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ABSTRACT: G protein-coupled receptors (GPCRs) are the largest family of
membrane receptors and targets for approved drugs. The analysis of GPCR
expression is, thus, important for drug discovery and typically involves messenger
RNA (mRNA)-based methods. We compared transcriptomic complementary DNA
(cDNA) (Affymetrix) microarrays, RNA sequencing (RNA-seq), and quantitative
polymerase chain reaction (qPCR)-based TaqMan arrays for their ability to detect
and quantify expression of endoGPCRs (nonchemosensory GPCRs with
endogenous agonists). In human pancreatic cancer-associated fibroblasts, RNA-
seq and TaqMan arrays yielded closely correlated values for GPCR number (∼100)
and expression levels, as validated by independent qPCR. By contrast, the
microarrays failed to identify ∼30 such GPCRs and generated data poorly
correlated with results from those methods. RNA-seq and TaqMan arrays also
yielded comparable results for GPCRs in human cardiac fibroblasts, pancreatic
stellate cells, cancer cell lines, and pulmonary arterial smooth muscle cells. The magnitude of mRNA expression for several Gq/
11-coupled GPCRs predicted cytosolic calcium increase and cell migration by cognate agonists. RNA-seq also revealed splice
variants for endoGPCRs. Thus, RNA-seq and qPCR-based arrays are much better suited than transcriptomic cDNA microarrays
for assessing GPCR expression and can yield results predictive of functional responses, findings that have implications for GPCR
biology and drug discovery.

■ INTRODUCTION

G protein-coupled receptors (GPCRs), a family of >800
membrane proteins in humans, respond to a wide range of
peptides, proteins, lipids, metabolites, etc. and regulate a broad
range of cellular processes including proliferation, metabolism,
and protein synthesis. There are ∼360 GPCRs that are
activated by endogenous agonists, i.e., endoGPCRs other than
visual, taste, and olfactory receptors. EndoGPCRs are targets
for a large fraction (∼35%) of approved drugs.1 The detection
of GPCRs in cells and tissues is, thus, valuable for identifying
GPCRs and defining their roles in cell physiology and
pathophysiology as well as for identifying opportunities for
drug discovery.
The detection of GPCRs by protein-based methods is

challenging. Due to their low expression, GPCRs are difficult
to assay by current proteomic methods, plus the paucity of
well-validated antibodies for many GPCRs makes it problem-
atic to detect them by immunological techniques. As a
consequence, the detection of GPCRs, especially in efforts to
profile their expression in cells and tissues, relies on assays of
messenger RNA (mRNA) expression. Multiple methods can
assess mRNA expression but their utility for defining GPCR
expression has not been assessed. We, thus, sought to evaluate
GPCR expression by parallel analysis of RNA samples from a
single-cell-type: human pancreatic cancer-associated fibroblasts

(CAFs) tested with three different techniques: TaqMan arrays,
RNA sequencing (RNA-seq), and transcriptomic complemen-
tary DNA (cDNA) [e.g., Affymetrix (Affy)] arrays. Due to the
low expression of most GPCRs, even at the mRNA level, such
a comparison is important for evaluating data in public
databases (e.g., CCLE2) that were generated using tran-
scriptomic (Affymetrix) arrays. Because of the limited dynamic
range of such arrays, it is unclear if that approach reveals
accurate data regarding GPCRs. We show here that Affymetrix
arrays detect fewer GPCRs than either TaqMan arrays or
RNA-seq but that results from the latter two methods agree
closely in terms of identity and magnitude of GPCR
expression. We also provide independent quantitative polymer-
ase chain reaction (qPCR) validation of GPCR expression data
from TaqMan arrays and RNA-seq and evidence for the
predictive value of data from the latter techniques in terms of
signaling and physiological response of Gq/11-coupled
GPCRs.
Here, we assess GPCR expression data for the following

human cells and tissues: (1) pancreatic CAFs (using
Affymetrix HG U133plus2.0 arrays, TaqMan arrays, and
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RNA-seq); (2) cardiac fibroblasts (CFs), pulmonary arterial
smooth muscle cells (PASMCs), and pancreatic stellate cells
(PSCs) (using TaqMan arrays and RNA-seq); (3) AsPC-1
pancreatic cancer cell line (from CCLE, via Affymetrix HG
U133plus2.0 plus RNA-seq and via TaqMan arrays in our
laboratory); (4) MDA-MB-231 breast cancer cell line (from
CCLE via Affymetrix HG U133plus2.0 and RNA-seq); (5)
ovarian cancer (OV) tissue and lung squamous cell carcinoma
(LUSC) tissue (from TCGA, via Affymetrix HG U133a and
RNA-seq). This large number of sample types (also listed in
Table S1), with data collected from different sources,
facilitated a robust comparison of GPCR detection and
revealed prominent differences in data generated by the
different methods. These findings provide insights regarding
GPCR expression by various cell types, a rationale for the
interpretation of mined data regarding GPCR expression, and
evidence for the utility of mRNA expression data in predicting
the functional activity of one class of GPCRs (Gq/11-coupled
GPCRs). Together such information should aid studies of
GPCR biology and drug discovery.

■ METHODS
Cell Culture and RNA Isolation. CAFs were isolated from

primary human PDAC tumors via explant and were grown, as
described previously.3 At low passage (<5), CAFs were plated
in 10 cm plates and grown in 5% CO2 at 37 °C. Cells were
lysed and RNA was isolated using a Qiagen RNeasy kit (Cat #
74104, Qiagen, Hilden, Germany), with on-column DNase-1
digestion (79254, Qiagen). Purified RNA had 260/280 ratios
∼2 (via Nanodrop 2000c, ThermoFischer Scientific, Waltham,
MA) and RNA integrity number scores >9 (via Bioanalyzer,
Agilent Technologies, Santa Clara, CA). Human fetal cardiac
fibroblasts (CFs) were obtained from Cell Biologics, Cat #
H6049 (Chicago, IL) and grown in 10% CO2 at 37 °C, in low-
glucose Dulbecco’s modified Eagle’s medium (DMEM) (Cat #
D60646 Gibco, Dublin, Ireland) with 2% fetal bovine serum
(FBS) (Cat # FB-02, Omega Scientific Inc., Tarzana, CA), 5
μg/L of FGF2 (Cat # 130093838, Miltenyi Biotec, San Diego,
CA), 5 mg/L of insulin (Cat # SC360248, Santa Cruz
Biotechnology, Dallas, TX), 1 mg/L of hydrocortisone
hemisuccinate (Cat # 07904, Stemcell Technologies Inc.,
Cambridge, MA), and 50 mg/L of ascorbic acid (Cat #
A454425G, Sigma-Aldrich, St. Louis, MO). Pulmonary arterial
smooth muscle cells (PASMCs) were obtained from Lonza
(Cat # CC-2581, Walkersville, MD) and were cultured in 5%
CO2 at 37 °C in low-glucose DMEM with 5% FBS, epidermal
growth factor (5 ng/mL), FGF2 (5 ng/mL, Cat # 130093837,
Miltenyi Biotec), insulin (same as above), and ascorbic acid
(50 μg/mL). Pancreatic stellate cells (PSCs) were purchased
from ScienCell Research Laboratories (Cat # 3830; ScienCell
Research Laboratories, Carlsbad, CA) and cultured according
to the manufacturers’ instructions.
qPCR. RNAs were converted to cDNA via the Superscript

III kit (Cat # 18080050, Thermo Fisher Scientific, Waltham,
MA). cDNA was then mixed with gene-specific primers (2
μM) and Perfecta SYBR green SuperMix reagent (Cat #
MP9505402K, VWR, Radnor, PA) for PCR amplification using
a DNA Engine Opticon 2 system (MJ Research, St. Bruno,
QC, Canada). Primers were designed using the Primer3Plus
software. The primer sequences are listed in Table S3.
RNA-seq. RNA sequencing was performed by DNAlink Inc.

(San Diego, CA for CAF samples) or the UCSD IGM core
(for CF and PASMC samples), using TruSeq (Illumina, San

Diego, CA) stranded mRNA library preparation, with
sequencing on a Nextera 500 (for CAF samples) or a HiSeq
4000 (CF and PASMC samples) at 50 (CFs and PASMCs) or
75 (CAFs) base-pair single reads. Data were analyzed via
Kallisto v0.43.14 using the Ensembl GRCh38 v79 reference
transcriptome, with 100 bootstraps, to obtain transcript-level
expression in transcripts per million (TPM). Kallisto boot-
straps were read in R via Sleuth;5 GPCR data for each
bootstrap were evaluated as described below to quantify the
uncertainty of GPCR expression quantification. Gene-level
expression in TPM was calculated using Tximport.6 For the
comparison of expression ratios of gene expression between
samples, gene-level estimated counts data from tximport were
input into edgeR,7 to obtain normalized gene expression in
counts per million (CPM). RNA-seq raw data are available at
National Center for Biotechnology Information Gene Ex-
pression Omnibus (NCBI GEO), at accession numbers
GSE101665 and GSE125049.

TaqMan Arrays. cDNA was diluted with double-distilled
H2O and mixed with TaqMan Universal PCR Master Mix (Cat
# 4304437, Life Technologies, Waltham, MA) to a final
concentration of 1 mg/mL and assayed for GPCR expression
using TaqMan GPCR arrays (Cat # 4367785; Life
Technologies) by a 7900HT fast real-time system (Thermo
Fisher Scientific). Data were analyzed with the RQ Manager
software (Life Technologies). Gene expression was normalized
to that of 18 S ribosomal RNA as ΔCt; the results were
consistent if normalized to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) or other housekeeping genes;8

based on previous studies, we set the TaqMan GPCR array
detection threshold to a ΔCt value (relative to 18 S) ≤25.3,8,9

Affymetrix Arrays. RNA samples were submitted to the
Technology Center for Genomics & Bioinformatics at UCLA
for analysis via Affymetrix HG U133plus2.0 arrays. Data as cel
files were analyzed by both the MAS5 and RMA methods to
quantify gene expression. The analysis was performed via the R
“affy” package10 to yield intensity estimates for each probe set,
along with detection p-values and present/absent calls (for the
MAS5 method). For a GPCR to be considered “detected” in
Results section, the Mas5 call was required to indicate present
(“P”) for at least one probe set for a given gene. In the event
that multiple different probe sets for the same GPCR indicated
a P call (with corresponding p-values <0.05), we used the
expression from the probe set indicating the highest MAS5
expression intensity, which yielded expression-ratio estimates
between replicates consistent with RNA-seq and qPCR, as
detailed further in Results section. In general, log 2 Mas5
intensities >5 correspond to “present” calls (see Figure 6 and
accompanying text on the dynamic range for further details).
Affymetrix data are available at NCBI GEO, at the accession
number GSE124945.

Data Mining. TCGA data for ovarian cancer (OV) and
lung squamous cell carcinoma (LUSC) assayed by RNA-seq
were downloaded from xena.ucsc.edu, as estimated gene
counts and TPMs for each gene in each TCGA sample,
analyzed via the TOIL pipeline.11 TCGA data for OV and
LUSC, assayed by Affymetrix HG U133a arrays, were obtained
from GEO (accession numbers GSE68661 and GSE68793 for
OV and LUSC, respectively) and were analyzed in R, using the
methods described above for Affymetrix arrays. For the
computation of expression ratios between samples, estimated
counts from the TOIL pipeline were input into edgeR, to
obtain normalized gene expression in CPMs, allowing for the
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comparison of expression ratios for genes between pairs of
samples. RNA-seq data from the CCLE2 for cell lines were
downloaded as gene expression in TPMs from the EBI
expression atlas,12 from data provided on that portal, analyzed
via the iRAP pipeline.13

Cellular Calcium Assays. Intracellular calcium concen-
tration of AsPC-1 cells was measured using the FLIPR-4
calcium assay reagent (Cat # R8142, Molecular Devices, San
Jose, CA). In brief, cells were plated in black-walled clear-
bottom 96-well plates overnight at ∼80% confluency using
media and conditions described in Methods. Culture media
was then removed and cells were incubated for 1 h at 37 °C,
5% CO2 in FLIPR-4 loading buffer, consisting of FLIPR-4
reagent diluted (as per the manufacturer’s instructions) in
Hank’s balanced salt solution (HBSS) (with calcium and
magnesium) buffered with 20 mM N-(2-hydroxyethyl)-
piperazine-N′-ethanesulfonic acid and 0.2% bovine serum
albumin, with pH adjusted to 7.4. Loading buffer also
contained probenecid (2.50 mM, Sigma-Aldrich, Cat #
P8761) to prevent leakage of the calcium reagent from the
cells. Calcium response was then measured via a FlexStation 3
Multi-Mode Microplate Reader (Molecular Devices). GPCR
agonists were added, and response in relative fluorescence
units was measured over 105 s for each well, yielding data for
peak response and kinetics of response. For calcium assays and
wound-healing assays, we used the following GPCR agonists:
Neurotensin (Cat # 1909, Tocris, Minneapolis, MN); 2-Thio-
UTP (Cat # 3280, Tocris); histamine (Cat # AAJ6172703,
Fischer Scientific); oxytocin (Cat # 1910, Tocris); and
sulprostone (Cat # 14765, Cayman Chemical).
Migration/Wound-Healing Assays. Rate of migration of

AsPC-1 cells was estimated using a scratch-wound assay. Cells
were plated in 24-well plates and grown to approximate
confluency. A scratch was made in each well using a 200 μL
pipette tip, culture media was replaced to remove floating cells,
and the scratches were imaged using a BZ-X700 microscope.
Cells were then incubated with GPCR agonists at concen-
trations described in the following sections and were returned
to a 37 °C, 5% CO2 incubator. After 24 h, the same scratches
were imaged once again. The area of scratches at the 0 and 24
h time points was then calculated via standard protocols in
ImageJ v1.52a to evaluate wound closure. Migration data were
analyzed for statistical significance using the Prism Graphpad

(GraphPad Software, San Diego, CA) via one-way analysis of
variance (ANOVA) with Tukey multiple comparison testing.

■ RESULTS

Comparison of GPCR Expression Data for Pancreatic
CAFs. Table S2 (top) shows the number of GPCRs each
method can detect, based on limitations of the number of
primers (TaqMan arrays) or probes (Affymetrix arrays). Both
methods should allow the detection of a similar number of
endoGPCRs. TaqMan arrays are not designed to detect
chemosensory GPCRs, and Affymetrix arrays also have
relatively few probe sets for chemosensory GPCRs. Figure 1
and Table S2 (bottom) show that the number of endoGPCRs
in pancreatic CAFs detected by RNA-seq and TaqMan arrays
is greater than is detected by Affymetrix arrays. The threshold
of detection used for determining whether a GPCR was
detected in RNA-seq data was set to 0.2 TPM, based on the
analysis discussed in Figure S1 and accompanying text.
Detection thresholds for TaqMan arrays and Affymetrix arrays
are discussed in Methods section.
RNA-seq identified the greatest number of GPCRs, likely

because this method is not limited by a fixed number of
probes/primers. RNA-seq and Affymetrix HG U133plus2.0
arrays both detect a small number of chemosensory GPCRs;
their level of expression was typically just above the detection
thresholds defined above and in Methods section. Both RNA-
seq and TaqMan arrays identified in common most of the
detected GPCRs. Virtually all highly expressed GPCR
identified by either TaqMan arrays or RNA-seq were
commonly detected by both, whereas Affymetrix arrays
detected fewer GPCRs in common (Figure 1a−c). GPCRs
uniquely identified by each method were typically expressed at
very low levels, i.e., near detection thresholds. Eight
endoGPCRs were detected by RNA-seq but not by TaqMan
arrays due to the absence of corresponding primers on the
TaqMan arrays.
The overall agreement between TaqMan arrays and RNA-

seq is further illustrated in Figure 1d−f: the 21 GPCRs
detected by TaqMan arrays but that were below thresholds for
the detection by RNA-seq were all expressed at >22 cycles
above 18 S (i.e., >∼33 qPCR cycles), implying low expression
levels of these receptors by either method (Figure 1d). Thus,

Figure 1. Detection of GPCRs by RNA-seq, TaqMan GPCR arrays, and Affymetrix (Affy) arrays. (a−c) GPCRs for which the relevant primer
probes are present by each method. Representative data are shown for an individual CAF replicate as an example; similar numbers were detected by
all three methods in a second replicate. (d) Differences in GPCR expression between RNA-seq and TaqMan arrays. (e) False-positive detection of
GPCRs from Affymetrix HG U133plus2.0 arrays; these GPCRs were detected by neither RNA-seq (plotted above) nor TaqMan arrays (not
shown). (f) False negatives from Affymetrix arrays that we detected by the other methods; expression is plotted for such GPCRs identified by RNA-
seq.
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all highly expressed GPCRs identified by TaqMan arrays are
also detected by RNA-seq. We found a small number of

apparent false positives from Affymetrix data, i.e., GPCRs not
detectable by either TaqMan arrays or RNA-seq (Figure 1e)

Figure 2. Comparison of GPCR expression levels by RNA-seq, TaqMan GPCR arrays, and Affymetrix (Affy) arrays with independent qPCR and
comparisons of expression changes. (a) Data from RNA-seq compared to that of TaqMan arrays; (b) data from Affymetrix HG U133plus2.0 arrays
compared to that of TaqMan arrays. Representative data are shown for an individual CAF sample. (c) Validation of TaqMan GPCR array data by
qPCR, for N = 5 CAF samples; the data shown are mean and standard error of the mean (SEM) of ΔCt vs 18 S rRNA. (d, e) Correlation between
expression ratios of GPCRs in two CAF samples (CAF2 and CAF3) evaluated by (d) RNA-seq and TaqMan arrays and (e) Affymetrix HG
U133plus2.0 and TaqMan arrays. (f, g) Number of GPCRs in two CAF samples as detected by (f) TaqMan arrays and (g) Affymetrix HG
U133plus2.0 arrays.

Figure 3. GPCR expression in other cell types. (a−c) Number of GPCRs detectable by RNA-seq and TaqMan arrays in individual human lines of
(a) primary fetal cardiac fibroblasts, (b) PSCs, and (c) PASMCs. (d−f) The number of GPCRs expressed by the AsPC-1 pancreatic ductal
adenocarcinoma cell line (determined by Affymetrix HG U133plus2.0 arrays; CCLE), TaqMan GPCR arrays (Insel Lab), and RNA-seq (CCLE
and EBI). (g, h) GPCR expression of MDA-MB-231 breast cancer cells (determined by Affymetrix HG U133plus2.0 arrays and RNA-seq; CCLE).
(g) Correlation in the GPCR detection by the two methods for the 62 commonly detected GPCRs. (h) The number of commonly or uniquely
identified GPCRs using RNA-seq or Affymetrix HG U133plus2.0 arrays. (i) For CCLE data, expression in AsPC-1 cells of five Gq-coupled GPCRs
tested for functional effects in Figure 7, linearized (for Mas5 data) and normalized to the expression of NTSR1, the highest expressed of these
receptors as per RNA-seq data.
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and numerous false negatives from Affymetrix data (GPCRs
detected by RNA-seq and/or TaqMan arrays) (Figure 1f). The
apparent false positives in the Affymetrix data were relatively
low-expressed (Log 2 MAS5 intensity <7). TaqMan arrays and
RNA-seq show a relatively high correlation (R2 > 0.8) in the
magnitude of GPCR expression (Figure 2a) but data from
Affymetrix arrays correlate poorly (R2 < 0.4) with results from
TaqMan arrays (Figure 2b) and RNA-seq (shown for various
cells/tissues in subsequent sections).
Independent qPCR using SYBR green and primers designed

in our lab was used to validate GPCR expression measured by
the three methods. Figure 2c shows the average expression of
10 GPCRs in CAFs derived from five different patients,
assayed via independent qPCR and the correspondence of
these data with TaqMan array data. We found a high degree of
correspondence with results from TaqMan arrays and qPCR
(R2 ∼ 0.8) and between results from RNA-seq and qPCR (R2

∼ 0.8, not plotted) but not from Affymetrix arrays and qPCR
(R2 < 0.5, not plotted).
Although Affymetrix HG U133plus2.0 arrays did not provide

gene abundance estimates comparable with either RNA-seq or
qPCR-based arrays, if one estimates expression ratios among
biological replicates (an indication of how much a gene’s
expression differs among samples), results for all three
methods are in close agreement. Figure 2d,e shows this for
∼40 GPCRs commonly detected in two CAF samples by all

three methods: expression differences among samples are
nearly equal for the three methods.
Are these methods equally useful for evaluating changes in

expression between samples? Figure 2f,g shows the overlap of
detected GPCRs for two biological replicates (CAF2 and
CAF3) assessed by TaqMan arrays (RNA-seq performs nearly
identically3) and Affymetrix HG U133plus2.0 arrays. A smaller
proportion of detected GPCRs was observed for n replicates
tested by the Affymetrix arrays. Fewer GPCRs are consistently
detectable by Affymetrix HG U133plus2.0 arrays; the
estimation of changes in GPCR expression is, thus, less
feasible than with the other methods. However, for GPCRs
that one can consistently quantify by Affymetrix arrays,
estimates of differences in their expression are consistent
with those of the other two methods. Figure 6 (and
accompanying text) shows quantitative analysis for the
dynamic range of detection of GPCRs by each method, from
data in CAFs. Affymetrix arrays have a narrower dynamic range
than TaqMan arrays or RNA-seq, which both show very similar
behavior. In addition, the correlation for all genes, in general,
between RNA-seq and Affymetrix arrays appears poor.

Comparison of GPCR Expression Estimates in Other
Cell Types. We obtained a similarly high degree of
correspondence between TaqMan array and RNA-seq data in
other cell types. Figure 3a−c shows the detection of GPCRs by
TaqMan arrays and RNA-seq in human cardiac fibroblasts,

Figure 4. Comparison of GPCR expression data in TCGA samples generated by Affymetrix arrays and RNA-seq. (a, b) The correlation of
expression of commonly detected GPCRs and (c, d) Venn diagrams showing the overlap in GPCR expression of randomly selected tumor samples
assessed by Affymetrix HG U133a arrays or RNA-seq of ovarian cancer (OV; TCGA24-1418-01) and LUSC (TCGA-37-4141-01) tumor samples
in TCGA. (e) The correlation of expression ratios and (f) Venn diagrams of GPCRs detected by RNA-seq or Affymetrix HG U133a array for a
randomly selected pair of TCGA OV samples.
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pancreatic stellate cells (PSCs), and pulmonary arterial smooth
muscle cells (PASMCs). Most GPCRs are identified by these
two methods in all three cell types. Similar to the data from
CAFs, the GPCRs commonly detected by both TaqMan arrays
and RNA-seq include all highly expressed GPCRs (e.g., those
expressed >10 TPM). Thus, GPCR expression analysis by
TaqMan arrays and RNA-seq is consistent in a variety of
primary cell types.
To further test Affymetrix arrays with the two other

methods, we assessed the expression of GPCRs in AsPC-1
PDAC cells using TaqMan arrays and compared these data
with RNA-seq and Affymetrix HG U133plus2.0 array data for
the same GPCRs from data in CCLE.2 We found that our
TaqMan array data and the CCLE RNA-seq data showed
much better correspondence than did the CCLE Affymetrix
data to either of those methods/sources (Figure 3d−f). Thus,
GPCR expression determined by RNA-seq and TaqMan arrays
assayed at different laboratories, batches of cell lines, media,
etc. shows greater concordance than GPCR data from RNA-
seq and Affymetrix arrays, for samples prepared in the same
laboratory.
We also assessed data for another cell line (MDA-MB-231

breast cancer cells) from CCLE and the tumor tissue from
TCGA. We compared data from CCLE using Affymetrix HG
U133plus2.0 arrays and found a similarly poor correlation
between GPCR expression assayed by the Affymetrix arrays
compared to RNA-seq (Figure 3d,e). Fewer GPCRs were
detected by the Affymetrix arrays than by RNA-seq, and the
magnitudes of GPCR expression were poorly correlated (R2 =
0.58). Figure 3i shows the expression in AsPC-1 cells (from
CCLE data) of 5 Gq/11-coupled GPCRs determined by RNA-
seq and Affymetrix arrays; these GPCRs were, subsequently,
studied for their functional effects (Figure 7). RNA-seq reveals
a range of expression levels between these GPCRs, with
NTSR1 and P2RY2 very highly expressed, while the other
highlighted receptors had lower expression. By contrast, data
from Affymetrix arrays implied a similar, very high level of
expression for four of these GPCRs. Consistent with the RNA-
seq data, data from TaqMan arrays also showed that NTSR1
and P2RY2 are especially highly expressed in AsPC-1
pancreatic cancer cells (not shown), while the other receptors
had lower expression.
Comparison of GPCR Expression Estimates in the

Tumor Tissue. We next tested how well RNA-seq and the
Affymetrix arrays compare in the assessment of GPCR
expression in human tissues and in the ratios of GPCR
expression in pairs of samples. For this comparison, we used
gene expression data from The Cancer Genome Atlas (TCGA)
for lung squamous cell carcinoma (LUSC) and ovarian cancer
(OV) tumors. As we observed for cells, the two methods
compare poorly in terms of number of GPCRs detected and
magnitude of expression of individual GPCRs in the tissue
samples. Figure 4a−d shows the relationship between RNA-
seq and Affymetrix HG U133a array data from the same
tumor/donors for representative LUSC and OV samples with
poor correspondence for data by the two methods (R2 = 0.19
for LUSC and R2 = 0.26 for OV). RNA-seq identified many
more GPCRs, but even for GPCRs detected by both methods,
there was a poor correlation in the magnitudes of expression
between the methods. The HG U133a arrays are an older, less
comprehensive (i.e., a smaller number of probes) product than
the HG U133plus2.0 arrays we tested with CAF samples, but
large amounts of archived gene expression data use these or

older arrays. Such archived data should, thus, likely be avoided
for evaluating GPCR expression.
The assessment of GPCR expression between random pairs

of tumor sample replicates reveals relatively poor ability to
detect GPCR expression by Affymetrix HG U133a arrays
compared to RNA-seq (Figure 4e,f). The ratios of expression
also do not correlate between the two methods, thus providing
further evidence that data from older generations of Affymetrix
arrays are unlikely to yield accurate data regarding GPCR
expression.

Evidence for GPCR “False Negatives” in TCGA Tumor
Affymetrix Data. As noted in the examples shown for ovarian
serous carcinoma (OV) and lung squamous cell carcinoma
(LUSC) in TCGA data (Figure 4), numerous GPCRs are
detected in tumors by RNA-seq but not Affymetrix arrays. Data
in the literature document a functional role for many of these
GPCRs, thus supporting the idea that these failures to detect
GPCRs in Affymetrix data constitute false-negative results.
Examples of such GPCRs in OV include the smoothened
homologue receptor (SMO), which drives hedgehog signal-
ing.14 SMO has been implicated as a potential therapeutic
target in ovarian cancer with substantial data implying a
functional role for SMO.15−17 However, Affymetrix arrays yield
poor evidence for the detection of this gene, whereas RNA-seq
reveals substantial expression. CXCR3,18,19 CXCR6,19,20

CXCR5,19,21 and S1PR222 are additional examples of GPCRs
with demonstrated functional effects in OV tumors that are
detected by RNA-seq data but not by Affymetrix microarrays.
Similarly, in LUSC, SMO, CXCR6, CXCR3, and CXCR5 are
false negatives from Affymetrix data but are detected by RNA-
seq and are functional GPCRs23−27 in LUSC.

RNA-Seq Data Suggest That Splice Variation Occurs
among GPCRs. An additional advantage of the use of RNA-
seq to assess GPCR expression is its ability to identify
alternatively spliced transcripts, a largely unexplored aspect for
GPCRs. Approximately, 45−50% of GPCRs are intron-less,
which may explain why splice variation in GPCRs has not been
studied in detail.28,29 We found that many GPCRs, in
particular adhesion GPCRs, which have a large number of
exons, may undergo alternate splicing. Figure 5a shows the
number of GPCRs and those that express multiple splice

Figure 5. Expression of splice variants of GPCRs in CAFs: CAF3 as
an example. (a) The number of GPCRs detected with multiple
transcripts expressed at >0.2 TPM expression threshold. (b) As an
example, the expression of different transcripts for ADGRE5 (aka
CD97). (c) GPCRs with multiple transcripts detected and the
number of transcripts expressed at >0.2 TPM for each GPCR.
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variants in a human pancreatic CAF sample. Nearly, half of all
identified GPCRs appears to show alternative splicing. As an
example, ADGRE5/CD97, an adhesion GPCR, appears to
have at least five meaningfully expressed splice variants (Figure

5b). These data were obtained at moderate sequencing depth;
to more precisely identify the presence of particular splice
variants in individual samples and cell types, one requires a
greater sequencing depth (e.g., sequencing with 150 base-pair,

Figure 6. Gene expression and the dynamic range of detection by different methods. (a) Venn diagram of the detection of all protein-coding genes
by Affymetrix HG U133plus2.0 arrays and RNA-seq in pancreatic CAFs. (b) Correlation of expression values for commonly detected genes by both
the methods. (c, d) Cumulative distribution functions (CFDs) showing (c) the dynamic range of RNA-seq and Affymetrix arrays (HG
U133plus2.0) for all genes; (d) the same as (c), but for GPCRs, detected by RNA-seq, Affymetrix arrays, and TaqMan arrays.

Figure 7. Signaling and functional response to agonists for Gq-coupled GPCRs in AsPC-1 cells. (a) Maximal GPCR agonist-promoted increase in
intracellular calcium [“calcium response”, relative to 5 μM ionomycin-induced response (blue line)] for agonists of the indicated GPCRs that are
expressed at different TPM in AsPC-1 cells (as determined by RNA-seq in CCLE2). Data shown are the mean and SEM from three independent
experiments. (b) Concentration−response curves for peak calcium response by the indicated GPCR agonists compared to GPCR expression as in
panel (a). Data shown are mean and SEM, from three independent experiments. (c) Kinetics of calcium response by agonist concentrations that
yield half-maximal response and kinetics of the ionomycin positive control; data shown are representative from individual wells in a 96-well plate;
other replicates showed similar behavior. (d) Impact of treatment with GPCR agonists on the migration of AsPC-1 cells over 24 h; N ≥ 6 for each
treatment. Agonist concentrations were: oxytocin (5 μM); histamine (10 μM); 2-Thio-UTP (0.5 μM), neurotensin (0.1 μM); *: p < 0.05; **: p <
0.001; ***: p < 0.0001; significance was evaluated via one-way ANOVA with Tukey multiple comparison testing. (e) The relationship between the
increased rate of migration and GPCR expression [as in panel (a)]. (f) The relationship between maximal calcium response promoted by the
GPCR agonist concentrations indicated in (d) and the increase in the rate of migration of AsPC-1 cells.
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paired-end reads). Subsequent studies would then be needed
to define the biological activity of such variants. Of the three
methods used here, only RNA-seq can define alternative
splicing of GPCRs and with bioinformatics tools (such as
Kallisto4) can quantify transcript levels. Figure 5c shows the
number of detected variants for each GPCR where we noted
evidence for splice variation.
Comparison of the Dynamic Range between Meth-

ods. To determine how the detection of GPCRs compares
with that of the expression of all protein-coding genes, we
compared the dynamic range of detection for those genes by
Affymetrix HG U133plus2.0 arrays and RNA-seq. For
estimating the dynamic range of detection for GPCRs, we
also included TaqMan GPCR arrays. We found (Figure 6a)
that RNA-seq detects more genes but RNA-seq and Affymetrix
arrays largely detect the expression of the same genes. The
latter finding contrasts with the results for GPCRs and likely
results from the relatively low expression of some GPCRs and
the limited ability of Affymetrix arrays to detect low abundance
transcripts. For most other genes/mRNAs, especially those
with intermediate or high expression, the two methods perform
similarly, although the magnitude of expression of commonly
detected genes does not correlate well between the two
methods (Figure 6b).
Figure 6c shows the dynamic range of detection for all

transcripts by RNA-seq and Affymetrix arrays; gene expression
was normalized to log 2 units (i.e., log 2 of TPM expression for
RNA-seq and MAS5 intensity for Affymetrix arrays). We added
a small constant to RNA-seq expression values, so that the
log 2 of the highest expression value in TPM = log 2 of the
highest expression value in MAS5 intensity. To evaluate the
dynamic range for detection by each method, we computed the
cumulative distribution function (CDF) for each set of
expression values. RNA-seq had a larger detection range
(∼50-fold) and could detect genes ranging from ∼15 to ∼0
adjusted log 2 TPM, whereas Mas5 log 2 intensities ranged
from ∼15 to ∼5. Figure 6d shows a similar trend for GPCRs
with respect to the dynamic range for RNA-seq, TaqMan
arrays, and Affymetrix arrays. GPCR expression was
normalized as log 2 units (as above) with a small normalization
factor added to TaqMan array data and RNA-seq data, so that
log 2 expression of GAPDH (in all three datasets as a
housekeeping gene) was equal and served as the first point
(from the right) on the CDF. As the highest expressed gene
that was commonly detectable across all three platforms,
GAPDH was used as the housekeeping gene for this
comparison. The range of expression levels between GAPDH
and the lowest-detectable level of GPCR expression allows us
to define and compare the dynamic range for each assay.
TaqMan arrays and RNA-seq had a similar dynamic range,
consistent with the high degree of correlation between the two
methods; the dynamic range was lower with Affymetrix arrays.
GPCR mRNA Expression Shows Concordance with

Signaling and Functional Response. To validate the
GPCR expression data, we tested whether the level of mRNA
expression can predict GPCR response with respect to
signaling and functional activities. We opted to study a set of
GPCRs which couple to Gq/11 Gα proteins, thus signaling via
increases in intracellular calcium: the neurotensin receptor
(NTSR1), the P2Y2 purinergic GPCR (P2RY2), the histamine
H1 receptor (HRH1), the oxytocin receptor (OXTR), and the
EP1 prostaglandin receptor (PTGER1), spanning a range of
expression (assayed via RNA-seq in CCLE2) from >100 TPM

(NTSR1) to 1 TPM (PTGER1) in AsPC-1 pancreatic cancer
cells (Figure 7a). All five GPCRs have well-known agonists
that act via Gq/11:14 neurotensin (NTSR1), 2-Thio-UTP
(P2RY2), histamine (HRH1), oxytocin (OXTR), and sulpro-
stone (PTGER1). Each agonist should activate the specified
receptor due to their known pharmacology and based on the
GPCRs expressed in AsPC-1 cells. For example, HRH1 is the
only HRH receptor, OXTR is the only vasopressin and
oxytocin receptor family member expressed and among targets
for sulprostone, PTGER1 is the only one expressed in AsPC-1
cells. Similarly, P2RY2 is the only purinergic GPCR expressed,
which is activated by 2-Thio-UTP.
We first tested the calcium response (i.e., the increase in

cytosolic calcium) in AsPC-1 cells for each agonist, over a
range of concentrations. Figure 7a shows the peak (“maximal”)
calcium signal recorded for each ligand [at saturating
concentrations (Figure 7b)] as a function of the magnitude
of expression of its cognate GPCR target. We observed a
sigmoidal behavior, wherein the calcium response plateaus for
highly expressed GPCRs; the maximal signal was equal to that
elicited by ionomycin, a positive control. PTGER1 did not
elicit a signal, implying that one TPM may be a threshold for
the detection of Gq/11 signaling in these cells by this method.
Figure 7b shows the concentration−response for each agonist
that increases the cytosolic calcium. The apparent EC50 values
for these ligands vary somewhat from values in the literature,
e.g., the EC50 for neurotensin signaling at NTSR1 is ∼0.3 nM,
approximately an order of magnitude lower than that reported
in the literature.14 This raises the possibility that signaling in
native cells may differ from that in model systems where such
data are typically generated. The kinetics for ionomycin and for
agonists at concentrations approximately corresponding to
half-maximal response (Figure 7c) suggest differences in the
rates of activation of the different GPCRs, although the
calcium transient is ∼60−90 s in all cases.
We next tested the ability of these agonists (excluding

sulprostone, as we obtained no evidence of calcium response
for this compound), to stimulate migration (using a wound-
healing assay) at concentrations that correspond to maximal
activation of their respective GPCRs. Figure 7d shows the
effect of agonist treatment on the rate of wound closure,
compared with vehicle-treated cells. We used cells plated
without the serum as a negative control. Higher GPCR
expression and stronger calcium response result in greater
stimulation of migration (Figure 7e,f), thus allowing us to
relate GPCR expression, signaling, and functional response.
Based on data in Figure 3i, Affymetrix data in the same cell
line, from the same source (CCLE) failed to resolve the
differences in expression between these GPCRs that were
observed via RNA-seq. As a consequence, the data from the
Affymetrix arrays did not permit accurate identification and
stratification of GPCRs based on their expression and hence
those results could not reliably predict which GPCRs were
highly enough expressed to yield a strong functional response.
Thus, data from Affymetrix arrays do not reliably identify the
GPCRs that are most highly expressed. In screening for
expression of GPCRs for subsequent drug/target discovery
studies, Affymetrix arrays should likely be avoided in favor of
other methods.

■ DISCUSSION
The comparison of three methods for high-content screening
of GPCR mRNA expression reveals that TaqMan GPCR arrays
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and RNA-seq show comparable performance, whereas
Affymetrix arrays perform at a lower level. A likely reason for
the latter result is the generally low expression of GPCRs, such
that they are outside the dynamic range for optimal detection
by arrays designed to assess the entire transcriptome. Highly
expressed GPCRs, especially ones that are well characterized,
are generally reliably detected by either TaqMan GPCR arrays
or RNA-seq. By contrast, Affymetrix arrays fail to identify large
numbers of GPCRs and show the poor correlation of
expression and estimates for changes in expression compared
to the other two methods. GPCRs, as a large family of genes,
with a large (3 orders of magnitude) range of expression
provide additional support for the accuracy and completeness,
especially of RNA-seq data, and complement other validation
studies.30 The numerous false negatives observed with
Affymetrix data are likely attributable to lower sensitivity, i.e.,
for expression thresholds <4−5 TPM in corresponding RNA-
seq data, GPCRs will frequently be undetected by Affymetrix
arrays.
The comparison of the three methods (Table 1) shows that

TaqMan arrays or RNA-seq are preferable for GPCR detection
and profiling. TaqMan arrays require minimal bioinformatic
effort and, thus, can rapidly generate data. Important
advantages of RNA-seq include: (1) the number of GPCRs
that are potentially detectable (Table S2), since gene-specific
primers or probes are not needed and (2) RNA-seq detects
non-GPCR genes (including data for post-GPCR signaling
components), yielding far more information than do TaqMan
arrays. RNA-seq, thus, has the potential to explore other
aspects of GPCR biology, such as pathways for cellular
regulation.
As a consequence of the ongoing decrease in the cost of

sequencing, the potentially lower expense to conduct RNA-seq
is another advantage of this technique. A “hidden” cost of
RNA-seq involves data analysis and storage, which can
substantially increase the expenditure for RNA-seq. RNA-seq
requires time for library preparation and sequencing as well as
bioinformatic analysis. By contrast, data analysis of qPCR-
based arrays can be done quickly. Other qPCR-based arrays are
available that may yield comparable data but at a lower cost
than TaqMan arrays, e.g., SYBR green-based arrays [e.g., Cat #
10034500 (Bio-Rad) and Cat # PAHS-071Z (Qiagen)].
A further advantage of RNA-seq is that it has become a

method of choice for many large databases and consortia (e.g.,
TCGA and GTEx31). The abundance of such publicly available
RNA-seq data facilitates data mining and yields information for
new studies, including with respect to GPCR signaling
components and how GPCRs and such components may
have altered expression profiles during physiologic perturba-
tions and in disease states. Limited public data are available for
GPCR arrays so mining of such data is less feasible.
Affymetrix array-derived data is found in sources such as

Gene Expression Omnibus (GEO) and other databases and for
many years has been used for data mining. The findings here
suggest that for GPCRs, mining of Affymetrix array data is not
advisable. Moreover, to the extent that GPCRs may be
differentially expressed in cells or tissues, such as in disease,3

the large number of false-negative results from Affymetrix
arrays may impact on other analyses, such as in pathways and
networks, in which GPCRs may be involved. The inferior
dynamic range of Affymetrix arrays is likely not limited to
GPCRs and may impact on the detection of other low-
expressed, but functionally important, genes. Thus, caution is T
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advised in the use of Affymetrix arrays and mining of
Affymetrix array data. Moreover, the evidence cited above for
OV and LUSC tumors supports our conclusion that Affymetrix
arrays yield numerous false negatives, i.e., GPCR mRNAs that
are not detected but that are functionally relevant.
The study of the “GPCRome” and individual GPCRs

identified by the methods compared here has the potential to
yield important insights regarding the regulation of cells and
tissues in health and disease. Moreover, GPCRs are targeted by
∼35% of FDA- and EMA-approved drugs1 and represent the
largest family of drug targets. Given their high druggability,
identification of GPCRs in novel contexts can aid in drug
discovery efforts.32 The current results and other data show
that cells express large numbers of (>100) GPCRs; these
include GPCRs targeted by approved drugs, orphan receptors,
and many GPCRs for which tool compounds (but not
approved drugs) may exist. Multiple studies of “GPCRomics”
combined with signaling and functional analyses have revealed
novel roles for GPCRs in numerous cell types.3,8,32−37 A
growing number of studies have also begun to reveal the extent
to which the presence of splice variants among GPCRs may
impact their functional activity.28,29 Consequences of such
alternative splicing include the presence of receptor isoforms
with altered ligand binding (primarily due to changes in the N-
terminus), altered downstream signaling (including “decoy”
receptors that bind ligands but have no functional activity),
and potential effects on receptor trafficking, internalization,
and localization within specific cellular domains. This remains
a largely understudied aspect of GPCR biology. The presence
of numerous GPCR splice variants at the mRNA level
underscores the need for further investigation.
Because mRNA expression may not necessarily predict

protein expression, we undertook functional studies of Gq-
coupled GPCRs to test the concordance of mRNA expression
with signaling/functional data. In general, for GPCRs, direct
measurement of protein expression has been challenging, due
to (a) difficulty in obtaining well-validated antibodies and (b)
the low magnitude of expression of GPCRs. Thus, indirect
methods to verify protein expression are needed. Here, we
show that GPCR mRNA expression predicts signaling and
functional response for multiple Gq/11-coupled GPCRs in a
pancreatic cancer cell line. Highly expressed GPCRs (e.g.,
NTSR1 and P2RY2), which are among the 10 most highly
expressed GPCRs overall in these cells, show very strong
agonist-induced increases in intracellular calcium response and
prominent functional response (migration), both of which
appear to saturate at high levels of GPCR expression. We are
not aware of prior such data for Gq/G11-coupled GPCRs, in
particular in native cells.
Other results that imply a concordance between mRNA

expression and functional response of prostanoid receptors in
fibroblasts37 and adrenoceptors in induced pluripotent stem
cell-derived cardiomyocytes8 support this observation in other
GPCR systems. Thus, encouraging initial data (including those
shown here) suggest that GPCR expression data can provide a
useful first step in drug/target discovery efforts, with highly
expressed GPCRs (or differentially expressed GPCRs in
disease) likely to be the favored candidates for subsequent
validation. Further studies are needed to determine the extent
to which GPCR expression predicts the intensity of down-
stream signaling events, such as protein phosphorylation,
transcriptional regulation, etc. Affymetrix arrays are not
recommended for such efforts, as they do not adequately

distinguish between high-expressed and low-expressed GPCRs
and, in addition, fail to detect many GPCRs.
The analysis of the dynamic range of the detection of

Affymetrix arrays (Figure 6) shows that the failure of these
arrays to distinguish between expression of GPCRs was not
explainable by “saturation” of these arrays, i.e., requiring
dilution of samples to better place them on a standard curve
for detection. The Affymetrix arrays were able to resolve large
differences in expression between highly expressed genes (e.g.,
GAPDH) and lower expressed genes (e.g., many GPCRs) over
a dynamic range (∼3 orders of magnitude) consistent with
previous observations.38 This result implies that the failure to
adequately resolve differences in GPCR expression is likely
attributable to (a) the flawed probe design for specific GPCR
genes and (b) the lack of sensitivity of Affymetrix arrays to
resolve small differences in expression between genes,
especially lower expressed genes, to the level of quantitative
precision obtainable by RNA-seq.
Omics data such as those presented in this study reveal the

high expression of numerous orphan GPCRs in human disease,
for which such validation studies are more challenging. Given
the apparent concordance between the magnitude of
expression and functional response of GPCRs, such data
highlight specific highly expressed orphan GPCRs as priority
candidates for further study and for attempts at deorphaniza-
tion.
The data presented here highlight aspects of GPCR biology

that merit further study. These include: (a) what is the
functional impact of alternative splicing of GPCRs? (b) the
high expression of many orphan GPCRs underscores the
importance for further deorphanization efforts; the physio-
logical role of much of the GPCRome remains unknown; (c)
given the abundance of GPCRs expressed in different cell
types, do GPCRs that are more widely/ubiquitously expressed
than others have a functional significance? (d) which
mechanisms regulate the expression of individual or groups
of GPCRs in particular cell types? We anticipate that
GPCRomic efforts, in combination with other techniques,
will help address such issues, advance understanding of GPCR
biology, and aid in efforts to develop novel therapeutics.
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■ ABBREVIATIONS

CPM, counts per million; TPM, transcripts per million; ΔCt,
Δ/difference in cycle threshold; PDAC, Pancreatic Ductal
Adenocacrinoma; FGF2, Fibroblast Growth Factor 2
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