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Sequence variants in SLC16A11 are a common risk factor for
type 2 diabetes in Mexico

The SIGMA (Slim Initiative in Genomic Medicine for the Americas) Type 2 Diabetes
Consortium

Abstract

Performing genetic studies in multiple human populations can identify disease risk alleles that are

common in one population but rare in others1, with the potential to illuminate pathophysiology,

health disparities, and the population genetic origins of disease alleles. We analyzed 9.2 million

single nucleotide polymorphisms (SNPs) in each of 8,214 Mexicans and Latin Americans: 3,848

with type 2 diabetes (T2D) and 4,366 non-diabetic controls. In addition to replicating previous

findings2–4, we identified a novel locus associated with T2D at genome-wide significance

spanning the solute carriers SLC16A11 and SLC16A13 (P=3.9×10−13; odds ratio (OR)=1.29). The

association was stronger in younger, leaner people with T2D, and replicated in independent

samples (P=1.1×10−4; OR=1.20). The risk haplotype carries four amino acid substitutions, all in

SLC16A11; it is present at ≈50% frequency in Native American samples and ≈10% in East

Asian, but rare in European and African samples. Analysis of an archaic genome sequence

indicated the risk haplotype introgressed into modern humans via admixture with Neandertals. The

SLC16A11 mRNA is expressed in liver, and V5-tagged SLC16A11 protein localizes to the

endoplasmic reticulum. Expression of SLC16A11 in heterologous cells alters lipid metabolism,

most notably causing an increase in intracellular triacylglycerol levels. Despite T2D having been

well studied by genome-wide association studies (GWAS) in other populations, analysis in

Mexican and Latin American individuals identified SLC16A11 as a novel candidate gene for T2D

with a possible role in triacylglycerol metabolism.

The Slim Initiative in Genomic Medicine for the Americas (SIGMA) Type 2 Diabetes

Consortium set out to characterize the genetic basis of T2D in Mexican and Latin American

populations, where the prevalence is roughly twice that of U.S. non-Hispanic whites5,6. This

report considers 3,848 T2D cases and 4,366 controls (Table 1) genotyped using the Illumina

OMNI 2.5 array that were unrelated to other samples, and that fall on a cline of Native

American and European ancestry7 (Extended Data Fig. 1). Association analysis included 9.2

million variants that were imputed8,9 from the 1,000 Genomes Project Phase I release10

based on 1.38 million SNPs directly genotyped at high quality with minor allele frequency

(MAF) >1%.

The association of SNP genotype with T2D was evaluated using LTSOFT11, a method that

increases power by jointly modeling case-control status with non-genetic risk factors. Our

analysis utilized body mass index (BMI) and age to construct liability scores and also
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included adjustment for sex and ancestry via principal components7. The quantile-quantile

(QQ) plot is well calibrated under the null (λGC = 1.05; Fig. 1a, red), indicating adequate

control for confounders, with substantial excess signal at P<10−4.

We first examined SNPs previously reported to be associated to risk of T2D. Two such

variants reached genome-wide significance: TCF7L2 (rs7903146; P=2.5×10−17; OR=1.41

[95% confidence interval 1.30–1.53]) and KCNQ1 (rs2237897; P=4.9×10−16; OR=0.74

[0.69–0.80]) (Extended Data Figs. 2, 3a), with effect sizes and frequencies consistent with

previous studies3,4,12. At KCNQ1, we identified a signal3 of association that shows limited

linkage disequilibrium both to rs2237897 (r2=0.056) and to rs231362 (r2=0.028) (previously

seen in Europeans), suggesting a third allele at this locus (rs139647931; after conditioning,

P=5.3×10−8; OR=0.78 [0.70–0.86]; Extended Data Fig. 3b; Supplementary Note).

More generally, of SNPs previously associated with T2D at genome-wide significance, 56

of 68 are directionally consistent with the initial report (P=3.1×10−8; Supplementary Table

1). Nonetheless, a QQ plot excluding all SNPs within 1 Mb of the 68 T2D associations

remains strikingly non-null (Fig. 1a, blue).

This excess signal of association is entirely attributable to two regions of the genome:

chromosome 11p15.5 and 17p13.1 (Fig. 1a, black). The genome-wide significant association

at 11p15.5 spans insulin, IGF2, and other genes (Extended Data Fig. 3a). The strongest

association lies in the 3′-UTR of IGF2 and the non-coding INS-IGF2 transcript

(rs11564732, P=2.6×10−8; OR=0.77 [0.70–0.84]; Supplementary Table 2). The associated

SNPs are ~700 kb from the genome-wide significant signal in KCNQ1 (above), and analysis

conditional on the two significant KCNQ1 SNPs reduced the INS-IGF2 association signal to

just below genome-wide significance (P=7.5×10−7, Extended Data Fig. 3c). Conditioning on

the two KCNQ1 SNPs and the INS-IGF2 SNP reduces the signal to background (Extended

Data Fig. 3d). Further analysis is needed to determine whether the INS-IGF2 signal is

reproducible and independent of that at KCNQ1.

The strongest novel association is at 17p13.1 spanning SLC16A11 and SLC16A13 (Fig. 1b),

both poorly characterized members of the monocarboxylic acid transporter family of solute

carriers13. The strongest signal of association includes a silent mutation as well as four

missense SNPs, all in SLC16A11 (Fig. 1d, e). These five variants are (a) in strong LD (r2 ≥

0.85 in 1,000 Genomes samples from the Americas) and co-segregate on a single haplotype,

(b) common in samples of Mexican and Latin American ancestry, and (c) show equivalent

levels of association to T2D (P=2.4×10−12 to P=3.9×10−13; OR=1.29 [1.20–1.38];

Supplementary Tables 3, 4, and 5). Analysis conditional on any of these variants leaves no

genome-wide significant signal (Fig. 1c, Extended Data Fig. 4). Computational prediction

with SIFT14 (which considers each site independently) labels one of the missense SNPs

(rs13342692, D127G) as damaging and the other three “tolerated” (Supplementary Table 6).

Individuals with T2D that carry the risk haplotype develop T2D 2.1 years earlier

(P=3.1×10−4), and at 0.9 kg/m2 lower BMI (P=5.2×10−4) than non-carriers (Extended Data

Fig. 5). The odds ratio for the risk haplotype estimated using young cases (≤ 45 years) was

higher than in older cases (OR=1.48 versus 1.11; Pheterogeneity=1.7×10−3). We tested the
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haplotype for association with related metabolic quantitative traits in the fasting state in a

subset of SIGMA participants (n=1,505–3,855). No associations surpass nominal

significance (P<0.05; Supplementary Table 7).

Given that large GWAS have been performed for T2D in samples of European and Asian

ancestry, it may seem surprising that associated variants at SLC16A11/13 were not

previously identified. Using data generated by the 1,000 Genomes Project and the current

study, we observed that the risk haplotype (henceforth referred to as “5 SNP” haplotype) is

rare or absent in samples from Europe and Africa, has intermediate frequency (≈10%) in

samples from East Asia, and up to ≈50% frequency in samples from the Americas (Fig. 1d;

Extended Data Fig. 6a). A second haplotype carrying one of the four missense SNPs

(D127G) and the synonymous variant (termed the “2 SNP” haplotype) is very common in

samples from Africa but rare elsewhere, including in the Americas (Fig. 1d). The low

frequency of the 5 SNP haplotype in Africa and Europe may explain why this association

was not found in previous studies.

We attempted to replicate this association in ~22,000 samples from a variety of ancestry

groups. A proxy for the 5 SNP haplotype of SLC16A11 showed strong association with T2D

(Preplicaton=1.1×10−4; ORreplication=1.20 [1.09–1.31]; Pcombined=5.4×10−15;

ORcombined=1.25 [1.18–1.32]; Fig. 1f; Supplementary Table 8). The association was clearly

observed in East Asian samples, a population which lacks admixture of Amerindian and

European populations and shows little genetic substructure. This result argues against

population stratification as an explanation for the finding in Latino populations.

We estimated the difference in disease prevalence attributable to a risk factor with OR=1.20

(1.09–1.31), 26% frequency in Mexican Americans (as in the SIGMA control samples), and

2% in European Americans. Approximately 20% (9.2%-29%) of the difference in

prevalence could be explained by such a risk factor (Online Methods).

Two population genetic features of the 5 SNP haplotype struck us as discordant. The

haplotype sequence is highly divergent, with an estimated time to most recent common

ancestor (TMRCA) of 799k years to a European haplotype (Supplementary Table 9 and

Supplementary Note). This long precedes the “out of Africa” bottleneck. And yet, the

haplotype is not observed in Africa and is rare throughout Europe (Fig. 1d).

This combination of age and geographic distribution could be consistent with admixture

from Neandertals into modern humans. Neither the published Neandertal genome15 nor the

Denisova genome16 contained the variants observed on the 5 SNP haplotype. However, an

unpublished genome of a Neandertal from Denisova Cave17,18 is homozygous across 5 kb

for the 5 SNP haplotype at SLC16A11, including all four missense SNPs. Over a span of 73

kb this Neandertal sequence is nearly identical to that of individuals from the 1000 Genomes

Project who are homozygous for the 5 SNP haplotype (Supplementary Note).

Two lines of evidence suggest that the 5 SNP haplotype entered modern humans through

archaic admixture. First, the Neandertal sequence is more closely related to the 5 SNP

haplotype than to random non-risk haplotypes (mean TMRCA=250k years versus 677k

years; Supplementary Tables 10 and 11, Supplementary Note), forming a clade (Extended
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Data Fig. 6b), with a coalescence time that postdates the range of estimated split times

between modern humans and Neandertals16,19. Second, the genetic length of the 73 kb

haplotype is longer than would be expected if it had undergone recombination for ~9,000

generations since the split with Neandertals (P=3.9×10−5; Supplementary Note). These two

features indicate that the 5 SNP haplotype is not only similar to the Neandertal sequence, but

was likely introduced into modern humans relatively recently through archaic admixture.

We note that while this particular Neandertal-derived haplotype is common in the Americas,

Latin Americans have the same proportion of Neandertal ancestry genome-wide as other

Eurasian populations (~2%)16.

With an absence of multiple independently segregating functional mutations in the same

gene, we lack formal genetic proof that SLC16A11 is the gene responsible for association to

T2D at 17p13.1. Nonetheless, as the associated haplotype encodes four missense SNPs in a

single gene (Supplementary Table 12), we set out to begin characterizing the function of

SLC16A11.

We examined the tissue distribution of SLC16A11 mRNA expression using Nanostring and

~55,000 curated microarray samples. In both datasets, we observed SLC16A11 expression in

liver, salivary gland, and thyroid (Extended Data Figs. 7 and 8). We used

immunofluorescence to determine the subcellular localization of V5-tagged SLC16A11

introduced into HeLa cells. SLC16A11-V5 co-localizes with the endoplasmic reticulum

membrane protein Calnexin, but shows minimal overlap with plasma membrane, Golgi

apparatus and mitochondria (Fig. 2a). Distinct patterns were seen for other SLC16 family

members, which are known to have diverse cellular functions20: SLC16A13-V5 localizes to

the Golgi apparatus and SLC16A1-V5 appears at the plasma membrane21 (Extended Data

Fig. 9, data not shown).

As SLC16 family members are solute carriers, we expressed SLC16A11 (or control

proteins) in HeLa cells (which do not express SLC16A11 at appreciable levels) and profiled

~300 polar and lipid metabolites. Expression of SLC16A11 resulted in substantial increases

in triacylglycerol (TAG) levels (P=7.6×10−12), with smaller increases in intracellular

diacylglycerols (P=7.8×10−3) and decreases in lysophosphatidylcholine (P=2.0×10−3),

cholesterol ester (P=9.8×10−4) and sphingomyelin (P=3.9×10−3) lipids (Fig. 2b, c,

Supplementary Tables 13 and 14). As TAG synthesis takes place in the endoplasmic

reticulum in the liver22, these results suggest that SLC16A11 may play a role in hepatic lipid

metabolism. We note that serum levels of specific TAGs have been prospectively associated

with future risk of T2D23 and accumulation of intracellular lipids has been implicated in

insulin resistance in human populations24,25.

In summary, GWAS in Mexican and Latin American samples identified a haplotype

containing four missense SNPs, all in SLC16A11, that is much more common in individuals

with Native American ancestry than in other populations. Each haplotype copy is associated

with a ~20% increased risk of T2D. With these properties, the haplotype would be expected

to contribute to the higher burden of T2D in Mexican and Latin American populations26.

The haplotype derives from Neandertal introgression, providing an example of Neandertal

admixture affecting physiology and disease susceptibility today. Our data suggest the

Page 4

Nature. Author manuscript; available in PMC 2014 August 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



hypothesis for future studies that SLC16A11 may influence diabetes risk through effects on

lipid metabolism in the liver. Our results also indicate that genetic mapping in understudied

populations can identify previously undiscovered aspects of disease pathophysiology1.

Methods Summary

DNA samples were prepared using strict quality control procedures and genotyped using the

Illumina HumanOmni2.5 array. Stringent sample and SNP quality (including ancestry)

filters were applied on the resulting genotypes. Following imputation8,9, SNPs were quality

filtered (MAF ≥ 1% and info score ≥ .6) and association testing was performed via

LTSOFT11 with T2D status, BMI, and age modeling liability and adjusting for sex and top 2

principal components as fixed effect covariates. P-values were corrected for genomic control

(λGC=1.046). Odds ratios (ORs) are from logistic regression in PLINK27 using BMI, age,

sex, and top 2 PCs as covariates. Proportion of Native American ancestry was estimated

using ADMIXTURE28 (K=3) run including unadmixed individuals from several

populations.

Odds ratios for young (≤45 years) and older age of onset cases were calculated using logistic

regression in each group compared to two randomly selected non-overlapping sets of

controls. Significance testing used a Z-score calculated from these ORs.

Population prevalence was modeled using OR to approximate relative risk in a log-additive

effect model29. Relative change in population prevalences is reported based on removing a

locus with relative risk of 1.20 and the indicated frequency.

Gene expression analyses were performed on data collected using Nanostring and a

compendium of publicly available Affymetrix U133 Plus 2.0 microarrays. The subcellular

localization of SLC16A11-V5 and metabolic profiling studies were performed following

expression of C-terminus, V5-tagged SLC16A11 in HeLa cells. Metabolite values were

normalized to the total metabolite signal obtained for each sample. Measurements were

obtained in replicate from each of three independent experiments, with data combined after

subtracting the mean of the log-transformed values. The Wilcox rank sum test was used to

test for differences in individual metabolite levels in cells expressing SLC16A11 compared

to controls; the Wilcoxon signed rank test was used to assess differences in lipid classes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of a novel T2D risk haplotype carrying 5 SNPs in SLC16A11
(a) QQ plot of association statistics in genome-wide scan shows calibration under the null

and enrichment in the tail for all SNPs (red), and after removing SNPs within 1 Mb of

previously published T2D associations (blue). Removal of sites within 1 Mb of 68 known

loci and two novel loci results in a null distribution (black). (b) Regional plot of association

at 17p13.1 that spans SLC16A11 and SLC16A13. (c) Analysis conditional on genotype at

rs13342232 (the top associated variant) reduces signal to far below genome-wide

significance across the surrounding region. Color indicates r2 to the most strongly associated

site; recombination rate is shown, each based on the 1,000 Genomes ASN population. (d)

Graphical depictions of SLC16A11 haplotypes constructed from the synonymous and four

missense SNPs associated to T2D, with haplotype frequencies derived from the 1,000

Genomes Project and SIGMA samples. AFR, Africa (n=185); EUR, European (n=379);

ASN, East Asian (n=286); MXL, Mexican samples from Los Angeles (n=66). Frequencies

from SIGMA samples are calculated from genotypes and represent either the entire dataset

(“All”) or only samples estimated to have ≥95% Native American ancestry (“≥95 N.A.”,

n=290; Supplementary Note). Haplotypes with population frequency <1% are not depicted.
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(e) Predicted membrane topology of human SLC16A11 generated using TMHMM 2.0 and

visualized with TeXtopo. Locations of SNPs carried by the T2D-associated haplotype are

indicated. (f) Forest plot depicting odds ratio estimates at rs75493593 from the four SIGMA

cohorts, the SIGMA pooled mega-analysis, the replication cohorts, replication-only meta-

analysis, and the overall meta-analysis (including all replication cohorts and the SIGMA

mega-analysis). Accompanying table lists ethnicity, cohort names, estimated odds ratio (OR)

and 95% confidence interval (95% CI). Replication cohorts are the Type 2 Diabetes Genetic

Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES),

Multiethnic Cohort (MEC), and Singapore Chinese Health Study (SCHS). Further details

provided in Supplementary Table 8.
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Figure 2. SLC16A11 localizes to the endoplasmic reticulum and alters lipid metabolism in HeLa
cells
(a) Localization of SLC16A11 to the endoplasmic reticulum. HeLa cells expressing C-

terminus, V5-tagged SLC16A11 were immunostained for SLC16 expression (α-V5) along

with markers for the endoplasmic reticulum (α-Calnexin), cis-Golgi apparatus (α-Golph4),

or mitochondria (MitoTracker). Imaging of each protein was optimized for clarity of

localization rather than comparison of expression level across proteins. (b) Changes in

intracellular lipid metabolites following expression of SLC16A11-V5 in HeLa cells. The

fold-change in cells expressing SLC16A11 relative to cells expressing control proteins is

plotted for individual lipid metabolites, with lipid classes indicated by point color and P-

values (of the Wilcox rank sum test) by point size. (c) Fold change plotted for both polar and

lipid metabolites, grouped according to metabolic pathway or class. Each point within a

pathway or class shows the fold-change of a single metabolite within that pathway or class.

Pathway names and statistical analyses are shown in Extended Data Fig. 10 and

Supplementary Table 14.
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Extended Data Figure 1. Principle component analysis (PCA) projection of SIGMA samples onto
principal components calculated using data from samples collected by the Human Genome
Diversity Project (HGDP)
PCA projection of SIGMA onto HGDP Yoruba, French, Karitiana and Han (Chinese)

populations (a) before ancestry quality control filters were applied, with cohort centroids as

indicated and (b) after all quality control filters were applied, with case and control centroids

as indicated. Principal components 3 and 4 (c) before filtering samples on ancestry (a small

number of samples in the MEC cohort show East Asian admixture) and (d) after all quality

control filters were applied. Additional plots as in (b) but separating (e) cases and (f)
controls.
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Extended Data Figure 2. Regional plot for signal at TCF7L2
Point color indicates r2 to the most strongly associated site (rs7903146) and recombination

rate is also shown, both based on the 1,000 Genomes ASN population.
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Extended Data Figure 3. Conditional analyses reveal multiple independent signals at INS-IGF2
and KCNQ1
Regional plots are shown for the interval spanning INS-IGF2 and KCNQ1 (a) without

conditioning, (b) conditional on rs2237897 at KCNQ1, (c) conditional on rs2237897 and

rs139647931 (both at KCNQ1), and (d) conditional on rs2237897 and rs139647931 (both at

KCNQ1) and rs11564732 (the top associated variant in the INS-IGF2-TH region). The top

SNPs in 11p15.5 and KCNQ1 are ~700 kb away from each other, but despite this proximity,

there is a strong residual signal of association at INS-IGF2 after analysis conditional on

genotype at KCNQ1. Point color indicates r2 to rs11564732 and recombination rate is also

shown, both based on the 1,000 Genomes ASN population.
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Extended Data Figure 4. Regional plots for SLC16A11 conditional on associated missense
variants of that gene
Association signal at chromosome 17p13 (a) without conditioning, or conditional on the

four missense SNPs in SLC16A11: (b) rs117767867, (c) rs13342692, (d) rs75418188, and

(e) rs75493593. Point color indicates r2 to the most strongly associated SNP (rs13342232)

and recombination rate is also shown, both based on the 1,000 Genomes ASN population.
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Extended Data Figure 5. Cases with risk haplotype develop T2D younger and at a lower BMI
than non-carriers
(a) Distribution of age-of-onset in T2D cases based on genotype at rs13342232, binned

every 5 years with upper bounds indicated (carriers n=1,126; non-carriers n=594). (b)

Distribution of BMI in T2D cases for carriers and non-carriers of rs13342232, binned every

2.5 kg/m2 with upper bounds indicated (carriers n=2,161; non-carriers n=1,647). P-values

from two-sample t-test between T2D risk haplotype carriers and T2D non-carriers.
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Extended Data Figure 6. Frequency distribution of the risk haplotype and dendrogram depicting
clustering with Neandertal haplotypes
(a) Allele frequency of missense SNP rs117767867 (tag for risk haplotype) in the 1,000

Genomes Phase I dataset. (b) Dendrogram generated from haplotypes across the 73 kb

Neandertal introgressed region. Nodes for modern human haplotypes are labeled in red or

blue with the 1,000 Genomes population in which the corresponding haplotype resides.

Archaic Neandertal sequences are labeled in black and include the low coverage Neandertal

sequence15 (labeled Vindija), and the unpublished Neandertal sequence that is homozygous

for the 5 SNP risk haplotype18 (Altai). H1 includes haplotypes from MXL and FIN, and H2

and H3 both include haplotypes from CLM, MXL, CHB, and ASW. Modern human

sequences included are all 1,000 Genomes Phase I samples that are homozygous for the 5

SNP risk haplotype (n=15), and 16 non-risk haplotypes—four haplotypes (from two

randomly selected individuals) from each of the CLM, MXL, CHB, and FIN 1,000 Genomes

populations (the populations with carriers of the 5 SNP haplotype). The red subtree depicts

the Neandertal clade, with all risk haplotypes clustering with the Altai and Vindija

sequences. In blue are all other modern human haplotypes. The dendrogram was generated

by the R function hclust using a complete linkage clustering algorithm on a distance matrix

measuring the fraction of SNPs called in the 1000 genomes project at which a pair of
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haplotypes differs (the Y-axis represents this distance). Since haplotypes are unavailable for

the archaic samples, we picked a random allele to compute the distance matrix.
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Extended Data Figure 7. Analysis of gene expression for SLC16A11, SLC16A13, and SLC16A1 in
30 human tissues
Data measured using nCounter is shown as mean, normalized mRNA counts per 200ng

RNA +/− SEM. Threshold for background (non-specific) binding is indicated by the red

line. Sample size for each tissue (n): pancreas (5), adipose, brain, colon, liver, skeletal

muscle, and thyroid (3), adrenal, fetal brain, breast, heart, kidney, lung, placenta, prostate,

small intestine, spleen, testes, thymus, and trachea (2), bladder, cervix, esophagus, fetal

liver, ovary, salivary gland, fetal skeletal muscle, skin, umbilical cord, and uterus (1).
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Extended Data Figure 8. Microarray-based analysis of SLC16A11 expression in human tissues
(a) Results from the “55k screen”, a survey of gene expression in 55,269 samples profiled

on the Affymetrix U133 plus 2.0 array, are shown as the fraction of samples of a given

tissue in which SLC16A11 is expressed. Sample size for each tissue (n): adipose (394),

adrenal (69), brain (1990), breast (4104), heart (178), kidney (675), liver (721), lung (1442),

pancreas (150), placenta (107), prostate (578), salivary gland (26), skeletal muscle (793),

skin (947), testis (102), thyroid (108). (b) Histograms show the expression level distribution

of SLC16A11 and other well-studied liver genes in 721 liver samples from the “55k screen.”

INS is shown as reference for a gene not expressed in liver. Based on negative controls a

normalized log2 expression of 4 is considered baseline and log2 expression values greater

than 6 are considered expressed.
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Extended Data Figure 9. SLC16A13 localizes to Golgi apparatus
HeLa cells transiently expressing C-terminus, V5-tagged (a) SLC16A13 or (b) BFP were

immunostained for SLC16A13 or BFP expression (α-V5) along with specific markers for

the endoplasmic reticulum (α-Calnexin), cis-Golgi apparatus (α-Golph4) and mitochondria

(MitoTracker). Due to heterogeneity in expression levels of overexpressed proteins and

endogenous organelle markers, imaging of each protein was optimized for clarity of

localization and varied across images; therefore, images are not representative of relative

expression levels of each protein as compared to the other proteins.

Page 23

Nature. Author manuscript; available in PMC 2014 August 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Extended Data Figure 10. Pathway and class-based metabolic changes induced by SLC16A11
expression
Changes in metabolite levels in HeLa cells expressing SLC16A11-V5 compared to control-

transfected cells are plotted in groups according to metabolic pathway or class. Pathways

shown include all KEGG pathways from the human reference set for which metabolites

were measured as well as eight additional classes of metabolites covering carnitines and

lipid sub-types. Each point within a pathway or class shows the fold-change of a single

metabolite within that pathway or class. For each pathway or class with at least six measured

metabolites, enrichment was computed as described in Online Methods. Asterisks indicate

pathways with P ≤ 0.05 and FDR ≤ 0.25. Supplementary Table 14 shows additional details

from the enrichment analysis.
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