resolution prevents the adequate representation of the complex topography of the 

Sierra Nevada and the associated orographic processes. GCMs may miss orographic precipitation, 

temperature (T) variations due to snow-albedo-feedback (which influence ET fluxes) and 

snowpack structure, all of which influence SM and its spatial distribution in the Sierra Nevada. 

So, downscaling methods are often used to regionalize GCM climate change signals to much 

higher spatial resolutions (Giorgi et al. 1994, Snyder et al. 2002, Timbal et al. 2003, Hayhoe et al. 

2004, Leung et al. 2004, Tebaldi et al. 2005, Duffy et al. 2006, Cabré et al. 2010, Salathé et al. 

2010, Pierce et al. 2013).   

Downscaling is typically done either statistically (using empirical relationships) or 

dynamically (using a regional climate model). Statistical downscaling has aided previous studies 

of climate change impacts to SM and surface hydrology. Its low computational cost allows 

statistical downscaling to be quickly applied to many GCMs and forcing scenarios (Pierce and 

Cayan 2013). However, statistical methods may miss key processes such as snow albedo 

feedback (Walton et al. 2016) and may show substantially reduced accuracy when applied to a 

warmer climate (Gutierrez et al. 2013).  In a study of future SM over the Southwest United 

States, Cayan et al. (2010) employed a widely-used statistical downscaling technique, bias 

corrected constructed analogues (BCCA; Hidalgo et al. 2008, Maurer and Hidalgo 2008) to 

regionalize T and P output from two GCMs from the Coupled Model Intercomparison Project 



	71	

Phase 3 (CMIP3). Statistically downscaled T and P were used to force the Variable Infiltration 

Capacity (VIC) hydrological model, and Cayan et al. found increased future aridity and drought 

severity associated with rising summertime T in the Southwest United States. Christensen and 

Lettenmaier (2007) used another common statistical downscaling technique, Bias Correction 

with Spatial Disaggregation (BCSD; Wood et al. 2002; Wood et al. 2004), to downscale T and P 

output from 11 CMIP3 GCMs for the Colorado River Basin, and then used the downscaled 

climate scenarios to force VIC. Nearly all of the statistically downscaled scenarios projected 

annual SM declines around 10% by the end-of-21st-century under the most aggressive warming 

scenario (“A2 emissions scenario”) that the authors considered. 

Dynamical downscaling using a regional climate model is another way to regionalize 

GCM climate change signals. Dynamical downscaling directly simulates complex fine-scale 

physical processes, like orographic precipitation, snowpack accumulation and melt, and runoff.  

Having more physically realistic simulation of these key inputs should improve modeling of SM 

in the Sierra Nevada. Running a regional climate model is often very computationally expensive, 

so dynamical downscaling studies are usually limited to only one or two downscaled GCMs. For 

example, Sato et al. (2007) used the Terrestrial Environment Research Center Regional 

Atmospheric Modeling System (TERC-RAMS) to dynamically downscale one GCM under the 

A2 emissions scenario over Mongolia. They found July SM declines of around 5% due to 

decreased P and warming-driven PET increases, suggesting the frequency of severe droughts 

may increase due to climate change. Over the greater Los Angeles region, Schwartz et al. 

(2016a) dynamically downscaled five CMIP5 GCMs using the Weather Research and 

Forecasting model (WRF), and found that future warming causes soils to dry earlier in the year, 

but with no change in annual SM due to available water limitations in the semi-arid 
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Mediterranean-type climate regime. Thus, previous studies, which employ both dynamical and 

statistical downscaling techniques, demonstrate that the response of SM to climate change is both 

regional-specific and sensitive to the magnitude and phasing of T and P changes. 

Perhaps due to the computational demands of regional climate models, there has been no 

dynamically downscaled-based CMIP5 analysis of 21st century SM changes over the California 

Sierra Nevada (to our knowledge). The goal of this paper is to provide a high-resolution multi-

model examination of end-of-21st-century SM changes over the Sierra Nevada.  This study uses a 

hybrid dynamical-statistical downscaling approach pioneered by Walton et al. (2015). Under this 

approach, a handful of GCMs are downscaled dynamically, then the dynamical results are 

extended to a full ensemble of GCMs using a statistical model.  This approach allows us to 

produce results with the physical realism of dynamical downscaling for an entire ensemble of 

GCMs, without the high computational cost of dynamically downscaling each one.  

Here is a brief overview of our study. First, five CMIP5 GCMs are dynamically 

downscaled (sections 4.2-4.3). Then, output from the dynamical simulations is used to build a 

statistical model for SM (section 4.4). In section 4.5, we use the statistical model to project end-

of-21st-century SM for all available CMIP5 models for all future emissions scenarios examined 

in the IPCC Fifth Assessment Report (van Vuuren et al. 2011). This allows for the quantification 

of ensemble-mean future SM changes in the Sierra Nevada, along with the associated uncertainty 

due to inter-model spread and emissions scenarios.   Finally, sections 4.6 and 4.7 discuss the 

study’s results and limitations, along with a summary the major findings and their implications.  

This study is part of a larger project that includes separate downscaling-based assessments of the 

CMIP5 ensemble’s end-of-21st-century projections for temperature (Walton et al. 2016), 

snowpack (Sun et al. 2016b) and surface runoff timing (Schwartz et al. 2016b) over the Sierra 
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Nevada. Collectively, these studies offer a high-resolution picture of future regional 

hydroclimate. 

 

4.2 Dynamical downscaling framework and evaluation 

 

4.2.1 Dynamical downscaling framework 

 

The dynamically downscaling simulations used in this study are the same as that 

employed in Walton et al. (2016), Sun et al. (2016) and Schwartz et al. (2016b). The text in 

section 4.2.1 is derived from Schwartz et al. (2016b) with minor modifications. Dynamical 

downscaling is performed using the Weather Research and Forecasting (WRF) model version 3.5 

(Skamarock et al. 2008). WRF is coupled to the community Noah land surface model with multi-

parameterization options (Noah-MP, Niu et al. 2011). Three one-way nested domains are used to 

represent the intense topography of the Sierra Nevada as accurately as possible (Fig. 4.1a). The 

outermost domain (not shown) spans the U.S. West Coast and adjacent Pacific Ocean at 27 km 

horizontal resolution. The middle domain (D2), at 9 km resolution, covers all of California. 

Finally, the innermost domain (D3), at 3 km resolution, spans the eastern edges of the 

Sacramento and San Joaquin Valleys to the leeside of the California Sierra Nevada Mountains 

(Fig. 4.1b); this domain is the focus of this study. As the emphasis of this study is 0-10cm SM, 

we exclude lake, reservoir and urban locations in our analysis. 

WRF parameterization testing has been done to improve the simulation of hydroclimate, 

with a focus on Sierra Nevada snowpack and streamflow. The suite of physical parameterizations 

includes the New Thompson microphysics scheme (Thompson et al. 2008), Dudhia shortwave 
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radiation scheme (Dudhia 1989), Rapid Radiative Transfer Model longwave (RRTM) longwave 

radiation scheme (Mlawer et al. 1997), MYNN Level 2.5 surface/boundary layer scheme 

(Nakanishi and Niino 2006), and Old Kain-Fritsch cumulus convection scheme (Kain and Fritsch 

1990). Spectral nudging of temperature, zonal and meridional winds, and geopotential height 

above the boundary layer is employed over the outermost domain.  

 

 
 
Fig. 4.1: (a) Model setup, showing the two innermost nested domains: D2 (9 km 
horizontal resolution) and D3 (3 km horizontal resolution). Circles show the locations of 
7 NOAA U.S. Climate Reference Network (USCRN) stations (orange) and 13 USDA 
Soil Climate Analysis Network (SCAN) stations (blue) used for model evaluation. (b) 
Topography (m) of the innermost domain (3-km resolution) of the regional simulation, 
with the state borders of California and Nevada in black. 
 

Climate changes signals are produced from a single baseline simulation and five future 

simulations. The baseline simulation spans October 1991 to September 2001 (water years 1992–

2001; hereinafter “WY 1992–2001”) and is a dynamical downscaling of the National Centers for 

Environmental Prediction’s 6-hourly North America Regional Reanalysis (NARR; Mesinger et 

al. 2006). NARR is a relatively coarse-resolution (32 km) reanalysis dataset that provides the 

lateral boundary forcings and initial conditions for the outermost WRF domain in Fig. 4.1a. The 

baseline simulation allows us to assess the model’s ability to simulate regional SM through 
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comparison to available observations (Section 4.2.2) and serves as a climate state against which 

we can compare future climate simulations to quantify change. 

Using the same model configuration as the baseline, we perform a five-member ensemble 

of dynamical downscaling experiments to simulate end-of-21st-century climate. The future 

simulations span October 2091 to September 2101 (water years 2092–2101, hereinafter “WY 

2092–2101”). We dynamically downscale GCM experiments forced by the Representative 

Concentration Pathway 8.5 (RCP8.5) forcing scenario (Van Vuuren et al. 2011) for five CMIP5 

GCMs: CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, and MPI-ESM-LR. Out of all 

available GCMs forced by RCP8.5, this five-member ensemble approximately spans the range of 

end-of-21st-century near-surface T and P changes over California (Walton et al. 2016, Fig. 2).  

To produce boundary conditions for the future WRF simulations, we add a perturbation 

reflecting the mean change in GCM climatology to NARR data for WY 1992–2001, following 

the “pseudo-global warming” (PGW) method (Schar et al. 1996, Hara et al. 2008, Kawase et al. 

2009, and Rasmussen et al. 2011). This method allows us to assess how WY 1992–2001 would 

transpire if the mean climate were altered to reflect climate changes projected by each of the five 

selected GCMs. We first quantify differences in GCM monthly climatology between the 

historical and end-of-21st-century RCP8.5 experiments (2081–2100 average minus 1981–2000 

average) for temperature, humidity, zonal and meridional winds, and geopotential height. Then, 

for each of the five selected GCMs, we perturb the baseline 6-hourly NARR reanalysis data for 

each month by adding the corresponding monthly mean climatological change. The perturbed 

NARR fields then serve as WRF boundary conditions for the five future simulations.  

This approach allows us to quantify how GCM climate change signals are expressed at 

the regional scale, without the future simulations being subject to significant mean state biases 
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often found in GCMs. For additional information on the dynamically downscaled simulations, 

the reader is referred to Walton et al. (2016).  

 

4.2.2 Model evaluation 

 

We evaluate WRF’s ability to simulate historical spatial and temporal SM variability by 

comparing simulated surface (0-10cm) SM to available observational data. Due to the scarcity in 

long-term, large-scale SM observations (Robock et al. 2000; Seneviratne et al. 2013), there are 

unfortunately limited in situ SM observations within this study’s focus domain (Fig. 4.1b) during 

the baseline period (WY 1992–2001). In an effort to assess both climatological SM and its 

interannual variability, our evaluation of WRF-simulated SM focuses on the 9-km resolution 

domain (D2 in Fig. 4.1a) of the regional downscaling simulation, and we extend the historical 

simulation for D2 to span WY 1992-2015. Using a larger domain and longer time period for this 

evaluation exercise provides a greater number of SM observations to compare with WRF-

simulated SM. 

In situ SM observations were obtained from two observational networks: the U.S. 

Department of Agriculture’s National Soil Survey Center’s Soil Climate Analysis Network 

(SCAN; Schaefer et al. 2007, http://www.wcc.nrcs.usda.gov) and the National Oceanic and 

Atmospheric Administration’s U.S. Climate Reference Network (USCRN; Leduc et al. 2009, 

http://www.ncdc.noaa.gov/crn/). SCAN provides daily fractional SM (m3/m3) data at a depth of 4 

inches (~10.16cm), and USCRN provides daily SM at a depth of 10 cm. After obtaining data 

from all stations within the 9-km resolution domain with some daily SM data over WY 1992-

2015, daily SM observations were averaged to produce a time series of monthly average SM. 
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Months with more than seven missing days of data are not used for this evaluation exercise. 

Additionally, to assess both climatological SM and its interannual variability, we include only 

stations with at least three years of data. Thirteen SCAN stations and seven USCRN stations 

meet these criteria, and their locations are shown in Fig. 4.1a by blue and orange circles, 

respectively.  

 
 

 Fig. 4.2:  Evaluation of the dynamical downscaling framework’s ability to simulate soil 
moisture compared to available in situ observations from stations in the National 
Oceanic and Atmospheric Administration’s U.S. Climate Reference Network (USCRN) 
and the U.S. Department of Agriculture’s National Soil Survey Center’s Soil Climate 
Analysis Network (SCAN). In situ observations are compared to WRF output at the 
nearest grid point in the 9-km domain over water years 1992-2015. (a) Correlation 
coefficients of annual mean soil moisture between observational stations and the nearest 
grid point in the 9-km WRF output. (b) Comparison of observed and WRF-simulated 
monthly climatological soil moisture at observational stations (black) and the nearest 
grid point in the 9-km WRF output (gray). Large circles represent station-averages, and 
small circles represent individual stations. 
 

In Fig. 4.2a, we correlate available mean water year SM observations with that simulated 

at the nearest WRF grid point in the 9-km output over WY 1992-2015. Correlations greater than 

r = 0.50 are found across all but one stations, with 16 stations having correlations above r = 0.60. 

Very high correlations (r > 0.80) are found throughout coastal stations and in the stations close to 

the Sierra Nevada. Stations with relatively low correlations are generally in extremely dry desert 

regions (where SM has little interannual variability). Overall, the interannual variability in SM 
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observed at SCAN and USCRN stations throughout California and neighboring state is 

reproduced by WRF reasonably well.  

Fig. 4.2b compares monthly climatological SM for SCAN and USCRN stations (black) 

with that simulated by the nearest grid point in the 9 km WRF domain (gray), where large circles 

show the station-average climatological monthly SM and small circles represent the 20 stations. 

WRF’s simulation of the annual SM cycle is consistent compared to observation, with station-

average correlation r = 0.78 and station-average root mean squared error in monthly 

climatological SM values of 0.031 m3/m3. WRF reasonably simulates both the magnitude and 

phasing of monthly SM, where soils are relatively moist December through April, and dry the 

remaining months. The seasonality of SM in the domain of interest stems from the region’s 

distinct wet/cool (October-March) and dry/warm (April-September) seasons. Wet-season P and 

spring snowmelt moisten surface soils November-May, but spring/summer evapotranspiration 

deplete SM until it reaches its September minimum. Overall, Fig. 4.2b indicates WRF is able to 

simulate seasonal variations in SM reasonably well across the domain.  

We note that prior studies have evaluated the realism of the spatial and temporal patterns 

in temperature and snow cover (Walton et al. 2016), snow water equivalent (Sun et al. 2016), and 

surface runoff timing (Schwartz et al. 2016b) for these dynamically downscaled simulations. 

Overall, Fig. 4.2 and the aforementioned studies demonstrate that this WRF framework simulates 

SM variability during the historical period with reasonable accuracy where reliable observational 

data are available; this give us confidence that our dynamical downscaling framework is likely to 

be able to reproduce spatial, seasonal and interannual SM variations throughout the Sierra 

Nevada. 
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Fig. 4.3:  End-of-21st century relative change in 0–10cm soil moisture (unit: % per year) 
averaged over the water year (October–September, left column), wet season (October–
March, center column) and dry season (April–September, right column) under the 
RCP8.5 forcing scenario according to the five dynamically downscaled models (rows 1-
5) and the model-average (row 6). Stippling indicates statistical significance at the 95% 
level using a two-tailed Student’s t-test.  Domain-averages are reported in the upper 
right inset of each panel, with brown text denoting domain-average 0–10cm soil 
moisture drying and blue text denoting domain-average 0–10cm soil moisture 
moistening. 
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4.3 Dynamically downscaled end-of-21st-century SM changes under RCP8.5  

 

4.3.1 Water year and seasonal soil moisture changes 

 

Fig. 4.3 presents the dynamically downscaled end-of-21st-century (WY 2092–2101) 

fractional change (unit: %/year) in surface (upper 10cm) SM relative to the baseline (WY 1992–

2001) under the RCP8.5 emissions scenario for five GCMs (CNRM-CM5, GFDL-CM3, INM-

CM4, IPSL-CM5A-LR, and MPI-ESM-LR) and the five-model ensemble mean (bottom row). 

Results are shown for the 3-km resolution domain (D3 in Fig. 4.1a). Soil moisture changes 

(ΔSM) are shown for the “water year” (October-September, left column), “wet season” 

(October-March, center column) and “dry season” (April-September, right column). Separation 

of the water year into the “wet season” and “dry season” is based on California receiving most of 

its precipitation October-March, as discussed in Section 4.2.2 and Cayan and Roads (1984). 

Stippling indicates locations where end-of-21st-century ΔSM is statistically significant at the 

95% level using a two-tailed Student’s t-test.  

Domain averages are noted in the upper right of each panel, showing that spatially 

averaged water-year SM changes range between -4.85% to -11.29%, with a model-mean of -

6.10%. Although this indicates some model uncertainly regarding the magnitude of the water-

year ΔSM (hereinafter ΔSMwater_year), a similar spatial pattern emerges in each of the five 

dynamically downscaled GCMs. For each GCM, ΔSMwater_year are greatest and significant (as 

indicated by cross-hatching) along the western slopes of the Sierra Nevada at elevations between 

1750-2500m. These regions, which are near the baseline snow line, have the strongest warming 

enhancement due to snow albedo feedback (Walton et al. 2016), greatest April 1st snow water 
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equivalent (SWE) loss (Sun et al. 2016b) and largest advances in surface runoff timing 

(Schwartz et al. 2016b). SMwater_year declines are relatively weaker and/or not significant in the 

low-lying eastern edges of the Sacramento and San Joaquin Valleys, along the southeastern 

Sierra Nevada, and at the highest elevations in the Southern Sierra Nevada. 

Important differences are evident between wet season changes (Fig. 4.3, center column) 

and dry season (Fig. 4.3, right column). For all GCMs, wet season SM changes (hereinafter 

“ΔSMwet_ssn”) across the domain are generally weakly negative or weakly positive, and most are 

not statistically significant. The model-average spatial-average is quite small (0.97%), and this 

near-zero change largely reflects the cancellation of weak SM increases (0 to +5%) at the highest 

elevations in the Sierras and weak SM decreases (0 to -5%) in the Central Valley and Western 

Sierra.  

Conversely, dry season (April-September) SM changes (hereinafter “ΔSMdry_ssn”) are 

robustly and significantly negative throughout most of the domain for all five downscaled GCMs, 

with an ensemble-mean spatial average of -15.9% by end-of-21st-century. Spatial patterns in 

ΔSMdry_ssn are quite similar to those described above for the water year. We note that nearly all 

robust and statistically significant soil moisture changes are negative, which corroborates 

previous global-scale studies of future soil moisture that have found that robust soil moisture 

changes are generally decreases (Collins et al. 2013), despite robust precipitation increases in 

some locations. Given the robust and statistically significant SMdry_ssn declines projected in each 

of the dynamical downscaling simulation, a key focus of this study is to understand the drivers 

leading to such drying, as well as the inter-model spread in SMdry_ssn declines. 
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Fig. 4.4: WRF dynamically-downscaled end-of-21st-century monthly (January-
December) absolute changes (WY 2092–2102 average minus WY 1992–2001 average) 
in (a) 0–10cm soil moisture, (b) 2-m air temperature, (c) precipitation, (d) snow and (e) 
evapotranspiration.  Changes reflect averages over the domain (Fig. 4.1b) for the five 
dynamically-downscaled global climate models: CNRM-CM5 (blue), GFDL-CM3 (red), 
inmcm4 (purple), IPSL-CM5A-LR (orange) and MPI-ESM-LR (green). Annual mean 
relative changes (unit: % per year) are reported in the bottom right inset for each global 
climate model in (a) and (c-e). Annual mean absolute warming (unit: °C per year) is 
reported in (b). The line y=0 is shown in black. 
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4.3.2 Drivers of dry-season soil moisture declines 

 

We now aim to understand the causes behind end-of-21st-century dry season (April-

September) upper 10cm SM (SMdry_ssn) declines projected throughout the domain in each of the 

dynamically downscaled GCM simulations (Fig. 4.3, right column). Fig. 4.4 presents end-of-

21st-century monthly (January-December) absolute changes (future minus baseline) in key 

hydroclimate variables:  (a) upper 10cm SM, (b) T, (c) P, (d) snow and (e) evapotranspiration 

(ET). Monthly changes are presented as domain-averages. In Fig. 4.4a and c-e, annual mean 

relative changes (unit: % per year) are reported in the bottom right inset of each panel for each 

GCM. In Fig. 4.4b, annual mean absolute warming (unit: °C per year) is reported.  

Fig. 4.4a shows robust declines in SMdry_ssn, which are slightly offset by small (but 

insignificant) wintertime increases. The strong spatial and temporal inter-model agreement in 

ΔSMdry_ssn seen in Figs. 4.4 and 4.5a – despite large uncertainty in the sign and magnitude of 

October-May ΔP (Fig. 4.4c) – suggests a common driver of SMdry_ssn declines for each 

downscaled GCM.  

The mechanism behind SMdry_ssn declines is rooted in the impact of near surface (2-

meter) warming (Fig. 4.4b) on the region’s snow-dominated hydroclimate. For each of the five 

dynamically downscaled GCMs (even those with projected annual P increases), warming 

reduces snow (Fig. 4.4d) by decreasing the fraction of P that falls as snow and through enhanced 

snowpack melting. (For a comprehensive analysis of end-of-21st-century snowpack changes in 

the Sierra Nevada, we direct the reader to Sun et al. 2016b.) Snowpack changes create a new 

pool of liquid water that slightly moistens winter soils (Fig. 4.4a) and advances surface runoff 

timing (Schwartz et al. 2016b). This available liquid moisture, together with significant warming 
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(Fig. 4.4b) enhances ET rates (Fig. 4.4e). Enhanced ET significantly dries spring and summer 

soils, in spite of any increase in wintertime P.  

To understand how this warming mechanism acts on each GCM, we examine 

dynamically downscaled T (Fig. 4.4b) and P (Fig. 4.4c) changes. Of the five dynamically 

downscaled GCMs, GFDL-CM3 has the greatest end-of-21st-century SMdry_ssn decline, with 

domain-average change of -23.10%  (Fig. 4.3). This can be explained through GFDL-CM3’s 

unique decrease in annual P (domain average -20.4 cm/yr or -22%, Fig. 4.4c red), which slightly 

reduces wet season SM (domain average -2.61%). Decreasing P, coupled with strong domain-

average annual ΔT of +6.14 °C (Fig. 4.4b, red) that enhances annual ET by +15% (Fig. 4.4e), 

shed light on GFDL-CM3’s dramatic loss of SMdry_ssn. 

Interestingly, projected ΔT in IPSL-CM5A-LR (domain average 5.81 °C) is nearly as 

much as in GFDL-CM3, but it is associated with the largest annual P increase (28.3%) in this 5-

model ensemble. However, this additional P falls more so as rain instead of snow (domain-

average change in snowfall of -43.6%, Fig. 4.4d orange); this shift results in the moistening of 

SMwet_ssn at some high-elevation locations by as much as 20% (Fig. 4.3) and dramatic advances 

in surface runoff timing (Schwartz et al. 2016b). Warming acts on the new pools of liquid 

surface water by enhancing ET (Fig. 4.4e orange), but the net effect of SMdry_ssn declines in 

IPSL-CM5A-LR (-16.58%) is weaker than that in GFDL-CM3 (-23.10%) due to their divergent 

signs of ΔP.  

CNRM-CM5 (Fig. 4.4, blue) and inmcm4 (Fig. 4.4, purple) behave very similarly to 

IPSL-CM5A-LR, but their dry season soils dry to a lesser degree (-12.10% and -15.45%, 

respectively) because they project roughly one third less warming. Relatively modest annual 

warming of CNRM-CM5 (+4.03 °C) and inmcm4 (+3.24 °C) compared to IPSL-CM5A-LR has 
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the effect of buffering snow loss by a factor of around 2.5 (-16.9% and -18.1%, respectively, 

compared to -43.6%). This buffering limits the formation of available water for evaporative 

demands, which explains CNRM-CM5 and inmcm4’s small ΔET compared to IPSL-CM5A-LR 

(Fig. 4.4e). This weaker ET increase provides for less overall SM loss for CNRM-CM5 and 

inmcm4. Despite its near-zero change in annual P (domain average +0.3%), MPI-ESM-LR’s 

strong warming (+4.60 °C) (and the associated 38.8% loss of snowfall) allows ET to increase 

nearly as much as in CNRM-CM5, shedding light on the similar domain-average SMdry_ssn 

declines in these models. 

 

Fig. 4.5: Scatterplot of five-model dynamically downscaled end-of-21st-century RCP8.5 
absolute change in April 1st snow water equivalent (SWE, unit: cm per year) versus 
mean end-of-21st-century change in 2-m temperature averaged over April–July (unit: °C 
per year). Colors indicate the relative change in dry-season (April–September) 0–10 cm 
soil moisture (unit: % per year). Results are shown for grid points with greater than 
1.5cm of baseline climatological April 1st SWE; this region is highlighted in brown in 
the top right inlay. 
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Fig. 4.5 corroborates the influences of ΔP and ΔT on declining SMdry_ssn. Fig. 4.5 presents 

a scatter plot of end-of-21st-century April 1st snow water equivalent change (ΔSWEApril_1st, unit: 

cm per year) vs. near-surface April–July warming (ΔTAMJJ, unit: °C per year), colored by 

fractional ΔSMdry_ssn (unit: % per year). Results are shown for the five dynamically downscaled 

GCMs at all grid points with greater than 1.5cm of baseline climatological SWEApril_1st (this 

region is highlighted in the top right inlay).  

Several relationships can be gleaned from this scatter plot. First, there is a positive 

relationship (r = 0.73) between spatial patterns of ΔSWEApril_1st and ΔSMdry_ssn. This relationship 

emerges because ΔSWEApril_1st is a measure of the amount of moisture available to increase 

SMdry_ssn (through snowpack melting). Thus, grid points with large losses of SWEApril_1st also 

have strong SMdry_ssn declines. Second, there is a negative relationship (r = -0.71) between 

ΔSWEApril_1st and ΔTAMJJ, as ΔTAMJJ is a rough measure of the extra energy available to enhance 

ET, which serves to decrease SMdry_ssn. Thus, for a given change in SWEApril_1st, the magnitude of 

SMdry_ssn drying increases with stronger ΔTAMJJ.  

The relationships gleaned from Fig. 4.5 suggest ΔSWEApril_1st and ΔTAMJJ might be 

reasonable co-predictors for dry season ΔSMdry_ssn, which will be explored in section 4.4. Fig. 

4.5 demonstrates that despite any wintertime P (and SM) increases, thermodynamically induced 

impacts of diminished snowpack and elevated ET conspire to produce statistically significant 

spring and summertime SM drying. Overall, Figs. 4.5-4.6 provide evidence that anthropogenic 

warming (through both its effects on decreasing SWEApril_1st and enhancing ET) will 

fundamentally transform Sierra Nevada hydrology by the end-of-21st-century.  
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4.4 Hybrid dynamical-statistical soil moisture model  

 

Results in section 4.3.1 focused only on end-of-21st-century SMdry_ssn projections under 

the RCP8.5 emissions scenario for five selected GCMs, highlighting spatial patterns in 

ΔSMdry_ssn and the relationships between ΔSMdry_ssn, ΔSWEApril_1st and ΔTAMJJ. These results, 

however, do not offer adequate information to comprehensively evaluate uncertainty in 

ΔSMdry_ssn due to forcing scenario or intermodel spread. In this section, we develop a 

computationally efficient yet physically sound model to project SMdry_ssn for all available CMIP5 

GCMs and all forcing scenarios. Section 4.3.1 describes this model, and section 4.3.2 provides 

an evaluation of its ability to mimic dynamical SMdry_ssn projections presented in section 4.3.1. 

Section 4.3.2 discussed the positive relationship between ΔSMdry_ssn and ΔSWEApril_1st 

and negative relationship between ΔSMdry_ssn and ΔTAMJJ in the dynamical simulations. Thus, 

ΔSWEApril_1st and ΔTAMJJ are credible co-predictors for ΔSMdry_ssn; these co-predictors are also 

physically-sensible as the former is a measure of snowpack available to increase SMdry_ssn as it 

melts, and the latter quantifies the degree to which warming can decrease SMdry_ssn through 

enhanced ET. Given these relationships, we seek to construct a modeling framework that 

projects ΔSMdry_ssn given ΔSWEApril_1st and ΔTAMJJ. This modeling framework, in which 

relationships from dynamically downscaled GCM output are exploited to design a statistical 

model (that can then downscale projections for other GCMs in the CMIP5 ensemble), is an 

example of hybrid dynamical-statistical downscaling. This computationally-efficient technique is 

a valuable tool for ensemble projections of future hydroclimate because it captures patterns and 

physical processes that may emerge only through dynamical downscaling (Walton et al. 2015, 

Sun et al. 2016a).  
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4.4.1 Hybrid model description 

 

For each grid point in the 3 km resolution domain, we use multiple linear regression to 

determine how ΔSMdry_ssn depends on ΔSWEApril_1st and ΔTAMJJ. In order to create a more robust 

model, data at that grid point and its eight neighboring grid points is used. In all, 45 data points 

(5 models × 9 grid points) are used to model ΔSMdry_ssn at a given location. Multiple linear 

regression produces the following equation: 

(1)  ΔSMdry_ssn, GCM,i,j ≅ αi,j * April 1st ΔSWEGCM,i,j  + βi,j * AMJJ ΔTGCM,i,j   

where (i,j) are coordinates of the grid point in the 3 km  resolution domain, coefficient α is the 

linear sensitivity of ΔSMdry_ssn to ΔSWEApril_1st, and coefficient β is the linear sensitivity of 

ΔSMdry_ssn to ΔTAMJJ. We force the linear relationship to have no residual term, which is an 

expression of the physical constraint that one would not anticipate a change in ΔSMdry_ssn given 

no change in both ΔSWEApril_1st and ΔTAMJJ. Eq. (1) can be used to obtain mean end-of-21st-

century fractional ΔSMdry_ssn given ΔSWEApril_1st  and ΔTAMJJ. At grid points where mean 

ΔSWEApril_1st is 0 cm in all dynamically downscaled GCMs, ΔSMdry_ssn is determined only by the 

linear regression of dynamically downscaled ΔSMdry_ssn onto ΔTAMJJ. (Section 4.6.1 presents a 

discussion of regions and elevations where SMdry_ssn changes are driven by loss of SWEApril_1st or 

by enhanced ET due to ΔTAMJJ.) 

The goal of the hybrid dynamical-statistical model (Eq. 1) is to project ΔSMdry_ssn given 

ΔSWEApril_1st and ΔTAMJJ . To obtain ΔSMdry_ssn for the full CMIP5 ensemble and all forcing 

scenarios, we utilize projections of ΔSWEApril_1st from Sun et al. (2016b, hereinafter “S2016b”) 

and ΔTAMJJ from Walton et al. (2016, hereinafter “W2016”). S2016b used hybrid dynamical-

statistical downscaling (with December-March ΔT and ΔP as predictors) to produce 3-km 
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resolution ΔSWEApril_1st for our study domain for all available CMIP5 GCMs and forcing 

scenarios RCP8.5, 6.0, 4.5 and 2.6. W2016 also used a hybrid downscaling approach that relies 

on GCM regional-mean ΔT and east-west ΔT contrast as predictors (along with a feedback 

between ΔT and snow cover change to mimic snow-albedo feedback) to produce 3-km resolution 

monthly ΔT over the Sierra Nevada for all CMIP5 GCMs and RCPs.  

With ΔSWEApril_1st from S2016b and ΔTAMJJ from W2016 as input, we are able to apply 

the hybrid dynamical-statistical ΔSMdry_ssn model (Eq. 1) to all CMIP5 GCMs and forcing 

scenarios. Before we present hybrid downscaled end-of-21st-century projections of SMdry_ssn, we 

first evaluate the hybrid model’s ability to mimic the dynamical model. 

 

4.4.2 Hybrid model evaluation 

 

Ideally, ΔSMdry_ssn projections would be made by dynamically downscaling all CMIP5 

GCMs and forcing scenarios.  However, hybrid dynamical-statistical projections are used instead 

to conserve scarce computational resources. In this section, we evaluate how well our dynamical-

statistical projections can approximate dynamical downscaling. There are two primary sources of 

error in this approximation. The first error stems from our choice to approximate ΔSMdry_ssn as a 

linear combination of ΔSWEApril_1st and ΔTAMJJ. However, we expect this error to be small given 

the strong linear correlation between ΔSMdry_ssn and ΔSWEApril_1st and strong linear anti-

correlation between ΔSMdry_ssn and ΔTAMJJ. We can quantify this error for each GCM by 

projecting ΔSMdry_ssn using Eq. (1) with dynamically downscaled WRF ΔSWEApril_1st and ΔTAMJJ 

under RCP8.5 as input. This statistical ΔSMdry_ssn projection for each GCM is presented in Fig. 

4.6 (center column), and can be compared to dynamically downscaled ΔSMdry_ssn (left column).  
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Fig. 4.6: Relative change in end-of-21st-century dry season (April–September) 0–10cm 
soil moisture under the RCP8.5 emissions scenario for CNRM-CM5, GFDL-CM3, 
inmcm4, IPSL-CM5A-LR and MPI-ESM-LR produced from three methods. Column 1: 
Dynamically-downscaled WRF output. Column 2: Statistical projection calculated with 
WRF dynamically-downscaled changes in April 1st SWE and April–July near-surface 
warming as input. Column 3: Statistical projection calculated with hybrid dynamical-
statistical downscaled change in April 1st SWE (Sun et al. 2016) and April–July near-
surface warming (Walton et al. 2016) as input. Results are shown for non-urban land 
points. Brown text indicates domain-average relative change in dry season soil moisture 
(unit: % per year); orange text in columns 2-3 indicates the spatial correlation coefficient 
with column 1. 
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Spatial patterns of ΔSMdry_ssn approximated with Eq. (1) are highly correlated with their 

dynamical counterparts (r > 0.94). Moreover, the domain-average ΔSMdry_ssn approximated by 

Eq. (1) is close to those of the dynamical model for each GCM. The ability of the hybrid 

ΔSMdry_ssn model (Eq. 1) to mimic the dynamical model given perfect ΔSWEApril_1st and ΔTAMJJ 

as input backs our decision to model ΔSMdry_ssn as a linear combination of ΔSWEApril_1st and 

ΔTAMJJ. 

The second source of error in projecting ΔSMdry_ssn for all CMIP5 GCMs and forcing 

scenarios using Eq. (1) arises from the use of S2016b’s ΔSWEApril_1st and W2016’s ΔTAMJJ 

(described in section 4.4.1) as input. We evaluate this error by comparing ΔSMdry_ssn patterns 

produced by dynamical downscaling (Fig. 4.7, left column) to those produced using the hybrid 

dynamical-statistical ΔSMdry_ssn model (Eq. 1) with S2016b’s ΔSWEApril_1st and W2016’s ΔTAMJJ 

as input; these ΔSMdry_ssn projections are presented in Fig. 4.6 (right column). Though spatial 

patterns of ΔSMdry_ssn in Fig. 4.6 (right column) are not as highly-correlated with their dynamical 

counterparts (left column) as the patterns of ΔSMdry_ssn with dynamical input (center column), 

ΔSMdry_ssn produced with S2016b’s ΔSWEApril_1st and W2016’s ΔTAMJJ is still well correlated 

with the dynamical output (r > 0.89 for all GCMs). Moreover, errors in domain-average 

ΔSMdry_ssn in Fig. 4.6 (right column) are small and similar to those in Fig. 4.6 (center column), 

demonstrating that use of S2016b’s ΔSWEApril_1st and W2016’s ΔTAMJJ as input to the hybrid 

ΔSMdry_ssn model (Eq. 1) does not deteriorate the subsequent ΔSMdry_ssn projection. With 

S2016b’s ΔSWEApril_1st and W2016’s ΔTAMJJ, we are able to credibly estimate mean changes in 

SMdry_ssn for any GCM as if it were dynamically downscaled.  

We also note that unlike commonly used statistical downscaling methods, both S2016b’s 

ΔSWEApril_1st and W2016’s ΔTAMJJ include effects of snow albedo feedback (SAF) on warming. 
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SAF is a crucial component of future climate change in the snow-dominated Sierra Nevada, and 

has been shown to be critical to the simulation of summertime (June-September) soil moisture 

over regions with seasonal winter snow cover (Hall et al. 2008). 

This evaluation exercise reveals another important finding: WRF’s ΔSMdry_ssn patterns 

can be determined based on only two pieces of information about a GCM: its change in April 1st 

SWE and April-July near-surface temperature. This statement is powerful because it indicates 

that we have diagnosed these two parameters as the key predictors for future spring/summertime 

SM. Testing was done to determine if ΔSWE or ΔT averaged over other months produced a more 

skillful model than one relying on April 1st ΔSWE and April-July ΔT, but no improvement could 

be found. Overall, this indicates that changes in SWEApril_1st and TAMJJ are the key predictors for 

ΔSMdry_ssn in the Sierra Nevada, and it is powerful to reduce changes in SMdry_ssn down to a 

linear combination of two physically-sensible factors. 

 

4.5 Hybrid dynamical-statistical soil moisture projections for full GCM  

ensemble, all forcing scenarios 

 

Using the hybrid dynamical-statistical ΔSMdry_ssn model (Eq. 1) with S2016b’s 

ΔSWEApril_1st and W2016’s ΔTAMJJ as input, we can quickly project mean end-of-21st-century 

ΔSMdry_ssn relative to the end-of-20th-century for all available CMIP5 GCMs under forcing 

scenarios RCP2.6 (26 GCMs), RCP4.5 (34 GCMs), RCP6.0 (20 GCMs) and RCP8.5 (35 GCMs).  

Fig. 4.7 presents end-of-21st-century ΔSMdry_ssn projections (unit: % per year) under forcing 

scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5 (columns 1-4) for the GCM ensemble mean 

(row 2) and 10th and 90th percentiles of the GCM distribution (rows 1 and 3, respectively).  
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Fig. 4.7: Hybrid dynamical-statistical projections of relative change in end-of-21st-
century dry season (April–September) 0–10cm soil moisture under emissions scenarios 
RCP2.6, RCP4.5, RCP6.0 and RCP8.5. Unit: % per year. Row 2 presents the ensemble-
mean change. Rows 1 and 3 present the 10th and 90th percentiles of the GCM distribution, 
respectively. Brown shading indicates soil drying, while blue shading indicated soil 
moistening. The number of GCMs included in the ensemble for each RCP is denoted at 
the top of each column. Brown text in upper right indicates the domain-average relative 
change in dry season soil moisture at non-urban land points. Black stippling denotes 
regions where the absolute change in 0-10cm soil moisture is greater than the standard 
deviation of the baseline (WY 1992–2001) 0-10cm soil moisture. 
 

Black stippling in Fig. 4.7 denotes absolute changes in SMdry_ssn that are greater than one 

standard deviation of the baseline (WY 1992-2001) SMdry_ssn, which is a measure of interannual 
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variability. Spatial patterns of hybrid downscaled ΔSMdry_ssn are similar for each GCM and RCP 

combination, with strongest SMdry_ssn declines projected in the northern Sierras and at mid-

elevations on the western mountain slopes; these regions are also precisely where April 1st SWE 

losses are greatest (S2016b) and SAF-amplified warming is greatest (W2016). The magnitude of 

SMdry_ssn drying expectedly increases with RCP and in GCMs with strong projected warming and 

SWEApril_1st loss. 

These ensemble projections allow for the characterization of uncertainty due forcing 

scenario. Considering that current greenhouse gas emissions already surpass those projected by 

RCP8.5, this aggressive warming scenario may be the most credible (Peters et al. 2013). If 

emissions continue to track or exceed those of RCP8.5, the 35-model ensemble-mean projected 

end-of-21st-century change in domain-average SMdry_ssn is -17.1% (Fig. 4.7k). Moreover, under 

RCP8.5 it is highly likely that end-of-21st-century spring and summer soils at elevations above 

1000m in the Sierra will be dramatically drier than end-of-20th-century. However, if GHG 

emissions are curtailed such that a mitigation (RCP2.6) or stabilization (RCP4.5) scenario can be 

achieved, the most-likely (ensemble mean) SMdry_ssn outcome would be a domain-average 

decline of -5.4% (Fig. 4.7b) and -9.1% (Fig. 4.7e) under RCP2.6 and RCP4.5, respectively. 

Achieving RCP2.6 or RCP4.5 would avoid a greater than one standard deviation change in 

SMdry_ssn throughout nearly the entire domain, shedding light on the criticality of curbing 

emissions in preventing SM drying due to climate change. If RCP6.0 is attained, ensemble mean 

ΔSMdry_ssn would be greater than one standard deviation of baseline SMdry_ssn only at elevations 

between 1750-2750m in the Western and Northern Sierra, but changes at elevations outside this 

region would generally be within the range of baseline interannual SMdry_ssn variability (Fig. 

4.7h). 
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In addition to characterizing uncertainty in future SMdry_ssn due to forcing scenario, 

hybrid downscaled ensemble projections illustrate uncertainty stemming from GCM spread; we 

can examine this uncertainty by evaluating differences in patterns of ΔSMdry_ssn that correspond 

to the 10th and 90th percentiles of the GCM distribution. For each RCP, the “near-full” (10-90%) 

ensemble range in ΔSMdry_ssn is greatest above 2000m (and most pronounced above 3000m), 

reflecting the large spread in ΔSWEApril_1st and ΔTAMJJ projections at higher elevations. Under 

RCP8.5, the average change in SMdry_ssn corresponding to the 10th percentile of the GCM 

distribution is -17.4% in the 1500-3000m elevation band, compared to -27.1% for the 90th 

percentile of the GCM distribution; despite this large near-full ensemble range, absolute changes 

in SMdry_ssn are greater than one standard deviation of baseline SMdry_ssn at elevations between 

1500-3000m for all GCMs under RCP8.5. 

 

4.6 Discussion 

 

4.6.1 Are soil moisture losses driven by SWE loss or ET increases? 

 

Spatial patterns of coefficients α (average expected relative change in SMdry_ssn per 

centimeter April 1st SWE loss) and β (average expected relative change in SMdry_ssn per degree 

April-July near surface warming) from Eq. (1), together with spatial patterns of ΔSWEApril_1st and 

ΔTAMJJ from the dynamical simulations can shed light on regions where SMdry_ssn changes are 

driven by loss of SWEApril_1st or by enhanced ET due to ΔTAMJJ.  

Figs. 4.8a and 4.8b present the spatial pattern of ΔSMdry_ssn explained by ΔSWEApril_1st 

and ΔTAMJJ, respectively. The spatial pattern in Fig 4.8a is obtained by multiplying α (average 
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expected relative change in dry season soil moisture per centimeter April 1st SWE loss, unit: % 

per cm) by the dynamically downscaled 5-model ensemble mean change in SWEApril_1st (cm). 

The spatial pattern in Fig 4.8b is obtained by multiplying β (average expected relative change in 

dry season soil moisture per degree April-June near-surface warming, unit: % per °C) by the 

dynamically downscaled 5-model ensemble mean April-July warming. The hybrid dynamical-

statistical soil moisture model is designed such that the sum of these spatial patterns 

approximately equals the dynamically downscaled 5-model ensemble mean relative change in 

end-of-21st-century SMdry_ssn under RCP8.5.  

 

 

Fig. 4.8: Spatial pattern of end-of-21st century dry season (April-September) soil 
moisture drying explained by (a) changes in April 1st snow water equivalent (SWE) and 
(b) April-July warming. The spatial pattern in (a) is obtained by multiplying α (average 
expected relative change in dry season soil moisture per centimeter April 1st SWE loss) 
by the dynamically downscaled 5-model ensemble mean absolute change in April 1st 
SWE. The spatial pattern in (b) is obtained by multiplying β (average expected relative 
change in dry season soil moisture per degree April-June near-surface warming) by the 
dynamically downscaled 5-model ensemble mean April-July warming. The dynamically 
downscaled 5-model ensemble mean end-of-21st-century change in April-September soil 
moisture relative to the end-of-20th-century is shown in (c). The 2000 m topography 
contour is shown in black. 
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In the low-lying Sacramento and San Joaquin Valleys, April-September SM drying is 

explained exclusively by warming-driven ET enhancement, as baseline SWEApril_1st at these low-

elevation (below 1400m) locations is nearly 0 cm and the end-of-21st-century change in 

SWEApril_1st is similarly negligible. Conversely, declining SMdry_ssn at some mid-elevation 

locations along the western mountain slopes and in the northern Sierras is almost entirely 

explained by changes in SWEApril_1st. In the 2000-2500m elevation range, changes in April 1st 

SWE explain a spatial-averaged dry season SM drying of -13.2%, while changes in April-July 

near-surface temperature explain additional drying of a similar magnitude (-11.8%); this suggests 

both ΔTAMJJ and ΔSWEApril_1st play critical roles in explaining declining ΔSMdry_ssn at these 

locations, contributing to the large intermodel spread in SMdry_ssn within this elevation band (Fig. 

4.7). At higher elevations (2500-3000m), changes in April 1st SWE explain a SMdry_ssn change of 

-3.2%, but changes in SMdry_ssn within this elevation band are largely explained by April-July 

warming, which leads to an additional -17.8% SMdry_ssn drying. 

Because the highest elevations (above 3000m) in the southern Sierras are well above the 

baseline snow line, end-of-21st-century P continues to fall mostly as snow, and thus SWEApril_1st 

losses are buffered. Interestingly, ensemble-mean SWEApril_1st at these locations is projected to 

slightly increase in the dynamical downscaling simulations due to increased winter P (Fig. 4.4c), 

and this increased SWE is expected to moisten SMdry_ssn by 5-15% at the highest elevations. 

However, SMdry_ssn drying due to warming-driven ET enhancement outweighs SMdry_ssn 

moistening due to increased April 1st SWE, and so the net result is declining SMdry_ssn at the 

highest elevations (Fig. 4.8c). Overall, Fig. 4.8 sheds light on the regions and elevations within 

the Sierra Nevada where SMdry_ssn declines are explained by changes in April 1st SWE versus by 

early summer warming (and the associated increase in ET).  
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4.6.2 Increased length of summer dry period 

 

In addition to projected decreases in the magnitude of SMdry_ssn, the dynamical 

simulations also reveal a lengthening of the summer dry period, where the summer dry period is 

taken to be the number of consecutive days during which near-surface SM is below a threshold 

level based on baseline SM.  

 
Fig. 4.9: Bar plot showing the dynamically-downscaled end-of-21st-century change (WY 
2092-2101 minus WY 1992-2001) in the number of days per year with 0-10cm soil 
moisture less than or equal to the (a) 20th and (b) 10th percentiles of baseline daily soil 
moisture distribution. Results are averaged over grid points within 500m elevation bins 
and over the five dynamically downscaled GCMs. Text above each bar denotes the 
ensemble-mean change (unit: days), and text within the bar denotes the volumetric soil 
moisture corresponding to the (a) 20th and (b) 10th percentiles of the baseline daily soil 
moisture distribution for the corresponding 500m elevation bin. 

 

0

10

20

30

40

50

60

70

+4
7.56%

+10

7.30%

+13

7.38%

+19

8.29%

+32

9.21%

+46

11.42%

+54

14.29%

+54

15.24%∆
 D

ay
s 

(fu
tu

re
−b

as
el

in
e)

(a) Change in number of days per year with
climatological SM  ≤ 20th percentile of baseline SM

0

10

20

30

40

50

60

70

+10

6.71%
0−

500m

+13

5.75%
500−

1000m

+18

5.78%
1000−
1500m

+27

6.58%
1500−
2000m

+42

7.42%
2000−
2500m

+51

9.35%
2500−
3000m

+59

12.18%
3000−
3500m

+62

13.37%
3500−
4000m

∆
 D

ay
s 

(fu
tu

re
−b

as
el

in
e)

Elevation bin (m)

(b) Change in number of days per year with
climatological SM  ≤ 10th percentile of baseline SM



	99	

Fig. 4.9 presents the dynamically downscaled 5-model ensemble-mean end-of-21st-

century change (WY 2092-2101 minus WY 1992-2001) in the number of days per year with 0-

10cm SM less than or equal to the (a) 20th and (b) 10th percentiles of baseline daily soil moisture 

distribution. Results are averaged over grid points within 500m elevation bins and over the five 

dynamically downscaled GCMs. Text above each bar denotes the ensemble-mean change (unit: 

days), and text within the bar denotes the volumetric soil moisture corresponding to the (a) 20th 

and (b) 10th percentiles of the baseline daily soil moisture distribution for the corresponding 

500m elevation bin. The 10th and 20th percentiles of the baseline daily soil moisture distribution 

correspond to 37 and 74 days per year, respectively. For example, the 20th percentile of baseline 

daily climatological SM in the 2000-2500m elevation range corresponds to a SM of 9.21%, and 

it is projected that by the end-of-21st-century, an additional 32 days per year will have SM below 

this value. 

Fig. 4.9 reveals ensemble-mean projected lengthening of the summer dry period, as all 

elevations experience an increase in the number of days per year during which SM is below a 

threshold based on the baseline daily SM distribution. The increase in the length of the summer 

dry period is greatest at higher elevation. Additionally, at grid points above 3500m, it is 

projected that by the end-of-21st-century, there will be almost three times the number of days per 

year with SM less than or equal to the volumetric SM content corresponding to the 10th 

percentile of the baseline daily SM distribution (13.37%). This longer and drier summer dry 

period results from reduced snowpack, earlier runoff and enhanced ET, and has implications for 

wildfire that will be considered in section 4.7. 
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4.6.3 Study limitations 

 

The pseudo global-warming method described in section 4.2.1 imposes the same internal 

variability on both the baseline and future simulations. A consequence of this framework is that 

the frequency of synoptic events entering the outermost domain does not change in the future, 

but their characteristics (e.g. intensity, duration) freely evolve while propagating inwards (though 

this evolution is somewhat constrained due to spectral nudging). Possible future changes to 

natural climate variability over the Pacific Ocean, like the El Nino-Southern Oscillation (Cai et 

al. 2014), could impact California P (and SM) through teleconnections and our dynamical 

downscaling framework does not fully account for this possibility. However, this study aims to 

understand how a 10-year historical period of SM responds to large-scale end-of-21st-century 

perturbations, and due to the limitations of our methodology, we can only address mean changes 

in SM. 

 

4.7 Summary and implications 

 

By dynamically downscaling five CMIP5 GCMs, this study presents a high-resolution 

examination of how soil moisture in the Sierra Nevada region responds to an aggressive warming 

scenario by the end of the 21st century. The dynamical simulations reveal robust, statistically 

significant declines in dry season (April–September) near-surface (0-10cm) soil moisture, with a 

domain-average ensemble-mean end-of-21st-century change of -15.9% under RCP8.5. The 

depletion of dry season soil moisture is attributed to thermodynamically driven snowpack 

reductions (through both more precipitation as rain than snow and enhanced melting) and 



	101	

evapotranspiration enhancement; together, these processes significantly dry spring and 

summertime soils despite any precipitation increases.  

By developing a hybrid dynamical-statistical downscaling model, we are able to quickly 

project high-resolution end-of-21st-century changes to Sierra Nevada soil moisture for an 

ensemble of CMIP5 GCMs under a range of emissions scenarios. This hybrid model is based on 

dynamically downscaled relationships between dry season soil moisture, April 1st snow water 

equivalent and April–July warming. Uncertainty in future dry season soil moisture stems from 

both forcing scenario and intermodel spread, and it cannot be said that soil moisture throughout 

the entire Sierra Nevada region will inevitably dry. However, the overwhelming evidence 

presented here suggests that the most likely (ensemble-mean) result is domain-wide soil moisture 

drying, with the strongest drying at mid-elevations in the western and northern Sierra. While this 

conclusion supports projected large-scale soil moisture drying over the Western US (Collins et al. 

2013), it is clear that downscaling allows us to reach strong conclusions about future regional 

soil moisture by capturing the Sierra’s fine-scale topography and associated orographic processes.  

Though this study does not directly examine drought per se, its major result of depleted 

spring and summer soil moisture is consistent with previous 21st-century projections of increased 

drought severity and intensity over California.  Cook et al. (2015) used several soil moisture-

based metrics to examine drought severity over the US Southwest, including California, within 

the CMIP5 GCMs.  They found remarkably higher drought risk in the 21st century compared to 

historical conditions within all models, a result owing to increased summertime evaporative 

demands that offset any precipitation gains.  In addition to projected increases in Western US 

drought severity and frequency, Sheffield and Wood (2008) found that the spatial extent of 

droughts might also expand due to projected SM decreases.  
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Significant drying of Sierra Nevada soil moisture is likely to have major implications for 

future wildfire activity over California. The strong seasonality of Sierra Nevada hydroclimate, 

with cool and wet winters that promote plant growth during the warm and dry summers, already 

supports wildfire activity. Moreover, forest wildfire activity in the Western United States has 

increased in recent decades (Westerling et al. 2006; Littell et al. 2009; Dennison et al. 2014). 

This increase has been attributed to spring/summer warming, reduced snowpack, earlier 

snowmelt and longer/drier summer fire season soils (Westerling et al. 2006). The major result of 

this study suggests it is likely that future wildfire activity will increase in the future as a result of 

drier fire season soils. This corroborates previous work that projects larger and more frequent 

wildfires in the coming decades both in the Western US (Westerling and Bryant 2008; Spracklen 

et al. 2009), Mediterranean-type ecosystems (Batllori et al. 2013) and globally (Flannigan et al. 

2009). Moreover, our projections of a longer and drier summer dry period are consistent with 

previous research on observed increases in the length of the summer fire season (Westerling et al. 

2006).  
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5 On the relationship between runoff timing and 

elevation in California’s Sierra Nevada 
 

5.1 Introduction 
 

As noted in Chapters 3-4, understanding the response of the snow-dominated 

hydrological cycle of California’s Sierra Nevada to future warming scenarios is critical to 

satisfying freshwater demands for municipal, economic and ecological purposes. In Chapter 3, 

we produced and examined 3-km spatial resolution dynamically-downscaled end-of-21st-century 

runoff timing projections for five global climate models (GCMs) from phase 5 of the Coupled 

Model Intercomparison Project under the RCP8.5 forcing scenario. The projections reveal that 

future warming significantly advances snowmelt-driven surface runoff timing throughout the 

Sierra Nevada, particularly at mid-elevations in both the western and northern Sierras. While this 

examination was done at the gridpoint level, it is also critical to understand chances to runoff 

timing at the watershed level in order to manage surface water resources. This is especially true 

in deeply drawn-upon hydrologic systems like the Sierra Nevada Mountains of California 

(Stewart 2013).  

Past research has often emphasized the large-scale, systematic response of regional 

watersheds to large-scale changes in atmospheric conditions, precipitation and temperature. 

Regional or watershed-level differences within that systematic response have largely been 

explained through variations in elevation, latitude or longitude. For example, in an examination 

of the timing of snowmelt runoff for 84 rivers in the western United States over water years 

1950–2003, McCabe and Clark (2005) found that the timing of snowmelt runoff for many has 
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shifted to earlier in the snowmelt season, and that most of the largest runoff timing trends occur 

at sites with the lowest elevations; this relationship between changes in snowmelt runoff timing 

and elevation was found to be consistent with previous studies (Mote et al. 2005; Regonda et al. 

2005; Stewart et al. 2004). Similarly, Stewart et al. (2005) investigated the timing of snowmelt-

derived streamflow at a network of 302 gauges in Western North American over 1948 to 2002, 

finding extensive and regionally-coherent trends toward earlier snowmelt and streamflow, with 

the strongest trends at mid-elevation gauges in the interior Northwest, Western Canada, and 

coastal Alaska.  

Elevational variations in snowpack and runoff have also been examined within the Sierra 

Nevada Mountains. In an assessment of the sensitivity of spring snowpack to climatic change 

based on analysis from 177 snow courses in the Sierra Nevada Mountains over 1950-2002 and 

gridded monthly mean temperature and total precipitation, Howat and Tulaczyk (2005) found 

lower-elevation watersheds in the northern Sierra Nevada to be most sensitive to warming, with 

greatest sensitivity in areas around the Feather, American, and Yuba river drainages. Moreover, 

in an assessment of the response of fifteen Sierra Nevada watersheds to future warming using the 

Water Evaluation and Planning System model forced by the DAYMET dataset perturbed by 

temperature increases, Young et al. (2009) found the 1750m to 2750m elevation range to be most 

sensitive to moderate warming, as that elevation range experienced the largest reduction in 

snowmelt volume. Moreover, Young et al. (2009) noted that because the upper elevations of the 

Feather, Yuba and American River watersheds predominantly fall in this elevation range, those 

watersheds are expected to be most affected, while higher elevation mountainous regions in the 

southern portion of the Sierras are expected to be impacted less by warming due to colder overall 

temperatures. Similarly, in a study of snowmelt dominated streamflow in four large Sierra 



	105	

Nevada basins (Feather River, American River, Tuolumne River and Kings River), Maurer et al. 

(2007) used the Variable Infiltration Capacity (VIC) hydrologic model forced by downscaled 

GCM output perturbed by spatially uniform temperature increases to explore the vulnerability of 

runoff timing to warming at different elevations. They identified elevations in the 2000 to 2800m 

range as most sensitive to temperature increases.  

Despite previous research attempts to characterize the vulnerability of Sierra Nevada 

watersheds to future warming, previous assessments of elevational variations in future runoff 

timing throughout the Sierra Nevada often entail idealized warming scenarios, in which a 

historical climatology is perturbed by a spatially uniform temperature change (e.g. Young et al. 

2009, Maurer et al. 2007) to evaluate hydroclimate sensitivity within particular watersheds. 

There has not been a CMIP5 downscaling based assessment of the runoff timing changes at the 

watershed-level throughout the Sierra that takes into account the heterogeneity of future warming. 

This provides little insight into the elevational dependency of runoff timing changes on climate 

conditions other than temperature, as well as inadequate information to comprehensively 

evaluate future hydroclimate changes for all Sierra Nevada watersheds.  

This study aims to respond to this gap by examining whether individual watersheds in the 

Sierra Nevada Mountain Range are projected to respond to climate change differently due to the 

non-uniform expression of climate change across the landscape or inherent physical watershed 

characteristics (e.g. distribution of elevation within the watershed, slope, aspect, etc). In 

particular, this study investigates the relationship between elevation and runoff timing at both the 

gridpoint and watershed levels for an end-of-20th-century historical baseline period and an end-

of-21st-century projected future period under an aggressive “business-as-usual” forcing scenario 

(RCP8.5). This investigation reveals that runoff timing at certain elevation ranges and within 
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particular watersheds throughout the Sierra Nevada is more vulnerable to climatic changes than 

others. 

The goal of this study is to assess changes to runoff timing at the watershed-level in 

California’s Sierra Nevada Mountains. In doing so, we reveal elevational-variations in runoff 

timing changes, and examine the extent to which runoff timing changes can be explained by 

elevation. This quantitative information is critical for water management, and helps to bridge the 

gap between the climate modeling community and state water planners. This study relies on 

dynamical downscaling of five GCMs from the Coupled Model Intercomparison Project phase 5 

(CMIP5, Taylor et al. 2012) under the RCP8.5 forcing scenario. By downscaling coarse-

resolution GCM output, we are able to resolve the complex topography of the Sierra Nevada and 

local topographic effects that are needed for credible simulations of Sierra Nevada hydroclimate 

that can be used to inform regional water resources planning and adaptation strategies (e.g., 

Fowler et al. 2007).  

This chapter is organized as follows: Section 5.2 describes the methods and data used in 

this study, including a description of the dynamical downscaling model configuration, watershed 

boundary dataset, and runoff timing metric. Section 5.3 presents end-of-20th-century 

climatological runoff timing patterns in California’s Sierra Nevada at the grid point level; 

elevational variations in these patterns are explored are shed light on the extent to which future 

runoff timing changes can be explained by elevation. Section 5.4 describes end-of-21st-century 

runoff timing changes for Sierra Nevada at the watershed level and discusses sub-regional 

patterns in the response and sensitivity of runoff timing for Sierra Nevada watersheds. Finally, 

section 5.5 summarizes the major findings of this chapter and their implications. 
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5.2 Methods 

 

5.2.1 Dynamical downscaling framework 

 

The dynamical downscaling framework in this study is the same as that employed in 

Walton et al. (2016), Sun et al. (2016), and Chapters 3-4. The text in section 5.2.1 is derived 

from Schwartz et al. (2016b) with minor modifications. 

 
Fig. 5.1: a) Model setup, showing the two innermost nested domains: D2 (9 km 
horizontal resolution) and D3 (3 km horizontal resolution). (b) Topography (m) of the 
innermost domain (3-km resolution) of the regional simulation, with the state borders of 
California and Nevada in black. Blue lines in (b) outline the 47 watersheds of the Sierra 
Nevada Mountains according to the United States Geological Survey’s Watershed 
Boundary Database (http://nhd.usgs.gov/wbd.html), which delineates the spatial extent 
of surface water drainage. 
 

Dynamical downscaling is performed using the Weather Research and Forecasting 

(WRF) model version 3.5 (Skamarock et al. 2008). WRF is coupled to the community Noah land 

surface model with multi-parameterization options (Noah-MP, Niu et al. 2011). Three one-way 

nested domains are used to represent the complex topography of California and the Sierra 
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Nevada as accurately as possible (Fig. 5.1a). The outermost domain spans the entire U.S. West 

Coast and adjacent Pacific Ocean at 27 km horizontal resolution. The middle domain, at 9 km 

resolution, covers all of California. Finally, the innermost domain, at 3 km resolution, spans the 

eastern edge of the Central Valley to the leeside of the California Sierra Nevada Mountains (Fig. 

5.1b); this domain is the focus of this study.  

In each domain, all variables within five grid cells from the horizontal lateral boundary 

are relaxed toward the corresponding values at the boundaries. To provide a better representation 

of surface and boundary layer processes, the model’s vertical resolution is enhanced near the 

surface, with 30 out of 43 total sigma-levels below 3 km. WRF parameterization testing has been 

done to optimize the model’s performance in hydroclimate simulations, with the aim of 

improving the realism of simulated snowpack and streamflow processes in the Sierra Nevada. 

The package of physical parameterizations consists of the New Thompson microphysics scheme 

(Thompson et al. 2008), Dudhia shortwave radiation scheme (Dudhia 1989), Rapid Radiative 

Transfer Model longwave (RRTM) longwave radiation scheme (Mlawer et al. 1997), MYNN 

Level 2.5 surface/boundary layer scheme (Nakanishi and Niino 2006), and Old Kain-Fritsch 

cumulus convection scheme (Kain and Fritsch 1990). Spectral nudging of temperature, zonal and 

meridional winds, and geopotential height is employed above the boundary layer (roughly 850 

hPa) over the outermost 27 km resolution domain.  

Climate changes signals are produced from a single baseline simulation and five future 

simulations. The baseline simulation spans October 1991 to September 2001 (water years 1992–

2001; hereinafter “WY 1992–2001”) and is a dynamical downscaling of the National Centers for 

Environmental Prediction’s 6-hourly North America Regional Reanalysis (NARR; Mesinger et 

al. 2006). NARR is a relatively coarse-resolution (32 km) reanalysis dataset that provides the 
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lateral boundary forcings and initial conditions for the outermost WRF domain in Fig. 1a. The 

baseline simulation allows us to evaluate the model’s ability to simulate regional runoff timing 

based on a comparison to observational data (Section 3.2.2) and serves as a climate state against 

which we can compare future climate simulations to measure change.  

Using the same model configuration as the baseline, we perform a five-member ensemble 

of dynamical downscaling experiments to simulate a future end-of-21st-century climate. The 

simulations go from October 2091 to September 2101 (water years 2092–2101, hereinafter “WY 

2092–2101”). We dynamically downscale GCM experiments forced by the Representative 

Concentration Pathway 8.5 (RCP8.5) forcing scenario (Riahi et al. 2011). Out of all available 

CMIP5 GCMs forced by RCP8.5, we select five: CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-

CM5A-LR, and MPI-ESM-LR. These GCMs approximately sample the range of end-of-21st 

century near-surface temperature and precipitation changes over California (Walton et al. 2016).  

To produce boundary conditions for the future WRF simulations, we add a perturbation 

reflecting the mean change in GCM climatology to NARR data for WY 1992–2001, following 

Schar et al. (1996), Hara et al. (2008), Kawase et al. (2009) and Rasmussen et al. (2011). To 

calculate these GCM climate changes, we first quantify the differences in GCM monthly 

climatology between the historical and RCP8.5 experiments (2081–2100 average minus 1981–

2000 average). Differences are calculated for temperature, humidity, zonal and meridional winds, 

and geopotential height. Then, for each of the five dynamically-downscaled GCMs, we perturb 

the baseline 6-hourly NARR reanalysis data for each month by the corresponding monthly mean 

climatological change. The perturbed NARR fields then serve as WRF boundary conditions for 

five future climate simulations. This method allows us to assess how WY 1992–2001 would 

transpire if the mean climate were altered to reflect the climate changes projected by each of five 
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GCMs. It allows us to quantify how the climate change signals simulated in the GCMs are 

expressed at the regional scale, without the future simulations being subject to significant biases 

in mean state often found in GCMs. For additional information on model setup, 

parameterizations and design of future simulations, the reader is referred to Walton et al. (2016).  

 

5.2.2 Description of USGS HUC boundaries 

 

To delineate watershed boundaries, we rely on the United States Geological Survey’s 

eight-digit Hydrological Unit Code (HUC-8) dataset available at water.usgs.gov/GIS/huc.html. 

This watershed boundary dataset delineates the spatial extent of surface water drainage. Forty-

seven 8-digit HUC units are found within the innermost domain of our dynamical downscaling 

simulation, and light blue lines in Fig. 5.1b outline these watersheds. The heavy computational 

cost of dynamical downscaling prevents us from simulating the complete spatial extent of each 

HUC-8 within California at 3-km resolution, and Fig. 5.1b shows us that our innermost domain, 

which is centered on the spine of the Sierra Nevada Mountains, captures the strong majority of 

higher elevation grid points within each of the 47 HUC-8 watersheds at a high spatial resolution. 

These higher elevation grid points are the primary contributors to surface runoff generation 

throughout the Sierra Nevada. Previous research has noted that water from the Sierra Nevada is 

the source of most water used for agricultural and municipal purposes in California, and hence 

runoff in the Sierra defines hydrologic supply statewide (Mao et al. 2015). As such, our domain 

captures the most important areas of watersheds in the Sierra Nevada, particularly the areas that 

generate much of the Sierra’s snowmelt-driven surface runoff used for agricultural and municipal 

purposes in California. 
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5.2.3 Runoff timing metric 

 

As a measure of runoff timing, we consider the date in the water year (October 1 – 

September 30; hereinafter WY) by which 50% of the cumulative WY surface runoff has 

occurred (R50). R50 (often called the center of runoff volume) is widely used as a metric of 

snowmelt timing (Stewart et al. 2004, Stewart et al. 2005, McCabe and Clark 2005, Hayhoe et al. 

2007, Kim and Jain 2011, Khattak et al. 2011). Regonda et al. (2005) suggest that R50 is a more 

robust indicator of snowmelt timing (in its relation to climatic variability and change) than the 

day of peak flow.  

 

5.2.4 Evaluation of downscaling framework’s simulation of runoff timing 

 

Section 3.2.2 assesses the ability of this dynamical downscaling framework to reproduce 

runoff timing variations during the baseline period by comparing simulated R50 to observations 

obtained from the United States Geological Survey Hydro-Climatic Data Network-2009 (USGS 

HCDN-2009, http://waterdata/usgs.gov/nwis/), and we briefly recapitulate the findings of that 

evaluation exercise here. Section 3.2.2 found strong agreement between simulated and observed 

R50 dates, indicating the dynamical downscaling framework is able to capture the main features 

of spatial and temporal variability in runoff timing across the Sierra Nevada. Given that the 11 

USGS streamflow gauges used in the evaluation exercise represent a variety of elevations, 

drainage areas and USGS eight-digit Hydrologic Unit Codes across Sierra Nevada creeks and 

rivers, it is very reasonable to analyze changes to runoff timing on a watershed basis. 
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Fig. 5.2: (a) Baseline (October 1991–September 2001) climatological date of R50, 
which represents the date in the water year  (October 1–September 30) by which 50% of 
the cumulative surface runoff has occurred. Black lines outline the 47 watersheds of the 
Sierra Nevada Mountains according to the United States Geological Survey’s Watershed 
Boundary Database (http://nhd.usgs.gov/wbd.html), which delineates the spatial extent 
of surface water drainage. (b) Baseline (October 1991–September 2001) climatological 
date of R50 as a function of elevation (m). Colors in (b) indicate the climatological 
baseline fraction of precipitation as snow. 
 

 
5.3 Runoff timing and elevation at the gridpoint level 

 

Fig. 5.2a presents the spatial pattern of baseline (WY 1992–2001) climatological date of 

R50 in the 3-km spatial resolution domain (seen in Fig. 5.1b), and Fig. 5.2b presents the baseline 

(WY 1992–2001) climatological date of R50 as a function of elevation for each gridpoint in Fig. 

5.2a. Colors in Fig. 5.2b indicate the climatological fraction of precipitation as snow (S/P) for 

each gridpoint. Climatological R50 generally occurs after March 1st throughout the mountainous 

regions of the Sierra Nevada (elevations greater than 1500m) and shifts to even later in the water 

year as both elevation and S/P increase. At lower elevations in the Northern Sierras where annual 

S/P ranges from 0.6 to 0.8, climatological R50 generally occurs before the start of summer. 
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However, mid to high elevations over the Central and Southern Sierras have a higher S/P ratio 

(0.8 to 0.95), which generates snowmelt-driven surface runoff throughout the summer months, 

pushing back climatological R50. For example, R50 in the mountains just southwest of Mono 

Lake occurs as late as the beginning of July. Throughout the Central Valley, Owens Valley and 

western Great Basin Desert (along the California-Nevada border), annual precipitation is low, 

and any precipitation typically falls as rain (S/P < 0.2), so surface runoff timing matches 

precipitation timing and R50 is generally in February. 

 
Fig. 5.3: (a) End-of-21st-century change (water years 2092-2101 average minus 1992-
2001 average, unit: days) in R50 under the RCP8.5 emissions scenario averaged over 
five dynamically downscaled GCMs (CNRM-CM5, GFDL-CM3, inmcm4, IPSL-
CM5A-LR, and MPI-ESM-LR). Gray lines outline the 47 watersheds of the Sierra 
Nevada Mountains. (b) Five model ensemble-mean end-of-21st-century change in R50 
(days) as a function of elevation (m), colored by the five-model ensemble-mean end-of-
21st-century absolute change in the fraction of precipitation as snow (%).  
 

The dynamically downscaled WRF end-of-21st-century change (WY 2092–2101 minus 

WY 1992–2001) in R50 (ΔR50, unit: days) under the RCP8.5 emissions scenario average over 

five GCMs (CNRM-CM5, GFDL-CM3, INM-CM4, IPSL-CM5A-LR, and MPI-ESM-LR) is 

presented in Fig 5.3a. As discussed in Chapter 3, advances in R50 are projected at all locations 

with substantial climatological baseline snowmelt-driven surface runoff. Moreover, the spatial 
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pattern in Fig. 5.3a can be explained primarily by dynamically-downscaled 10-year mean near-

surface (2-meter) springtime warming projections. Ensemble-mean advances in mean R50 are 

greatest in the Northern Sierras and the western-facing mountain slopes, and smaller at the 

highest elevations in the Southern Sierras.  

Fig. 5.3b presents ensemble-mean end-of-21st-century ΔR50 as a function of elevation, 

where colors indicate the five-model ensemble-mean end-of-21st-century absolute change in 

fraction of precipitation as snow (S/P). Fig. 5.3b clearly indicates that elevations between 1800m 

and 2500m are projected to have the greatest and most significant runoff timing advances, as 

those elevations are close to the climatological freezing line, making them most susceptible to 

dramatic decreases in S/P. Decreased frozen precipitation, together with earlier snowmelt, results 

in strong R50 advances at these elevations. At higher elevations in the Southern Sierras (e.g. 

above 3000m), changes to S/P are quite small (around -5%), so advances in R50 are almost 

exclusively due to earlier snowmelt and not also due to decreased snowpack accumulation 

(through decreased S/P). The finding that the greatest advances in R50 timing are in the 1800m 

to 2500m elevation range is consistent with both Maurer et al. (2007) and Young et al. (2009).  

Given strong elevational variations in ΔR50 (Fig. 5.3a), we aim to investigate the extent 

to which runoff timing changes can be determined by elevation alone at the grid point level. To 

do this, we build a simple statistical model that projects ΔR50 for each 100m elevation bin based 

on the average ΔR50 for that elevation bin as simulated through dynamical downscaling. Fig 5.4 

presents the end-of-21st-century change (WY 2092-2101 minus WY 1992-2001) in R50 under 

the RCP8.5 emissions scenario as a function of elevation, where black dots represent individual 

grid points in the innermost domain of Fig. 5.1a., and the red line in Fig 5.4 presents the average 

change in R50 averaged across each 100-m elevation bin. 
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Fig. 5.4: End-of-21st-century change (water years 2092-2101 average minus 1992-2001 
average, unit: days) in R50 under the RCP8.5 emissions scenario as a function of 
elevation (unit: m). Results are averaged over five dynamically downscaled GCMs. The 
red line shows the average change in R50 for each 100m elevation bin.  
 
 

Next, we examine the spatial pattern of R50 that is produced using the elevation-averaged 

change in R50 for each grid point. Fig. 5.5b presents the five-model ensemble-mean end-of-21st-

century change (WY 2092-2101 minus WY 1992-2001) in R50 under RCP8.5 that is produced 

using the elevation-based approach described above. This can be compared to the five-model 

ensemble-mean end-of-21st-century change (WY 2092-2101 minus WY 1992-2001) in R50 

under RCP8.5 that is produced through dynamical downscaling (Fig. 5.5a). To a first 

approximation, the elevation-based R50 model is able to capture some of the ΔR50 spatial 

pattern, and the spatial correlation coefficient between patterns seen in Fig. 5.5a and Fig. 5.5b is 

r = 0.80, indicating that elevational averages in ΔR50 alone can explain 64% of the spatial 

variations in runoff timing changes that arise through dynamical downscaling. 
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Fig. 5.5: End-of-21st-century change (water years 2092-2101 average minus 1992-2001 
average, unit: days) in R50 under the RCP8.5 emissions scenario (a) simulated through 
dynamical downscaling and (b) produced from an elevation-based model. Results are 
averaged over five dynamically downscaled GCMs. (c) Difference between subplots (a) 
and (b), which highlights regions where the elevation-based model underestimates the 
advance of R50 (blue) and overestimates the advance of R50 (red). Unit: days. 
 
 

The errors in runoff timing projections produced by this elevation-based approach are 

presented in Fig. 5.5c; this shows the difference between Fig. 5.5a and Fig 5.5b. Regions where 

the elevation-based model underestimates the advance of R50 are presented in blue, while 

regions where the elevation-based model overestimated the advance of R50 are presented in red. 

Fig. 5.5c reveals a noticeable and strong east vs. west pattern in the model bias, as the elevation-

based R50 model systematically underestimates the advance of R50 (by 20-30 days) at mid-

elevations (1500-2800m) in the western Sierras and systematically overestimates the advance of 

R50 at the same elevations in the eastern Sierras. This reveals that for gridpoints with the same 

elevation, those on the western slopes of the Sierra are projected to have greater advances in 

mean end-of-21st-century R50 than gridpoints at the same elevation in the eastern Sierras, 

suggesting the possibility of a greater vulnerability of western Sierra Nevada watersheds to 

climatic change. The difference in runoff timing changes between the eastern and western Sierras 
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is perhaps due to physical watershed characteristics or the non-uniform expression of climate 

change across the landscape (e.g. stronger climate change signals imposed on the western Sierras 

than eastern Sierras). However, at higher elevations (e.g. above 2800m), the differences between 

end-of-21st-century advances in R50 in the western Sierras and at gridpoints of similar elevations 

in the eastern Sierras are not strong.  

Moreover, the elevation of greatest ΔR50 in the western Sierras is approximately 2100m, 

while this elevation is higher in the eastern Sierras (around 2300m). This strong difference 

between R50 outcomes in the eastern and western Sierra Nevada at elevations between 1500m to 

2800m might be due to differences in lapse rate on the windward and leeward sides of the Sierras, 

which would affect the elevation of the freezing line (and therefore the elevation of the snowline, 

strongest SAF enhanced-warming, SWE reductions and snow cover loss). As moist air from the 

Pacific and coastal California ascends up the windward western Sierra, it rises at approximately a 

moist adiabatic lapse rate. Moisture is wrung out of air passing over the Sierras toward the inland 

desert, and hence air subsides down the eastern Sierras closer to the dry adiabatic lapse rate. This 

suggests that the elevation of the freezing line in the eastern Sierra Nevada should be higher than 

in the western Sierra and sheds light on why the strongest R50 advances are projected to occur at 

a lower elevation in the western Sierra Nevada than in the eastern Sierra Nevada. 

 

5.4 Runoff timing and elevation at the watershed level 

 

Section 5.3 explored the relationship between runoff timing and elevation at the grid 

point level, and shed light on how this relationship varies in the western versus eastern Sierras. In 

this section, we aim to understand runoff timing changes at the watershed level’ this assessment 
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is critical for surface water resources management, especially in deeply drawn-upon hydrologic 

systems like the Sierra Nevada Mountains (Stewart et al. 2013) of California and Nevada. 

Fig. 5.6 presents the five-model ensemble-mean watershed-average end-of-21st-century 

R50 change as simulated through dynamical downscaling. Watershed-average R50 changes are 

not calculated by averaging R50 across the watershed, but rather by summing the daily 

climatological hydrograph across all gridpoints within a watershed, and then finding the centroid 

of that watershed-average hydrograph. This approach weights locations that generate significant 

surface runoff higher than those that produce little surface runoff, and allows us to examine R50 

changes in a way that considers large advances in R50 to be the most significant and relevant at 

grid points with substantial annual surface runoff. 

 
Fig. 5.6: Dynamically downscaled end-of-21st-century change (water years 2092-2101 
average minus 1992-2001 average, unit: days) in R50 under the RCP8.5 emissions 
scenario. Watershed average changes are presented for the 47 watersheds of the Sierra 
Nevada. Results are averaged over five dynamically downscaled GCMs (CNRM-CM5, 
GFDL-CM3, inmcm4, IPSL-CM5A-LR, and MPI-ESM-LR). Gray lines outline the 47 
watersheds of the Sierra Nevada Mountains. 
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Fig. 5.7: Watershed average elevation (top, unit: meters), baseline (WY 1992-2001) R50 
(middle) and end-of-21st-century change (water years 2092-2101 average minus 1992-
2001 average, unit: days) in R50 under the RCP8.5 emissions scenario (bottom). 
Watershed names are presented at the bottom of the figure, and are arranged in order of 
watershed-mean elevation. End-of-21st-century changes in R50 are averaged over five 
dynamically downscaled GCMs (CNRM-CM5, GFDL-CM3, inmcm4, IPSL-CM5A-LR, 
and MPI-ESM-LR).  
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The spatial pattern in Fig. 5.6 reveals that watersheds in the central Sierra, on both the 

eastern and western slopes, are projected to have the most dramatic advances in watershed-

average R50. This stems from not only having locations within the watershed with strong R50 

advances, but also from those locations being ones that greatly contribute to surface runoff 

generation within the watershed. The magnitude of watershed-average changes in R50 in 

southern Sierra watersheds is less than those in neighboring watersheds to the north (in the 

central Sierra). Advances in R50 at the gridpoint level are generally small throughout these 

watersheds (Fig. 5.3a) because they are at elevations high enough and temperatures cold enough 

to remain below freezing under future warming scenarios.  

To explore the relationship between elevation and watershed-average R50, Fig 5.6 

presents watershed-average elevation (top), baseline climatological R50 (middle) and end-of-

21st-century ΔR50 for each of the 47 watersheds of the Sierra Nevada, arranged from lowest 

mean elevation (dark red) to highest mean elevation (dark blue). Watersheds with mean 

elevations below 1000m (e.g. Lower Sacramento, Lower American, Tulare Lake Bed, etc.) are 

low enough (and therefore warm enough) that most precipitation falls as rain during the baseline 

period, so climatological runoff timing occurs in February at those low-elevation watersheds (Fig. 

5.6, middle). Given already low S/P in these low elevation watersheds, impacts of future climate 

change on runoff timing are small (advances of 0-10 days, Fig. 5.6 bottom).  

For watersheds with mean elevations above around 2000m (e.g. Lake Tahoe, Upper San 

Joaquin, West Walker, Crowley Lake, Upper King, Mono Lake, Upper Kern and East Walker), a 

clear relationship emerges between watershed-average elevation and its change in end-of-21st-

century R50. Because the average elevation within those watersheds coincides with regions of 

greatest snow albedo feedback (Walton et al. 2016) and greatest April 1st snow water equivalent 
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loss (Sun et al. 2016), advances in R50 are quite dramatic, with watershed-averages on the order 

of 50-70 days. 

The relationship between watershed-average elevation and its end-of-21st-century R50 

change for watersheds with mean elevations between 1000m-2000m is not as clear as that of 

watersheds with higher (e.g. above 2000m) or lower (e.g. below 1000m) mean elevations. For 

example, some watersheds with mean elevations in the 1000-2000m elevation range have 

significant watershed-average end-of-21st-century advances in R50 of about 60 days  (e.g. Upper 

Merced, Upper Stanislaus, Upper Tuolumne), while others have mean advances of only 10-20 

days (e.g. Middle Fork Feather, Panamint Valley, Indian Wells-Searles Valleys). It is surprising 

that some mid to high elevation watersheds exhibit strong advances in end-of-21st-century R50 

while others project much smaller advances.  

Of course, some of the range of watershed-average R50 sensitivity across these mid to 

high elevation watersheds can be explained through the examination of the watershed’s elevation 

distribution (and not just watershed-mean elevation).  The Middle Fork Feather Watershed, for 

example, has an average elevation of 1525m with a standard deviation of only 414m, suggesting 

much of the watershed’s area is in a narrow range of elevations close to the historical 

climatological snowline. The Upper Merced Watershed has a similar average elevation (1459m), 

but a much large standard deviation of elevation distribution (945m), indicating area within this 

watershed is spread across a wider range of elevations and thus a greater portion of the Upper 

Merced is at heights either far above or far below the historical snowline, and thus not strongly 

susceptible to R50 changes under warming. The differences in elevation distributions between 

these watersheds of similar mean elevation help to shed light on differences in future R50 

sensitivity between watersheds with similar average elevations. 
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5.5 Summary and implications 

 

Assessing impacts of future temperature and precipitation changes to streams and rivers 

that originate in the Sierra Nevada is critical to understanding potential impacts to California’s 

water supply, ecosystem health and economy. The objective of this chapter was to examine the 

relationship between elevation and runoff timing and to explore the extent to which gridpoint-to-

gridpoint or watershed-to-watershed differences in runoff timing can be explained through 

elevation. This examination relies on dynamically downscaled simulations of end-of-20th-century 

historical climate and end-of-21st-century future climate projections. This chapter provides an 

initial attempt to characterize and explain gridpoint-to-gridpoint and watershed-to-watershed 

differences in runoff timing changes for the Sierra Nevada through elevational variations. 

We find that elevations in the range of 1800m and 2500m are projected to have the 

greatest and most significant runoff timing advances, as this range of elevations experiences 

dramatic decreases in the fraction of precipitation as snow. Similarly, watersheds projected to 

have the most significant advances in surface runoff timing are those with mean elevations 

between 1500m to 2500m. The surface runoff generated in these watersheds occurs at elevations 

high enough to sustain seasonal snow cover and snowpack (that contributes to surface runoff) but 

not cold enough to remain below freezing under strong future warming. As a result, decreased 

frozen precipitation, together with earlier snowmelt, results in strong R50 advances at these 

elevations, and watersheds with mean elevations in the 1500m to 2500m range are most  

sensitive.   

Overall, we find that the watersheds with the greatest projected advances in end-of-21st-

century runoff timing are those in the central Sierra Nevada, as a great portion of their area is at 
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elevations where R50 is significantly affected by warming and substantial surface runoff is 

produced at these elevations.  Future work will connect watershed sensitivities to the 

communities they serve (e.g. the Tuolumne River Watershed and city of San Francisco) to 

characterize the vulnerability of water resources to future climate change impacts at the city level. 

The results from this chapter should be viewed with the caveat that the dynamical 

downscaling framework imposes identical interannual variability levels between the baseline and 

future time slices. Possible changes to interannual variability patterns in the 21st century, for 

example the El Nino-Southern Oscillation phenomenon (Cai et al. 2014), could significantly 

impact overall precipitation levels and timing through atmospheric teleconnections, a factor that 

is not fully accounted for in this study. However, as the focus of this study is the change in mean 

runoff timing at the grid point and watershed levels, it is difficult to see how the absence of El-

Nino-driven changes in overall precipitation would affect the conclusions significantly. 

Through an investigation of the relationship between elevation and runoff timing, this 

chapter provides a first attempt at assessing changes to runoff timing at the watershed-level in 

California’s Sierra Nevada Mountains. Future research will consider how the non-uniform 

expression of climate change across the landscape might impact watershed runoff timing 

vulnerability. Advances in watershed runoff timing projected in this study are likely to have 

major implications for California’s water resource infrastructure, and it would be helpful from 

both a societal and policy perspective to examine whether the current infrastructure – built on the 

assumption that the snowpack of the Sierras melts gradually throughout the dry season – can 

accommodate such drastic changes to snowmelt timing.  
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