
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Efficient Deep Neural Networks on the Edge.

Permalink
https://escholarship.org/uc/item/1tt4m7bw

Author
Alnemari, Mohammed

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, available at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1tt4m7bw
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Efficient Deep Neural Networks on the Edge

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by

Mohammed Alnemari

Dissertation Committee:
Professor Nader Bagherzadeh, Chair

Professor Jean-Luc Gaudiot
Professor Chen-Yu (Phillip) Sheu

2022

Portions of Chapter 4 © 2019 IEEE
Portions of Chapter 3,5,9 © 2022 IEEE
Portions of Chapter 6 © 2022 PeerJ

Portions of Chapter 8,10 © 2022 IEEE
All other materials © 2022 Mohammed Alnemari

DEDICATION

���َ � �� َ�� �� �� �� � ��� َّ���َ �� ّ�ِ ُ�� ��َ ِ��

��� ّ�َ َ�� � �� ِ ���َ ���
� �� ِ�

�� َ�� ��َ ��

� ����� ّ�َ� � �� ��� ��� ��ُ ��� ِ��
 ّ� َ��� َ���َ ��� ���� ���� ��َ ��

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES x

LIST OF ALGORITHMS xii

ACKNOWLEDGMENTS xiii

VITA xiv

ABSTRACT OF THE DISSERTATION xvi

1 Introduction 1
1.1 Motivation . 1

1.1.1 Cloud Computing . 1
1.1.2 Edge Computing . 2
1.1.3 Edge AI Applications . 3

1.2 Machine learning vs. Deep learning . 4
1.3 Deep Learning at the Edge . 5
1.4 Dissertation Contribution . 6
1.5 Dissertation Organization . 7

2 Background 8
2.1 Convolutional Neural Networks . 8
2.2 Optimization . 11
2.3 Model Training . 12
2.4 Model Inference . 13
2.5 Models . 14

2.5.1 LeNet-5 . 14
2.5.2 Network in Network . 14
2.5.3 AlexNet . 15
2.5.4 VGG-16 . 15
2.5.5 ResNet . 16
2.5.6 GoogLeNet . 16

2.6 Datasets . 17

iii

2.6.1 MNIST . 17
2.6.2 CIFAR-10 and CIFAR-100 . 17
2.6.3 ImageNet . 18

3 Related Works 19
3.1 Algorithmic Methods . 19

3.1.1 Pruning . 19
3.1.2 Quantization . 20
3.1.3 Tensor Decomposition . 21
3.1.4 Network Distillation . 22
3.1.5 Network Architecture Search . 23

4 Filter Pruning and Tensor Train Decomposition 24
4.1 Filter Pruning . 25
4.2 Tensor Train Decomposition . 26
4.3 Experiment and Results . 28

4.3.1 VGG-16 . 29
4.3.2 AlexNet . 30
4.3.3 LeNet-5 . 33

4.4 Conclusion . 35

5 Ultimate Compression: A Joint Method of Binary Neural Networks and
Tensor Decomposition 36
5.1 Tensor Decomposition . 37

5.1.1 CP Decomposition . 38
5.1.2 Tucker Decomposition . 40
5.1.3 Tensor Train Decomposition . 40
5.1.4 Layer Sensitivity and Rank . 42

5.2 Binary Neural Networks . 47
5.2.1 Tenosrized quantized models . 51

5.3 Experiment Results . 55
5.4 Discussion and Analysis Studies . 60

6 A Storage-Efficient Ensemble Classification Using Filter Sharing on Bina-
rized Convolutional Neural Networks 65
6.1 Introduction . 66

6.1.1 Ensemble Learning . 67
6.1.2 Ensemble Methods . 68
6.1.3 Binary Neural Network . 70
6.1.4 Ensemble BNNs . 71

6.2 Proposed Method . 72
6.2.1 Motivations . 72
6.2.2 Proposed Ensemble-Based System Using BNNs 73

6.3 Hardware Analysis . 77
6.3.1 Storage Resource Requirements . 77

iv

6.3.2 Computational Resource and Power Consumption 78
6.4 Experimental Results and Analysis . 79

6.4.1 Binarized ResNets on CIFAR Datasets 79
6.4.2 Ensembles with Binarized ResNet . 80
6.4.3 Comparison of Different Configurations of Weight Sharing 83
6.4.4 Ensembles with Bi-Real-Net and ReActNet on CIFAR Datasets . . . 85

6.5 Conclusion . 88

7 A Scalable CNN-Based Inference System Using Multiple Logarithmic Stochas-
tic Rounding 89
7.1 Introduction . 89
7.2 Background . 90
7.3 Proposed Design . 91

7.3.1 Proposed Logarithmic Stochastic Rounding 93
7.3.2 Proposed Design . 94

7.4 Experimental Results and Analysis . 96
7.5 Conclusion . 101

8 High Rank Tensor Train For Binary Neural Network 102
8.1 Tensor Train Ranks . 102
8.2 Xnor-Net . 103
8.3 Our Proposed Method . 104
8.4 Results and Experiments . 107
8.5 Discussion and Conclusions . 108

9 Crowd Counting Application 110
9.1 Background . 110
9.2 Models and Datasets . 111

9.2.1 Models . 111
9.2.2 Dataset . 112

9.3 Experiment and Results . 114
9.4 Conclusion . 116

10 A Two-Stage Efficient 3D CNN Framework for EEG-Based Emotion Recog-
nition 117
10.1 Introduction . 118
10.2 Related Works . 120
10.3 EEG Signals . 121

10.3.1 Emotions Detection . 122
10.4 Proposed Method . 123

10.4.1 Efficient 3-D CNN Models with Inverted Residual Block 123
10.4.2 Model Binarization . 125

10.5 Experiment and Results Analysis . 129
10.5.1 DEAP Dataset . 129
10.5.2 Data Preprocessing and 3D Representation 130

v

10.5.3 Training Setting . 130
10.5.4 Results of Baseline Models . 131
10.5.5 Result of Binarized Models . 132

10.6 Conclusion . 134

11 Conclusion and Discussion 135

Bibliography 138

vi

LIST OF FIGURES

Page

1.1 Cloud computing data is collected and sent to the cloud, where it is processed
and sent to edge devices. 2

1.2 Edge computing – Data is collected and processed in edge devices. 2
1.3 Different domains can use machine learning at the edge. 3
1.4 Machine learning, where features are extracted from the data before being fed

into classification algorithms. 4
1.5 Deep learning, where features are extracted as the data pass through the

network. 4
1.6 Image classification accuracy of different convolutional neural network archi-

tectures on the ImageNet dataset for different model sizes. As can be seen, for
most architectures the accuracy increases linearly as the number of parameters
in the model is increased. Figure reproduced from[10] 5

2.1 A convolutional neural network, in which the convolutional layers extract the
features and feed to a fully connected layer for classification. 8

2.2 The three different types of convolutional layers. 9
2.3 Different activation functions: Sigmoid, Tanh, ReLU, and Leaky ReLU. . . . 10
2.4 Max pooling selected the maximum value, and Average pooling averaged the

values . 10
2.5 Impact of selecting different learning rates on model performance, where se-

lecting a small learning rate makes the model require more time to converge,
whereas selecting a high rate causes the model to never reach the local minima. 11

2.6 Training a neural network, where the data is forwarded to the model and
the predicted values are compared with the real values to compute the loss
function. Subsequently, the parameters are updated and backpropagated. . . 12

2.7 Backpropagation of errors through the network. 12
2.8 Inference in a deep neural network model, in which data is propagated forward

and the accuracy of the model is calculated. 13
2.10 Lenet-5 [57] architecture. 14
2.11 Network-in-network [64] architecture. 14
2.12 AlexNet [54] architecture. 15
2.13 VGG-16 [97] architecture. 15
2.14 ResNet-18 [34] architecture. 16
2.15 GoogLeNet [101] architecture. 16

vii

2.16 Sample from the MNSIT dataset [58] . 17
2.17 Sample from the CIFAR dataset [53] . 17
2.18 Sample from the ImageNet dataset [18] . 18

3.1 Different Tensor Networks Algorithms . 22

4.1 The FPTT pipeline: the base model is trained, filter pruning and tensor train
decomposition are applied, and finally the model is retrained 25

4.2 Prune filters in which the feature maps that corresponded to the pruned filters
are pruned. 26

4.3 Tensor Train Format [79] . 27
4.4 Three different approaches applied in the experiment: approach one trained

base model, applied filter pruning, retrained the model, applied TT, retrained
and finally predicted. Second approach trained base model, applied filter
pruning, applied TT, retrain, and finally predicted. Third approach, applied
filter pruning on the base model, applied TT, trained, and finally predicted . 29

4.5 VGG-16 model on CIFAR-10,CIFAR-100 and ImageNet showing number of
the parameters with base model, filter pruned model, TT decomposed model
and FPTT model. 31

4.6 AlexNet model on CIFAR-10 and CIFAR-100 showing the number of param-
eters with the base model, filter pruned model, TT decomposed model and
FPTT model . 32

4.7 LeNet-5 model on CIFAR-10 and MNIST showing number of parameters with
base model, filter pruned model, TT decomposed model and FPTT model . 34

5.1 Three different methods of tensor decomposition on a three-order tensor . . . 37
5.2 Layer sensitivity of the AlexNet model after applying tensor decomposition

with different ranks: (a) Sensitivity of the classifier layers that are fully con-
nected layers before finetuning; (b) sensitivity of the feature extraction layers
that are convolutional layers before finetuning; (c) sensitivity of the classifier
layers that are fully connected layers after finetuning; (d) sensitivity of the
feature extraction layers that are convolutional layers after finetuning. 43

5.3 Layer sensitivity of the ResNet-20 model after applying tensor decomposition
with different ranks: (a) Sensitivity of the first basic block before finetuning;
(b) sensitivity of the second basic block before finetuning; (c) sensitivity of
the third basic block before finetuning; (d) sensitivity of the first basic block
after finetuning. 46

5.4 Layers’ connection for a convolution: (a) for conventional fp32; (b) for BNN 50
5.5 Our propsed method in which We select the rank to decompose the mod-

els, based on the layer senstivty and after binarize the model using xnor-net
method and finally train the the model . 52

5.6 Layer’s connection for a convolution: (a) For Tensorized BNN 53
5.7 Layer’s connection for a convolution: (a) ReLU activation function. (b)

PeRLU activation function. (c) Mish activation function. 62

6.1 Conceptual figure of proposed ensemble-based system using BNNs. 74

viii

6.2 Basic blocks of binarized ResNet [34]: (a) stride = 1 (b) stride = 2. 76
6.3 Binarized ResNet-20 structure for CIFAR dataset. 77
6.4 Top-1 inference accuracies of ensemble schemes using binarized ResNet models

on CIFAR-100 dataset: (a) binarized ResNet-20 (b) binarized ResNet-18. . . 81
6.5 Top-1 inference accuracies of ensemble schemes using binarized ResNet-20

models on CIFAR-10 dataset. 83
6.6 Top-1 inference accuracies and storage requirements of different configurations

of ensembles using binarized ResNet-20 on CIFAR-100 dataset: (a) Top-1
inference accuracy (b) storage resource requirements. 84

6.7 Top-1 inference accuracies of ensemble schemes using Bi-Real-Net-18 on CIFAR-
100 dataset. 85

6.8 Top-1 inference accuracies of ensemble schemes using ReActNet-10 on CIFAR-
100 dataset. 87

7.1 The proposed design for CNNs using logarithmic representation with stochas-
tic rounding. 94

7.2 Layer’s connection for a convolution: (a) LeNet-5 (b) NIN. 97
7.3 Inference accuracy using logarithmic quantization for LeNet-5 with MNSIT . 98
7.4 Inference accuracy using logarithmic quantization for NiN with CIFAR-10 . . 99
7.5 Inference accuracy using logarithmic quantization for both AlexNet and GoogLeNet

with ImageNet. 101

8.1 The proposed method, which includes decomposing the models with high
rank tensor train decomposition, binarizing the decomposed layers, and finally
training the models. 106

9.1 Samples from the ShanghaiTech Part B dataset [114]. 112
9.2 Samples from UCF CC 50 datasets [39]. 112
9.3 Samples from the datasets[39] . 113
9.4 Samples from the WorldEXPO’10 dataset[113]. 113
9.5 MCNN model: we first binarized the second and third layers of each column,

and then decomposed them using tensor train decomposition. 115
9.6 CSRNet: we binarized and decomposed the 10 layer of the VGG-16 back-end

and five layers in the front-end with a dilation of 2. 116

10.1 The data process steps and proposed EEGNet architecture 124
10.2 Proposed Binary EEGNet Architecture . 127

ix

LIST OF TABLES

Page

4.1 Comparison Between Original VGG-16 and FPTT VGG-16 31
4.2 Comparison Between Original AlexNet and FPTT AlexNet 33
4.3 Comparison Between Original LeNet-5 and FPTT LeNet-5 34
4.4 Models in Base and FPTT . 35

5.1 ResNet-20 Architectures on CIFAR-10. 42
5.2 Layer Sensitivity for AlexNet Model Feature Layers Before and After Applying

Tensor Train Decomposition . 44
5.3 Layer Sensitivity for AlexNet Model Features-10 and Classifiers Layers Before

and After Applying Tensor Train Decomposition 45
5.4 Layer Sensitivity for the ResNet-20 Model’s First Basic Block Before and After

Applying Tensor Train Decomposition . 47
5.5 Layer Sensitivity for the ResNet-20 Model’s Third Basic Block Before and

After Applying Tensor Train Decomposition 47
5.6 Layer Sensitivity for ResNet-20 Model Basic Before and After Applying Tensor

Train Decomposition . 48
5.7 LeNet-5 Architectures on MNSIT . 58
5.8 Comparison of Different Architectures on CIFAR-10 58
5.9 Comparison of Different Architectures on CIFAR-100 59
5.10 Comparison of Different Architectures on ImageNet 59
5.11 AlexNet Architecture Results on CIFAR-10 63
5.12 ResNet-20 Architectures Results on CIFAR-10 64
5.13 Comparison of Different Architectures on CIFAR-10 64

6.1 Details of a Binarized ResNet-20 Model and Storage Resource Requirements
on CIFAR-10 . 78

6.2 Details of binarized ResNet-18 Model and Storage Resource Requirements on
CIFAR-10 . 79

7.1 Comparison of Different Methods and Different on MNSIT 98
7.2 Comparison of Different Methods and Different on CIFAR-10. 99
7.3 Comparison of Different Architectures on ImageNet 100

8.1 Comparison of Floating and Binary Models with High Rank on CIFAR-10 . 107
8.2 Comparison of Floating and Binary Models with High Rank on CIFAR-100 . 108

x

8.3 Comparison of Different Architectures on CIFAR-10 109

9.1 Comparison Between the Floating-Point Models of MCNN and CSRNet and
the Decomposed Binary Models . 115

10.1 Proposed Models with Their Corresponding Parameter Setting 123
10.2 Methods with Binary Neural Networks Using EEGNet V2 129
10.3 Arousal Test Accuracy vs. Number of Frames per Chunk with MobileNetV2-

3D on the DEAP Dataset . 129
10.4 The Precision, Recall, and F1-Score of the Proposed EEGNet and Binary

EEGNet Models (DEAP) . 132
10.5 Performance Comparison with Previous Studies 133

xi

LIST OF ALGORITHMS

Page
1 ALS for CP decomposition[14] . 39
2 HOOI for Tucker Decomposition[14] . 41
3 SVD for Tensor Train Decomposition[79] . 42
4 Training of the ensemble-based system using BNNs. 75

xii

ACKNOWLEDGMENTS

I’d want to express my gratitude to Professor Nader Bagherzadeh, my dissertation advisor,
for his insightful comments and suggestions throughout the process. I’m so grateful to work
with Professor Nader, who is not only a mentor but also a friend, Which I enjoyed attending
his Thanksgiving gatherings. I am grateful to him for providing me with the opportunity
to conduct research that is relevant to my interests and for guiding and advising me. Dr.
HyunJin Kim was a pleasure to work with him for a year, and I appreciate his input. I’d also
like to thank my lab colleagues, for their insightful discussions. I’d also want to express my
gratitude to committee members Prof.Jean-Luc Gaudiot and Prof.Chen-Yu (Phillip) Sheu
for their insightful comments. I’d like to express my gratitude for my family and friends’
encouragement and support. Finally, I’d want to thank the open source community of
Python, Pytorch, Keras, Caffe, Tensorly.

العلمُ زينٌ فكن للعلمِ مكتسبا * وكن له طالباً ما عشتَ مقتبسا

اركنْ إلِيه وثِقْ واغنَ به * وكنْ حلي� رزينَ العقلِ مُحَْ�سِا

� تأ�ن� فإمِا كُنْتَ منهمِكا * � العلمِ يوماً وإمِا كنتَ منغمسا

وكن فتى ماسكا محضَ التقى وَرِعا * للدينِ منغمسا للعلمِ مُفْ�سِا

 ع� بن ا� طالب

xiii

VITA

Mohammed Alnemari

EDUCATION

Doctor of Philosophy in Computer Engineering 2022
University California Irvine, CA

Master of Science in Computer Engineering 2017
University California Irvine, CA

Bachelor of Science in Computer Engineering 2011
Taif University Taif, Saudi Arabia

RESEARCH EXPERIENCE

Graduate Research Assistant 2016–2022
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

2011–2012
Tabuk University Tabuk, Saudi Arabia

INTERNSHIPS

2016
Summer Intern Research at National Taiwan University Taipei, Taiwan

2018
Summer Intern Research at Tokyo Institute of Technology Tokyo, japan

2021
Intern R&D at InterDigital Remote

xiv

REFEREED JOURNAL PUBLICATIONS

Mohammed Alnemari, and Nader Bagherzadeh Ulti-
mate Compression: Joint Method of Quantization and
Tensor Decomposition for a Compact Models on the
Edge

2022

IEEE Access

HyunJin Kim, Mohammed Alnemari and Nader
Bagherzadeh, A storage-efficient ensemble classification
using filter sharing on binarized convolutional neural
networks

2022

PeerJ Computer Science

REFEREED CONFERENCE PUBLICATIONS

Mohammed Alnemari, and Nader Bagherzadeh, ”Effi-
cient Deep Neural Networks for Edge Computing

July 2019

IEEE International Conference on Edge Computing (EDGE)

Mohammed Alnemari, and Nader Bagherzadeh, Toward
Accurate Binary Neural Network Using a High Rank
Tensor Train Decomposition

April 2022

IEEE 4th International Conference on Advances in Computer Technology, Information
Science and Communications.

Ye Qiao*,Mohammed Alnemari* and Nader
Bagherzadeh,A Two-Stage Efficient 3-D CNN for
EEG Based Emotion Recognition

Mach 2022

IEEE International Conference on Industrial Technology

SOFTWARE

Pomegrante AI
Python Framework to Automate Deep learning Research

AWARDS
Second Honor 2011
Taif University

Full Scholarship 2012
Tabuk University

Best Paper Award 2019
IEEE EDGE 2019

xv

ABSTRACT OF THE DISSERTATION

Efficient Deep Neural Networks on the Edge

By

Mohammed Alnemari

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2022

Professor Nader Bagherzadeh, Chair

Deep neural networks have demonstrated outstanding performance in various fields of ma-

chine learning, such as computer vision, speech recognition, and natural language process-

ing. In particular, convolutional neural networks (CNNs) perform well in computer vision

tasks, such as image recognition, object detection, and image segmentation. The abundance

of training data, advanced computation hardware, and use of graphical processing units

(GPUs) make the training and deployment of deep CNN models plausible. CNN models

usually consist of many layers that contain millions or hundreds of millions of trainable

parameters. This large number of parameters necessitates high storage and computation.

Deploying these models is challenging for low-energy-constrained devices, such as mobile de-

vices, Internet of Things (IoT) nodes, CPU robotics, and autonomous vehicles. A plethora

of software and hardware methods have been introduced over the last five years to compress

state-of-the-art deep neural network models for easy deployment at the edge.

This dissertation aims to investigate the use and combination of pruning, quantization, and

tensor decomposition methods on state-of-the-art deep neural network models. We compare

combined methods with the methods when applied individually in terms of storage and

computation cost. Furthermore, we seek to explore and improve the accuracy of these

methods using various ensemble techniques and different training routines.

xvi

Thus,we propose the FPTT method, which combines a pruning method and a tensor decom-

position method. It reduces the number of parameters by 98% for some models and achieves

a compression factor of 30.7× for others. Next, we use the ultimate compression method,

which combines tensor decomposition with a binary neural network to compress the model.

It achieves a compression ratio of 169.1× for some state-of-the-art models. We also present

a method for improving the model’s inference accuracy, which uses logarithmic representa-

tion by averaging multiple quantized inputs using stochastic rounding for the weights. This

method achieves the same accuracy as floating-point models while reducing the computation

and storage costs. We also improve binary neural network models using ensemble methods

and filter sharing to reduce the storage cost of said methods. In addition, we improve binary

neural networks by using a fixed rank for tensor train decomposition, which increases the

model accuracy by 2%–4%. We employ our methods in two different case studies. In the first

case study, we apply the ultimate compression method and achieve a compression of 23×

compared with floating-point models. In the second case study, we modify the MobileNet-v2

neural network model for an emotion classification application using EEG signals by bina-

rizing the model and replacing the 2D convolutional layer with a 3D one. We improve the

binary model’s accuracy using different methods, achieving an accuracy only 2%–5% less

than the floating-point model’s counterpart while reducing the storage size by 40%.

xvii

Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) has grown rapidly, with 41.6 billion devices anticipated to be

in use by 2025, generating and consuming 79.4 zettabytes of data [1]. Such a large volume

of data requires AI systems for constructing intelligent systems. Two different paradigms

exist for constructing such systems. The first paradigm employs cloud computing, where

data is offloaded to the cloud for processing and predictions. The second paradigm uses edge

computing to perform data processing and prediction near the data sources.

1.1.1 Cloud Computing

In the cloud computing paradigm, data is usually sent to a cloud server for processing

and analysis, and subsequent actions are sent to edge devices. Using the cloud computing

paradigm consumes a great deal of bandwidth resources, which increases the latency for users.

Sending users’ data to the cloud also puts them at risk of privacy leakage. Furthermore,

1

sending data to and processing them in cloud servers requires a significant amount of energy.

Moreover, sending data to cloud servers is not scalable. As the number of edge devices

increases, the amount of data collected will increase as well. In addition, cloud computing

is bounded, making this paradigm unsuitable, especially for AI systems.

Data Input and send to cloud Process on the Cloud
and send actions Actions

Figure 1.1: Cloud computing data is collected and sent to the cloud, where it is processed
and sent to edge devices.

1.1.2 Edge Computing

In the edge computing paradigm, data is collected and analyzed in edge devices or edge

servers. Using edge computing reduces the latency because the processing occurs in proximity

to the source data. Edge computing saves a significant amount of time as well as data

transmission. In addition, processing and analyzing data at the edge protects users’ privacy.

Furthermore, this paradigm consumes less power at the edge since the devices can offload the

computing tasks to edge servers. Moreover, this paradigm is scalable since it is not limited

by the resources on the cloud

Data Input Process on the Edge Actions

Figure 1.2: Edge computing – Data is collected and processed in edge devices.

2

1.1.3 Edge AI Applications

Machine learning at the edge benefits autonomous vehicles by allowing more accurate and

faster decision making, resulting in the more accurate identification of road traffic elements

as well as faster and safer transportation. Machine learning at the edge also benefits smart

city applications in a variety of domains, including facial recognition, disaster response, and

traffic control. In the agricultural domain, building smart farming that monitors and controls

livestock and land resources is one of the many benefits of using machine learning at the

edge. Many applications in the Industry 4.0 domain, such as inspection in manufacturing

lines, can benefit from machine learning at the edge. Furthermore, using machine learning

at the edge for health care has numerous advantages, including the protection of patients’

privacy and development of better models for diagnosing various illnesses.

AI Edge Applications

Figure 1.3: Different domains can use machine learning at the edge.

3

1.2 Machine learning vs. Deep learning

In traditional machine learning, a handcrafted feature extraction step is required, which

is typically performed in collaboration with an engineer and a domain expert. Then, as

demonstrated in Figure 1.4, these features are fed into a classification algorithm, such as a

support vector machine (SVM), decision tree, or random forest, to predict the output.

Features Extraction
(f1,f2,....,fn)

Face shape
Nose width
Distance Between Eyes
Jaw line length
shape of the eye
... etc

Machine Learning
 Algorthim

Support Vector Machine
Random Forest
Naive Bayes
AdaBoost
Desision Trees
..etc

Morgon Freeman

Figure 1.4: Machine learning, where features are extracted from the data before being fed
into classification algorithms.

In deep learning, the feature extraction step is not required. The network automatically

extracts the features as the data passes through the network layers. The network identifies

the pattern within the data to create the features, as illustrated in Figure 1.5.

Morgon Freeman

Features Extractions

Input layers
Hidden layers

Output layers

Figure 1.5: Deep learning, where features are extracted as the data pass through the network.

4

1.3 Deep Learning at the Edge

Because of the storage and computation costs required by these models, deploying deep

neural network models at the edge is difficult. For example, a small model called LeNet-5

introduced in 1998 only had 60,000 weights, whereas the AlexNet model introduced in 2012

had 60,000,000 weights. As models grow in size, their accuracy improves, as illustrated in

Figure 1.6.

Figure 1.6: Image classification accuracy of different convolutional neural network architec-
tures on the ImageNet dataset for different model sizes. As can be seen, for most architectures
the accuracy increases linearly as the number of parameters in the model is increased. Figure
reproduced from[10]

To reduce the number of parameters for these models and build more efficient deep neural

network models at the edge, three different approaches exist. The algorithmic approach

uses algorithms, such as pruning, quantization, tensor decomposition, network distillation,

and network architecture search (NAS), to build more efficient models. In the system ap-

proach, operations can be optimized to be more efficient. Frameworks such as TensorFlow

and Pytorch can be used, for example, to optimize the computational graph and schedule

5

optimization. Finally, in the hardware approach, hardware can be built either using FPGA

or ASIC for specific domains to accelerate deep neural network models on these devices, such

as those used on drones and surveillance cameras. Movidius, Nervana, Jeston, and TPU are

examples of AI chips.

1.4 Dissertation Contribution

• We introduce the FPTT method, which combines pruning and tensor decomposition

using filter pruning on the convolutional layer and tensor train decomposition on the

fully connected layer. FPTT reduces the number of parameters, which in turn reduces

the number of floating-point operations as well as the storage cost.

• We introduce the ultimate compression method, which is a joint method combining

binary neural networks (BNNs) with a tensor decomposition algorithm to build highly

efficient models at the edge with low storage and computation costs. This method

compresses some models by 169× factors.

• We introduce a method for improving models’ inference accuracy, which uses logarith-

mic representation by averaging multiple quantized inputs with stochastic rounding.

• We improve the inference accuracy of the deep BNN model by employing ensemble

methods and sharing filter weights. We also use high-rank tensor train decomposition

to improve the inference accuracy of BNN models.

• We apply the ultimate compression method to crowd counting models and compare

their performance and storage cost with floating-point counterparts.

• We modify MobileNetV2 to detect emotions from EEG signals at the edge using a 3D

convolutional layer instead of a 2D one and binarize the model.

6

1.5 Dissertation Organization

This dissertation is organized into 11 chapters, the remainder of which are organized as fol-

lows. Chapter 2 provides background information on convolutional deep neural networks and

differentiates between training and inference. Chapter 3 presents some past studies that are

related to our dissertation. Chapter 4 introduces the FPTT method and its performance on

state-of-the-art deep neural network models. Chapter 5 introduces the ultimate compression

method, which is a joint method combining BNNs and tensor decomposition, and demon-

strates their performance with an in-depth study on state-of-the-art deep neural network

models. Chapter 6 introduces a trade-off method to improve BNNs using ensemble methods

and filter sharing. Chapter 7 introduces a method for improving the model’s inference accu-

racy using logarithmic representation by averaging multiple stochastic rounding of the input

parameters. Chapter 8 improves BNNs by modifying the layers of the models using a high

rank for tensor train decomposition. Chapter 9 presents the use of the ultimate compression

method for crowd counting models. Chapter 10 discusses and modifies MobileNetV2. We

build three different versions by replacing the 2D-convolutional layer with a 3D one and

binarizing the models for an emotion recognition application using EEG signals. Finally, the

conclusions and recommendations for future work are provided in Chapter 11.

7

Chapter 2

Background

2.1 Convolutional Neural Networks

Convolution Normalization Nonlinearity Pooling
Nonlinearity

Fully
Connected

Conv
Layer

Conv
Layer

Conv
Layer

FC
Layer

Low-Level
Features

Mid-Level
Features

High-Level
Features

Class
Score

Convolutional Layers Where Features are extracted
1-3 Layers

Fully Connected

Figure 2.1: A convolutional neural network, in which the convolutional layers extract the
features and feed to a fully connected layer for classification.

8

Convolutional neural networks (CNNs) consist of multiple convolutional layers, where the

first layer learns the basic features, such as edges and lines; the middle layer learns more

complex features, such as circles and squares; and the following layers extract the most

complex features, such as faces and car wheels. Every convolutional block usually contains a

convolutional layer, a non-linearity layer, a pooling layer, and finally fully connected layers,

as illustrated in Figure 2.1.

Convolution learns the feature representation of the input data. Different filters are used

in the convolutional layers to slide on the input and compute the feature maps. Each neuron

in the features maps connects to a region of neighboring neurons in the previous layer; this

is the neuron’s receptive field. The convolutional layer shares the weights among neurons,

which reduces the number of model parameters and improves the generalization of the mod-

els. There are three different types of convolutional layers, namely 1D convolutional, 2D

convolutional, and 3D convolutional layers, as illustrated in Figure 2.2.

1D CNN

Kernel Size =2

2D CNN

Kernel Size =(2,2)

Kernel Size =(2,2,2)

3D CNN

Figure 2.2: The three different types of convolutional layers.

Nonlinearity is a nonlinear activation function that is typically used after convolutional or

fully connected layers to introduce nonlinearity into the network. Numerous activation func-

tions exist, such as the sigmoid activation function, which sets all values to have probabilities

between 0 and 1, reduces extreme values and zero, and is typically used for two classes. The

Tanh activation function, with values ranging from 1 to +1, works best for hidden layers.

The ReLU activation function only fires if the input is greater than zero and is the most

9

commonly used activation for state-of-the-art deep neural network models. Leaky ReLU

is similar to the ReLU activation function, but when the input is negative it introduces a

small negative slope at approximately 0.01. The aforementioned activation functions are

illustrated in Figure 2.3.

Sigmod

f(x) = 0.1x

f(x) = x
ReLu

f(x) = 0

f(x) = x

Tanh

Leaky ReLu

Max(0,x)

tanh(x)

Max(0.1x,x)

σ(x) = 1/ 1 + e^-x

Figure 2.3: Different activation functions: Sigmoid, Tanh, ReLU, and Leaky ReLU.

Pooling is usually used in CNNs to reduce the number of parameters, and it also makes

the network robust and invariant to small shifts and distortions [56]. There are two common

pooling layers, namely max pooling and average pooling, as illustrated in Figure 2.4.

10 25

35 40

55

33 15

0 32 28

183 56

77

23

0

100 10 25

35 40

55

33 15

0 32 28

183 56

77

23

0

100

40 100

55 183

27 50

25 74

Max Pooling
2 x 2
Pool Size

Average Pooling
2 x 2
Pool Size

Figure 2.4: Max pooling selected the maximum value, and Average pooling averaged the
values

10

Normalization refers to the distribution of data across the layer being normalized to have

a zero mean and unit standard deviation. Doing so improves the accuracy and accelerates

the training.

Fully Connected refers to every neuron in the output feature maps connecting to every

neuron in the input feature maps. There are usually between one and three fully connected

layers, and the features are flattened before being fed into the fully connected layers. The

output layer will have the same number as the number of classes.

2.2 Optimization

Optimization in deep learning minimizes the loss function between the real values and the

predicted values. This is done using hill-climbing or descent-climbing optimization algo-

rithms, such as gradient descent algorithms and their variants stochastic gradient decent

(SGD) and Adam. The step direction (gradient) and step size (learning rate) play signif-

icant roles in optimizing the deep neural network models, in which either selecting a large

or very small learning rate affects the model accuracy and convergence, as illustrated in

Figure 2.5. The weight is updated based on the learning rate and loss function as follows:

∆wi = −α dL
dwi

Low Learning Rate Decent Learning Rate High Learning Rate

Figure 2.5: Impact of selecting different learning rates on model performance, where selecting
a small learning rate makes the model require more time to converge, whereas selecting a
high rate causes the model to never reach the local minima.

11

2.3 Model Training

Training a deep neural network model involves forward propagation, where the data is for-

warded to the model and the predicted values are compared with the real values, which is

referred to as the loss function y − y. The parameters are updated using backward propa-

gation. A backward pass in where the derivative of the error is propagated with respect to

the weight from the last layer (output layer) to the first input layer. This is done using the

chain rule of calculus to compute how the loss is affected by each weight, and the weights

are updated as shown in Figure 2.4.

Large Datasets For training

Forward Propagation

Input layers Hidden layers Output layers

Back Propagation

Next Epoch

Predicated (y^)

Real Value (y)

Error(y^-y)

Update
Update Weights

Figure 2.6: Training a neural network, where the data is forwarded to the model and the
predicted values are compared with the real values to compute the loss function. Subse-
quently, the parameters are updated and backpropagated.

y
(l)
i

y
(l+1)
1

...

y
(l+1)

m(l+1)

δ
(l+1)
1

δ
(l+1)

m(l+1)

.

Figure 2.7: Once evaluated for all output units, the errors
δ
(L+1)
i can be propagated backwards.

12

2.4 Model Inference

In the inference stage of the model, only forward propagation is performed, after which the

model is trained. A sample of the dataset is forwarded to the neural network model with

trained parameters, and then the accuracy of the inference is computed based on the many

correct predicted values equal to the real values of the sample of the dataset, as illustrated

in Figure 2.8.

Accuracy

Real Value

Result

Inference

Hidden layers Output layersInput layers

Sample of Dataset

Forward Propagation

Forward

Figure 2.8: Inference in a deep neural network model, in which data is propagated forward
and the accuracy of the model is calculated.

...
.

...
.

W1,1

W1,2

W1,3

W1,4

W1,

a1 [0]

a2 [0]

a3 [0]

a4 [0]

a [0]

a1 [1]

a2 [1]

a3 [1]

a4 [1]

a [1]

n

 n n

(a) (b)

Layers’ connection for a convolution: (a) Two fully connected layers showing the inference
stage for one neuron; (b) multiply–accumulate operation performed at the inference stage
for one neuron.

13

2.5 Models

2.5.1 LeNet-5

LeNet-5 is a small model that consists of three convolutional layers and two fully connected

layers designed for hand written digit recognition. Figure 2.10 illustrates the LeNet-5 archi-

tecture.

Figure 2.10: Lenet-5 [57] architecture.

2.5.2 Network in Network

The network-in-network (NiN) architecture uses 1 × 1 convolutions, which provide superior

combinational power to the features of the convolutional layers, as depicted in Figure 2.11.

Figure 2.11: Network-in-network [64] architecture.

14

2.5.3 AlexNet

The AlexNet neural network model is a high-capacity model that consists of five convolutional

layers and three fully connected layers, as illustrated in Figure 2.12.

Figure 2.12: AlexNet [54] architecture.

2.5.4 VGG-16

VGG-16 is a high-capacity neural network model that consists of 13 convolutional layers and

three fully connected layers, as depicted in Figure 2.13

Figure 2.13: VGG-16 [97] architecture.

15

2.5.5 ResNet

ResNet is a very-high-capacity model that uses a residual block to build very deep models.

There are numerous variants of the ResNet architecture, ranging from 18 to 152 layers.

Figure 2.14 illustrates the ResNet-18 architecture.

Figure 2.14: ResNet-18 [34] architecture.

2.5.6 GoogLeNet

The GoogLeNet architecture consists of 22 layers (27 layers including pooling layers), and

among these layers are nine inception modules. The inception modules consist of four

branches with 1 × 1, 3 × 3, and 5 × 5 convolutions as well as downsampling. Figure

2.15 illustrates the GoogLeNet architecture

Figure 2.15: GoogLeNet [101] architecture.

16

2.6 Datasets

2.6.1 MNIST

MNIST is a small handwritten number dataset that consists of 60,000 training images and

10,000 test images of size 28 × 28 pixels and 10 labels ranging from 0 to 9.

Figure 2.16: Sample from the MNSIT dataset [58]

2.6.2 CIFAR-10 and CIFAR-100

CIFAR-10 is a widely used dataset that contains 50,000 RGB images of 32 × 32 pixels for

training and 10,000 for testing with 10 different classes. CIFAR-100 differs from CIFAR-10

only in terms of the number of classes, containing 100 different classes instead of 10.

Figure 2.17: Sample from the CIFAR dataset [53]

17

2.6.3 ImageNet

ImageNet is a widely used dataset with 1.2 million RGB images of size 224 × 224 pixels for

training and 50,000 for testing.

Figure 2.18: Sample from the ImageNet dataset [18]

18

Chapter 3

Related Works

3.1 Algorithmic Methods

3.1.1 Pruning

Pruning is a well-studied method for reducing the computation and storage costs of deep

neural network models. In the early stages of its application to deep neural network mod-

els, connections in the models are pruned based on the lowest saliency. The saliency term

comes from computing the Hessian matrix or inverse Hessian matrix for every parameter,

as described in the Optimal Brain Damage method and Optimal Brain Surgeon method,

respectively [59][31]. These methods are used for pruning when the deep neural network

model parameters are not a significant burden. However, state-of-the-art deep neural net-

work models, such as AlexNet and VGG-16, have 60 million and 138 million parameters,

respectively. Therefore, computing the Hessian matrix or inverse Hessian matrix for every

parameter in these models is not plausible. The deep compression method was introduced in

2015, which uses a certain threshold to remove connections below a certain threshold [29]. In

19

the deep compression method, most of the connections pruned are in fully connected layers,

which are responsible for 90% of the total parameters and only 1% of the overall floating-

point operations (FLOPs) [62]. Most of the FLOPs for convolutional layers are compressed

and accelerated but require Sparse Basic Linear Algebra Subprograms (BLAS) libraries [29]

or special hardware to deal with sparse matrices [28]. Researchers have proposed numer-

ous pruning methods for constructing different forms of sparsity that do not require specific

hardware, such as vector-level sparsity (1D), kernel-level sparsity (2D), and filter level spar-

sity (3D). Filter pruning has been proposed in [62] [70] [35], which is a natural structure way

of pruning that does not require BLAS or specialized hardware; these methods reduce the

FLOPs by more than 30%, 48%, and 52%, respectively.

3.1.2 Quantization

Quantization methods are another option for reducing the storage and computation costs of

deep neural network models. Quantization differs from pruning methods by focusing on how

many bits can represent the parameters of deep neural network models. Quantization in deep

neural networks refers to the conversion of the neural network parameters’ values, either the

weight, activation, or inputs, from a 32-bit floating point to a lower-precision format. The

literature is replete with different quantization methods. Quantization can be applied to the

training and inference stages for deep neural network models. In the inference stage, a model

with only 8 bits for convolutional layers and 5 bits for fully connected layers can obtain the

same accuracy as its floating-point model counterpart [29]. Other methods use an 8-bit

integer to train the models and make the inference [107]. Another method is logarithmic

representation, which has 3 bits for inference and training with little degradation in terms

of accuracy; logarithmic representation also reduces computation, storage, and hardware

costs [74]. BNNs are a powerful method for quantizing neural network models and use only

1 bit to represent the deep neural network parameters [17] [16] [65]. These methods can

20

be applied only in the inference stage of deep neural network models. A recent work [72]

demonstrated how to train the model with degradation of only a few percent compared with

the floating-point counterpart.

3.1.3 Tensor Decomposition

Tensors are multidimensional arrays or N-way arrays. The array dimensionality specifies the

tensor order or the number of tensor modes. Tensor decomposition represents high-order ten-

sor data through multilinear operation over its factors. Tensor decomposition methods have

attracted much attention in various fields, such as psychometrics, chemometrics, machine

learning, quantum physics, and neuroscience [51][14]. CANDECOMP/PARAFAC (CP) and

Tucker decomposition are the most popular and well-known algorithms for decomposing

high-order tensors. Both CP and Tucker decomposition are high-order generalizations of

principle component analysis (PCA) and singular value decomposition (SVD). CP decom-

position is presented in deep learning literature as a tool for compressing the model and

reducing the FLOPs required by the convolutional layers and fully connected layers [55]. CP

decomposition factorizes a tensor into a sum of the rank-one tensor. Tucker decomposition

is also used to compress the model and reduce the required FLOPs required by convolutional

layers and fully connected layers [47]. It compresses the data into tensors of small dimen-

sions represented by core tensors, while its factor matrices span the subspace occupied by

the fiber of data [66]. CP decomposition produces a compact representation, but finding an

optimal solution is challenging. Tucker decomposition is stable and flexible but suffers from

the curse of dimensionality, in which the number increases exponentially with the tensor

order. Tensor networks are a generalization of tensor decomposition and an excellent tool

for large-scale data. They convert high-order tensors into interconnected low-order tensors.

Various methods exist for using tensor networks, such as tensor train (TT) [79], hierarchical

Tucker (HT) [15], and tensor ring (TR) [115]. TT is the most common algorithm among the

21

.

.

.

.

.

T

������������ ����������� �������������������

I1 I�

I1 I2 I3 I�

G�G1

R1 R2 R3 R� - 1

G2 G3 G1

G2

G�

R1

R2
R3

I1

I2
R�

R� + 1

I�
G�G�

R�

I� G1

G2

G3

G�

G�

R1

R2

R3

R� - 1

I1

I2

I�

I�

R�

R�

Figure 3.1: Different Tensor Networks Algorithms

tensor network algorithms. TT decomposition provides a better representation of high-order

dimensional tensors and does not suffer from the curse of dimensionality. TT decomposi-

tion is applied to deep learning models for more efficient models [78][23]. HT is a recursive

hierarchical construction of tucker decomposition [15] and accelerates deep neural network

models. TR is a generalized form of CP decomposition that uses two-order tensors instead

of one-order tensors to multiply the first and last tensor, thus forming a ring structure. TR

decomposition was used recently to compress deep neural network models [115]. TT, HT,

and TR are illustrated in Figure 3.1.

3.1.4 Network Distillation

Knowledge transfer is one of the methods for compressing deep neural network models. The

earliest work on knowledge transfer [9] trained a compressed model to mimic large and com-

plex ensemble models. Knowledge distillation, introduced by Hinton [36], uses the same idea

but transfers knowledge from a larger model called the teacher to a smaller model called the

student by softening the SoftMax probability distribution. FitNets, on the other hand, not

22

only uses the SoftMax output probability to guide the student network but also the interme-

diate representation as a hint for the student network [89]. The FitNets method generates

a thin and deeper network that generalizes well [89] and is computationally less intensive

than the teacher network. In Born-Again Networks (BANs), the student and teacher are

identical in terms of parameterizing, and knowledge transfer occurs from a teacher network

to a student network at a similar capacity. However, in BANs, student networks outper-

form teacher networks in terms of accuracy [20]. Teacher Assistant Knowledge Distillation

indicates that the size of the models and the gap between the teacher model’s size and the

student model’s size play a significant role in training improved student models if the gap

between the student and teacher model is significant. The student model lowers its perfor-

mance significantly compared with its teacher based on this gap. Researchers introduced a

model or chain of models called teacher assistants to bridge this gap between teacher and

student and thus build a better student model [73].

3.1.5 Network Architecture Search

Network architecture search (NAS) is a method for creating neural network architectures

by employing a search strategy based on objective evaluation. The objective evaluation

can include storage costs, flop counts, and hardware type. NAS can create excellent neural

network architectures, but it requires massive computational power. Furthermore, because

of the numerous architectures that NAS evaluates, training and evaluating neural network

architectures require significant amounts of computational power and time. For example, the

Google Brain team’s NAS method used 800 GPUs for 28 days, resulting in 22,400 GPU hours,

which demonstrates the computation and cost required by NAS [119]. Numerous methods

have been introduced to reduce the evaluation procedure, such as low-fidelity performance

estimation, weight inheritance, weight sharing, learning-curve extrapolation, network mor-

phism, and single-shot [2].

23

Chapter 4

Filter Pruning and Tensor Train

Decomposition

This chapter presents the FPTT method, which is a two-stage pipeline: filter pruning (FP)

on convolutional layers and tensor train (TT) decomposition on fully connected layers. We

combined them to reduce the storage and computation requirements of DNN models to be

able to deploy them easily on edge devices. In the first stage, we used FP instead of weight

pruning to alleviate the need for a BLAS library or specialized hardware. In the second

stage, we used TT decomposition, a form of nonrecursive tensor decomposition that does

not suffer from the curse of dimensionality, and the parameters were the same as for canonical

decomposition (CP). However, it is more stable and based on a low-rank approximation of

auxiliary unfolding matrices. Our method is depicted in Figure 4.1.

24

Base
Model

Tensor
Train layers

Finetune

Train The Base Model

Filter
Pruning

Prune the Filter based
on the norm

Remove FC layer

10% - 55%
reducation

80% - 90%
reducation

Figure 4.1: The FPTT pipeline: the base model is trained, filter pruning and tensor train
decomposition are applied, and finally the model is retrained

4.1 Filter Pruning

Each convolutional layer in deep neural networks transforms an input feature map into an

output feature map, which is an input for the next convolutional layer. The filters slide on

the input channels, producing feature maps for each filter, as depicted in Figure 4.2. Pruning

is applied on the filters and the output feature maps corresponding to the pruned filters are

removed. We used the algorithm presented in [62], which uses L1-norm for every filter as

pruning criteria. The algorithm is as follows: first, the sum of its absolute kernel weight is

calculated, as shown in Equation (4.1); second, the filter is sorted by fj and the filters with

the smallest absolute sum value and their corresponding features map are pruned:

fj =

ni∑
n=1

=
∑
|Kn| (4.1)

We pruned the filters across the network in a greedy fashion, resulting in high accuracy

compared with pruning filters layer by layer. Applying FP on the convolutional layers

results in effective compression for some models. However, state-of-art models still require

high costs in terms of computation and storage to be deployed on edge devices. To compress

the model further, we incorporated TT decomposition to compress the fully connected layers

of the state-of-art models.

25

MxM

F
F-1

MxM

Prune Filters

Figure 4.2: Prune filters in which the feature maps that corresponded to the pruned filters
are pruned.

4.2 Tensor Train Decomposition

After applying FP to the model, we replaced the fully connected layers with TT layers to

compress the models further. TT layers store their weight matrix in the TT format [78]. The

TT format, when applied on tensor X, can be represented as in Equation (4.2), such that for

each dimension k = 1, . . . , d and for each value of the k-th th dimension index ik = 1, . . . , nk

there is a matrix Gk [ik] [78].

X (i1, . . . , id) = G1 [i1]G2 [i2] . . . Gd [id] (4.2)

All matrices Gk [ik] related to the same dimension K must be of the same size rk−1× rk and

r0, rd = 1 in order to make matrix product Equation (4.2) of size 1 × 1. The sequence of

{rk}dk=0 is the rank of the Tensor Train format. The collection of the matrices (Gk [jk])
nk

ik=1

are called cores. Equation (4.2) can be rewritten as shown in Equation (4.3), where using

the symbol Gk [jk] (αk−1, αk) is used as elements of the matrices Gk [jk].

X (i1, . . . , id) =
∑

G1 [i1] (α0, α1) . . . Gd [id] (αd−1, αd) (4.3)

26

Figure 4.3: Tensor Train Format [79]

To store tensor X of all its elements requires
∏d

k=1 nk numbers compared with TT format

which only requires
∑d

k=1 nkrk−1rk to store their elements. This indicates that the TT format

is highly efficient in terms of memory. The TT format is represented geographically in Figure

4.3 in where r0, rd = 1 . The ellipses represent indices of the original tensors ik and indices of

some of auxiliary tensors αk, and circles represent only the indices of the auxiliary tensors αk

representing the link. If the same auxiliary index was present in the two cores, we connected

them. To evaluate the entry of tensor, all tensor in ellipses had to be multiplied and we

performed summation over all of the auxiliary indices [79].

Fully connected layers can be represented using Equation (4.4) in which W ∈ Rm×n is the

weight matrix and b ∈ Rm is the bias vector.

y = Wx + b (4.4)

TT layers store their weight matrices in TT format. Using the TT format allows one to

use hundreds or even thousands of hidden units with a small number of parameters. The

number of these parameters can also be controlled either by using different numbers of units

or by changing the TT rank. TT layers can be represented as indicated in Equation (4.5).

y (i1, . . . , id) =
∑

j1,...,jd

G1 [i1, j1] . . . Gd [id]X (j1, . . . , jd) +B (i1, . . . , id) (4.5)

27

The TT format replaces a tensor X with its approximation tensor Y in which ∥X − Y∥ ≤

accuracy ∥Y∥ . We replaced the fully connected layers in the pruned models with TT layers,

which reduce the models neurons immensely achieving of more than 90% for some models.

We trained DNNs using the SGD algorithm. The models use the backpropagation algorithm

to compute the gradient and update the parameters. The backpropagation algorithm com-

putes the gradient of the loss function of the last layer and propagates through layers in

reverse order. To use TT layers, we converted the gradient matrix to tensor train format

and added them to the estimation of the weight matrices. Doing so when we trained the

models would require O(MN) which is not efficient if we replace the fully connected layer

with many tensor train layers. To mitigate this, we use the same approach presented by [78]

in which compute the gradient of the loss function directly with respect to the tensor train

format of the weights. Doing this requires only O (r3max{M,N}) which is very efficient if

the rank is small. For a further explanation and an in-depth analysis of training TT layers,

readers may refer to [78]

4.3 Experiment and Results

In our experiment, we employed three different approaches, as illustrated in Figure 4.4. In the

first approach, we trained the base model, pruned the filters, retrained the models, replaced

the fully connected layers with TT layers, finetuned the models, and finally computed the

models’ inference accuracy. In the second approach, we pruned filters from untrained models

first and, then trained the models, replaced fully connected layers with TT layers, finetuned

the models, and finally computed the models’ inference accuracy. In the third approach, we

pruned the filters, replaced the fully connected layers with TT layers, trained the models,

and then computed the models’ inference accuracy.

Our experiments indicated that the third approach worked best with shallow or medium

28

Base
Model

Train
Model

Filter
Pruning

Finetune
Tensor
Train Finetune Predict

Base
Model

Train
Model

Filter
Pruning

Tensor
Train

Finetune Predict

Base
Model

Filter
Pruning

Tensor
Train

Finetune Predict

Approach 1

Approach 2

Approach 3

Figure 4.4: Three different approaches applied in the experiment: approach one trained
base model, applied filter pruning, retrained the model, applied TT, retrained and finally
predicted. Second approach trained base model, applied filter pruning, applied TT, retrain,
and finally predicted. Third approach, applied filter pruning on the base model, applied TT,
trained, and finally predicted

DNN models such as LeNet-5 and AlexNet, resulting in a small degradation of accuracy.

We discovered that the second approach slightly improved model accuracy regardless of the

model complexity. When we used the first approach, DNNmodels such as VGG-16 and VGG-

19 performed well in terms of compression ratio and accuracy performance. Our experiment

uses three different models, namely VGG-16, AlexNet, and LeNet-5. In our experiment,

we used the same metric presented in[62] to compute the number of the neurons that were

removed from the model, which is Reducation = M − C/M where M is the parameters

number of the original model, and C is the parameters number of the compressed model.

4.3.1 VGG-16

We used the Keras framework in this experiment to build and train the VGG-16 architecture

without using dropout or batch normalization layers [97]. We used three different datasets

29

to train and test our method, namely CIFAR-10, CIFAR-100, and ImageNet. We used

horizontal flip, random shift, and random rotation data augmentation for CIFAR-10 and

CIFAR-100. We trained VGG-16 for 100 epochs with a batch size of 256 and learning rate of

0.05, and achieved 90.65% accuracy for CIFAR-10 and 62.95% accuracy for CIFAR-100. The

number of parameters for the trained VGG-16 was 3.36 × 107 for CIFAR-10 and 3.4 × 107

for CIFAR-100. Next, We applied the second approach of our method, where we pruned

the filters and retrained and replace the fully connected layers with TT layers. By doing so

for VGG-16 on CIFAR-10, we achieved an accuracy of 90.99% with 5.04 × 106 parameters.

Using the metric described in the previous section, we reduced the model by 85% compared

with the original model, which is better than [62] and [78], where reductions of 64% and

41%, respectively, were achieved. We also applied the same method using CIFAR-100 and

achieved accuracy of 64.07% with 5.43×106 parameters. This is reduced the model by 84.03%

compared with the original model. For ImagNet dataset we used the pretrained VGG-16

models provided from the Keras framework which had an accuracy of 71.1% and 1.38× 108

parameters. After applying our method using the second approach, in which we pruned the

filter and trained the model for 100 epochs using stochastic gradient decent(SGD) with a

learning rate of 0.01 and momentum of 0.9 we achieve accuracy of 73.4% with only 8.71×106

parameters meaning that we removed 93.69% parameters of the original model. The Table

4.1 compares between the base models with the FPTT models in terms of accuracy and the

number of parameters. Figure 4.5 illustrates the number of parameters when we applied FP,

and TT individually and when we applied the FPTT method.

4.3.2 AlexNet

We used the Keras framework in this experiment to build and train the AlexNet architecture

without using dropout or batch normalization layers [54]. We used two different datasets

to train and test our method, namely CIFAR-10 and CIFAR-100. We used horizontal flip,

30

Table 4.1: Comparison Between Original VGG-16 and FPTT VGG-16

Network Type Accuracy% Parameters Removed

VGG-16

CIFAR-10-base 89.9% 3.36× 107 -

CIFAR-100-base 62.9% 3.4× 107

Imagenet-base 71.1% 1.38× 108

CIFAR-10-FPTT 90.99% 5.04× 106 85%

CIFAR-100-FPTT 64.07% 5.43× 106 84.03%

Imagenet-FPTT 73.4% 8.71× 106 93.69%

Figure 4.5: VGG-16 model on CIFAR-10,CIFAR-100 and ImageNet showing number of the
parameters with base model, filter pruned model, TT decomposed model and FPTT model.

31

Figure 4.6: AlexNet model on CIFAR-10 and CIFAR-100 showing the number of parameters
with the base model, filter pruned model, TT decomposed model and FPTT model

random shift, and random rotation data augmentation for CIFAR-10 and CIFAR-100. We

trained AlexNet for 250 epochs with a batch size of 128 and a learning rate of 0.05, and

achieved 86.95% accuracy for CIFAR-10 and 56.3% accuracy for CIFAR-100. The number

of parameters for the trained AlexNet was 2.21×107 for CIFAR-10 and 2.25×107 for CIFAR-

100. Applied the second and the third approaches of our method on AlexNet, the second

approach performed better in terms of accuracy but the third approach was faster in terms of

training time. Using the third approach for AlexNet on CIFAR-10 we achieved an accuracy

of 85.93% with 7.76 × 105 parameters. Using the metric described in the previous section,

we reduce the model by 96.5% compared to the original model. We also apply the same

method using CIFAR-100 and we achieve accuracy of 55.56% with 1.1 × 106 parameters.

This is reduced the model neurons by 94.5% compared with the original one. Table 4.2

compares between the base models, with the FPTT models in terms of accuracy and number

of parameters. Figure 4.6 presents the number of parameters when we applied FP, and TT

individually and when we applied the FPTT method.

32

Table 4.2: Comparison Between Original AlexNet and FPTT AlexNet

Network Type Accuracy% Parameters Removed

AlexNet

CIFAR-10-base 86.95% 2.21× 107 -

CIFAR-100-base 56.3% 2.25× 107 -

CIFAR-10-FPTT 85.93% 7.67× 105 96.5%

CIFAR-100-FPTT 55.56% 1.1× 105 94.5%

4.3.3 LeNet-5

We use the Keras framework in this experiment to build and train the LeNet-5 architecture

[57]. We used two different datasets to train and test our method, namely CIFAR-10, and

MNSIT. Furthermore, use horizontal flip, random shift, and random rotation data augmen-

tation for CIFAR-10, and MNSIT. We trained LeNet-5 for 100 epochs with a batch size of

256 and a learning rate of 0.05, and achieved 75.04% accuracy for CIFAR-10 and 86.39%

accuracy for MNSIT. The number of parameters for the trained LeNet-5 was 1.74× 106 for

CIFAR-10 and 1.31× 106 for MNSIT. When we applied the second and the third approach

of our method on LeNet-5, the second approach perform better in terms of accuracy but the

third approach was faster in terms of training time. Using the third approach for LeNet-5 on

CIFAR-10, we achieved an accuracy of 73.77% with 2.24×104 parameters. Using the metric

described in the previous section, we reduced the model parameters by 98.71% compared

with original model. We used the second approach of our method with MNSIT and achieved

an accuracy of 89.99% with 8.86×104 parameters. This reduced the model neurons by 93.2%

compared with the original model. Table 4.3 compares between the base model, and FPTT

models in terms of accuracy and the number of parameters. Figure 4.7 presents the number

of the parameters when we applied FP, and TT individually and when we applied the FPTT

method.

33

Table 4.3: Comparison Between Original LeNet-5 and FPTT LeNet-5

Network Type Accuracy% Parameters Removed

AlexNet

CIFAR-10-base 75.04% 1.74× 106 -

Mnsit-base 86.39% 1.31× 106 -

CIFAR-10-FPTT 73.77% 2.24× 104 98.71%

Mnsit-FPTT 89.99% 8.86× 104 93.2%

Figure 4.7: LeNet-5 model on CIFAR-10 and MNIST showing number of parameters with
base model, filter pruned model, TT decomposed model and FPTT model

34

4.4 Conclusion

Recent research has indicated that many neural network parameters are redundant, and

that state-of-the-art neural network architectures are overparameterized. To address these

concerns, we presented the FPTT method, which consists of two stages: the first FP, followed

by the replacement of fully connected layers with TT layers. FPTT method outperformed

when FP and TT when performed individually. Table 4.4 presents a comparison between

the original models and the compressed models using the FPTT method for CIFAR-10.

Table 4.4: Models in Base and FPTT

Network Type Original in MB FPTT in MB Compression Factor

Models

VGG-16 269.2MB 37.6MB 7.1x

Alexnet 176.8MB 6.2MB 28.5x

LeNet-5 14MB 455.6KB 30.7x

35

Chapter 5

Ultimate Compression: A Joint

Method of Binary Neural Networks

and Tensor Decomposition

In this chapter, we apply tensor decomposition methods to floating-point deep neural network

models and then binarize the models using a type of BNNs method called XNOR-Net[87].

To summarize, the contributions of this chapter are as follows:

1. We propose an efficient deep neural network model by applying Ultimate Compression

method which is a joint method of the tensor decomposition and BNNs.

2. We introduce a rank selection algorithm with which we decompose the models based

on the sensitivity of the layer for decomposition.

3. We compare between three different ranks selection algorithm: using Random method,

Variational Bayes Matrix Factorization (VBMF), and our method which we select the

ranks based on the layers sensitivity.

36

4. We present our method’s results using six different models on four different datasets,

namely LeNet-5 on MNIST, Network-in-Network, AlexNet, ResNet-20, and ResNet-

32 on CIFAR-10, ResNet-20 and ResNet-32 on CIFAR-100, and finally Alexnet and

Resnet- 18 on ImageNet.

5. We present a discussion and analysis on how to improve the accuracy of the decomposed

binary models using different optimizers, different activation functions, and different

methods for training the models.

6. We demonstrate that the decomposed binary models yield a deeper model, which takes

more time to converge. Furthermore, by applying orthogonal initialization, the model

converges faster.

5.1 Tensor Decomposition

We used three different tensor decomposition methods: CP, Tucker, and TT. The

tensor decomposition methods were used on both convolutional and fully connected

layers. We applied the three different methods on a 3D tensor, as illustrated in Figure

5.1.

+ +......

��
��
��
���

��
��
��

��
��

��
��
��
��

��
��
��

��
��

��
���

�

�
��

��
��
��
��

���

������

������������

�������

Figure 5.1: Three different methods of tensor decomposition on a three-order tensor

37

5.1.1 CP Decomposition

CP factorizes a tensor into a linear combination of the rank of one tensor[51]. Figure

5.1 depicts a three-order tensor. The formal definition of CP decomposition for a N th

tensor X ∈ Rn1×n2×···×nd decomposes in the outer product matrices and R is the rank

U 1,U 2, . . .U d as follows :

X =
R∑

r=1

u1r ◦ u2r ◦ . . .udr (5.1)

The factor matrices are a combination of the vectors from the rank one components

such as u =

[
u11 u12 · · · u1R

]
and likewise for U2 and . . .Ud. The column U1,

U2, and . . .Ud is very often normalized to the unit length with weights absorbed into

a vector λ ∈ RR, as follows:

X =
R∑

r=1

λru1r ◦ u2r ◦ . . .udr (5.2)

For a given tensor, several algorithms exist for computing CP decomposition. In this

study, we employed an alternative least square (ALS) algorithm. The core idea of

this algorithm is to optimize each factor matrix individually, keeping all tensor factor

matrices fixed except the one that is optimized, and then repeating this task for each

matrix until the stopping criterion is satisfied [51].

We used CP tensor decomposition on the convolutional and fully connected layers.

The rank of the tensor was required in order to apply the decomposition. Finding

the tensor’s rank is an NP-hard problem. To approximate the tensor rank, numerous

algorithms and methods exist. In this study, we implemented and investigated three

different approaches to select the ranks. First, we used a random rank for all of the

layers, which is a random number based on the size of the tensor. In the second

approach, we chose the rank based on the layer’s sensitivity to decomposition. In

38

Algorithm 1 ALS for CP decomposition[14]

Input: Data tensor X ∈ Rn1×n2×···×nd and rank R.
Output: Factor matrices

U 1 ∈ Rn1×R,U 2 ∈ Rn2×R, . . .U d ∈ Rnd×R

1: procedure ALS-CP(X ,R)
2: Initialize U 1,U 2, . . .U d

3: while Not having converged or arrived at a satisfied criterion do
4: U 1←−X(1)(Ud ⊙Ud−1 ⊙ · · ·U2)(

UT
dUd ⊛UT

d−1Ud−1 · · ·⊛UT
2U2)

5: Normalize the column vector U1 to unit length.
6: U 2←−X(2)(Ud ⊙Ud−1 ⊙ · · ·U1)(

UT
dUd ⊛UT

d−1Ud−1 · · ·⊛UT
1U1)

7: Normalize the column vector U2 to unit length.

8:
...

9:

10: U d←−X(d)(Ud1 ⊙Ud−2 ⊙ · · ·U1)(
UT

d−1Ud−1 ⊛UT
d−2Ud−2 · · ·⊛UT

1U1)
11: Normalize the column vector Ud to unit length.
12: Store the norms in vector λ
13: end while
14: return U 1,U 2, . . .U d and λ
15: end procedure

39

the third approach, we used VBMF to determine the rank [77]. These methods are

explained in more detail in the next section.

5.1.2 Tucker Decomposition

Tucker tensors are composed of core tensors multiplied by each matrix along the

mode[51]. Tucker decomposition for Nth tensors decomposes to the outer product

matrices, where r is the rank, and g is the core tensor as follows:

X =

R!∑
r1=1

R2∑
2=1

· · ·
Rd∑

rn=d

gr1r2···rdu1r1 ◦ u2r2 ◦ . . .udrd (5.3)

The factor matrices U1,U2, and . . .Ud can be considered as Principle Component

Analysis (PCA) for every mode. The core tensor G ∈ RR1×R2···×Rd indicates the differ-

ent interactions between the different components [51].

Several algorithms exist for determining the Tucker decomposition for a given ten-

sor, including high-order SVD (HOSVD) and high-order orthogonal iteration (HOOI).

HOSVD can be considered the basic definition of PCA, in which the component that

best captures the variations in mode n is found. In this study, we used HOOI, an ALS

algorithm that uses the HOSVD outcome as the factor matrix initialization [14].

Tucker decomposition is used on convolutional and fully connected layers. Finding the

best Tucker approximation is also an NP-hard problem. We used the same approaches

that we used for CP decomposition to select the Tucker rank.

5.1.3 Tensor Train Decomposition

TT decomposition decomposes a tensor of order n into a chain of product tensors of

order-two or order-three tensors. TT decomposition is a type of non-recursive tensor

decomposition that, unlike Tucker decomposition, does not suffer from the curse of

40

Algorithm 2 HOOI for Tucker Decomposition[14]

Input: Data tensor X ∈ Rn1×n2×···×nd

R Ranks in each mode.
Output: Core Tensors G, Factor matrices

U 1 ∈ Rn1×R,U 2 ∈ Rn2×R, . . .U d ∈ Rnd×R

1: procedure HOOI-Tucker(X ,R)
2: Initialize U 1,U 2, . . .U d Using HOSVD
3: while Criteria Not Satisfied do
4: for n do=1,,N do
5: Y n←−X ×U1

T × · · · · · · · · · ×Un−1
T×

Un+1
T · · · ×UN

T

Un ←− Rn Leading Singular Vector of Yn

6: end for
7: end while
8: return G,U 1,U 2, . . .U d

9: end procedure

dimensionality [79]. The formal definition of the Nth order tensor decomposes to

second- or third-order tensors, where r is the rank, as follows:

X (u1, ..., ud) = G1[u1]G2[u2]...Gd[ud]. (5.4)

Where Gd is a core tensor and can be of order two or three. All tensors Gd[ud] related

to the same dimension d must be of the same size rd−1 × rd and r0, rd = 1. The chain

of {rd}dd=0 is the rank of the TT format.

TT-SVD, TT-ALS, TT rounding, and other algorithms are used to compute TT decom-

position. We used recursive TT-SVD on the tensors in this study, and the algorithm

for decomposing the convolutional layers was based on [23]. Finding the approximate

TT decomposition for a given tensor is an NP-hard problem. In this study, we used a

method similar to the previous decomposition to find the rank, but with a greater em-

phasis on the layer sensitivity approach due to the promising results, as demonstrated

in the following sections. On both convolutional and fully connected layers, we used

TT decomposition.

41

Algorithm 3 SVD for Tensor Train Decomposition[79]

Input: Tensor X ∈ Rn1×n2×···×nd , accuracy ϵ
Output: Cores tensors G1,G2, . . . ,Gd of TT approximation X with TT ranks r0 = rd = 1

1: procedure SVD-TT(X ,R)
2: Initialize
3: Temporary Tensor T = X , r0 = 1
4: for k=1 to d-1 do
5: Compute truncated SVD: T = UΣVT

6: rk B rank(T)
7: Gk B reshape(U, [rk−1, nk, rk])
8: T B ΣVT

9: end for
10: Gd B T
11: return G1,G2, . . . ,Gd
12: end procedure

5.1.4 Layer Sensitivity and Rank

We used a heuristic method based on layer sensitivity. We tested the layers’ sensitivity

using six different ranks: 1, 5, 20, 40, 60, and 80. The CP, Tucker, and TT tensor

decomposition methods were used. Although no significant differences exist in accuracy

between Tucker and TT decomposition, TT decomposition has a higher compression

ratio than Tucker, as indicated in Table 5.1.

Table 5.1: ResNet-20 Architectures on CIFAR-10.

Network Type Top1% Params Size MB Compression
ResNet-20

FP-Model 92.60% 1.1 -
CP-Model 77.60% 0.368 2.9x

Tucker-Model 91.180% 1 1.1x
TT-Model 91.330% 0.947 1.16x

We applied TT decomposition on the layers. Figure 5.2 presents the sensitivity of

AlexNet model layers after decomposition with the TT method on convolutional and

fully connected layers before and after finetuning the model. Figures 5.2.a and 5.2.b

depict the model before finetuning, revealing that the layers became more robust the

42

deeper we went in the model. Using a small rank such as 5 or 20 for the deeper layers

yielded the same results as for the undecomposed layers. Table 5.2 presents the study

and compression of each layer when we decomposed with different ranks. Figures 5.2.c

and 5.2.d depict the accuracy of the layers after we finetuned the models for between

20 and 25 epochs. Table 5.2 also studies the layers’ accuracy and compression ratio

after finetuning. From Table 5.2 and Figures 5.2.c and 5.2.d, we can see that selecting

a rank between 40 and 80 would yield the same accuracy or a small degradation in

accuracy compared with undecomposed models.

Figure 5.2: Layer sensitivity of the AlexNet model after applying tensor decomposition
with different ranks: (a) Sensitivity of the classifier layers that are fully connected layers
before finetuning; (b) sensitivity of the feature extraction layers that are convolutional layers
before finetuning; (c) sensitivity of the classifier layers that are fully connected layers after
finetuning; (d) sensitivity of the feature extraction layers that are convolutional layers after
finetuning.

In addition, we investigated the layer sensitivity of the ResNet-20 model. ResNet-20

has 19 convolutional layers and one fully connected layer. Figure 5.3 presents four

graphs that depict the layer sensitivity across Resnet-20’s three basic blocks. From

Figure 5.3 and Tables 5.4, 5.5, and 5.6, we inferred that with only a rank of 20 for

43

Table 5.2: Layer Sensitivity for AlexNet Model Feature Layers Before and After Applying
Tensor Train Decomposition

Rank Top1% before Top1% After Compression

Features-0

FP-Model 83.80% - -

1 9.03% 31.71% 23.6x

5 15.63% 31.29% 3.84x

20 76.830% 71.81% 0.905x

40 83.809% 79.90% 0.67x

60 83.809% 79.13% 0.67x

80 83.809% 79.59% 0.67x

Features-3

FP-Model 83.809% - -

1 16.25% 24.29% 422.1x

5 21.590% 53.41% 77.3x

20 53.0% 73.23% 14.7x

40 72.009% 73.30% 5.57x

60 78.299% 75.34% 2.99x

80 81.26% 76.34% 2.04x

Features-6

FP-Model 83.809% - -

1 9.98 29.51 1140.1x

5 11.23% 62.06% 218.9x

20 39.01% 72.83% 47.6x

40 61.18% 76.049% 20.32x

60 70.02% 78.23% 11.8x

80 75.26% 80.22% 7.85x

Features-8

FP-Model 83.809% - -

1 20.69% 41.84% 1369.5x

5 61.97% 67.129% 264.1x

20 81.479% 75.080% 58.20x

40 82.559% 81.37% 25.13x

60 83.0400% 82.57% 14.7x

80 83.299% 83.12% 9.87x

44

Table 5.3: Layer Sensitivity for AlexNet Model Features-10 and Classifiers Layers Before
and After Applying Tensor Train Decomposition

Rank Top1% before Top1% After Compression

Features-10

FP-Model 83.809% - -

1 27.53% 42.59% 1138.65x

5 73.779% 68.54% 217.64x

20 83.5599% 76.75% 46.6x

40 83.5699% 77.059% 19.60x

60 83.619% 75.610% 11.27x

80 83.619% 75.83% 7.43x

Classifier-1

FP-Model 83.809% - -

1 10.03% 10.0% 21845.33x

5 17.079% 62.63% 1456.35x

20 81.73% 76.51% 104.025x

40 83.629% 76.83% 28.54x

60 83.82% 78.94% 10.11x

80 83.619% 79.89% 7.43x

Classifier-4

FP-Model 83.809% - -

1 10.329% 40.34% 65536x

5 10.090% 79.95% 4369.06x

20 79.52% 79.81% 312.07x

40 83.669% 79.29% 79.921x

60 83.790% 81.009% 35.81x

80 83.799% 82.02% 25.28x

Classifier-6

FP-Model 83.809% - -

1 19.38% 22.12% 303.407x

5 75.36% 74.89% 20.74x

20 83.709% 71.40% 2.88x

40 83.80% 72.25% 1.449x

60 83.809% 76.68% 0.96x

80 83.809% 78.72% 0.906x

45

the first basic block, we could achieve the same performance or a small degradation

based on the layers. However, the second basic block required a rank between 60 and

80 to achieve the same accuracy as undecomposed layers. For the third basic block, we

achieved the same accuracy with a rank of only 60, as indicated in Figure 5.3 and Table

5.6. The model became more robust as we went deeper into the model, where using a

small rank would not yield a large degradation, as was the case when we decomposed

the layers in the second basic block.

1

4
3

6
5

2
1

4
3

6
5

2

1

4
3

6
5

2

First
Last

Basic Block 1 Basic Block 2

Basic Block 3 First & Last

Figure 5.3: Layer sensitivity of the ResNet-20 model after applying tensor decomposition
with different ranks: (a) Sensitivity of the first basic block before finetuning; (b) sensitivity
of the second basic block before finetuning; (c) sensitivity of the third basic block before
finetuning; (d) sensitivity of the first basic block after finetuning.

46

Rank Top1% Bef Top1% Aft

Basic Block 1

FP-Model 92.6% -

1 19.03% 91.26%

5 56.93% 91.75%

1 55.39% 91.59%

5 86.20% 91.84%

1 22.1% 91.80%

5 64.70% 91.89%

1 55.90% 91.36%

5 83.790% 91.34%

1 83.970% 91.75%

5 90.400% 91.79%

1 52.45% 91.72%

5 86.82% 91.89%

Table 5.4: Layer Sensitivity for the ResNet-
20 Model’s First Basic Block Before and After
Applying Tensor Train Decomposition

Rank Top1% Bef Top1% Aft

Basic Block 2

FP-Model 92.6% -

1 10.159% 90.91%

5 44.71% 91.54%

1 60.06% 91.36%

5 75.09% 91.86%

1 36.41% 91.36%

5 82.58% 91.72%

1 17.97% 91.15%

5 42.98% 91.01%

1 78.55% 91.32%

5 89.38% 91.47%

1 83.25% 91.58%

5 88.83% 91.72%

Table 5.5: Layer Sensitivity for the ResNet-20
Model’s Third Basic Block Before and After
Applying Tensor Train Decomposition

5.2 Binary Neural Networks

BinaryConnect was one of the first BNNs quantization methods [16]. BinaryConnect

limits the weight of the neural network to +1 or 1, replacing the multiply–accumulation

operation with simple additions or subtractions. The weight binarization for the in-

ference stage is presented in Equation (5.5), which is referred to as deterministic bina-

rization. Real values are quantized during forward propagation using the equations in

deterministic binarization (6). However, the error cannot propagate during backprop-

agation because the gradient is zero almost everywhere. To mitigate this problem, a

straight-through estimator (STE) is used, which is a heuristic method for estimating

the gradient of the stochastic neuron, as presented in Equation (5.6), where (x) is the

value before binarization [7].

47

Table 5.6: Layer Sensitivity for ResNet-20 Model Basic Before and After Applying Tensor
Train Decomposition

Rank Top1% Before Top1% After

Basic Block 3

FP-Model 92.6% -

1 12.28% 89.05%

5 19.25% 90.47%

20 82.55% 92.11%

40 92.25% 91.94%

60 92.54% 91.97%

1 27.61% 90.03%

5 52.77% 90.31%

20 81.31% 91.199%

40 89.80% 91.45%

60 91.889% 91.86%

1 17.04% 89.0%

5 21.06% 90.61%

20 77.30% 91.62%

40 87.680% 91.89%

60 91.91% 91.95%

1 24.40% 88.47%

5 30.63% 89.09%

20 71.709% 90.72%

40 87.56% 91.68%

60 91.53% 91.97%

1 68.73% 90.29%

5 77.02% 90.47%

20 87.86% 91.43%

40 91.27% 91.52%

60 92.189% 92.03%

1 19.90% 89.790%

5 57.25% 91.40%

20 92.47% 92.22%

40 92.589% 92.12%

60 92.6% 92.22%

48

BinaryConnect only binarizes weights, whereas XNOR-net, which was used in the

present study, binarizes both the weight and the input of the convolutional layers [87].

wb =

 +1 if w ≥ 0,

−1 else.
(5.5)

STE(x) =

0 if x < −1,

1 if − 1 ≥ x ≤ 1,

0 if x > 1.

(5.6)

The weight values in XNOR-net are approximated using binary filters, as demonstrated

below; by treating quantization as an optimization problem, as in the equation, a better

scale factor can be selected.

I ∗W ≈ (I ⊕ β)α (5.7)

J(β, α) = ∥W − αβ∥2 (5.8)

Here,W denotes real value filters, B denotes binary filters, and alpha denotes a positive

scaling factor. The binary weight filter is the sign of the weight values after solving

this optimization problem, and the scaling factor is the average of the absolute weight

values.

β∗ = sign(W), α∗ =
1

n
∥W∥l 1 (5.9)

49

Input

Conv

BN

ReLU

(a)

Input

BN

BinActive

BinConv

ReLU

(b)

Figure 5.4: Layers’ connection for a convolution: (a) for conventional fp32; (b) for BNN

A block of XNOR-net differs from a block of a CNN, as depicted in Figure 5.4.

The batch normalization (BN) [40] layer is placed before the binary activation layer.

The BN is formulated as follows:

x̂i →
xi − µβ√
σ2
β + ϵ

, (5.10)

where µβ and σ are the mini-batch mean and variance for a channel. Iterative mini-

batches from the previous layer’s outputs are used in the training of µβ and σ. A

convolution output xi means each element in a channel. Term ϵ prevents the division

by zero. After the normalization, the BN layer scales and shifts the normalized feature

x̂i into xi in a channel, which can be equated as:

xi → λx̂i + β, (5.11)

where the affine parameters λ and β are learnable during the CNN training.

50

The BN layer can change the range of the convolution output distribution, and the

adjusted convolution output is used as the input to the binary activation layer. Figure

5.4 illustrates the layer connection for a convolutional layer, where Conv and BinConv

denote the conventional fp32-based convolutional and binarized convolutional layers,

respectively. Morever, the term BN and BinActive mean the batch normalization and

binary activation layers, respectively. In a conventional fp32-based CNN of Figure

5.4 (a), the convolutional layer outputs go towards the next BN layer, and the BN

layer outputs go towards the activation layer such as ReLU. Figure 5.4 (b) depicts the

layer connection of a binarized convolution in [87]. The BN layer is located before

the BinActive layer to adjust features with its learnable parameters. The features

binarized from the BinActive layer go towards the BinConv layer. It is noted that the

output format of the BinConv layer becomes fp32 after its scaling.

5.2.1 Tenosrized quantized models

We selected the rank in order to decompose the models using three different methods,

the first of which was VBMF. To apply VBMF algorithm tensors, the tensor must be

2D. Thus, we unfolded the convolutional layer based on modes 0 and 1 and then applied

VBMF on the unfolded tensor; the rank was the first dimension of the diagonal matrix

computed by the VBMF algorithm [77][11]. The second method was a heuristic method

based on the sensitivity of the layers to decomposition. We selected six different fixed

ranks and tested the models layer by layer as explained in the previous section.

For the third method, we used a random method. We used a random number to

decompose the model layer by layer. The random number was selected based on the

layer dimensions in which we selected a low and a high range for each layer. The

low range in the convolutional layer was the size of the kernel. Low range for the

fully connected layers was the low number of the matrix shape. For the high range

51

Floting Point Models

���������
�������������������������������
		��

�����������	������� �����������

Tensorized Model Floating Point Binary Models

���������

��������

Figure 5.5: Our propsed method in which We select the rank to decompose the models,
based on the layer senstivty and after binarize the model using xnor-net method and finally
train the the model

for the convolutional layers, we unfolded the tensor to two dimensions for the layers

and selected the high number of the unfolded tensor. For the high range for the fully

connected layers, we used the same method; that is, the large dimension of the matrix

was used for decomposition.

After applying our tensor decomposition method, we applied the XNOR-Net method

to binarize the decomposed model, where we binarized the decomposed layers using the

method explained in the previous section. A block of decomposed XNOR-Net differs

from an XNOR-Net block and a CNN block, as illustrated in Figure 5.6.

In a CNN, the convolutional operation maps the input tensor X of size H x W x S to

the output tensor y of size S x W’ X H’ using a tensor kernel of size D×D×S× T in

which T , and S are the output and input, respectively, and D is the spatial dimension.

52

Input

BN

BinActive

Bin Factor

ReLU

Bin Factor

Bin Factor

(a)

Figure 5.6: Layer’s connection for a convolution: (a) For Tensorized BNN

Yh′,w′,t =
D∑
i=1

D∑
j=1

S∑
s=1

Ki,j,s,tXhi,wj ,s (5.12)

We applied CP decomposition with rank R as shown in the following equation. Spatial

dimensions usually small are not decomposed like filter of size 1.

Kt,s,j,i =
R∑

r=1

U(1)
r,sU

(2)
r,j,iU

(3)
t,r (5.13)

U
(1)
r,sU

(2)
r,j,iU

(3)
t,r , are of size R× S, R×D ×D, and T ×R respectively.

53

We applied CP decomposition from input tensor X to output tensor y, which is pre-

sented in the following equation after substituting Equation 5.13 into Equation 5.12

[55].

Yt,w′,h′ =

R∑
r=1

U
(3)
t,r

 D∑
j=1

D∑
i=1

U (2)
r,j,i

(
S∑

s=1

U(1)
r,sXs,wj ,hi

) (5.14)

We applied Tucker decomposition with rank R as shown in the following equation:

Ki,j,s,t =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

C ′r1,r2,r3,r4U
(1)
i,r1

U
(2)
j,r2

U (3)
s,r3

U
(4)
t,r4 (5.15)

Where C ′ is the core tensor of size f R1 × R2 × R3 × R4 and U
(1)
i,r1

U
(2)
j,r2

U
(3)
s,r3U

(4)
t,r4 are of

a factor of size D ×R1, D ×R2, S ×R3 and T ×R4 respectively [47]. U
(1)
i,r1

U
(2)
j,r2

could

be ignored when we applied tucker decomposition because it referred to the spatial

information which mostly small. We applied Tucker decomposition from input tensor

X to output tensor Y , which is presented in the following equation after substituting

Equation 5.15 in Equation 5.12 [47].

Yt,w′,h′ =

R4∑
r=1

U
(4)
t,r

 D∑
j=1

D∑
i=1

R3∑
r3=1

C′r1,r2,r3,r4

(
S∑

s=1

U(3)
r,sXs,wj ,hi

) (5.16)

We applied TT decomposition with rank R. The convolutional layers were formulated

through matrix-by-matrix multiplication in which the four-way tensor reshaped into

a matrix K of size D2S × T , and we applied TT format in which G is TT-cores, as

discussed in [23]. We obtained the following decomposition of the convolutional kernel:

Kt,s,j,i = G0[i, j]G1 [t1, s1] . . .Gd [td, sd] . (5.17)

We used the same substitution as in the previous methods to map tensor X to a tensor

54

Y by convolving X with kernel K as follows:

Yt,w′,h′ =

D∑
j=1

D∑
i=1

∑
s1,...,sd

Xs,wj ,hi
G0[i, j]G1 [t1, s1] . . .Gd [td, sd] . (5.18)

5.3 Experiment Results

To test our method, we used four different datasets, namely MNIST, CIFAR-10,

CIFAR-100, and ImageNet. To train the LeNet-5 model on MNIST, we used random

horizontal flip data augmentation, transformed the images to tensors and normalizing

them.

In terms of data augmentation for CIFAR-10, we used a random crop of 32 with

padding of 4, and we also used random horizontal flip. We transformed the images

into tensors and normalized them using standard PyTorch parameters for mean and

standard deviation. To test our method, we used four different models: NiN, AlexNet,

ResNet-20, and ResNet-32.

For CIFAR-100, we used the same data augmentation as for CIFAR-10. To test our

method, we used two different architectures, namely Resnet-20 and Resnet-32.

For ImageNet, we used the same data augmentation as for the previous datasets. We

used two different architectures to test our method, namely AlexNet and ResNet-18.

To train the models for MNSIT, CIFAR-10, and CIFAR-100, we used one Nvidia

GeForce GTX 1080 Ti GPU. For the ImageNet dataset, we used four Nvidia Tesla

V100 GPUs. We created and trained the model with the PyTorch library [81] and

then used the Tensorly library [52] to apply tensor decomposition algorithms on the

models.

Next, we modified the AlexNet model by adding two layers of 0.5 dropout after the

first fully connected layer and before the last fully connected layer, as well as by using

55

the ReLU activation function and batch normalization, which are not implemented in

the vanilla version of the AlexNet model [54]. For the CIFAR-10, AlexNet, and NiN

floating-point models, we used a batch size of 32 to train the models for 320 epochs.

We used the Adam optimizer with an initial learning rate of 3e-4 and a weight decay

of 1e-4. Furthermore, we used the ReduceLRonPlateau scheduler with a patience of

10 to reduce the learning rate by a factor of 0.001.

Then, we decomposed the AlexNet and NiN floating-point models using the layer sen-

sitivity method described in the previous section. We then finetuned the models for

between 25 and 50 epochs using AdamW as the optimizer with the same hyperparam-

eters used to train the previous models.

To binarize the AlexNet and NiN models, we modified them using the XNOR-Net

method explained in the previous section, and we use 0.5 and 0.2 for dropout layers,

respectively, instead of 0.5 for the floating-point models. We trained the model for 500

epochs using Adam with a learning rate of 1e-4 and weight decay of 1e-5. Then, we

used the ReduceLRonPlateau scheduler with a patience of 50 to reduce the learning

rate by a factor of 0.005.

To binarize the decomposed model, after applying the sensitivity method to the mod-

els. The models had a small number of parameters and decomposed layers, and they

degraded by 1%–2% compared with nondecomposed floating-point models, as indi-

cated in Tables 5.7, 5.8, 5.9, and 5.10. We then binarized the decomposed layers using

the XNOR-Net method, training the models for 320 epochs with an Adam optimizer

of 0.01 and weight decay of 1e-5. Next, we used the ReduceLRonPlateau scheduler

with a patience of 50 to reduce the learning rate by a factor of 0.005. After applying

the XNOR-Net method on the decomposed model, the accuracy degraded by 1%–2%

compared with the nondecomposed binary models. For ResNet-20 and ResNet-32 on

CIFAR-10 and CIFAR-100, we trained the floating-point models using Adam with a

learning rate of 1e-4 and weight decay of 1e-7 for 320 epochs. We also use the ReduceL-

56

RonPlateau scheduler with a patience of 50 to reduce the learning rate by a factor of

0.005. After decomposing the model using layer sensitivity, as presented in Table 2, we

finetuned the models for 25–50 epochs with AdamW with the same hyperparameters

as the floating-point models.

To binarize the decomposed model, after applying the sensitivity method on models

without decomposing and binarizing the first and last layers. We trained the models

for 320 epochs with Adam with a learning rate of 0.01 and weight decay of 1e-5. We

used the ReduceLRonPlateau scheduler with a patience of 50 to reduce the learning

rate by a factor of 0.005. For more tuning, we trained the model for 100 epochs

with AdamW with a learning rate of 3e-4 and weight decay of 1e-5. The accuracy of

the models degraded by 1%–2% compared with nondecomposed binary models but a

greater compression ratio. For AlexNet and ResNet-18 for ImageNet. For the floating-

point models, we used the pre- trained models from the PyTorch Torchvision library

[81]. We decomposed the model based on the layer sensitivity and finetuned it using

Adam with a learning rate of 1e-4 and weight decay of 1e-7 for 20–25 epochs. We

binarized the model except for the first and last layers and trained it from scratch for

70 epochs using Adam with a learning rate of 0.01 and weight decay of 1e-4; moreover,

we used the ReduceLRonPlateau scheduler with a patience of 10 to reduce the learning

rate by a factor of 0.005.

For binary decomposed models, we neither binarized nor decomposed the residual of the

first and last layers. We trained the model for 70 epochs with Adam with a learning

rate of 3e-4 and weight decay of 1e-5. We also used ReduceLRonPlateau scheduler

with a patience of 10 to reduce the learning rate by a factor of 0.005. Subsequently,

we finetuned the model further using AdamW with a learning rate of 1e-5 and weight

decay of 1e-7 for 10–15 epochs.

Finally, for all of the decomposed binary models, we used norm gradient clipping, which

prevented the models from gradient exploding and accelerated the training.

57

Table 5.7: LeNet-5 Architectures on MNSIT

Network Type Top1% Params Size MB Compression

LeNet-5

FP-Model 99.06% 0.244 -

FP-Tensorized 98.75% 0.116 2.1x

BNN-Model 99.02% 0.11 10.8X

Ours 98.73% 0.067 17.9X

Table 5.8: Comparison of Different Architectures on CIFAR-10

Network Type Top1% Params Size MB Compression

Network In Network

FP-Model 87.72% 3.7 -

FP-Tensorized 86.640% 1.3 2.642x

BNN-Model 83.35% 0.299 12.37x

Ours 82.45% 0.113 32.74x

AlexNet

FP-Model 87.240% 91.7 -

FP-Tensorized 86.68% 9.8 9.35x

BNN-Model 81.79% 2.85 32.2x

Ours 80.91% 0.542 169.1x

Resnet-20

FP-Model 92.60% 1.1 –

FP-Tensorized 90.98% 0.62 1.7x

BNN-Model 81.87% 0.047 23.40x

Ours 80.92% .0342 32.16x

Resnet-32

FP-Model 93.53% 1.9 -

FP-Tensorized 91.56% 1.1 1.72x

BNN-Model 83.53% 0.071 26.760x

Ours 81.05% 0.054 35.18x

58

Table 5.9: Comparison of Different Architectures on CIFAR-100

Network Type Top1% Params Size MB Compression

Resnet-20

FP-Model 68.730% 1.2 -

FP-Tensorized 65.89% 1 1.2x

BNN-Model 50.17% 0.069 17.4X

Ours 48.66% 0.040 30.0X

Resnet-32

FP-Model 70.12% 2 -

FP-Tensorized 68.54% 1.3 1.5X

BNN-Model 51.2% 0.093 21.5x

Ours 48.01% 0.076 26.3X

Table 5.10: Comparison of Different Architectures on ImageNet

Network Type Top1% / Top5% Params Size MB Compression

AlexNet

FP-Model 56.66%/79.09% 244 –

FP-Tensorized 54.24%/76.83% 28.32 8.61x

BNN-Model 46.69%/70.21% 22.83 10.68x

Ours 44.25%/69.78% 15.9 15.3x

Resnet-18

FP-Model 69.75%/89.08% 46.8 -

FP-Tensorized 66.31%/86.21% 5.84 8.01x

BNN-Model 52.16%/72.24% 4.01 11.67x

Ours 50.06%/70.14% 2.64 19.02x

59

5.4 Discussion and Analysis Studies

In this section, we discuss in detail how we improved the accuracy of the model while

keeping the number of parameters the same. We used two different models, namely

AlexNet and Resnet-20 on CIFAR-10, which can be generalized for other decomposed

binary models. We discuss how to improve the accuracy of these models by studying

the impact of three different methods: initialization, activation functions, and finally

rank selection algorithms. Model initialization plays a significant role in improving

model accuracy and accelerating training and model convergence. We studied different

initialization algorithms by applying them to BNN models. First, we studied and

applied Xavier initialization on the BNN models. Xavier initialization is applied to

make the weights such that the variance of the activations is the same across every

layer. This helps to avoid the vanishing gradient problem [24]. We also studied Kaiming

initialization, which is also used to avoid the vanishing gradient problem and is mostly

used with the ReLU activation function [33].

The depth of neural network models is crucial for model convergence. BNNs, intro-

duced in the previous section, use batch normalization before the binary layer and an

activation function after the binary layer, as depicted in Figure 5.4.b. The decomposi-

tion of binary layers, as illustrated in Figure 5.5, results in more deep neural network

models. Training the decomposed BNN models that we introduced is a challenging

task because the models are so deep that it takes longer for them to converge, and

furthermore, they suffer from the vanishing gradient problem if not designed properly.

The weights for Xavier and Kaiming initialization are drawn from iid Gaussian dis-

tributions. When the model’s weights are drawn from iid Gaussian distributions, the

error is stretched and skewed as the signal propagates back through the network.

To avoid this issue, rigorous studies by researchers have demonstrated that the in-

put–output Jacobian is empirically linked to better convergence, and the stronger

60

condition where all singular values of the Jacobian concentrate near one is known as

dynamical isometry [110] [111] [94] [98]. Dynamical isometry can be achieved through

orthogonal weight initialization and has been empirically demonstrated to have ex-

cellent performance in terms of accuracy as well as to accelerate model convergence.

Using orthogonal weight initialization improved our model accuracy, as Tables 5.11

and 5.11 present, for both the AlexNet and ResNet-20 models.

To improve our models even further, we investigated various activation functions and

their impact on model accuracy. We employed the ReLU activation function, as pre-

sented in Equation 5.16 and Figure 5.7.a [3]. The problem with ReLU activation

functions is that they produce dead neurons with weights less than x, thus preventing

the model from properly fitting the data. To address this, a parametric ReLU (PReLU)

with a different activation function introduced a learnable parameter that updated dur-

ing training, as presented in Equation 5.17 and Figure 5.7.b [4]. We also used a Mish

activation function, which is a nonmonotonic function that behaves like ReLU and

PReLU in the positive region and is nonmonotonic in the negative region. The Mish

activation function has positive derivatives at some points and negative derivatives at

others, thus increasing the model expressivity, as demonstrated in Equation 5.18 and

Figure 5.7.c. Furthermore, the fact that Mish is self-regularized helps in the optimiza-

tion of deep models [69]. When these three different activation functions are applied to

BNN models, the PReLU activation function with orthogonal initialization yielded the

best results for AlexNet and ResNet-20. We used three different methods to select the

rank for decomposing the models: VBMF, sensitivity, and random, as explained in the

previous section. Using the sensitivity method, we lost accuracy of between 1%–2%

compared with the binary counterpart and compressed the model by 169× and 32. ×

for AlexNet and ResNet-20, respectively, compared with the floating-point models.

We use three different methods to select the rank to decompose the models: VBMF,

sensitivity, and random, as explained in previous section. Using the sensitivity method,

61

ReLu

f(x) = 0

f(x) = x

(a)

PReLU

f(x) = ax

f(x) = x

(b)

 MIish

f(x) = x.tanh(softplus(x))

(c)

Figure 5.7: Layer’s connection for a convolution: (a) ReLU activation function. (b) PeRLU
activation function. (c) Mish activation function.

we lose in accuracy between 1%˜2% compared to its binary counterpart and compressed

the model by 169x and 32.16x for Alexnet and ResNet-20, respectively, compared to

the floating-point models.

ReLU(x) =

 x if x > 0,

0 if x ≤ 0,
(5.19)

PReLU(x) =

 x if xi > 0,

aixi if xi ≤ 0,
(5.20)

As shown in Equation (5.21), the Mish activation function apply Tanh on Softplus

activation function.

Mish(x) = x · tanh(softplus(x)) (5.21)

62

In where tanh(x) is :

Tanh(x) =
(
ex − e−x

)
/ (ex + ex) (5.22)

and sofplus(x) is :

Softplus(x) = ln (1 + ex) (5.23)

Table 5.11: AlexNet Architecture Results on CIFAR-10

Method Top1% Params Size MB Compression

Initialization

Xaviar 81.79% 2.85 -

Kaiming 81.70% - -

Orthongal 82.01% - -

Activation Function

ReLU 81.79% 2.85 -

PReLU 84.01% - -

Mish 82.68% - -

Rank

VBMF 73.12% 0.162 566x

Senstivity 81.05% 0.542 169.1x

Random 75.98% 0.89 103x

63

Table 5.12: ResNet-20 Architectures Results on CIFAR-10

Method Top1% Params Size MB Compression

Initialization

Xaviar 81.87% 0.047 -

Kaiming 81.24% - -

Orthongal 82.55% - -

Activation Function

ReLU 80.62% 0.047 -

PReLu 83.93% - -

Mish 82.30% - -

Rank

VBMF 75.09% 0.015 70.96x

Senstivity 81.89% 0.034 32.16x

Random 78.17% 0.040 26.89x

Table 5.13: Comparison of Different Architectures on CIFAR-10

Network Type Top1% Params Size MB

ResNet-20

Resnet20-FP[34] 92.60% 1.1

Mobile-net[37] 90.18% 12.4

Mobile-netv2[93] 91.29% 9.0

Efficient-net[102] 91.330% 11.4

ResNet20-Xnor[87] 83.93% 0.047

Ours 81.89% 0.034

64

Chapter 6

A Storage-Efficient Ensemble

Classification Using Filter Sharing

on Binarized Convolutional Neural

Networks

This chapter proposes a storage-efficient ensemble classification for overcoming the low

inference accuracy of BNNs. When external power is sufficient in a dynamic power

system, classification results can be enhanced by aggregating the outputs of multiple

BNN classifiers. However, memory requirements for storing multiple classifiers are a

significant burden for devices at the edge. The proposed scheme shares filters from a

trained CNN model to reduce storage requirements in the binarized CNNs instead of

adopting fully independent estimators. While several filters are shared, the proposed

method only trains unfrozen learnable parameters in the retraining step. We compared

and analyzed the performances of the proposed ensemble-based systems depending on

ensemble types and BNN structures on CIFAR datasets. Our experiments concluded

that the proposed method involving filter sharing can be scalable with the number of

65

classifiers and effective at enhancing classification accuracy. With a binarized ResNet-

20 model on the CIFAR-100 dataset, the proposed scheme achieved 56.74% final Top-1

accuracy with 10 BNN classifiers, which enhanced the performance by 7.58% compared

with using a single BNN model.

6.1 Introduction

An ensemble-based system can improve the performance of CNNs by averaging the

classification results from different models [30]. Each model acts as a single base

classifier, and the combined prediction of multiple base classifiers is provided from the

ensemble-based system with CNNs. In the same manner, ensemble BNNs can obtain

better classification results by using multiple models s [104, 118], which increases the

regularization of target solutions and enhances the inference accuracy. The ensemble

in [104] stored weights of base classifiers derived from a BNN model by applying

stochastic rounding to each real-valued weight multiple times. The authors in [118]

demonstrated the trade-offs on the number of classifiers with BNNs. The methods

in [104, 118] increased the inference accuracy using multiple base classifiers, so that

memory requirements were proportional to the number of weight files in the base

classifiers. They would not be suitable for an embedded system with limited storage

resources.

Our study focused on a method for overcoming the storage cost limitation of BNN

ensembles. By sharing the filters in convolutional layers, we were able to reduce the

storage costs required by BNNs ensemble models. When the BNN base model classi-

fiers share the filter weights from the pretrained BNN convolutional layers, the batch

normalization layer weights and fully connected layer weights for the ensemble-based

system are the only layers that should retrain. We summarize our contributions as

follows:

66

• We proposed an ensemble method based on shared filter weights that reduces the

amount of storage required for ensemble-based systems.

• In the proposed ensemble system, we improved the model’s classification accuracy

by introducing scalability with the number of base classifiers.

• We used three different method to binarize the models, namely XNOR-Net [87],

Bi- Rea-Net [69], and ReActNet [68].

• We introduced shared filters weights of the base classifier with four different con-

figurations for weight sharing. This enhances the inference accuracy of binary

models without affecting the storage cost.

• We used various ensemble methods, and we describe and compare the details of

each method in our evaluations.

• We used these ensemble methods with sharing filter weights to build models that

outperformed the base models of ResNet-20 and ReAcNet-10 by 7.58% and 3%,

respectively, with CIFAR-100 while retaining the same storage as the base models.

• We found that different ensemble methods had different effects on different models.

We found that the fusion method worked the best with ResNet-20, while the

begging method led to performance enhancement when used with ResNet-18.

6.1.1 Ensemble Learning

Ensemble methods, also known as ensemble learning, are a powerful tool for improving

deep neural network model performance and model generalization. An ensemble-based

system is defined as the implementation of ensemble learning. An ensemble-based

system combines multiple machine learning algorithms or models to outperform those

that use a single algorithm or model. An ensemble-based system comprises multiple

base estimators that are combined to form a strong estimator [30]. Ensemble methods

include fusion, voting, begging, and gradient boosting, among many others. Finding

67

the best model in the search space that yields the fewest errors is difficult in statistical

learning, which is the foundation of machine learning and deep learning. It is difficult

because the datasets are always smaller than the search space. Researchers discovered

a way to mitigate this by using various ensemble methods such as voting, which reduces

the risk of selecting a bad model, bagging, and boosting with different starts, which

result in improved approximation and fusion, thus expanding the model’s function

space [21]. Furthermore, using the ensemble methods to ensemble the same model

with a different activation function or initialization method can increase diversity while

decreasing correlation [71].

6.1.2 Ensemble Methods

Fusion and voting are fundamental ensemble methods used to construct ensemble-based

systems. In the fusion-based ensemble, the averaged prediction from base estimators

is used to calculate the training loss. When M base estimators e1, e2, ..., em, ..., eM are

used,the output can be oi =
1
M

∑M
m=1 oi

m for a given sample xi. In the fusion, when yi

is the target output for xi, its loss function is L(oi, yi). On data batch B, its training

loss can be 1
B

∑B
i=1 L(oi, yi) in which training loss is used to update the parameters

of all base estimators. When using a voting-based ensemble, each base estimator is

created independently. With M base estimators, each base estimator em can be trained

independently of the other base estimators. For the voting-based ensemble, the class

is selected based on the majority of the hard votes from the base estimators in the

inference.

For example, let us assume that there are two classes (dog, cat) in a dataset and three

base estimators (e1, e2, e3 in a voting-based ensemble. When estimators e1 and e2 clas-

sify a sample into dog, class dog is voted on the classification. Even if estimator e3

votes for cat, class dog is selected by a majority vote. On the other hand, soft vot-

68

ing sums the prediction probabilities from estimators and then averages the summed

values. The class with a high probability is selected in soft voting. For example, let

us assume that a base estimator em outputs its predicting probabilities of classifying a

sample for a set of class dog, cat, which is formulated as P (em) = Pdog, Pcat. When two

base estimators have P (e1) = 0.7, 0.3 and P (e2) = 0.2, 0.8, their averaged probabilities

can be Pavg = 0.7+0.2
2

, 0.3+0.8
2

. Using soft voting, the sample is classified into the class

of cat. In the bagging-based ensemble [8], the subsampling with replacement produces

multiple datasets to train each base estimator. In [108], different data batches for

each base estimator were sampled with replacement and used to train base estima-

tors independently. The boosting-based ensemble trains base estimators sequentially,

where a base estimator is trained considering the errors from the previously trained

base estimator. The snapshot ensemble [38], unlike other ensemble-based systems, has

only one model and collects model parameters at each minima during training. As a

result of the obtained different parameters obtained for the single model, multiple base

estimators are obtained.

Notably, base estimators can also function as base classifiers for image classification.

When base classifiers are used, their averaging of base classifiers is typically performed

on the predicted probabilities of target classes through a SoftMax function as follows:

σ(zj)i) =
ez

j
i∑K

k=1 e
zjk
, (6.1)

where term K is the number of the classes. Term zji is an element of the input vector

z on the j-th base classifier, so zj = (zji , ..., z
j
K) ∈ RK in which predictions from the

base classifiers are averaged in the inference.

69

6.1.3 Binary Neural Network

In this chpater, we use three different versions of BNNs namely Xnor-Net which we ex-

plained in details in the previous chapter, and we refer to it in the chapter as the BNNs

model. The second method we use is Bi-Real Net which significantly enhance Xnor-Net

with adding a negligible computation cost. The thrid method is the ReActNet which

improves Bi-Real Net method further.

Bi-Real Net

Bi-Real Net was specifically applied on ResNet architectures, where Bi-Real Net con-

nected the activation function that after 1 bit convolution or batch normalization to

the activation of consecutive block through an identity shortcut. This significantly

improved the model’s accuracy while incurring no additional computational costs.

To train the Bi-real net, obtain a close approximation for the non-differentiable sign

function with respect to activation. In addition, a magnitude-aware gradient with

respect to the weight was used to update the weight parameters, and finally, a clip

function was used to reather that ReLU activation function for better initialization

[69].

ReActNet

ReactNet is a method for further improving binary neural networks by modifying and

binarizing the model and bypassing all intermediate convolutional layers, including

the downsampling layer. In addition, with depth analysis for activation distribution

variations, generalize the Sign and PReLU functions to RSign and RPReLU, which

enable explicit learning of distribution reshape and shift at near-zero extra cost. In

addition, distributional loss is used in this method to enable the binary network to

learn the same distribution as the floating point counterpart. [68].

70

6.1.4 Ensemble BNNs

Ensemble BNNs combine multiple base classifiers to create a single strong classifier

that outperforms the base model in terms of prediction accuracy. Several ensemble-

based systems have used BNNs. The ensemble-based system in [104] applied stochastic

rounding to a real-valued weight to obtain its binary weight. The stochastic rounding

of a weight w can be performed in Eq. (6.5) as follows:

sr(w) =

 ⌊w⌋ with probability 1− (w − ⌊w⌋)

⌊w⌋+ 1 with probability w − ⌊w⌋
(6.2)

This system performs a kind of soft voting with base estimators that contain different

binary weight files from one high-precision neural network. Each inference evaluation

with a binary weight file could be considered a base classifier. The ensemble-based

system averages prediction probabilities to enhance the classification accuracy. Al-

though this ensemble-based system lowers the classification variance of the aggregated

classifiers [104], its target system should store multiple weight files. The binary en-

semble neural network (BENN) in [118] used bagging and boosting ensemble methods

to obtain multiple models to be aggregated. These models with ensemble methods

improve the inference accuracy, but multiple weights should be stored as well. This is

a significant burden when deploying ensemble BNNs at the edge.

Various libraries assist in building ensemble methods with state-of-the-art deep neural

network models. In this chapter, we use the Ensemble-Pytorch library [108], which is

an open source library that supports different types of ensemble methods.

71

6.2 Proposed Method

6.2.1 Motivations

Using BNN models reduces both storage and computational costs. Using binary

weights makes the BNN models use binary bitwise operations instead of FLOPs. There-

fore, BNN models are feasible options for a low-resource constrained power-hungry

embedded system. The problem with BNNs is that inference accuracy is degraded im-

mensely compared with floating-point models. Furthermore, the power source status

of a power-hungry embedded system typically varies. When the embedded system is

connected to an external power source, sufficient power is available, resulting in high

inference accuracy even when the system consumes much power. An embedded sys-

tem with energy harvesting equipment, on the other hand, can use it as an additional

power source. The model for this type of embedded system does not need to be run

in low power mode. However, this is not the case for the vast majority of embedded

systems. As a result, depending on the power source status, a trade-off occurs between

inference accuracy and the amount of computation that can be adjusted. We note that

an ensemble-based system based on BNNs can provide this trade-off. Multiple BNN

models are aggregated to produce better classification results in the ensemble-based

system using BNNs, with each trained model acting as a base classifier. Whereas only

one BNN model can be used in low power mode, multiple BNN models can be aggre-

gated when a sufficient power source is available. Using multiple BNN models, the

model parameters are stored to train the base classifiers. This ensemble-based system,

however, is not applicable if storage resources are limited.

Given the primary benefits of BNNs, the ensemble-based system’s increasing storage

requirements may limit its applications. To address this limitation, we introduce a

method for sharing the weight parameters between BNN models, where we choose

which parameters to share.

72

In CNNs, the convolutional layers consist of filters in which their weights are learned

during the training stage. When sliding each filter on an image, features maps will be

constructed that contain certain features for that image. These features can vary from

abstract features, such as lines and edges, to more complex features, such as faces and

cars. Using multiple BNN models for ensembling, the filters in convolutional layers

can be shared among these models, which reduces the storage cost required by these

models.

6.2.2 Proposed Ensemble-Based System Using BNNs

In our method, we build multiple base classifiers from a given pretrained model. Figure

8.1 illustrates our method for building two weak base classifiers A and B with identical

architectures using the pretrained model. When filters are shared between models, the

parameters of BinConv layers in the same position are identical. Between the base

classifiers, the parameters of the BinConv layers in the same position can be identical

to the shared filter weights. The shared filter weights are based on the filter weights

of the pretrained model. In our method, we initialize the base classifiers with the

same filter weights of BinConv layers across all base classifiers. During the retraining

process, shared filter weights are frozen in all base classifiers. As a result, the filter

weights of the BinConv layers in each base classifier retain their initial values and do

not change during retraining.

We define the real-valued activation and weight filter as X and W, respectively. In

convolutional layers of BNNs, the dot product is approximated between X,W ∈ Rn

such that X⊺W ≈ βH⊺αB, where H,B ∈ {+1,−1}n and β, α ∈ R+. In other words,

H andB denote the binary activation and filter, respectively. Terms β and α are scaling

factors for weights and activations, respectively. The dot product can be optimized as

73

...
...

...
..

...
...

...
..

...
...

...
..

...
...

...
..

...
...

...
..

...
...

...
..

...
...

...
..

...
...

...
..

...
...

...
..

Input

BN

BinActive

BinConv

ReLU

Input

BN

BinActive

BinConv

ReLU

Shared Parameters

Parameters

Parameters

Pretrained Model

Weak Classi�er B Weak Classi�er A

Retrained

Figure 6.1: Conceptual figure of proposed ensemble-based system using BNNs.

follows:

α∗,B∗, β∗,H∗ = α,B, β,H∥X⊙W − βαH⊙B∥. (6.3)

We define the binary weight filter Bm from the m-th base classifier, where m ∈ i|i ≤.

When the filter weights are reused, Bm = B. Term Hm denotes the binary activation

from m-th base classifier.

On the other hand, the parameters of batch normalization layers in the same position

74

are different in the base classifiers. Formally, xm
i → λmx̂m

i + βm, where xm
i ∈ Xm.

Parameters λm and βm in Eq. (5.10) are learnable in the retraining process. The scaling

and shifting with parameters λ and β for each channel can adjust the normalized

features to optimize the ensemble-based system. When activation value xi becomes

close to zero, the quantization error is maximized, which could produce large bias and

variance in a classifier. When a base classifier produces a small quantization error

with xm
i , it is assured that the maximized quantization error with a single xi can be

mitigated. Morever, the dot products for each base classifier retain their optimization,

as presented in Eq. (6.3). Morever, each last fully connected layer could have different

learnable weights, adjusting the accumulation of the final features.

Algorithm 4 Training of the ensemble-based system using BNNs.

1: procedure Training(pretrained model BNNpretrained, training dataset dataset, num-
ber of base classifiers n, number of training steps T)

2: BNNbase(n) ⇐ Initialize(BNNpretrained, n)
3: for BinConv ∈ BNNbase(n) do
4: Freeze(BinConv)
5: end for
6: for k ⇐ 1 to T do
7: BNNbase(n) ⇐ Train(BNNbase(n))
8: end for
9: weights ⇐ GetWeights(BNNbase(n))
10: weights ⇐ RemoveOverlap(weights)
11: return weights
12: end procedure

Algorithm 4 formally describes the aforementioned retraining process mentioned above.

A pretrained model BNNspretrained is used to initialize multiple n base classifiers

BNNbase(n). A function Freeze(BinConv) prevents updating the weights of BinConv

layers in all base classifiers. During training T steps, the ensemble-based system with n

base classifiers is trained. A function GetWeights(BNNbase(n)) produces the weights of

the retrained ensemble. A function RemoveOverlap(weights) removes the overlapped

weights of BinConv layers between base classifiers. Finally, the trained weights are

returned.

75

Input

BN

BinActive

BinConv

ReLU

BN

BinActive

BinConv

ReLU

BN

+

ReLU

Shortcut
for Stride=1

Output

A
Input

BN

BinActive

BinConv

ReLU

BN

BinActive

BinConv

ReLU

BN

+

ReLU

Conv

BN

Shortcut
for Stride=2

Output

B

Figure 6.2: Basic blocks of binarized ResNet [34]: (a) stride = 1 (b) stride = 2.

For improved classification results, we can choose which filters are shared or not. Figure

6.2 illustrates basic blocks of the binarized ResNet [34], in which the basic blocks are

stacked, thus maintaining a pyramid structure. The non-zero stride can reduce the

resolution of output features by their height and width. When the number of channels

is doubled in the ResNet, stride = 2 is used in the convolution.

In Figure 6.2 (a), a basic block contains the shortcut the sums the input features to

the output of the last batch normalization layer. The heights and widths of input and

output features are the same, respectively. The basic block of Figure 6.2 (a) contains

two BinConv layers. In this case, it is possible that only one of them can share its filter

weights in an ensemble-based system. In Figure 6.2 (b), when stride = 2, the height

and width of the output features are half of those of the input features. An exact 1×1

Conv layer can be used in the shortcut when shrinking the feature dimension.

76

6.3 Hardware Analysis

6.3.1 Storage Resource Requirements

Figure 6.3: Binarized ResNet-20 structure for CIFAR dataset.

The filter sharing in our ensemble-based systems reduces the storage resource require-

ments. For example, the binarized ResNet-20 structure for the CIFAR dataset is

presented in Figure 6.3. The conv1 and fully-connected linear layers are 32-bits uses

floating-points operations [87]. The layer1, layer2, and layer3 blocks contain six 3× 3

BinConv layers, respectively, where a basic block of the dotted box contains two Bin-

Conv layers. Each basic block contains the shortcut, which is indicated by the rounded

red arrows. The dotted rounded red arrows indicate exact 1 × 1 convolutional layers

used as a shortcut for shrinking the feature dimension with stride = 2. Finally, the

average pooling layer (denoted as Avg pooling) averages the final convolutional out-

puts. The linear layer has full connections to all averaged outputs to produce the final

classification result.

Table 6.1 lists the output size, layer description, and storage requirements. The weight

77

Table 6.1: Details of a Binarized ResNet-20 Model and Storage Resource Requirements on
CIFAR-10

Block Name Output Sizea Layer Descriptionb (bits)c

conv1 16× 32× 32 3× 3, 3, stride = 1 13, 824× 32

layer1 16× 32× 32 binarized 3× 3, 16, stride = 1 13, 824× 1

layer2 32× 16× 16 binarized 3× 3, 16, stride = 2 67, 072× 1

layer3 64× 8× 8 binarized 3× 3, 32, stride = 2 268, 288× 1

average pooling 1× 1× 64 8× 8 average pooling -

linear 10 1× 1, 64, no stride 20, 480× 32
a When the number of output channels and the width and height of output features
are denoted as cout, wout, and hout, the output size is calculated as cout×wout×hout.
b Weight filter size w × h, the number of input channels cin, stride in the first
convolutional layer of the basic block. When stride = 2, cout = cin × 2.
c Memory requirements for storing weights.

size of each binarized convolutional layer can be calculated as cin×w×h×cout bits. On

the other hand, the weight size of the first fp32 convolutional layer (conv1) is calculated

as cin ×w× h× cout × 32 bits. In the linear layer, cout can be the same as the number

of classes. The storage requirements for the linear layer increase with the number of

classes. For example, the storage requirements of the linear layer for the CIFAR-100

dataset can be 204,800 bits, providing 100 image classes.

6.3.2 Computational Resource and Power Consumption

An ensemble-based system using these base classifiers can increase computations pro-

portional to the number of base classifiers in the inference stage. Although filter weights

are shared, each base classifier follows the same binarized CNN structure, performing

the same number of multiply-accumulate operations when using fusion, voting, bag-

ging, and boosting schemes. For example, in [90, 46], the binarized ResNet-18 for the

CIFAR-10 dataset required 58.6×107 floating-point operations (FLOPs). When n base

classifiers perform n× 58.6× 107 FLOPs. Power consumption is e also proportional to

the number of base classifiers. For example, in [27], the estimated power consumption

78

Table 6.2: Details of binarized ResNet-18 Model and Storage Resource Requirements on
CIFAR-10

Block Name Output Sizea Layer Descriptiona (bits)

conv1 64× 32× 32 3× 3, 3, stride = 1 (5.53E + 4)× 32

layer1 64× 32× 32 binarized 3× 3, 64, stride = 1 (1.47E + 5)× 1

layer2 128× 16× 16 binarized 3× 3, 64, stride = 2 (7.78E + 5)× 1

layer3 256× 8× 8 binarized 3× 3, 128, stride = 2 (3.11E + 6)× 1

layer4 512× 4× 4 binarized 3× 3, 256, stride = 2 (1.25E + 7)× 1

average pooling 1× 1× 64 8× 8 average pooling -

linear 10 1× 1, 512, no stride (1.64E + 5)× 32

a Each layer block contains two basic blocks.

of the XNOR-Net model for the ImageNet dataset [18] was 1.92 mJ. In this case, if n

base classifiers are adopted, the power consumption can be n×1.92 mJ.

6.4 Experimental Results and Analysis

6.4.1 Binarized ResNets on CIFAR Datasets

We trained the binarized ResNet-20 and ResNet-18 models on CIFAR datasets to eval-

uate our method. BNN architectures with a residual block with the same number of

layers as plain BNN architectures performed better in terms of accuracy and model

convergence time. Therefore, we used binarized ResNet models. In Figure 6.3 and

Table 6.1, the binarized ResNet-20 model is a simple lightweight BNN model. The

binarized ResNet-18 model, which was designed to classify ImageNet datasets, requires

substantial amounts of computation and storage resources. Table 6.2 contains informa-

tion about the binarized ResNet-18 model and the storage resource requirements. The

storage requirements of the binarized ResNet-18 are approximately 47 times greater

than those of the binarized ResNet-20. Furthermore, the binarized ResNet-18 model

requires 13.5 times the computational resources.

79

6.4.2 Ensembles with Binarized ResNet

To evaluate the ensemble-based system, we trained the binarized ResNet-20 and ResNet-

18 models on the CIFAR datasets [53]. Specifically, we evaluated the performance and

scalability of the ensemble-based system using the CIFAR-10 and CIFAR-100 datasets.

To obtained the binarized ResNet-20 with initial weights, that denoted asBNNpretrained

in Algorithm 4, we modified the model for CIFAR-100 by inserting dropout layers with

a dropout rate of 0.5 [100]. We also replaced the ReLU activation function layers with

the PReLU [33], which performs better, particularly for BNNs [25, 82, 72]. We applied

data augmentation to the input images, where a 32 × 32 input image was randomly

cropped from a 40×40 padded image and randomly flipped in the horizontal direction.

We trained the model for 400 epochs with a batch size of 256 using Adam optimizer [48]

with momentum of 0.9. We used a learning rate of 0.0001 that changed based on the

polynomial policy in which learning rate lr decreased by baselr × (1 − iteration
epochs

). We

achieved a top-1 accuracy of 49.16% while the floating-point model had an accuracy

of 64.24%. Then, using the Ensemble PyTorch library [108] described in the previous

section, we applied several ensemble methods. The pretrained initial weights were used

to initialize all filter weights of the binarized convolutional layers in each base weak

classifier, which were then frozen during the retraining process. The filter weights

were shared among classifiers regardless of the number of weak classifiers n. The

learnable weights of the batch normalization layers and fully connected layers, on the

other hand, were unfrozen and updated during the retraining process. We retrained

the ensemble for 200 epochs with a batch size of 256 using the Adam optimizer with a

momentum of 0.9. For ensemble models, we employed a learning rate of 0.01. Following

retraining, both the boosting and snapshot ensemble methods degraded the accuracy

of the binarized base model. The accuracy of the boosting method with n = 2 was

only 35.68%, which was lower than the accuracy of the binarized base model, which

80

Figure 6.4: Top-1 inference accuracies of ensemble schemes using binarized ResNet models
on CIFAR-100 dataset: (a) binarized ResNet-20 (b) binarized ResNet-18.

was 49.16%. As a result, we only used fusion, voting, and bagging for the experiment

because these methods improve inference accuracy when n = 2.

In the fusion ensemble method, we found that improved accuracy was proportional to

the number of ensemble n. By contrast, for voting and bagging ensemble methods, the

accuracy was not improved with n ≥ 4. We achieve 56.74% final Top-1 accuracy for

the fusion method when n = 10, which was 7% higher than the binarized base model.

Despite the fact that the filter weights were shared among the weak classifiers, the

ensemble methods yielded higher accuracy, as indicated in 6.4.a.

We used the same model modification and training procedure that we used for ResNet-

20 to obtain binarized ResNet-18 initial weights on CIFAR-100. We achieved a top-1

accuracy of s 68.59% for the binarized model, while the floating-point model had a

top-1 accuracy of 75.61%.To apply the ensemble method, we shared the filters weights

among the weak classifiers, which were frozen during the retraining process. The

learnable weights of the batch normalization layers and fully connected layers, on

the other hand, were unfrozen and updated during the retraining process, similar to

binarized Resnet-20. Using two Nvidia Tesla V100 graphic processing units (GPUs),

we retrained the model for 200 epochs with a batch size of 256. We also used the

Adam optimizer with a learning rate of 0.01 and momentum of 0.9. In the fusion

method, when n ≥ 8, We use a batch size of 128 instead of 256 to avoid the issue that

81

GPU memory requirements exceeded the maximum resources. Figure 6.4.b presents

the top-1 accuracy with different ensemble methods.

When we compared the ensemble binarized ResNet-20 with the ensemble binarized

ResNet-18, we found that ResNet-18 performed better regardless of the ensemble

method. While the fusion method achieved the highest top-1 accuracy for ResNet-

20, the begging method with n = 10 achieved a top-1 accuracy of 70.21. Furthermore,

we noticed that when we use ensemble methods in ResNet-18, the accuracy enhance-

ment was lower than in ResNet-20, which was due to the initial weight having higher

accuracy. Figure 6.4 indicates that ResNet-20 had a greater accuracy enhancement

than ResNet-18.

We only use ReNet-20 for CIFAR-10. We modified the models in the same manner

as for CIFAR-100, inserting dropout layers with a dropout rate of 0.5 and replacing

the ReLU activation function with the PReLU activation function. We used the same

data augmentation by cropping a 32 × 32 input image from a 40 × 40 padded image

and using random horizontal flip. We trained the model for 400 epochs with a batch

size of 256, using the Adam optimizer with a learning rate of 0.001 and momentum of

0.9. The learning rate changed based on the polynomial policy described previously.

We achieved a top-1 accuracy of 84.06% for the base binarized ResNet-20. Using

the ensemble method and the same retraining procedure as described previously, we

achieved a top-1 accuracy of 85.30% for the fusion method when n = 2, and 86.99%

when n = 10. We were able to conclude that ResNet-20 on CIFAR-10 exhibited a

marginal improvement in accuracy when compared with CIFAR-100 because the base

model has a high accuracy. Figure 6.5 presents the inference accuracies when we

applied different ensemble methods.

82

Figure 6.5: Top-1 inference accuracies of ensemble schemes using binarized ResNet-20 models
on CIFAR-10 dataset.

6.4.3 Comparison of Different Configurations of Weight Shar-

ing

This section introduces and compares various weight-sharing configurations, each of

which improves accuracy in a different way. The configuration methods are described

as follows:

• No shared : n base classifiers do not share weights in any layers.

• Fusion: The base classifiers share the weights of all binary convolutional layers

and do not share the weights of batch normalization layers or the linear layers.

• All Frozen: The base classifiers share the weights of all convolutional and linear

layers, and do not share the weights of batch normalization layers.

• C1: The base classifiers share the weights of all convolutional and linear layers,

except for the first convolutional layer.

• C2: The base classifiers shared the weights of all convolutional layers, except for

1× 1 convolutional layers used as shortcuts and linear layers.

• C3: The base classifiers shared the weights of all convolutional layers, except for

both the last convolutional and linear layers.

When using these weight-sharing configurations, a trade-off occurs between inference

83

Figure 6.6: Top-1 inference accuracies and storage requirements of different configurations
of ensembles using binarized ResNet-20 on CIFAR-100 dataset: (a) Top-1 inference accuracy
(b) storage resource requirements.

accuracy and storage requirement resources, as illustrated in Figure 6.6, which is

implemented using the fusion ensemble method.

Using the no shared configuration with n = 10, the model achieved a top-1 accuracy

of 65.9%.However, this configuration requires a large amount of storage resources. In

all frozen configuration with n = 10, when the weights of all convolutional and linear

layers were shared, the model achieved top-1 accuracy of 53.23%, greater than the

base classifier by 4%, and the improved accuracy was proportional to n. This con-

figuration requires to retrain the weights of the batch normalization layers, but the

storage resource requirements for this configuration are negligible. The C1 configura-

tion exhibited the same top-1 inference accuracy as the all frozen configuration when

n ≥ 2, but the storage requirement resource slightly increased, which implied that the

first layer does not play a significant role in the model inference accuracy. Both the

C1 and C2 configurations enhanced the top-1 inference accuracy compared to fusion

configuration; however, as n increased, the storage requirement resources for both of

these configurations increased as well. Figure 6.6 illustrates the effects of the weight-

sharing configurationa that we introduced on the top-1 inference accuracy along with

84

the storage resources requirements.

6.4.4 Ensembles with Bi-Real-Net and ReActNet on CIFAR

Datasets

Figure 6.7: Top-1 inference accuracies of ensemble schemes using Bi-Real-Net-18 on CIFAR-
100 dataset.

We employed two different BNN methods for further analysis of our ensemble-based

system, namely Bi-Real-Net [69], and ReActNet-10 [67]. We binarized ResNet-18 using

the Bi-Real-Net method with training on CIFAR-100. All of the layers binarized except

the first convolution layer and linear classifier layer, which retained their 32 floating-

point representation. Bi-Real-Net uses 32 floating-points of a 1 × 1 convolutional

layer per four binarized convolutional layers as a downsampling. We replaced the

ReLU activation function with the PReLU activation function without adding dropout

layers to the model. We trained the model for 200 epochs with a batch size of 256,

using the Adam optimizer with a learning rate of 0.001, and momentum of 0.9 with a

polynomial scheduler to decay the learning weight as described previously. We achieved

a top-1 accuracy of 63.97% for the Bi-real-Net base model. Then, we employed three

different ensemble methods, namely fusion, soft voting, and bagging. We used the

fusion configuration for weight sharing, which froze all of the initial weights except

those of the batch normalization and linear layers weights. As a result, these weights

were updated during the retraining process. We then retrained the ensemble models

85

with 200 epochs, using the Adam optimizer with a learning rate of 0.001 and momentum

of 0.09, and a polynomial scheduler to decay the learning weight. We used a batch size

of 128 instead of 256 when using the fusion method with n ≥ 8 because experienced

the same GPU memory problem explained earlier.

The voting and bagging methods performed better than the fusion method. The top-1

inference accuracy improved by between 2.74% ∼ 1.17%. The bagging scheme achieved

a top-1 inference accuracy of 66.71% with n = 10. As n increased, the improvement in

accuracy became marginal, as demonstrated in Figure 6.7.

Next, we used ReAcNet-10 to evaluate our method with CIFAR-100, which is similar

to ResNet-10 in term of layer architecture. ReacNet-10 differs in that it has eight

binarized convolutional layers, each of which has a shortcut and is connected with

Rsign and RPReLU functions [67]. We used downsampling with a 1 × 1 binarized

convolutional layer for every two binarized convolutional layers.

We trained the model with 400 epochs with a batch size of 256. We used the Adam

optimizer with a learning rate of 0.0005 and momentum of 0.9 with a polynomial

scheduler to decay the learning weight. The ReActNet-10 model achieved a top-1

inference accuracy of 66.69% on the CIFAR-100 dataset.

Furthermore, we employed three different ensemble configurations, namely fusion, soft

voting, and bagging, to evaluate our method. We used the fusion configuration for

weight sharing, which froze all of the initial weights except for those of the batch

normalization and linear layers. As a result, these weights were updated during the re-

training process. Moreover, during the retraining process, the parameters that control

the thresholds of RSign layers were also updated. Furthermore, PReELU activation

was not frozen, and the parameters updated during the retraining process to control

the slope of the negative parts as well as to distribute moving values. We did not share

the weights of the downsampling layers among the weak base classifiers.

86

Figure 6.8: Top-1 inference accuracies of ensemble schemes using ReActNet-10 on CIFAR-
100 dataset.

Subsequently, we retrained the ensemble models with 200 epochs and a batch size of

256. We used the Adam optimizer with a learning rate of 0.001 and momentum of

0.09 with a polynomial scheduler to decay the learning weight. The begging method

outperformed the voting and fusion methods as the number of n increased, as illustrated

in Figure 6.8. The bagging method achieved a top-1 inference accuracy of 70.29% with

n = 10, which was an enhancement of 3.6% compared with the base model.

Figure 6.8 illustrates the top-1 inference accuracy for the fusion,voting and bagging en-

semble methods using ReActNet-10 on the CIFAR-100 dataset. The ensemble methods

led to enhancements of the top-1 inference accuracy. In the evaluations, the final top-

1 inference accuracies were enhanced by 3.6%1.7%.The evaluation results allowed us

to conclude that as the number of n increase the top-1 inference accuracy increased,

the top-1 inference accuracy improved until reaching a point where only a marginal

improvement occurred, as illustrated in Figure 6.8. However, with this even n = 2

exhibited better performance than the base model with negligible costs in terms of

hardware.

87

6.5 Conclusion

We proposed an ensemble-based system that shares the filter weight of convolutional

layers. This system reduces storage resource requirements and has a scalable capability.

We used different BNN methods to binarize our models, which we ensembled using

fusion, voting, and bagging. We evaluated these models and demonstrated the trade-off

between storage requirement resources and top-1 inference accuracy for these models.

We found fusion method with C2 configuration yield the best result in term of accuracy

improvement and storage cost. Finally, we found that across all of the experiments, as

the number of n increased, the top-1 accuracy improved until reaching a point where

the improvement became marginal.

88

Chapter 7

A Scalable CNN-Based Inference

System Using Multiple Logarithmic

Stochastic Rounding

This chapter presents a method for an efficient CNN at the edge using stochastic round-

ing of logarithmic quantization. To improve the inference accuracy, we used multiple

samples that had been quantized using stochastic rounding. The use of logarithmic

quantization replace the inefficient multiply–accumulate operations with the more ef-

ficient multi-shifting and weight-summation operations. When we used two to eight

samples, we achieved an accuracy close to that of floating-point models.

7.1 Introduction

Several models have demonstrated exceptional performance in terms of inference accu-

racy. These models, however, require a million or even a billion FLOPs, such as that

in [54, 97]. Several studies have used quantization to reduce this complexity, and one

of the most competitive types in terms of inference accuracy and hardware complexity

89

is logarithmic representation [74]. When using logarithmic representation, shifting op-

erations replace inefficient multiplication operations; however, deterministic rounding

introduces an error that accumulates and magnifies, making it an unacceptable option.

Deterministic rounding produces tiny weight changes that may or may not result in

a weight update. As a result, using the appropriate rounding method in quantization

results in higher inference accuracy.

Using stochastic rounding instead of deterministic rounding benefits the models by

allowing neural networks to escape, resulting in a higher inference accuracy. After

applying the quantization, stochastic rounding uses a probabilistic approach to ap-

proximate the dropped information[96]. However, when compared with deterministic

rounding, stochastic rounding introduces additional errors. These errors can be re-

duced by performing stochastic rounding multiple times and averaging the results.

This chapter describes a method for using logarithmic representation with stochastic

rounding multiple times and averaging the results. Doing so eliminated the need for the

multiplications required by CNNs, making the model more efficient and easier to deploy

at the edge. The model’s inference accuracy was improved by performing stochastic

rounding multiple times and averaging the results. The experimental results revealed

that the inference accuracy was proportional to the number of samples for each input.

Using between two and eight samples yielded the same results as the floating-point

model.

7.2 Background

Let us assume that fractional number A is represented by A = (−1)s ·(1 + fA)·2k, k ∈ Z

and 0 ≤ fA < 1 where s means the sign bit of A. The rounding method is applied to

term 1 + fA in the logarithmic number representation, so that A is approximated as

90

follows:

A ≈ (−1)s ·
(
2k+log2 round (1+fA)

)
(7.1)

Rounding methods are divided into two types, namely deterministic and stochastic.

Deterministic methods such as rounding up, rounding down, and rounding to the

nearest, always produce the same deterministic value for an input value. For example,

when A ≈ 2−2+log2 2 = 2−1 at any time, it is denoted that A is approximated into

Aapprox .The rounding to the nearest method produces a better result to compensate

for lost information after quantization because it minimizes rounding errors as follows:

|A− Aapprox |.On the other hand, in the stochastic method, the logarithmic stochastic

rounding converts A to (−1)s · 2kA or (−1)s · 2kA+1 with the probability depending on

fA, so that A is approximated using the logarithmic stochastic rounding as follows:

A ≈

(−1)s · 2kA , with probability 1− fA

(−1)s · 2kA+1, with probability fA

(7.2)

For example, let us assume that A = −0.01112 where kA = 2 and fA = 0.112. The

stochastically rounded value of A is approximated as follows:

A ≈

−2−2, with probability 1− 0.112 = 0.2510

−2−1, with probability 0.112 = 0.7510.

(7.3)

7.3 Proposed Design

Quantization refers to the process of converting values from a floating-point fp32 for-

mat to a lower precision format by removing several bits. We usually use a rounding

method to compensate for the information lost due to the removal of these bits. In

91

the literature, rounding to the nearest integer is the most commonly used method

for deep neural network models. However, while rounding to the nearest reduces the

absolute error between the real and quantized values, it also introduces an error that

accumulates and magnifies during the multiply–accumulate operations required by the

CNN’s inference stage. On the other hand, stochastic rounding does not minimize the

error of the quantized values. Still, with multiple stochastically rounded values, the

values achieve comparable values to the floating-point counterpart. Stochastic round-

ing entails the following trade-off: precise values require more rounded and averaged

values, whereas faster computation times require fewer rounded values. As a result,

our method is dynamic, with the selection based on the resources of the edge devices.

Accumulating and averaging operations can add a significant amount of hardware com-

plexity, which is unacceptable for edge devices. As a result, we implemented stochastic

rounding using a linear feedback shift register (LFSR) hardware block. This hardware

block generates pseudo-random numbers compared with each real-valued number to

produce stochastically rounded values.

On the inference stage of CNNs models, we can use quantization methods on input,

neuron, and activation weights. Several studies have investigated the effects of log-

arithmic quantization on neuron weights, inputs, and activation weights[60, 74, 61].

Because the number of activations is greater than the number of reused weights during

convolution operations, quantizing activation weights is more robust than quantizing

neuron weights[74]. In pretrained state-of-the-art models, the weight range of the in-

put is larger than neuron scaled weights ∈ [1,1][43]. As a result, the errors when

applying quantization to input weights are small, and during the inference stage, neu-

ron weights are not as critical. In this study, we used logarithmic quantization with

stochastic rounding on the weights of the inputs based on this observation.

92

7.3.1 Proposed Logarithmic Stochastic Rounding

In our design, we use logarithmic quantization on the inputs, which means that the

weight of the inputs is uses logarithmic arithmetic rather than floating-point arithmetic.

The logarithmic representation for an input xi in the range of 2κxi ≤ |xi| < 2κxi+1 for

some integer kxi
is (−1)s · 2kxi or (−1)s · 2kxi+1. Using the logarithmic representation,

we replace the the multiplication of neuron weights wj and neuron inputs xi with shift

operation(denoted as ≪) as follows:

wj · xi =

(−1)s · wj ≪ kxi

, xi ≈ (−1)s · 2kxi

(−1)s · wj ≪ (kxi
+ 1) , xi ≈ (−1)s · 2kxi+1

(7.4)

Logarithmic quantization with stochastic rounding converts xi to (−1)s ·2kxi or (−1)s ·

2kxi+1 For implementing (7.1), xi is approximated using the logarithmic stochastic

rounding based on (7.4) as follows:

xi ≈

(−1)S · 2kxi , with probability 1− fp

xi

(−1)S · 2kxi+1, with probability fp
xi

(7.5)

In (7.5), we use the truncated fraction fp
xi

to decide for the rounded number. When

using the logarithmic representation, the IEEE single-precision floating-point format

requires 23 bits to store the fraction of each value, which is not efficient. We mitigated

this in our design by instead of storing all fractional bits;that is, only p high-order bits

in the fraction of activation output are stored, which is denoted as fp
xi
. This stored

information after truncation is referred to as the probability value.

For instance, if xi =0.0110112, Kxi = 2 and fxi = 0.10112, where f 2
xi
= 0.102 is the

probability value to decide for the number using the stochastic rounding.

93

7.3.2 Proposed Design

Figure 7.1: The proposed design for CNNs using logarithmic representation with stochastic
rounding.

In our design we use multiple sampling based on the logarithmic representation with

stochastic rounding, as illustrated in Figure 7.1. We obtain n leading ones kxi, 0i < k

and probability values fp
xi
, 0i < k from memory. The stochastic rounding makes the

decision of the rounded number 2kxi
or 2k+1

xi
in number decision logic (NDL) block based

on the obtained information from memory. We use LFSR blocks to generates pseudo-

random numbers in order to decide for the stochastic rounding number. We also share

output of LFSR block when multiple NDL blocks are performed in parallel to reduce

the hardware complexity. .In our design, we compare the generated low-order p bits

of the LFSR lfsrp with the probability value fp
xi

in a comparator. To decide for the

tie-breaking of lfsrp = fp randomly, the (p+1)-th bit we use LFSR, which is denoted

as tiebit. The number decision of x is formulated as follows:

xi ≈

(−1)s · 2kxi
, if lfsrp > fp

(−1)s · 2kxi
, if lfsrp = fp and tiebit = 1

(−1)s · 2k+1
xi

, if lfsrp = fp and tiebit = 0

(−1)s · 2k+1
xi

, if lfsrp < fp.

(7.6)

94

Then, weights wj are converted into the fixed-point values for the multiplication with

the output of the NDL block. We replace the multiplication operation of CNNs by

shifting the weights to the left by k or k + 1. The NDL block generates m multiple

samples using stochastic rounding, and the number decision in NDL block is repeated

m times. Using the shift operation for multiply-accumulate using m multiple samples,

we then average the accumulated values. To average the values, we restrict our design

for m to be a power of 2 (e.g., 2, 4, 8, 16, and so on), to approximate the division using

a shift operation by log2m, instead of a divider which would add more complexity to

hardware;this would be unacceptable for edge devices. Formally, for n-element weight

vector w ∈ Rn and n-element input vector x, the multiply accumulate operation that

yield y = wT · x as presents in Figure 7.1. Using our design, the multiply-accumulate

operation is defined as follows:

wT · x =
n∑

i=1

m∑
(−1)si · wi ≪

(
k + log2

(
round

(
1 + fp

xi

)))
+ bi (7.7)

Then, as depicted in Figure 7.1, the averaged values pass the activation function. The

values of the activation function both the leading one position Kyi value, and the

probability value fp
xi

are temporarily stored in the memory for the next layer.

When using logarithmic quantization with stochastic rounding and m=1, our design

reduces the hardware complexity, but the accuracy is degraded significantly. Therefore,

our design with using m ≥ 2, increase the hardware complexity but we avoid that by

sharing LFSR block among multiple NDL blocks. Furthermore, using shifting for

the averaging instead of using a normal divider adds a negligible complexity to the

hardware. Therefore, our design is optimized to have a trade-off between the inference

accuracy and both hardware complexity and power consumption. In our design, the

number of m is proportional to the inference accuracy; that is, as we increase m, the

inference accuracy increases, which makes this design an appropriate option especially

95

for devices at the edge.

7.4 Experimental Results and Analysis

We programmed and designed the NDL block and the shifter as combinational blocks

in the Verilog hardware description language (HDL), and then evaluated these blocks

in terms of area and power. We generated the random number with the help of an

external pseudo-random sequence generator. To synthesize the codes, we used Syn-

opsys Design Compiler and a 28/32nm standard cell library from Synopsys[3], with a

target frequency of 250MHz in Ultra mode. In our design, the area and the power for

the Radix-4 Booth multiplier are 1, 682um2, 93.0uW respectively which are 83.4% and

92.8% reduced compared with the floating-points representation.

We designed the deep neural network models using the Caffe framework, and we modi-

fied the matrix multiplication module in the Caffe to implement our design for stochas-

tic rounding. We then studied the effect of samples m on the inference accuracy for

LeNet-5 with MNIST, NIN with CIFAR-10, AlexNet, and GoogLeNet with ImagNet.

We investigated the effects of the number of samples m and the size of the probability

value p on the top-1 inference accuracy for the LeNet-5 and NiN models, as illustrated

in Figure 7.2. As the figure indicates, the inference accuracy of the LeNet-5 model

did not reflect the true effects of m and p on the inference accuracy because of the

simplicity of the model. However, with NiN models (Figure 7.2.b), the top-1 infer-

ence accuracy was proportional to the size of m, and probability values p. The top-1

inference accuracy improved as the number of samples increased and the precision of

the probability increased. We found that p = 4 was sufficient for the precision of our

probability values, which we use for all of the models in our experiments. Furthermore,

we found that as m increased, the top-1 inference accuracy increased until it reached

a size of m, at which point the accuracy improvement became negligible.

96

(a) (b)

Figure 7.2: Layer’s connection for a convolution: (a) LeNet-5 (b) NIN.

The top-1 inference accuracy improved as the number of samples increased and the

precision of the probability increased. We discovered that p = 4 is sufficient for the

precision of our probability values, which we use for all of the models in our experiment.

Also, we found that as m increased the accuracy increased as well until reach to a size

of m where the accuracy improvement is negligible. For example, when m became 2

instead of 1, the model increased by 1% to 2%, but when m increased from 16 to 32,

the improvement was less than 0.2 %. As a result, we restricted our experiments to be

2sim8 samples which led to a significant improvement.

We applied our method with p=4 and investigated how to quantize only the input

(denoted as inlog), quantize only the weight (denoted as wlog), and quantize both

the input and weights (denoted as inwlog) to affect the inference accuracy. For the

inputs, we also use floating-point (denoted as float) and rounding to the nearest integer

(denoted as rd), as presented in Figures 7.3 and 7.4. Table 7.1 indicates that the top-1

inference accuracy increased as m increased, with m=4 achieving the same accuracy

as the floating-point counterpart.

Figure 7.3 depicts how the inference improved as the number of m increased as well as

compares the different methods, demonstrating that using inlog quantization yielded

the same accuracy as floating with only m = 4

Table 7.2 demonstrates that the top-1 inference accuracy increased as m increased,

97

Table 7.1: Comparison of Different Methods and Different on MNSIT

Method m Top-1%

LeNet-5

Float - 99.06

rd - 98.95

lsr 1 98.80

lsr 2 99.00

lsr 4 99.08

lsr 8 99.04

lsr 16 99.08

lsr 32 99.07

Figure 7.3: Inference accuracy using logarithmic quantization for LeNet-5 with MNSIT

with m=8 also achieving the same accuracy as the floating-point counterpart.

Figure 7.4 depicts how the inference improved as the number of m increased. It also

compares the different methods, demonstrating that using inlog quantization yielded

the same accuracy as floating with only m = 8.

98

Table 7.2: Comparison of Different Methods and Different on CIFAR-10.

Method m Top-1%

NIN

Float - 89.57

rd - 88.03

lsr 1 87.59

lsr 2 88.72

lsr 4 89.10

lsr 8 89.36

lsr 16 89.54

lsr 32 89.69

Figure 7.4: Inference accuracy using logarithmic quantization for NiN with CIFAR-10

For AlexNet and GoogLeNet from Table 7.3, we achieved the same floating-point ac-

curacy when m = 8.

For the GoogLeNet model, rounding to the nearest greatly reduced the inference ac-

curacy, which was only 49.19%, due to the fact that GoogLeNet comprises 22 layers

and as errors pass they become magnified. As a result, Figure 7.5 compares only the

stochastic rounding method with different m.

99

Table 7.3: Comparison of Different Architectures on ImageNet

Method M Top1% Top5%

AlexNet

Float - 56.82% 79.95%

rn - 47.07% 71.42%

lsr 1 45.61% 69.93%

lsr 2 51.57% 75.69%

lsr 4 54.55% 78.04%

lsr 8 55.72% 79.18%

lsr 16 56.29% 79.53%

lsr 32 56.48% 79.72%

GoogleNet

Float - -% 89.1%

rn - -% 49.19%

lsr 1 - 71.81%

lsr 2 - 83.82%

lsr 4 - 87.4%

lsr 8 - 89.14%

lsr 16 - 89.21%

lsr 32 - 89.21%

100

Figure 7.5: Inference accuracy using logarithmic quantization for both AlexNet and
GoogLeNet with ImageNet.

7.5 Conclusion

In this chapter, we have presented a method for improving logarithmic quantization by

sampling multi-samples with stochastic rounding. We reduced the hardware complexity

and power consumption of our method by employing two distinct logic blocks, namely

NDL and LSFR. Furthermore, our method is a trade-off method, and as the number

of m increased, so did the model’s inference accuracy. According to our experiments,

two to eight samples are sufficient for achieving the same accuracy as floating-point

models. Furthermore, we discovered that when the model was deep and had many

layers, the deterministic rounding method significantly reduced the inference accuracy

because errors increased and magnified when passing through the layers. Stochastic

rounding, on the other hand, was not affected by this problem and is a viable option

when the model has many layers.

101

Chapter 8

High Rank Tensor Train For Binary

Neural Network

This chapter proposes a method for improving BNN accuracy. BNNs use binary weights

and activation, allowing them to be deployed on low-power devices. In terms of com-

putation and storage costs, BNNs offer numerous advantages. However, the accuracy

of the models suffers a significant loss in performance. In this chapter, we improve the

accuracy of BNN models based on latent variables obtained through high-rank TT de-

composition. Through this work, we make the following contributions: (1) We present

a method that improves the accuracy of state-of-the-art BNN models by 2%–4% while

only increasing a small number of model parameters; and (2) we apply our method on

two different datasets, namely CIFAR-10 and CIFAR-100, using Resnet-20.

8.1 Tensor Train Ranks

In general, finding a tensor rank is an NP-hard problem. The goal of using tensor

decomposition for neural network models is to compress them and reduce the number

of parameters. This is accomplished by finding the tensors’ lower rank approximation.

102

Numerous approximation algorithms exist for finding low-rank tensors. Algorithms

such as VBMF [77] [11] as well as reinforcement learning can be used to select the rank

[13].

In this study, we selected three different fixed ranks and investigated their effects on

binary deep neural network models. To add more parameters to the decomposed ten-

sors, we chose a fixed large number for the rank. A large number of model parameters

can help the model to generalize better, resulting in an increase in model accuracy of

2% to 3%.

8.2 Xnor-Net

XNOR-net is type of BNN where the weights and input of the convolutional layers

are 1-bit. The weight values in XNOR-Net are approximated using binary filters,

as presented below; by treating quantization as an optimization problem, as in the

equation, a better scale factor can be selected:

I ∗W ≈ (I ⊕ β)α (8.1)

J(β, α) = ∥W − αβ∥2 (8.2)

Here, W denotes real value filters, B denotes binary filters, and alpha denotes a positive

scaling factor. The binary weight filter is the sign of the weight values after solving

this optimization problem, and the scaling factor is the average of the absolute weight

103

values.

β∗ = sign(W), α∗ =
1

n
∥W∥l 1 (8.3)

This work is conducted using XNOR-net methods, which has the advantage of saving

up to 32x memory and increasing CPU speed by 58x. Furthermore, the computational

heavy matrix multiplication operations are transformed into bitwise XNOR operations

and bit-count operations [87]..

Real values are quantized during forward propagation using the equations in determin-

istic binarization (5). However, the error cannot propagate during the back-prorogation

because the gradient is zero almost everywhere. To mitigate this, the STE is used,

which is a heuristic method for estimating the gradient of neuron, as shown in equa-

tion (8.5), where (x) is the value before binarization[7].

wb =

 +1 if w ≥ 0,

−1 else.
(8.4)

STE(x) =

0 if x < −1,

1 if − 1 ≥ x ≤ 1,

0 if x > 1.

(8.5)

8.3 Our Proposed Method

Typically, deep neural network models for image classification have the following five

stages: the input layer; the second-stage layer, which extracts low information such as

edges; the third-stage layers, which extract intermediate information such as patterns;

104

the fourth-stage layers, which extract high information such as objects; and finally, the

features flatten for a classifier layer.

In CNN, the convolutional operation maps the input tensor X of size H x W x S to the

output tensor † of size S x W’ X H’ using a tensor kernel of size D×D×S×T in which

T , and S are the output and the input respectively and D is the spatial dimension.

Yh′,w′,t =
D∑
i=1

D∑
j=1

S∑
s=1

Ki,j,s,tXhi,wj ,s (8.6)

Applying TT decomposition with rank R, the convolutional layers are formulated as

matrix-by-matrix multiplication in which the four-way tensor reshapes into a matrix K

of size D2S×T ;furthermore, TT-Format is applied in which G is TT-cores as discussed

in [23]. We would obtain the following decomposition of the convolutional kernel.

Yt,w′,h′ =
D∑
j=1

D∑
i=1

∑
s1,...,sd

Xs,wj ,hi
G0[i, j]G1 [t1, s1] . . .Gd [td, sd] . (8.7)

Models that are over-parameterized generalize better. Typically, as the number of

parameters in the models increases, so does the model’s accuracy, as evidenced by

numerous empirical studies[54][34][97]. These empirical results hold true for various

types of deep neural network models, including plain neural network models such as

AlexNet and VGGNet, as well as networks that use residual blocks such as ResNet and

its variants. Most of of these parameters are not used for classification but rather for

the optimization algorithm to converge for a better local minima[83].

Based on these empirical findings, we increased the number of parameters in the model

by selecting a high rank, and then decomposed the convolutional layers using the TT

algorithm, resulting in a chain of convolutional layers whose sum of parameters was

greater than the original convolutional layer. Subsequently, we applied the XNOR-Net

105

La
ye

r 1

La
ye

r 2

La
ye

r 3

3x3 Conv 16

3x3 Conv 16

3x3 Conv 16

3x3 Conv 16

3x3 Conv 16

...
..

...
..

...
..

3x3 Conv 32

3x3 Conv 32

3x3 Conv 32

3x3 Conv 32

3x3 Conv 32

3x3 Conv 64

3x3 Conv 64

3x3 Conv 64

3x3 Conv 64

FC 10,100

Select Rank

3x3 Conv 16

3x3 BinConv 16

...
..

...
..

...
..

FC 10,100

Apply Tensor Train
 Decompostion

Binrary Models
With more params

Train Model

La
ye

r 2

La
ye

r 1
La

ye
r 3

3x3 BinConv 16

3x3 BinConv 16

3x3 BinConv 16

3x3 BinConv 32

3x3 BinConv 32

3x3 BinConv 32

3x3 BinConv 32

3x3 BinConv 32

3x3 BinConv 64

3x3 BinConv 64

3x3 BinConv 64

3x3 BinConv 64

Using Rank
 100

Tensor size
16x16x3x3

[4, 4, 100, 100]

[2, 2, 100, 100]

[2, 2, 100]

Bin [4, 4, 100, 100]

Bin [4, 4, 100, 100]

Bin[4, 4, 100, 100]

BatchNorm 2d

ReLU

200400

2304

Tensor Train
with high Rank

Figure 8.1: The proposed method, which includes decomposing the models with high rank
tensor train decomposition, binarizing the decomposed layers, and finally training the mod-
els.

method to the decomposed layers before training the models. Figure 8.1 depicts a

layer with 16 input channels and 16 output channels with a filter size of 3 × 3. This

layer had a total of 2304 parameters. The number of parameters increased by 86.9×

when we used our method, allowing the model to generalize better and improving its

accuracy.

Our method is similar to others that improve BNNs by adding more parameters, such

as EBNN [118] and Bi-Real-Net [69]. However, we use a more efficient approach for

adding binary parameters because it retains the advantage of using the XNOR-Net

method, which saves memory by 32× and CPU computation by 58×, which EBNN

and Bi-Real-Net do not.

106

8.4 Results and Experiments

Table 8.1: Comparison of Floating and Binary Models with High Rank on CIFAR-10

Network Type Rank Params Size MB Top 1%

Floating-poing

Base - 1.1 92.36%

TT-Model-1 50 4.9 91%

TT-Model-2 100 19.1 92.1700%

TT-Model-3 200 76.0 92.360%

XNOR-Net

Base - 0.047 79.133%

XNOR-Net-TT-1 50 0.209 80.73%

XNOR-Net-TT-2 100 0.820 82.12%

XNOR-Net-TT-3 200 2.8 84.259%

To build, train, and test deep neural network models for our experiment, we used the

PyTorch framework. To simulate a BNN, we used the detach function from the PyTorch

library. Using the detach function implies that the graph of the model will only have

floating-point parameters during backpropagation but will retain binary parameters

during forward propagation. We used the TedNet library to apply decomposition,

which is an open source library designed to decompose neural network layers [80].

CIFAR-10 and CIFAR-100, both of which are widely used datasets with 50,000 RGB

images of 32× 32 pixels for training and 10,000 for testing, with 10 classes for CIFAR-

10 and 100 classes for CIFAR-100. In terms of data augmentation, we used a random

crop of 32 with padding of 4 as well as random horizontal flip. We transformed the

images into tensors and normalized using PyTorch parameters for mean and standard

deviation.

ResNet-20 is a ResNet variant that consists of 19 convolutional layers and one fully

connected layer with residual connections between the layers. We used ResNet-20 on

both datasets for the floating-point and binary models, as presented in Table 1.

107

ResNet-20 is a ResNet variant that consists of 19 convolutional layers and one fully

connected layer with residual connections between the layers. ResNet-20 was used on

both datasets for the floating-point and binary models, as shown in Table 1.

Table 8.2: Comparison of Floating and Binary Models with High Rank on CIFAR-100

Network Type Rank Params Size MB Top 1%

Floating-poing

Base - 1.2 68.730%

TT-Model-1 50 4.9 67.170%

TT-Model-2 100 19.1 68.14%

TT-Model-3 200 76.0 68.73%

XNOR-Net

Base - 0.069 50.17%

XNOR-Net-TT-1 50 0.280 51.37%

XNOR-Net-TT-2 100 1.0 52.54%

XNOR-Net-TT-3 200 3.6 55.35%

We applied TT decomposition on all of the layers of ResNet-20 except for the first

layers. We used ranks of 50, 100, and 200 for all of the layers, as Table 1 indicates.

Then, we used the XNOR-Net method as explained in the previous sections to binarize

the layers of the model, except for the first and last layers.

Next, we trained the models on a single GTX 1080 TI GPU for 120 epochs with a batch

size of 32 using the Adam optimizer with a learning rate of 0.01 and weight decay of

1e-7; then, we used the ReduceLRonPlateau scheduler with a patience of 25 to reduce

the learning rate by a factor of 0.005. In addition, we used norm grad clip to prevent

the model from exploding gradients and to accelerate model training

8.5 Discussion and Conclusions

In this chapter, we have presented a method for improving a BNN model by adding

more parameters using a high-rank TT decomposition algorithm. We used three dif-

108

Table 8.3: Comparison of Different Architectures on CIFAR-10

Network Type Top1% Params Size MB

ResNet-20

Resnet20-FP[34] 92.60% 1.1

Mobile-net[37] 90.18% 12.4

Mobile-netv2[93] 91.29% 9.0

Efficient-net[102] 91.330% 11.4

ResNet20-Xnor[87] 79.13% 0.047

XNOR-Net-TT-1 80.89% 0.209

XNOR-Net-TT-2 82.12% 0.80

XNOR-Net-TT-3 84.529% 2.8

ferent ranks of 50, 100, and 200 to decompose all of the layers except the first, and

then binarized all of the layers of the models except the first and last. We improved

the model’s accuracy by 2%–4% while retaining the benefits of using the XNOR-Net

method, which saved memory storage by 32× and computational costs by 58×.

109

Chapter 9

Crowd Counting Application

9.1 Background

One of the most critical applications in smart cities is crowd counting. Building a

comprehensive computational model capable of analyzing and monitoring high-density

crowds is a difficult task. Crowd analysis and flow monitoring are critical in high-risk

environments, such as stadiums, spiritual gatherings, and music concerts, for avoiding

crushing and blockage. Furthermore, analyzing and understanding crowd density and

movement enables the development of better security services as well as better logistics

and infrastructure for monitoring and easing crowd flow. Crowd counting is a difficult

task, with difficulties arising from a variety of sources, including background noise, the

nonuniform distribution of people, blurred images, and distorted and affected images

[95]. To address these problems, the deep learning literature has introduced numerous

deep neural network models and datasets of various types. Crowd images are frequently

derived from the video feed of a surveillance camera, and the majority of analyses are

performed in the cloud rather than on the surveillance camera itself. We used crowd

counting as a case study for our Ultimate Compression method introduced in Chapter

5. We specifically used two different models, namely MCNN and CSRNet, with the

110

following four datasets: ShanghaiTech B, UCF CC 50, WorldEXPO’10, and UCF-

QNRF datasets[63]. We compared the Ultimate Compression method with floating-

point with MCNN and CSRNet in terms of mean absolute error (MAE), root mean

square error (RMSE), and storage costs.

9.2 Models and Datasets

9.2.1 Models

MCNN

MCNN consists of three columns of CNNs in which their filters have different sizes.

Except for the sizes and numbers of filters, the columns have the same network structure

(conv–pooling–Activation–conv–pooling); and the pooling is a max-pooling of size two;

and the activation function is ReLU. The input to the MCNN model is an image, and

the output is a density map whose integral provides the crowd counting. Differently

sized filters result in different receptive fields of the same images, making the learned

features by each column more robust to variations in people and head size due to the

perspective effect across different images. To map the feature maps to the density map,

MCNN replaces the fully connected layer with a convolutional layer of size 1x1[114].

CSRNet

Compared with MCNN, CSRNet significantly reduces the training time while produc-

ing high-quality density maps. To support input images with variable resolutions,

CSRNet employs convolutional layers with a filter of size (3x3) for all layers as the

backbone. The front-end of CSRNet is comprises of the first 10 layers of VGG-16. The

back-end, uses dilated convolution layers to enlarge receptive fields and extract deeper

111

features without sacrificing resolution. CSRNet does not use the pooling layer, but it

does use the ReLU activation function[63].

9.2.2 Dataset

ShanghaiTech B

The ShanghaiTech Part B dataset contains 716 images with sparse crowd scenes taken

from Shanghai streets, examples of which are provided in Figure 9.1.

Figure 9.1: Samples from the ShanghaiTech Part B dataset [114].

UCF CC 50

The UCF CC 50 dataset consists of 50 images with varying perspectives and resolutions[39].

The number of annotated people per image ranges from 94 to 4543, with an average

of 1280.

Figure 9.2: Samples from UCF CC 50 datasets [39].

112

UCF-QNRF

Compared with other datasets, the UCF-QNRF dataset contains 1535 images of the

highest resolution. Furthermore, it contains a broader range of scenes with the most

varied viewpoints, densities, and lighting variations. The maximum number of anno-

tated people per image is 12,865, with an average of 815.

[39]

Figure 9.3: Samples from the datasets[39]

WorldEXPO’10

The WorldExpo’10 dataset contains 3980 annotated frames from 1132 video sequences

recorded by 108 different surveillance cameras. This dataset is split into two parts: a

training set (3380 frames) and a testing set (600 frames) from five different scenes.

Figure 9.4: Samples from the WorldEXPO’10 dataset[113].

113

9.3 Experiment and Results

To train the models, we used the Euclidean distance as the loss function, measuring

the difference between the estimated density map and the ground truth as follows:

L(Θ) =
1

2N

N∑
i=1

∥F (Xi; Θ)− Fi∥22 (9.1)

where is N is the number of training images; and Θ is the learnable parameter in the

models; Xi is the input images; and Fi is the ground truth density map of image Xi;

F (Xi; Θ) is the estimated density map generated by the models; and L is the loss

function between the estimated density map and the ground truth density map[114].

We applied our Ultimate Compression method using these both of these models on the

four different datasets which are the most common in the literature for crowd count-

ing applications. We used the same data augmentation and training routines that

presented in[22] to train the floating-point models. Then, we applied Ultimate Com-

pression by applying binarization on the decomposed layers and training the models

using the same routine that we used for the floating-point models. We used different

metrics to test the model performance: MAE, RMSE, and storage cost, as presented

in Table 9.1.

MAE =
1

n

n∑
i=1

|ŷi − yi| (9.2)

RMSE =

√√√√ n∑
i=1

(ŷi − yi)
2

n
(9.3)

114

UCF-QNRF WE ShanghaiTech B UCF-CC-50 Floating
MAE RMSE MAE RMSE MAE RMSE MAE RMSE Params Compress.

MCNN 365.2 577.2 18.8 0.0 40.3 60.0 566.4 715.3 545KB –
CSRNet 111.4 199.4 14.3 0.0 9.8 14.6 155.2 254.4 65MB –

Ous
MAE RMSE MAE RMSE MAE RMSE MAE RMSE Params Compress.

MCNN 416 621.5 18.6 0.0 50.4 70.2 377.6 509.1 152KB 3.58x
CSRNet 121.2 198.3 15.6 0.0 16.25 25.03 233.54 266.17 2.74MB 23x

Table 9.1: Comparison Between the Floating-Point Models of MCNN and CSRNet and the
Decomposed Binary Models

We used the original image sizes in MCNN because resizing the images introduces

additional distortion in the density map, which is difficult to estimate. Then, we

applied our Ultimate Compression method on the second and third layers only in each

column, and the first, third, and conv 1×1 layer is floating-point, as illustrated in

Figure 9.5.

Conv: 9
x9

Conv: 5x5

Conv: 7x7

Conv: 7x7

Conv: 5x5

Conv: 3x3

pooling: 2x2

pooling: 2x2

pooling: 2x2
pooling: 2x2

pooling: 2x2

pooling: 2x2

Conv: 7x7

Conv: 5x5

Conv: 3x3

Conv: 7x7

Conv: 5x5

Conv: 3x3

30

Conv: 1x1

Input
Image

Density
 map

 Merged
Features Maps

16

20

24
24

24

24

24

20

16
8

10

12

Decomposed Binary Layers

Figure 9.5: MCNN model: we first binarized the second and third layers of each column,
and then decomposed them using tensor train decomposition.

For CSRNet, we used Ultimate Compression for both back-end layers, which use 10

layers from VGG-16, and front-end layers, which consist of six layers with a dilation

of 2. Here, we applied it to all layers except the first and last layers in the back-end

115

and front-end, as depicted in Figure 9.6. Thus, we compressed the model by 23×.

P
ool2D

 3x3 conv, 64

 3x3 conv, 64

P
ool2D

 3x3 conv, 128

 3x3 conv, 128

P
ool2D

 3x3 conv, 265

 3x3 conv, 256

 3x3 conv, 256

 3x3 conv, 512

 3x3 conv, 512

 3x3 conv, 512

 3x3 conv, 512

 3x3 conv, 512

 3x3 conv, 512

 3x3 conv, 512

 3x3 conv, 512

 3x3 conv, 512

 1x1 conv

10 Layers from VGG-16

Dillation 2
dillation 1

dillation 2

Decompose Binary layers

Decompose Binary layers

Figure 9.6: CSRNet: we binarized and decomposed the 10 layer of the VGG-16 back-end
and five layers in the front-end with a dilation of 2.

9.4 Conclusion

In this chapter, we have presented how we studied and applied our Ultimate Compres-

sion method on a crowd counting application using MCNN and CRNet. The MCNN

model captured different receptive fields using multiple column convolutional layers

with different kernels and fused them together to generate a density map. The CSR-

Net model used CNNs as the front-end and dilated CNNs for the back-end. The dilated

CNNs retained spatial information. We compressed the model by 3.5× and 23× for

MCNN and CRNet, respectively.

116

Chapter 10

A Two-Stage Efficient 3D CNN

Framework for EEG-Based

Emotion Recognition

This chapter proposes a novel two-stage framework for emotion recognition using EEG

data that outperforms state-of-the-art models while keeping the model size small and

computationally efficient. The framework consists of two stages; the first stage involves

constructing efficient models named EEGNet, which is inspired by the state-of-the-

art efficient architecture and employs inverted-residual blocks that contain depth-wise

separable convolutional layers. The EEGNet models on both valence and arousal labels

achieve average classification accuracies of 90%, 96.6%, and 99.5% with only 6.4k, 14k,

and 25k parameters, respectively. In terms of accuracy and storage cost, these models

outperform the previous state-of-the-art results by up to 9%. In the second stage,

we binarize these models to further compress them and deploy them easily on edge

devices. BNNs typically degrade model accuracy. We improve the EEGNet binarized

models by introducing three novel methods, achieving a 20% improvement over the

baseline binary models. The proposed binarized EEGNet models achieve accuracies

117

of 81%, 95%, and 99% with storage costs of 0.11 Mbits, 0.28 Mbits, and 0.46 Mbits,

respectively. These models will help to deploy a precise human emotion recognition

system in the edge environment.

10.1 Introduction

Deep neural networks have achieved incredible results in computer vision, speech recog-

nition, and natural language processing [53]. Deep neural network models have also

performed exceptionally well in the fields of brain–computer interaction (BCI) and hu-

man–computer interaction (HCI). Electroencephalography (EEG) signals are used in

a variety of BCI applications, such as control prosthetics, neurofeedback, and emotion

recognition [5]. In real-time, a BCI system records EEG signals in a noninvasive man-

ner and produces a message or computational command from the recorded signals. A

BCI system comprises three different components: sensors (mostly electrodes mounted

on the scalp to record EEG signals); translation and communication (mostly trans-

lating EEG signals into commands or computational language); and real-time actions

(actions based on EEG signals). CNNs have produced promising results in computer

vision applications, such as image recognition, object detection, and semantic segmen-

tation. Various types of CNNs exist, but in terms of dimensionality, 1D CNNs are the

most commonly used for time-series applications such as human activity identification

[99] and physiological signals, as demonstrated in [49].Two-dimensional CNNs are the

most commonly used for image data and computer vision applications, such as image

classification and segmentation. Three-dimensional CNNs, which are mostly useful for

volumetric data, have been adopted successfully in video analysis and object recog-

nition tasks [42, 45]. Furthermore, 3D CNNs take 3D inputs and apply 3D filters to

them. The filters move along three axes to form 3D shape outputs. Long sequence

data such as video, audio, electrocardiogram (ECG), and EEG signals can benefit from

118

the extra convolutional dimension due to the spatiotemporal correlations between data

segments in the long sequence.

Emotions play a critical role in human reasoning and are linked to rational decision

making, perception, human interaction, and even human intelligence itself [93]. Var-

ious methods exist for modeling human emotions, and one of the most effective ap-

proaches is to use multiple dimensions or scales for emotion categorization. In such a

model, emotions are defined by two major perception dimensions: valence and arousal.

Arousal ranges from low to high, whereas valence ranges from positive to negative.

For example, fear has a negative valence and high arousal, whereas excitement has a

positive valence and high arousal.

EEG signals are brain waves that measure eclectic field behaviors from the human

scalp. They can be naturally applied to human emotion recognition due to their re-

flection of human response and linkage to the cortical activities [91]. Several studies

have investigated EEG-based emotion recognition by extracting EEG features using

deep neural network algorithms. These methods have demonstrated high recognition

accuracies compared with classical machine learning models but still require feature

extraction and selection prior to the classifier [117] [6]. Using CNNs for emotion recog-

nition is not novel. In [85] and [75], a 2D CNN was used for the emotion recognition of

power spectrum density (PSD) features from original EEG signals as input to the neu-

ral network and demonstrated good results. However, CNNs typically require a large

amount of computational resources and the computing power spectrum density is not

efficient. As a result, deploying such models on low-resource-constrained devices is not

possible. In this chapter, we propose a novel two-stage 3D CNN framework for emotion

recognition without special signal transformations on EEG data. Our method signifi-

cantly outperformed the state-of-the-art results while keeping the model size small and

computationally efficient, thus allowing model deployment in edge environments where

devices have limited resources.

119

10.2 Related Works

A variety of approaches, including traditional machine learning and deep learning al-

gorithms, have been introduced to identify and classify emotions. Traditional machine

learning algorithms require feature extraction and selection before the classifier is ap-

plied. One study used the support vector machine (SVM) on the publicly available

dataset DEAP to identify valence and arousal perceptions using feature vectors based

on statistical measurements of the frequency bands in the EEG signal, and achieved

67% by using all features [92]. A deep belief network with glia chain (DBN-GC) was

also adopted in this area. The authors extracted the intermediate representation of

raw EEG signals from each domain separately, and then used the glia chain to mine

correlation information. Lastly, they fused all information together using the restricted

Boltzmann machine (RBM) to implement emotion recognition, achieving 75.92% and

76.83% for arousal and valence, respectively [12]. On the other hand, the deep learn-

ing method proposed by [26] with a 2D CNN achieved comparable performance to the

SVM. However, there are two significant drawbacks to applying 2D CNNs to raw EEG

signals, namely covariance shift and the unreliability of the emotional ground truth.

Covariance shift refers to the difference in statistical distribution between training and

testing data, which is severe in EEG signals due to the non-stationary nature of the

signal [44]. Usually, raw EEG signals are segmented into several input sequences to aug-

ment the data. Emotion EEG trials should correspond to their ground truths, which

are self-reported. The difference between the average of the segmented signals and

ground truths causes the unreliability of each epoch, which influences the model train-

ing [26]. To address these two problems, the 3D CNN structure has been introduced

because of its ability to simultaneously extract spatial and temporal features. Salama

et al. [91] proposed a 3D CNN strategy for EEG-based emotion recognition with a

data augmentation method by adding normalized random Gaussian noise and achieved

120

better results compared with the previous methods. Yang et al. [112] developed a dif-

ferent multi-column CNN structure whose prediction is produced by a weighted sum

of the decisions from all individual recognizing modules, and they obtained approxi-

mately 90% on both valence and arousal labels. Zhao et al. [116] constructed another

3D CNN model with reshaped channel matrices that achieved the state-of-the-art re-

sults of 96.43% and 96.61% for valence and arousal, respectively. However, the large

parameter counts of the redundant model prevent its usage in practice.

10.3 EEG Signals

EEG signals can be classified into different ranges based on their frequency, namely

delta, theta, alpha, beta, or gamma waves.

Delta waves are the slowest and primarily exist between 1 Hz and 4 Hz. They are often

known as deep sleep waves because they are more common while the human body is

in deep meditation or under relaxing conditions and deep sleep. During this cycle of

waves, the body is recovering and regenerating from the previous day’s events [86].

Theta waves are mostly generated around the 4–7 Hz range. These waves are correlated

with both light meditation and sleep. When the brain generates an increasing amount

of theta waves, it is said to be in “dream mode.” Humans undergo rapid eye movement

(REM) sleep in this condition. According to [86], frontal theta waves are associated

with information retrieval, learning, and memory retention.

Alpha waves exist primarily in the range of 8–12 Hz and are also known as deep calm-

ing waves. They reflect the brain’s resting state and are prevalent during periods of

daydreaming or meditation. Alpha waves have effects on imagination, visualization,

understanding, memory, and focus. According to [86], alpha waves are linked to re-

flecting sensory, motor, and memory functions.

121

Beta waves are most common at frequencies ranging from 12 Hz to 25 Hz. These waves

are linked to a person’s awareness and alertness. When we are wide awake or aware,

engaging in some kind of mental task, such as problem-solving or decision-making,

these waves are more prevalent [86].

Gamma waves are the fastest and are, like beta waves, most common while a person is

alert and awake. Cognition, knowledge retrieval, attention span, and memory are all

correlated with these waves. Gamma waves are thought to represent a person’s “higher

virtue,” such as altruism, compassion, and spiritual emergence [86].

10.3.1 Emotions Detection

Emotions vary from one person to another. Several methods have been presented in

the literature for modeling human emotions. One model depicts simple emotions such

as happiness and sadness [106], while the other depicts fear, anger, depression, and

satisfaction [41]. Another modeling method employs several measurements or scales to

categorize human emotions [84]. The most prevalent human emotion model uses two

key dimensions to model the emotions, namely valence and arousal. Valence varies

from positive to negative, while arousal ranges from low to high. Fear, for example,

has negative valence and high arousal, while excitement has positive valence and high

arousal [88].

In the frequency domain, power features are often used in researches. The alpha band

power spectral density (PSD) of EEG correlates with valence [103]. Furthermore, when

the delta and theta bands of the power spectral density (PSD) of EEG are extracted

from three central channels, they contain information that is associated with valence

and arousal [19]. We focused on the arousal and valence scale in this study.

122

10.4 Proposed Method

10.4.1 Efficient 3-D CNNModels with Inverted Residual Block

The 3D CNN expands on the traditional 2D CNN by adding an additional dimension.

3D CNN is written as follows:

yli,j,k =
m∑
a=0

n∑
b=0

p∑
c=0

ωa,b,c ∗ xl−1
i−a,j−b,k−c (10.1)

where xl−1 is the output from the previous layer after activation is applied, ω is the 3D

convolutional kernel with size m∗n∗p, and yl is the convolution output. To the best of

our knowledge, only a few studies have used 3D CNNs specifically for EEG signals. To

test the benefits of using 3D CNNs, we modified the most widely used architectures in

the literature, namely ResNet-18 [34] and MobileNetV2 [93], by replacing 2-D CNNs

with 3-D CNNs. The use of these models on our EEG dataset resulted in excellent

accuracy at the expense of very high storage and computational costs, as demonstrated

in Section 10.5.4 . However, deploying these models on edge BCI devices is not a viable

option.

Model Total Param. Width Factor t Output Neurons

EEGNet V1 6.4K 0.4 2 320

EEGNet V2 14.6K 0.5 3 640

EEGNet V3 24.8K 0.8 4 640

Table 10.1: Proposed Models with Their Corresponding Parameter Setting

123

Conv3d

BatchNorm3d

InvertedResidual

InvertedResidual

InvertedResidual

Conv3d

BatchNorm3d

ReLU 6

Dropout

Linear

Conv 1x1x1
 ReLU

Depthwise Conv
3x3x3
ReLU

Conv 1x1x1
Linear

Add

St
rid

e
=

(1
,1

,1
)

...
.
.
.

...
...

Raw DEAP EEG Signal
512 Hz

128 Hz DEAP
40 Ch X 8064

(63s)

128 Hz EEG
32 Ch X 7680

(60s)

128 Hz EEG
32 Ch X 7680

(60s)

Remove Side
Channels

an baseline
Normalize (0,1)

t1 t4t2 t3

128

128

Ch2

Ch1

Ch3

Ch32

�

��

frame i

i+1

i+2

�������

Ch1
Ch2
Ch3

Ch32

Downsample

ReLU 6

Figure 10.1: The data process steps and proposed EEGNet architecture

We created three extremely efficient network models named EEGNet V1, V2, and V3,

in which we modified the block structure introduced by [93] by replacing the inverted

residual blocks and depthwise separable convolutions to 3D operations instead of 2D,

as illustrated in Figure. 10.1.

Depthwise separable convolution decoupled the standard convolution into a 3×3 depth-

wise convolution and a 1×1 pointwise convolution, which reduced the learning param-

eters and computational costs of the networks [37]. In a standard residual block, inputs

are followed by multiple bottleneck layers, which are then followed by expansions. As

demonstrated with 3D inverted residual blocks in Fig. 10.1, we reversed the bottleneck

and expansion layers, and then applied shortcut connections directly between the two

bottlenecks when both the input and output tensors of the block had the same shape.

The blocks also had their 3D batch normalization layer and ReLU activation layer in-

side. Our models consisted of three inverted residual blocks and then were followed by

124

another point-wise convolution layer to expand the feature maps for classification. The

last two layers were a dropout layer, which was included for regularization to prevent an

overfitting and a fully connected linear layer for generating classification logits, which

then went through a SoftMax function to produce final classification probabilities with

two classes (positive and negative).

As shown in Table 10.1, we tuned three hyperparameters to create three versions

of EEGNet models: the expansion factor t, the width multiplier factor (WF), and

the number of output neurons of the last convolution layer. The expansion factor t

determines the number of times to expand the channels of the input tensor to the hidden

expansion layers of the second and third inverted residual blocks. WF determines the

overall model channel width. The number of output neurons controls the number

of output neurons of the last point-wise convolution layer. V1, V2, and V3 are in

ascending order of model complexity, but also increasing test accuracy as well. They are

targeting edge platforms with different resource constraints and latency requirements.

10.4.2 Model Binarization

To further compress the models, we binarized the weights and activation within the

inverted residual blocks as the second stage of our framework. Binarization is an ex-

treme case of quantization in which only one bit is used to represent the number in

the weights and activation, thereby greatly reducing the computation and memory

footprint. The XNOR-Net is a common binarization method that achieves up to 58x

of the inference speed and 32x memory saves [87]. The issue with BNNs is that model

accuracy often degrades significantly. Hence, we introduced three techniques to im-

prove the accuracy of the binarized models with little to no additional costs in terms

of storage and computational resources.

125

Adding real-value residual connections to each block

Residual connections provide the possibility of constructing very deep models without

performance degradation. Normally, feature maps produced by convolution operations

are directly calculated, but [34] suggested that the convolution layers have difficulty

learning the identity mapping, assuming the solution is already optimal from the pre-

vious layer. With residual connection between layers, the feature map H(x) is now

constructed by two parts: H(x) = x+ F (x), where x is identity mapping and F (x) is

the residual that is learned by the current layer; thus, the performance of a deep model

will at the worst be equal to its shallow counterpart. Our baseline models applied

residual connection only when the given input channel was equal to output channel

and the stride was (1,1,1) as illustrated in Fig. 10.1, (i.e. only the first block).

The previous residual setting was sufficient for real-value baseline models since our

network architecture was not very deep. However, the binarized models would suffer

significantly due to information loss when applying nonlinear activation even with a

shallow network structure. Hence, for the binarized network, we preserved the real-

value feature map from the previous layer and added it to the output activation.

Then, we applied the real-value residual connections to all three blocks in the proposed

models. If the convolution stride was not (1,1,1) or the channels of input/output

were different, we first downsampled the real-value feature map to its desired shape

and then added it as illustrated in Fig. 10.2. Those dense real-value connections

increased the representation capability significantly due to the limited knowledge that

the binarized activation maps contained. The only additional cost of adding more

real-value shortcuts is a small amount of element-wise addition operations with no

extra memory cost because the addition operations are computed on the fly during the

inference stage.

126

Conv3d

BatchNorm3d

ReLU

InvertedResidual 1

InvertedResidual 2

InvertedResidual 3

Conv3d

ReLU

Dropout

Linear

AvgPool

Binary Activation

BatchNorm3d

Binary Conv3d

Binary Activation

Binary Depthwise Conv3d

Binary Activation

Binary Conv3d

BatchNorm3d

(3x3x3)

(1x1x1)

(1x1x1)

Channel =16*WF

St
rid

e
=

(2
,2

,2
)

St
rid

e
=

(1
,1

,1
)

Channel =16*WF

Stride = (1,2,2)

BatchNorm3d

BatchNorm3d

Binary Activation

BatchNorm3d

Binary Conv3d

Binary Activation

Binary Depthwise Conv3d

Binary Activation

Binary Conv3d

BatchNorm3d

BatchNorm3d

Binary Activation

BatchNorm3d

Binary Conv3d

Binary Activation

Binary Depthwise Conv3d

Binary Activation

Binary Conv3d

BatchNorm3d

BatchNorm3d

St
rid

e
=

(1
,1

,1
)

(1x1x1) (1x1x1)

(1x1x1)(1x1x1)

(3x3x3) (3x3x3)

Channel =16*WF Channel =16*WF Channel =16*WF

Figure 10.2: Proposed Binary EEGNet Architecture

Applying channel-wise scaling factor

Binarizing a neural network by applying the sign function Xb = sign(Xr) to both the

weights and the activation would result in crucial information loss. To address this

problem, Rastegari et al. [87] suggested the scaling factors α and K to approximate

floating-point weights and activation after binarization, as follows:

A ∗W ≈ (sign(A)⊙ sign(W))αK (10.2)

Where A and W are weights and activation, ∗ is the real value convolution operator, ⊙

represent binary convolution with XNOR and bits shift operations, α is a weight scaling

factor such that Wr ≈ αWb, and K is the scalar factor matrix of the corresponding

activation. We removed K due to its high computational cost and negligible impact

on performance, as suggested by [87]. However, we found that analytically calculated

α = ||W ||
n

, n = c×w×h was not optimal. Specifically, it averaged out all of the weighting

channels but ignored their significance and overall magnitude levels. Therefor, we

proposed a channel-wise scaling factor, and added the third dimension to share model

127

representation ability with αi =
||Wi||
n

, n = k×w×h, α ∈ Rc, where c is weight channels

and k×w×h is data dimensions. The use of the channel-wise scaling factor improved

the performance of the binarized models significantly, as the experiment and results

section will be demonstrated.

Architecture modification for additional compression

In the proposed models, we binarized the layers inside the inverted residual blocks for

better performance. The first and last full-precision convolution layers, which require

a high computation and storage costs, became the most expensive parts of the model

during training and inference. Therefore, to further compress the binarized models,

we reduced the number of filters in the first channel from 32×WF to 16×WF. This

avoided the need to perform millions of multiply–accumulate operations with negligible

performance loss due to the redundant nature of CNNs. Furthermore, we modified the

final full-precision convolution layer, which usually requires a high computation and

storage costs due to its property of generating a large number of feature maps for the

final prediction, has been modified by adding the average pooling layer ahead. This

resulted in the computations being conducted at a 1×1×1 spatial-temporal resolution

in the final layer rather than 3 × 8 × 32. Additionally, the last stage of tuning not

only reduced the computation but also increased the accuracy as well because the

early average pooling helped to avoid location sensitivity of the input features in the

activation.

Combining these three methods vastly improved the performance of the binarized mod-

els.

128

Method Accuracy Improve ∆

Plain BNN 75.14% -

1- Connection Real Values 80.3% +5.16

2- Channel-Wise 91.93% +16.79

3 - Tuning Last Stage 77.28% +2.14

1 & 2 92.97% +17.83

1 & 3 78.89 +3.75

2 & 3 95.33 +20.19

1 & 2 & 3 94.96% +19.82

Full Percision 96.37% -

Table 10.2: Methods with Binary Neural Networks Using EEGNet V2

10.5 Experiment and Results Analysis

10.5.1 DEAP Dataset

DEAP[50] is a well-known public EEG dataset for the analysis of human affective

states. It consists of 32 participants with recordings of each watching 40 1-minute-long

excerpts of music videos. Then, the participants rated each video for levels of valence,

arousal, liking, and dominance [50]. The result was 63 seconds with 8064 sample points

for each channel of every 1-minute trial. The first 3 seconds of the trial was the baseline

prior to the actual experiment and was removed in our data process step. There were

40 channels that had been recorded with 32 EEG channels and eight side channels.

The EEG signals were recorded using the standard international 10-20 system with 32

active AgCl electrodes [50]. The rated score of each video clip ranged from 1 to 9 per

label.

4 6 8 10

Arousal 64.2% 99.5% 98.5% 97.1%

Table 10.3: Arousal Test Accuracy vs. Number of Frames per Chunk with MobileNetV2-3D
on the DEAP Dataset

129

10.5.2 Data Preprocessing and 3D Representation

We first adopted a preprocessing method that is widely used in the literature [32],

in which we downsampled the data from 512 Hz to 128 Hz and removed electroocu-

lography (EOG) artifacts. Then, to eliminate unwanted frequency components, we

introduced a bandpass filter, which only preserved the 4-45Hz frequency range cov-

ering theta, alpha, and beta waves. The 3-seconds pre-trial baseline and the eight

side channels were then removed. Subsequently, we then normalized the data for each

channel of each trial to be between 0 and 1. Lastly, we divided each trial into 32

1-second data frames with a window size of 128 points and an overlapping ratio of

50%, as illustrated in Fig. 10.1. In a short period of time, this method preserves the

temporal stationarity of EEG signals.

To prepare the datasets for 3D CNNs, we stacked up multiple 32-channels by 1-second-

long consecutive data frames to form 3D data chunks [91]. After experimenting with

various frame sizes, we selected six frames to continue as they yielded the best accuracy,

as presented in Table 10.3. Then, we assigned each chunk the labels that were the same

as the ground-truth labels of its corresponding trial. In total, we constructed 25,600

chunks of data with a size of 6*32*128 as the method presented. We experimented

with valence and arousal perception in this study with their corresponding labels. A

threshold value of 5 was applied to assign positive and negative labels from the provided

1-9 scores, as this is common in the area of research literature. Finally, our proposed

method is presente in Figure. 10.1.

10.5.3 Training Setting

All models were trained on an NVIDIA Tesla V100 GPU and implemented with the

PyTorch framework [81]. We split the training and validation datasets with 80% and

20% respectively. The dropout layer was set to a 0.2 dropout rate. We trained the

130

models for 100 epochs with a batch size of 256 and adopted the Adam optimizer [48]

. The initial learning rate was set to 0.001 and the multi-step learning rate scheduler

was applied with a milestone set to 75, and gamma equal to 0.5. We used the cross

entropy loss function across all models and applied additional label smoothing [76]

with ϵ = 0.1 specifically to the binarized models. Label smoothing provides additional

regularization by constructing soft labels as

labelsoft = (1− ϵ) ∗ label − ϵ

K
(10.3)

where K is the number of label classes, which we set to 2.

10.5.4 Results of Baseline Models

Our proposed method significantly outperformed previous studies without special fea-

ture extraction or signal transformation while still maintaining a compact size. As

Table 10.4 demonstrates, our EEGNet V1 achieved better results than [112] and [91]

but with over 10x fewer learning parameters, which is only 6.4K. Our proposed EEGNet

V2 achieved performance comparable to with the state-of-the-art 3D CNN approach

[116] and 3D ResNet18 in the experiment but with only 14.6K learning parameters,

which is less than 1% of the parameter counts compared to with [116]. Ultimately,

our largest V3 variant achieved an average classification accuracy of 99.5% with only

24.8K parameters and significantly outperformed the previous studies. To the best of

our knowledge, these three variants of our proposed method outperformed the state-of-

the-art models in terms of both accuracy and model size. To elaborate the performance

analysis in more detail, we have included validation precision, recall, and F1 score of

each model to show its effectiveness and robustness in Table 10.4.

The 3-D CNNs with batch normalization, dense prediction, inverted residual blocks,

and depthwise separable convolution made our models efficient and yielded outstanding

131

Table 10.4: The Precision, Recall, and F1-Score of the Proposed EEGNet and Binary EEG-
Net Models (DEAP)

Precision (%) Recall (%) F1 Score (%)
Models

Valence Arousal Valence Arousal Valence Arousal

EEGNet V1 90.00 90.22 89.37 92.89 89.70 91.65

EEGNet V2 96.73 96.63 96.80 97.54 96.77 97.10

EEGNet V3 99.72 99.59 99.30 99.56 99.50 99.58

Bi-EEGNet V1 80.20 81.55 84.96 86.80 82.63 84.25

Bi-EEGNet V2 95.02 96.90 96.46 94.98 95.75 95.88

Bi-EEGNet V3 99.23 99.20 99.54 99.83 99.40 99.53

results in terms of accuracy and model size. Batch normalization helped to solve the

covariance shift problem [44], and dense prediction solved the unreliability issue [26].

Inverted residual blocks maintained the manifolds of interest in neural networks and

reduced the information loss when performing non-linear transformation [93]. Finally,

applying depthwise separable convolution reduced the parameters and the computation

complexity of the models. These advantages make efficient model deployment become

possible for low power and resource-constrained devices at the edge.

10.5.5 Result of Binarized Models

Our model binarization algorithm adopted the piece-wise polynomial function proposed

by [69] to estimate the derivative of the sign function to successfully propagate the bi-

nary models. Table 10.2 presents the effectiveness of our three proposed techniques,

which resulted in model performance improvements of 5%, 17%, and 2%, respectively,

on the arousal label with EEGNet V2 setting. The valence label exhibited a similar

performance gain in our experiments. By combining these, we achieved an improve-

132

Model Valence Arousal Param. Mem. Usage

Samara et al. [92] 66.9% 66.69% - -

Chao et al. [12] 76.83% 75.92% - -

Wang et al. [105] 72.1% 73.3% - -

Yanagimoto et al. [109] 81.16% - - -

Salama et al. [91] 87.44 88.49 2.5M 75.13 Mbits

Yang et al. [112] 90.01 90.65 314K 9.58 Mbits

Zhao et al. [116] 96.43 96.61 170M 5435 Mbits

Resnet18-3D 92.77 97.53 33.2M 1012 Mbits

MobileNetV2-3D 99.68 99.70 2.4M 71.87 Mbits

EEGNet V1 88.44% 90.04% 6.4K 0.20 Mbit

EEGNet V2 96.37% 96.60% 14.6K 0.45 Mbit

EEGNet V3 99.45% 99.51% 24.8K 0.76 Mbit

Bi-EEGNet V1 80.00% 80.95% 3.5K+9.1K∗ 0.11 Mbit

Bi-EEGNet V2 94.42% 95.05% 8.1K+33K∗ 0.28 Mbit

Bi-EEGNet V3 99.32% 99.43% 11K+130K∗ 0.46 Mbit

Note: * denote 1-bit binary parameters.

Table 10.5: Performance Comparison with Previous Studies

ment of over 20% over the plain binary model while still maintaining similar storage

and computational costs. As indicated in Table 10.5, the binarized models with V2

and V3 settings achieved a performance comparable to their full-precision counterparts

while further compressing the size by over 40%. The memory usage (i.e, model size)

was calculated by summing up the 32-bit multiples the number of real-valued param-

eters and 1-bit multiples the number of binary parameters in each model. Hence, our

binarized models can take advantage of the proposed method and speed up the infer-

ence significantly when deploy on edge systems while still maintaining state-of-the-art

performance.

133

10.6 Conclusion

In this chapter, we have proposed a two-stage 3D CNN framework that specializes in

emotion recognition tasks using time-domain EEG signals. It extracts spatiotemporal

feature representations automatically. The public DEAP dataset was used to con-

duct experiments with data processing techniques to form the 3D inputs. Our models

demonstrated superior performance

in classifying both valence and arousal perceptions, which can easily be processed into

actual human emotions afterwards. The introduced baseline EEGNet V1, V2, and V3

in the first stage achieved average classification accuracies of 90%, 96.6%, and 99.5%,

respectively, with a small number of learning parameters and a compact model size.

In the second stage, we binarized these models with three novel techniques to perform

further compression and help to take advantage of efficient bitwise operation. Model

binarization saved storage costs and computational resources by over 40% compared

with the baseline EEGNet while still maintaining comparable performance to their

full-precision counterparts. Finally, the efficient models that we presented helped to

make the real-time deployment of a precise human emotion recognition system in a

resource-constrained environment a viable option

134

Chapter 11

Conclusion and Discussion

This dissertation has presented two different methods for compressing deep neural net-

works. Our FPTT method worked best for neural network models with convolutional

and fully connected layers, in which we used the FP method on the convolution lay-

ers and TT decomposition on the fully connected layers; then, we manually modified

the filters until we achieved optimal compression while keeping the accuracy intact or

the degradation to less than 2%. Our second method is called Ultimate Compression,

which is agnostic of the deep neural network architecture, in which we employed three

different tensor decomposition methods, namely Tucker, CP, and TT, and compared

them in terms of accuracy and compression ratio. We applied them on all convolu-

tional and fully connected layers, except for the first and last layers. We found that

the TT method outperformed the other methods in terms of compression and inference

accuracy. Furthermore, we introduced a method that selects the rank for decomposi-

tion based on the layer sensitivity and compared it with other methods. We concluded

that the sensitivity method outperforms the other rank selection algorithms in terms of

compression and accuracy. We also investigated how the initialization and activation

functions affected the convergence and accuracy of the models, and concluded that us-

ing orthogonal initialization with the PReLU activation function and sensitivity as the

135

selection rank algorithm for the decomposed binarized models outperformed the other

methods. We believe that orthogonal initialization outperforms other initialization

methods due to the dynamic isometric condition, which is defined as the equilibration

of singular values of the input–output Jacobian matrix.

In addition, this dissertation has investigated and presented various methods for im-

proving quantized deep neural network models without increasing hardware complex-

ity. We presented a method for improving BNNs by ensembling them and sharing the

weight filters among the models. We compared three methods for ensembling, namely

fusion, voting, and bagging, with six different weight filter configurations. A trade-

off exists to our method in that using nonshared configurations yields better accuracy

but increases hardware complexity, whereas using an all-frozen configuration yields the

best performance in terms of hardware complexity but greatly degrades the accuracy.

We also introduced various configurations that demonstrated improved accuracy while

maintaining hardware complexity to a minimum. Our method is dynamic, based on

the power resources available to edge devices. The model can switch between different

weight filter sharing configurations. In the second method, we improved the models

quantized using logarithmic representation by stochastic rounding on input weights

multiple times and then averaging them. To avoid the hardware complexity required

for accumulation and division of the stochastic rounding of input weights, we modified

the hardware by using the efficient logic blocks NDL and LSFR. Thus, we were able

to build our method while maintaining the model complexity low. In addition, we

improved the performance of the BNN by decomposing the models using TT decom-

position with a large rank, which increased the number of parameters. As a result, the

model’s accuracy increased by 4%–5%. A large rank in this method increased the size

of the models to almost the same as the floating-point method; however, these mod-

els have the advantage of using binary arithmetic instead of floating-point arithmetic,

which greatly reduces hardware and computation costs, especially for devices at the

136

edge.

In this dissertation, we have implemented two different applications at the edge. The

first application is crowd counting, for which we used the Ultimate Compression method

to create efficient models that are deployed on surveillance cameras rather than sending

the camera feed to the cloud. The second application is emotion detection using EEG,

in which we modified and built efficient models by replacing 2D convolution layers in

state-of-the-art mobilnetv2 with 3D convolution layers. We then binarized the model

and introduced various methods aimed at different inference and storage costs.

There are numerous future works that can be built using the methods presented in this

dissertation. Using network distillation to create a chain of quantized or decomposed

models of varying ranks. In addition, our FPTT method can be combined with an

8bit quantization to further compress the models. We can also use these methods,

such as pruning, quantization, and tensor decomposition, to build different models

for specific domains using multi-objective baysaian optimization, where the objective

function is the model’s accuracy and storage cost. Federated learning is a machine

learning technique that trains an algorithm across multiple decentralized edge devices

or servers holding local data samples without exchanging them, and uses compression

methods to accelerate model training and inference.

137

Bibliography

[1] The growth in connected iot devices is expected to generate 79.4zb
of data in 2025, according to a new idc forecast — business wire.
https://www.businesswire.com/news/home/20190618005012/en/

The-Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.

4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast. (Accessed on
12/23/2021).

[2] How nas was improved from many days to hours in search time. https://

peltarion.com/blog/data-science/nas-search. (Accessed on 12/31/2021).

[3] Synopsys 28/32nm standard cell libraries — synopsys. https://www.synopsys.
com/dw/ipdir.php?ds=dwc_standard_cell. (Accessed on 18/06/2019).

[4] A. F. Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

[5] R. Alkawadri. Brain–computer interface (bci) applications in mapping of epileptic
brain networks based on intracranial-eeg: An update. Frontiers in neuroscience,
13:191, 2019.

[6] M. Alnemari. Integration of a Low Cost EEG Headset with The Internet of Thing
Framework. PhD thesis, UC Irvine, 2017.

[7] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[8] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[9] C. Bucil, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining-KDD, volume 6, page 535.

[10] A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep neural network
models for practical applications. arXiv preprint arXiv:1605.07678, 2016.

[11] B. Casvanden and C. Bogaard. VBMF, 11 2017.

138

https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast
https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast
https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast
https://peltarion.com/blog/data-science/nas-search
https://peltarion.com/blog/data-science/nas-search
https://www.synopsys.com/dw/ipdir.php?ds=dwc_standard_cell
https://www.synopsys.com/dw/ipdir.php?ds=dwc_standard_cell

[12] H. Chao, H. Zhi, L. Dong, and Y. Liu. Recognition of emotions using multichan-
nel eeg data and dbn-gc-based ensemble deep learning framework. Computational
intelligence and neuroscience, 2018, 2018.

[13] Z. Cheng, B. Li, Y. Fan, and Y. Bao. A novel rank selection scheme in tensor
ring decomposition based on reinforcement learning for deep neural networks.
In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3292–3296. IEEE, 2020.

[14] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic. Tensor
networks for dimensionality reduction and large-scale optimization: Part 1 low-
rank tensor decompositions. Foundations and Trends® in Machine Learning,
9(4-5):249–429, 2016.

[15] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning:
A tensor analysis. In Conference on learning theory, pages 698–728. PMLR, 2016.

[16] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep
neural networks with binary weights during propagations. arXiv preprint
arXiv:1511.00363, 2015.

[17] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[19] C. A. Frantzidis, C. Bratsas, C. L. Papadelis, E. Konstantinidis, C. Pappas, and
P. D. Bamidis. Toward emotion aware computing: an integrated approach using
multichannel neurophysiological recordings and affective visual stimuli. IEEE
Transactions on Information Technology in Biomedicine, 14(3):589–597, 2010.

[20] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar. Born
again neural networks. In International Conference on Machine Learning, pages
1607–1616. PMLR, 2018.

[21] M. Ganaie, M. Hu, et al. Ensemble deep learning: A review. arXiv preprint
arXiv:2104.02395, 2021.

[22] J. Gao, W. Lin, B. Zhao, D. Wang, C. Gao, and J. Wen. Cˆ 3 framework: An
open-source pytorch code for crowd counting. arXiv preprint arXiv:1907.02724,
2019.

[23] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov. Ultimate tensorization:
compressing convolutional and fc layers alike. arXiv preprint arXiv:1611.03214,
2016.

139

[24] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256. JMLRWorkshop and Con-
ference Proceedings, 2010.

[25] J. Gu, C. Li, B. Zhang, J. Han, X. Cao, J. Liu, and D. Doermann. Projection
convolutional neural networks for 1-bit cnns via discrete back propagation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
8344–8351, 2019.

[26] H. Gunes and B. Schuller. Categorical and dimensional affect analysis in contin-
uous input: Current trends and future directions. Image and Vision Computing,
31(2):120–136, 2013.

[27] N. Guo, J. Bethge, H. Yang, K. Zhong, X. Ning, C. Meinel, and Y. Wang.
Boolnet: Minimizing the energy consumption of binary neural networks. arXiv
preprint arXiv:2106.06991, 2021.

[28] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. Eie:
Efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3):243–254, 2016.

[29] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[30] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions
on Pattern Analysis & Machine Intelligence, (10):993–1001, 1990.

[31] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Op-
timal brain surgeon. Morgan Kaufmann, 1993.

[32] N. Hazarika, J. Z. Chen, A. C. Tsoi, and A. Sergejew. Classification of eeg signals
using the wavelet transform. Signal processing, 59(1):61–72, 1997.

[33] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[34] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[35] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang. Filter pruning via geometric
median for deep convolutional neural networks acceleration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4340–4349, 2019.

140

[36] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[37] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[38] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger. Snap-
shot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

[39] H. Idrees, I. Saleemi, C. Seibert, and M. Shah. Multi-source multi-scale counting
in extremely dense crowd images. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2547–2554, 2013.

[40] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[41] C. E. Izard, J. Kagan, and R. B. Zajonc. Emotions, cognition, and behavior.
CUP Archive, 1984.

[42] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human
action recognition. IEEE transactions on pattern analysis and machine intelli-
gence, 35(1):221–231, 2012.

[43] Y. Jia and E. Shelhamer. Caffe — model zoo. https://caffe.berkeleyvision.
org/model_zoo.html. (Accessed on 01/25/2019).

[44] S. Jirayucharoensak, S. Pan-Ngum, and P. Israsena. Eeg-based emotion recogni-
tion using deep learning network with principal component based covariate shift
adaptation. The Scientific World Journal, 2014, 2014.

[45] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
Large-scale video classification with convolutional neural networks. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern Recognition, pages
1725–1732, 2014.

[46] H. Kim. Aresb-net: accurate residual binarized neural networks using short-
cut concatenation and shuffled grouped convolution. PeerJ Computer Science,
7:e454, 2021.

[47] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

[48] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

141

https://caffe.berkeleyvision.org/model_zoo.html
https://caffe.berkeleyvision.org/model_zoo.html

[49] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman. 1d
convolutional neural networks and applications: A survey. Mechanical systems
and signal processing, 151:107398, 2021.

[50] S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun,
A. Nijholt, and I. Patras. Deap: A database for emotion analysis; using physio-
logical signals. IEEE transactions on affective computing, 3(1):18–31, 2011.

[51] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[52] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic. Tensorly: Tensor
learning in python. arXiv preprint arXiv:1610.09555, 2016.

[53] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing
systems, 25:1097–1105, 2012.

[55] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. Speeding-up
convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

[56] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[57] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[58] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[59] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in
neural information processing systems, pages 598–605, 1990.

[60] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong. Lognet: Energy-
efficient neural networks using logarithmic computation. In 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5900–5904. IEEE, 2017.

[61] S. Lee, H. Sim, J. Choi, and J. Lee. Successive log quantization for cost-efficient
neural networks using stochastic computing. In 2019 56th ACM/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2019.

[62] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

142

[63] Y. Li, X. Zhang, and D. Chen. Csrnet: Dilated convolutional neural networks for
understanding the highly congested scenes. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1091–1100, 2018.

[64] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[65] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio. Neural networks with
few multiplications. arXiv preprint arXiv:1510.03009, 2015.

[66] Y. Liu, J. Pan, and M. Ng. Tucker decomposition network: Expressive power
and comparison.

[67] Z. Liu, W. Luo, B. Wu, X. Yang, W. Liu, and K.-T. Cheng. Bi-real net: Bina-
rizing deep network towards real-network performance. International Journal of
Computer Vision, 128(1):202–219, 2020.

[68] Z. Liu, Z. Shen, M. Savvides, and K.-T. Cheng. Reactnet: Towards precise
binary neural network with generalized activation functions. arXiv preprint
arXiv:2003.03488, 2020.

[69] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng. Bi-real net: En-
hancing the performance of 1-bit cnns with improved representational capability
and advanced training algorithm. In Proceedings of the European conference on
computer vision (ECCV), pages 722–737, 2018.

[70] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep
neural network compression. In Proceedings of the IEEE international conference
on computer vision, pages 5058–5066, 2017.

[71] G. Maguolo, L. Nanni, and S. Ghidoni. Ensemble of convolutional neural net-
works trained with different activation functions. Expert Systems with Applica-
tions, 166:114048, 2021.

[72] B. Martinez, J. Yang, A. Bulat, and G. Tzimiropoulos. Training binary neu-
ral networks with real-to-binary convolutions. arXiv preprint arXiv:2003.11535,
2020.

[73] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
5191–5198, 2020.

[74] D. Miyashita, E. H. Lee, and B. Murmann. Convolutional neural networks using
logarithmic data representation. arXiv preprint arXiv:1603.01025, 2016.

[75] S.-E. Moon, S. Jang, and J.-S. Lee. Convolutional neural network approach for
eeg-based emotion recognition using brain connectivity and its spatial informa-
tion. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2556–2560. IEEE, 2018.

143

[76] R. Müller, S. Kornblith, and G. Hinton. When does label smoothing help? arXiv
preprint arXiv:1906.02629, 2019.

[77] S. Nakajima, M. Sugiyama, and R. Tomioka. Global analytic solution for varia-
tional bayesian matrix factorization. Advances in Neural Information Processing
Systems, 23:1768–1776, 2010.

[78] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov. Tensorizing neural
networks. arXiv preprint arXiv:1509.06569, 2015.

[79] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Com-
puting, 33(5):2295–2317, 2011.

[80] Y. Pan, M. Wang, and Z. Xu. Tednet: A pytorch toolkit for tensor decomposition
networks. arXiv preprint arXiv:2104.05018, 2021.

[81] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[82] H. Phan, Y. He, M. Savvides, Z. Shen, et al. Mobinet: A mobile binary network
for image classification. In The IEEE Winter Conference on Applications of
Computer Vision, pages 3453–3462, 2020.

[83] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. Exponential
expressivity in deep neural networks through transient chaos. Advances in neural
information processing systems, 29:3360–3368, 2016.

[84] J. Posner, J. A. Russell, and B. S. Peterson. The circumplex model of affect:
An integrative approach to affective neuroscience, cognitive development, and
psychopathology. Development and psychopathology, 17(3):715, 2005.

[85] R. Qiao, C. Qing, T. Zhang, X. Xing, and X. Xu. A novel deep-learning based
framework for multi-subject emotion recognition. In 2017 4th International Con-
ference on Information, Cybernetics and Computational Social Systems (ICCSS),
pages 181–185. IEEE, 2017.

[86] R. A. Ramadan, S. Refat, M. A. Elshahed, and R. A. Ali. Basics of brain
computer interface. In Brain-Computer Interfaces, pages 31–50. Springer, 2015.

[87] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016.

[88] B. Reuderink, C. Mühl, and M. Poel. Valence, arousal and dominance in the eeg
during game play. International journal of autonomous and adaptive communi-
cations systems, 6(1):45–62, 2013.

144

[89] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio.
Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[90] Sagartesla. flops-cnn. https://github.com/sagartesla/flops-cnn, 2020. Ac-
cessed: 2020-06-03.

[91] E. S. Salama, R. A. El-Khoribi, M. E. Shoman, and M. A. W. Shalaby. Eeg-
based emotion recognition using 3d convolutional neural networks. Int. J. Adv.
Comput. Sci. Appl, 9(8):329–337, 2018.

[92] A. Samara, M. L. R. Menezes, and L. Galway. Feature extraction for emotion
recognition and modelling using neurophysiological data. In 2016 15th inter-
national conference on ubiquitous computing and communications and 2016 in-
ternational symposium on cyberspace and security (IUCC-CSS), pages 138–144.
IEEE, 2016.

[93] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[94] S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep information
propagation. arXiv preprint arXiv:1611.01232, 2016.

[95] U. Shabbir, J. Sang, M. S. Alam, J. Tan, and X. Xia. Comparative study on
crowd counting with deep learning. In Pattern Recognition and Tracking XXXI,
volume 11400, page 114000X. International Society for Optics and Photonics,
2020.

[96] H. Sim and J. Lee. Log-quantized stochastic computing for memory and compu-
tation efficient dnns. In Proceedings of the 24th Asia and South Pacific Design
Automation Conference, pages 280–285, 2019.

[97] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[98] J. Sirignano and K. Spiliopoulos. Mean field analysis of deep neural networks.
Mathematics of Operations Research, 2021.

[99] R. S. Srinivasamurthy. Understanding 1d convolutional neural networks using
multiclass time-varying signals. 2018.

[100] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

[101] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
1–9, 2015.

145

https://github.com/sagartesla/flops-cnn

[102] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–
6114. PMLR, 2019.

[103] G. K. Verma and U. S. Tiwary. Multimodal fusion framework: A multiresolution
approach for emotion classification and recognition from physiological signals.
NeuroImage, 102:162–172, 2014.

[104] S. Vogel, C. Schorn, A. Guntoro, and G. Ascheid. Efficient stochastic inference
of bitwise deep neural networks. arXiv preprint arXiv:1611.06539, 2016.

[105] Y. Wang, Z. Huang, B. McCane, and P. Neo. Emotionet: A 3-d convolutional
neural network for eeg-based emotion recognition. In 2018 International Joint
Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2018.

[106] B. Weiner. Attribution, emotion, and action. 1986.

[107] S. Wu, G. Li, F. Chen, and L. Shi. Training and inference with integers in deep
neural networks. arXiv preprint arXiv:1802.04680, 2018.

[108] Y.-X. Xu. Ensemble pytorch. http:https://github.com/xuyxu/

Ensemble-Pytorch, 2020. Accessed: 2021-05-03.

[109] M. Yanagimoto and C. Sugimoto. Recognition of persisting emotional valence
from eeg using convolutional neural networks. In 2016 IEEE 9th International
Workshop on Computational Intelligence and Applications (IWCIA), pages 27–
32. IEEE, 2016.

[110] G. Yang, J. Pennington, V. Rao, J. Sohl-Dickstein, and S. S. Schoenholz. A mean
field theory of batch normalization. arXiv preprint arXiv:1902.08129, 2019.

[111] G. Yang and S. S. Schoenholz. Mean field residual networks: On the edge of
chaos. arXiv preprint arXiv:1712.08969, 2017.

[112] H. Yang, J. Han, and K. Min. A multi-column cnn model for emotion recognition
from eeg signals. Sensors, 19(21):4736, 2019.

[113] C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep
convolutional neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 833–841, 2015.

[114] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Single-image crowd count-
ing via multi-column convolutional neural network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 589–597, 2016.

[115] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki. Tensor ring decomposition.
arXiv preprint arXiv:1606.05535, 2016.

146

http:https://github.com/xuyxu/Ensemble-Pytorch
http:https://github.com/xuyxu/Ensemble-Pytorch

[116] Y. Zhao, J. Yang, J. Lin, D. Yu, and X. Cao. A 3d convolutional neural net-
work for emotion recognition based on eeg signals. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–6. IEEE, 2020.

[117] W.-L. Zheng, H.-T. Guo, and B.-L. Lu. Revealing critical channels and fre-
quency bands for emotion recognition from eeg with deep belief network. In
2015 7th International IEEE/EMBS Conference on Neural Engineering (NER),
pages 154–157. IEEE, 2015.

[118] S. Zhu, X. Dong, and H. Su. Binary ensemble neural network: More bits per
network or more networks per bit? In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4923–4932, 2019.

[119] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architec-
tures for scalable image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710, 2018.

147

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Cloud Computing
	Edge Computing
	Edge AI Applications

	Machine learning vs. Deep learning
	Deep Learning at the Edge
	Dissertation Contribution
	Dissertation Organization

	Background
	Convolutional Neural Networks
	Optimization
	Model Training
	Model Inference
	Models
	LeNet-5
	Network in Network
	AlexNet
	VGG-16
	ResNet
	GoogLeNet

	Datasets
	MNIST
	CIFAR-10 and CIFAR-100
	ImageNet

	Related Works
	Algorithmic Methods
	Pruning
	Quantization
	Tensor Decomposition
	Network Distillation
	Network Architecture Search

	Filter Pruning and Tensor Train Decomposition
	Filter Pruning
	Tensor Train Decomposition
	Experiment and Results
	VGG-16
	AlexNet
	LeNet-5

	Conclusion

	Ultimate Compression: A Joint Method of Binary Neural Networks and Tensor Decomposition
	Tensor Decomposition
	CP Decomposition
	Tucker Decomposition
	Tensor Train Decomposition
	Layer Sensitivity and Rank

	Binary Neural Networks
	Tenosrized quantized models

	Experiment Results
	Discussion and Analysis Studies

	A Storage-Efficient Ensemble Classification Using Filter Sharing on Binarized Convolutional Neural Networks
	Introduction
	Ensemble Learning
	Ensemble Methods
	Binary Neural Network
	Ensemble BNNs

	Proposed Method
	Motivations
	Proposed Ensemble-Based System Using BNNs

	Hardware Analysis
	Storage Resource Requirements
	Computational Resource and Power Consumption

	Experimental Results and Analysis
	Binarized ResNets on CIFAR Datasets
	Ensembles with Binarized ResNet
	Comparison of Different Configurations of Weight Sharing
	Ensembles with Bi-Real-Net and ReActNet on CIFAR Datasets

	Conclusion

	A Scalable CNN-Based Inference System Using Multiple Logarithmic Stochastic Rounding
	Introduction
	Background
	Proposed Design
	Proposed Logarithmic Stochastic Rounding
	Proposed Design

	Experimental Results and Analysis
	Conclusion

	High Rank Tensor Train For Binary Neural Network
	Tensor Train Ranks
	Xnor-Net
	Our Proposed Method
	Results and Experiments
	Discussion and Conclusions

	Crowd Counting Application
	Background
	Models and Datasets
	Models
	Dataset

	Experiment and Results
	Conclusion

	A Two-Stage Efficient 3D CNN Framework for EEG-Based Emotion Recognition
	Introduction
	Related Works
	EEG Signals
	Emotions Detection

	Proposed Method
	Efficient 3-D CNN Models with Inverted Residual Block
	Model Binarization

	Experiment and Results Analysis
	DEAP Dataset
	Data Preprocessing and 3D Representation
	Training Setting
	Results of Baseline Models
	Result of Binarized Models

	Conclusion

	Conclusion and Discussion
	Bibliography

