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Learning Through Growth of Skill
in Mental Modeling'

JillH. Larkin
Herbert A. Simon
Carnegie-Mellon University

The mental models of a skilled scientist. are often different from
those of an untrained person. For example, in thinking about the
interaction of physical objects, the untrained person seems largely
restricted to envisioning objects in a sequence of motions. The
entities in these "naive" or immediate mental models correspond
directly to objects in the real world. The inferential rules that control
the running of these models correspond roughly to rules reflecting
how events unfold in real time. While such mental modets are
perfectly adequate for getting around in everyday situations, they are
sometimes dramatically wrong (Green, McCloskey, and Caramazza,
1980, Clement, 1981) and they certainly seem less effective in
solving scientific problems than are the more extended
representations of the scientist.

The mental models of a person with training in physics are not
limited to entities and inferential rules based directly on experience.
Instead, these models can and do include entities that have
technical meanings defined only by the scientific discipline, and that
are related by special inferential rules again defined in the discipline.
For example, a person with training in physics is not restricted to
considering perceivable objects like cats and coffee cups, but may
also represent situations in terms of technical entities like forces or
pressure drops. Similarly, capacity to make inferences about a
situation need not parallel imagined development of the situation in
time, but instead may reflect special constraint laws of physics, e.g.,
that the momentum of an isolated system must remain constant.
These ideas.-are discussed more fully in (Larkin, 1981a) and in the
discussion of physical intuition in (Simon and Simon, 1978).

In this paper we consider how an individual might develop the
ability to re-represent situations in terms of scientific entities.
Presumably this development is one goal of science instruction. We
shall present preliminary results from an experimental and
theoretical case study in such development. Subjects with
backgrounds in physics studied sections taken from a physics
textbook that descried material (fluid statics) they  had not
previously encountered, and then used this material in efforts to
solve problems. In a coordinated theoretical effort we are
developing a computer-implemented model of learning from text that
is capable of using declarative statements of facts (in this case,
relations of physics) both to "understand” the derivation of new
results and to apply these results in solving problems.

1. The ABLE system

The system, called ABLE, is a descendant of a system that learned
through practice to apply principles of mechanics, and that
accounted for strategy differences between skilled and less skilled
individuals (Larkin, 1981b).

ABLE is a production system written in the current implementation
of OPS, a LISP-based efficient production-system language (Forgy,
1980, Forgy. 1979). Thus ABLE has a working memory composed of
passive elements of knowledge that are acted on by a large
production memory composed of elements of procedural knowledge
encoded as condition-action pairs. When the conditions of a
particular production are found to match some of the contents of
working memory. this match cues the execution of the
corresponding actions which then act to modify working memory.

MThis work was supported by NIE-NSF grant number 1-55862. by NSF grant
number 1 55035 and by the Delense Advanced Research Projects Agency (DOD).
ARPA Order No 3597 monitored by the Au Force Avionics Laboiatory under
Contract F35615-78 C 1151 The authors 1cknowledge the important contnbutions of
Susan Cotton i the el ¢ o lranscuphion amed coding of the protocol dita
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Then the conditions of some new production are found to match,
and the cycles continue. Production systems have a continued
history of fruitfulness in psychological modeling (Newell and Simon,
1972, Newell, 1973, McDermott, 1978) but the major feature used in
ABLE is the easy modeling of learning. Each production is an
independent piece of knowledge, and the circumstances under
which it applies are determined only by the contents of its own
conditions. Thus the addition of knowledge (learning) is modeled
simply by the addition of new productions.

To explain the working of ABLE we consider its application to
solving part of the problem given in Table 1 and Figure 1a, and
presented as a worked example in Halliday & Resnick (1970). The
first paragraph of the example states the problem. We currently give
ABLE a good understanding of this paragraph, i.e., a good
immediate representation of the problem. It is coded as a set of
related declarative elements in working memory, indicated by the
graph structure in Figure 1b. i

1.1. Encoding of Principles

After achieving this immediate representation of the situation, how
does a solver make scientific inferences of the kind illustrated by the
textbook solution given in Table 1? In other words how is a scientific
mental model run?

Such inferences must be based on scientific principles that are in
some sense "known" to the solver. "Known" might initially mean
that the appropriate textbook page is available for inspection. We
discuss later the growth of other kinds of knowing. Thus we provide
ABLE with knowledge of relevant principles in the form illustrated in
Figure 2. Like all principles and definitions in ABLE, it includes a
symbolic statement of the principle Ap  pgh together with a setting
to which the principle applies and in terms of which of the symbols in
the statemient are defined. Here the setling includes a portion of
liquid vath density p. two points in that hquid separated by a height

Table 1: Worked example from a textbook
(Halliday and Resnick, 1970) showing the application of relations
of fluid statics to relate densities of
liquids in a U-shaped tube.

A U-tube is partly filled with water. Another liquid, which does not
mix with water, is poured into one side until it stands a distance d
above the water level on the other side. which has meanwhile risen a
distance | (Fig. 1a). Find the density of the liquid relative to that of
water.

In Fig. 1 points C are at the same pressure1 Hence, the pressure
drop from C to each surface is the same?, for each surface is at
atmospheric pressure3

The pressure drop on the water side is pw2l‘, where the 2I° comes
from the fact that the water column has risen a distance 1° on one
side and fallen a distance | on the other side, from its initial position.
The pressure drop on the other side is pg(d+2\)7. where p is the
density of the unknown liquid. Hence,

p, 32 = pg(d+2)®
and
p/p,, 2/(2+d)°
The ratio of the density of substance to the density of water is
called the relative density (or the specific gravity) of that substance.
% These numbers label inferences for reference later in the text.

h. The "gravitational acceleration” g = 9.8m/s? is not specified but
assumed to be known outside the context of this principle.

This knowledge of a principle is encoded as a passive link-node
structure involving no knowledge ot how or when to apply the
principle. In this sense it is declaratn ¢ knowledge. although clearly



Figure 1: (a) Diagram provided by the textbook for the example in
Table 1. (b) Annotated "diagram"” (immediate representation)
provided for ABLE in starting to work the example.

(a)
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Figure 2: Graph structure representation of the principle

Ap = pgh.
Setting: /_’ point A
liquid \height
pressure dro density
\onmt B
Statement: =pgh

it goes beyond minimal propositional encoding of the phrases that
may have been used to describe it in the textbook. To illustrate how
ABLE uses this knowledge of principles, we consider its application
to develop the inference labeled 4 in Table 1, that is to infer that the
pressure drop from C to A on the water side of the tube is pg2l.

1.2. Interpretive Use of Principles

ABLE applies declarative knowledge through general procedural
knowledge that first matches the setting of the principle to the
setting of the problem, and then uses the statement of the principle
(interpreted in the setting of the problem) to make inferences.

The control structure of ABLE, shown in Figure 3, is based on that
proposed by Neves and Anderson (1981) for the analogous task of
supplying reasons for the statements in a geometry proof. The
following paragraphs provide English statements of the productions
that control the shift of goals, Figure 3 indicates these productions
by labeled arrows linking goal statements.

ABLE starts by using the knowledge in production P1 that if the

Figure 3: Goals used in ABLE with labeled arrows indicating
productions that change goals.

Expression for a quantity
P1
Find principle
P8 l P2
Establish principle
P3

Compare principle@
\L P5 -

Check established

Recurse on Fail

non-matched quantity

goal is to find an expression for a quantity in a problem setting, then
one should search for a principle that can provide further
information about that quantity. The initial search can be based on a
variety of criteria (cf. Simon & Simon (1978), Larkin 1981b ) . ABLE
currently uses a very rough process, embodied in P2, that to be
considered a principle must involve a quantity of the type currently
desired (here pressure drop).

ABLE then applies the knowledge in production P3 to set the goal
of comparing elements of the problem situation with elements of the
principle, including its statement and setting. Production P4
contains knowledge of how to trace and compare the graph

structures representing the current problem situation (e.g., Figure
1b) and the principle situation (Figure 2). When all possible
correspondences between the two graph structures have been
matched, production P5 sets as a goal to check whether all parts of
the principle have been matched. If they have, the goals are
successively marked as succeeded. |If this is not the case,
production P6 recognizes that part of the situation crucial to the
applicability of the principle has not been satisfied. The goals are
then successively marked as failed, and ABLE ultimately must seek a
different principle. If, however, the only part of the principle situation
that does not have a correspondence in the problem situation is a
particular theoretical entity (quantity) then production P7 recognizes
that if this correspondence could be established then the principle
would succeed. Thus in our example, if ABLE had not already
established the correspondence h = 2l (as the text solution has not -
- see Table 1), then ABLE would set as a subgoal to establish an
expression for the height h, beginning werk again with production
P1in Figure 3.

Much of ABLE’s work involves establishing a detailed match
between a principle setting and a subset of the problem setting. In
the single inference discussed above, of the total of 9 cycles of
production execution, 5 were concerned with matching settings.
This costly and compulsive matching seems, however, to be
necessary for good problem solving. For example, in the current
problem there are several densities, pressures, and heights. Without
careful matching between settings, the solver can easily "infer"
relations between quantities that in fact have no connection.

1.3. Reducing the Costs of Interpretive Matching

Because matching a principle to a setting is costly, it is crucial that
a solver develop good search procedures for locating principles
likely to produce useful inferences. The primitive search algorithm
embodied in production P1 (pick a principle involving the kind of
quantity you're trying to solve for) is certainly not good enough. The
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following paragraphs describe ABLE's ability to develop better
search mechanisms.

ABLE learns through two mechanisms proceduralization and
generahzation. The mechanisms implemented here are adapted
from those described by Neves and Anderson (1981). Similar
mechanisms have been implemented by (Newell, Shaw, & Simon ,
1960, Lewis, 1978, Hayes and Simon, 1974).

Proceduralization is a mechanism through which declarative
knowledge (e.g., the statement of a principle and a situation to which
it applies) can, through application in an example, be converted to
procedural knowledge of how to apply that principle to analogous
situations. Composition is the collapsing or compiling of procedures
so that they run more quickly and with reduced need for conscious
monitoring (Hayes and Simon, 1974).

In ABLE productions P1 and P4 (Figure 3) contain the capacity for
proceduralization. (These are the productions that use directly
declarative knowledge of relations.) When each of these
productions executes, it builds a copy of itself involving the specific
declarative entities from the relation being applied. Thus for
example, when P4 applies to the principle Ap  pgh, it may apply in
the form:

IF If the goal is to compare a principle to the current setting
and there are corresponding theoretical entities in the
principle and problem settings
and these entities refer to two physical entities of the same
type

THEN mark the two physical entities as corresponding.

This production builds a copy of itself of the torm:

IF the goal is to compare the principle Ap = pgh to the
current setting
and the density of a liquid in the problem setting
corresponds to the density in the principle setting

THEN mark this liquid in the problem as corresponding to the
liquid in the principle Ap = pgh.

This new production s part of the procedural knowledge needed to
apply the principle Ap = pgh.

As Neves and Anderson (1981) point out, these proceduralized
productions are almost always shorter (contain fewer conditions)
than the original general productions that built them. Thus they may
immediately provide the advantage of reducing working-memory
load. However. their main importance is that they are the ingredients
for building efficient productions that recognize useful
configurations in a problem and relate these configurations to
potentially useful principles.

The second mechanism of learning is composition. If two
proceduralized productions (any of those built by P1 and P4)
execute in sequence, they are combined to form a single production
that does the work of both. This is done first by collecting the
condition and action elements from both and deleting repetitions.
(Further details given by Neves and Anderson (1981).) For example,
the proceduralized production above can be composed with a
production built by P1in Figure 3 to form the following:

IF the goal is to find an expression for Ap of a fluid
and there is a density for the fluid

THEN set the goal to compare to the current situation the
principle Ap = pgh
with the correspondence between the pressure drops and
the densities already established.

Productions of this form. indicated by P8 in Figure 3 short-circuit the
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primitive search algorithm of P1. They do not, however, short circuit
all the interpretive matching between the principle and problem
settings. In the current case, ABLE must still match lines and points
and heights.. In human language the knowledge in a production like
P8 might be expressed, "I have to relate pressure-drops to density
and | remember there was a principle about that, so let me check
whether it applies.” Although such knowledge does not replace the
use of a general ability to apply a principle in a situation, a collection
of this kind of knowledge provides a means of locating principles
that are likely to prove useful. Furthermore, as proceduralization
and composition proceed, they build productions with more
information in their conditions. Thus the ability to recognize a
configuration in which a certain principle will be useful becomes
more and more accurate.

In the limit, if ABLE has worked many similar problems, it builds
productions like the following:

.

IF the goal is to find or justify an expression for pressure drop
and there is a density associated with a fluid
and there are two points in the fluid separated by a height

THEN there is a pressure drop between the two points, and its
value is Ap = pgh.

At this point ABLE has at least one of the capabilities necessary
for building what we have called a scientific representation for a
problem. On encoding a prcblem involving appropriate heighls and
densities, ABLE immediately knows that the problem also involves
related pressure drops, and ban use these entities as readily as any
in the immediate representations.

1.4. Settings for Learning

When can the learning involved in proceduralization and
composition occur? Clearly solving problems i1s one such setting.
However. as we shall see in our dic.zussion of human learners, it

seems likely that this learning also takes place during study of text
material. The following is one mechanism through which this might
occur.

Consider the textbook example in Table 1. Suppose the learner
considers the various inferences (labeled 1-9) as statements to bhe
understood or verified on the basis of previous knowledge. Then
understanding the sentence involving inference 4 involves exactly
the process discussed above. justifying the expression for the
pressure drops by using the principle Ap pgh. {f such reason-
giving is pait of active study of scientific text. then through reading
the learner should acquire some ability to recognize situations to
which principles will apply.

These comments are not limited to the study of text examples.
New principles themselves are presented in much the same manner.
A setling is described, and a sequence of inferences are stated,
ultimately leading to a statement of a new principle.

2. Human Learners

In previous work (Simon and Simon, 1978. Larkin, McDermott.
Simon, and Simon, 1980a, Larkin, 1981b), we have compared the
problem solving of true experts, individuals with extensive
professional experience in physics, with that of novices, individuals
whose experience is limited to the equivalent of less than one
college level course. The performance of the expert subjects would
correspond here to the ABLE model after all proceduralization and
composition had occurred. This very ABLE model is essentially
equivalent in performance to the models of expert subjects
described in earlier papers. Proceduralization and composition have
produced a collection of sensitive productions that can recognize a
configuration of knowledge in a problem situation, and make an
unmediate inference based on an appropriate principle.

The human solvers considered here are ll novices with respect to
the physics matenal. they knew varying amounts of general physics.



but none had previously studied fluid statics. The question is then to
what extent do human learners, confronted with a novel section of
physics text and associated problems, perform like the ABLE
system? The answer is that in interesting ways human learners are
more and less able. In this discussion we shall focus on the
performance of four subjects, two who look very much like the ABLE
system and two who look very different. These data are preliminary
and the support for features of the ABLE model is suggestive rather
than conclusive.

In individual sessions each subject was asked to talk aloud as
much as possible while reading a six-page discussion of fluid statics
from a physics textbook (Halliday and Resnick, 1970) and working
three associated problems. Subjects were given one and one-half
hours for the task, and were encouraged to work just as if they were
completing an assignment for a science course. -

Table 2 summarizes the characteristics of subjects we consider
more and less able learners, characteristics we discuss in the
following paragraphs.

2.1. More Able Learners
Reading

We have suggested in the preceding section that careful active
reading of text may be an important setting for acquiring the partially
proceduralized and composed productions that aid in locating
useful principles. Indeed the two more able subjects used a great
deal of effort in processing the text. First, both subjects began their
work by reading the text completely from beginning to end, although
both glanced at the problems before beginning to read.

Second, these learners show consistent evidence that they are
processing what they read carefully and conscientiously. The two
subjects interrupted their reading 53 and 70 times respectively to
make comments on what they were reading. Most of these
comments (75%, 81%) suggest that the subject is relating what is

Table 2: Characteristics of more and less able learners.

More Able * Less Able
Reading:
Aloud, Often silently,

usually few comments
Problem solving before
all text read
Rapidly
(e.g.,7 min, 5 min)

many comments
Reading precedes

problem solving
Slowly

(e.g.,19 min, 20 min)

Problem solving:

Correct or factor
of 2 error Other errors
No search Search common
Order of principles Order of principles
like ABLE means-ends

being read to previous knowledge ("Ok, intuition would tell you
that"; "..which is analogous to just the weight of something in
mechanics."), or expressions of understanding (e.g., "Ok, that's
easy enough").

Problem Solving
We consider here performance on the following problem, which is
very analogous to the worked example in the text (Table 1).

A simple U-tube contains mercury. When 13.6 cm of
water is poured into the right arm, how high does the
mercury rise in the left arm from its initial position?

The text provides the densities of water (1.0 x 10%g/m3) and
mercury (1.36 x 10‘kg/m3).

The two subjects solved this problem without any search through

Table 3: Order of major steps in solution to the U-tube problem by
(a) ABLE, (b) and (c) More able human solvers, (d) and (e) less able
: human solvers, (f) Text example.
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the text. They readily recalled the relevance of the U-tube example,
found the right page in the text, and based their solutions on
inferences made in that example. Thus before beginning the
problem solution, these subjects had some internalized knowledge
of useful principles to apply to a U-tube setting.

The order in which principles are applied is similar to that
generated by the ABLE system, and differs slightly from the order
presented in the original example in that information is generated in
a forward working manner so that information is always available at
the time it is needed. These data are presented in Table 3. Part (f) of
Table 3 shows the nine inferences, labeled 1-9 in Table 1, used by
the textbook in solving the analogous problem stated in Table 1. The
remaining solutions are for the problem solved by the human
subjects.

The two subjects considered here both solved this problem
correctly. All of the subjects we consider to be more able either
solved this problem correctly or made the simple error of solving for
the height of the original fluid (mercury) above the point C (Figure
1a), rather than solving for half that distance, the distance the
mercury rose.

2.2.Less able Learners

Reading
Unlike ABLE and the more able solvers, the less able solvers
skimmed through the text rapidly. The two considered here
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complained that reading aloud interfered with understanding and
were permitted to read the text silently, which they did rapidly (see
Table 2). These subjects also both stopped reading and began
solving the first problem as soon as they encountered material
relevant to it.

Problem Solving
Unlike the more able subjects, the less able subjects do search
through the text for appropriate relations. As Table 3 shows, S3 and
S4 each tried two ditferent principles. In all cases the selection was
preceded by an episode of searching the text material.

As shown in Table 3 the order in which principles are applied by.

the less able subjects is very different from that produced by the
more able subjects, by the ABLE system, and in the analogous text
example. The procedure of these subjects seems to be the
following: (1) search through the text for an equation that involves
distances (presumably because a distance is the quantity to be
found). This equation may be the equation resulting from the U-tube
example (subject S3 in Table 3) but it may not be (subject S4). (2)
Substitute values for quantities appearing in this equation, using as a
criterion for substitution merely left over that the value substituted
must be of the same type as the symbol for which it is substituted
(i.e., a height for a height, a density for a density). Indeed, even this
simple constraint is sometimes violated when subjects fail to
distinguish between pressure p and density p. (3) If after this
substitution all values in the quantity have been used, and there is in
the equation a quantity of the appropriate type (here distance) left
over. then solve the equation if possible. (4) If it is impossible to fit all
the information in the problem into the equation, then abandon it and
get a new one. (5) If there remain in the equation symbols not
assigned values, then search either for an expression involving this
symbol, or for some “standard" value for this symbol (e.g.,
atmospheric pressure).

This procedure is very different from that executed by ABLE.
However, it is not hard to see how such performance might be

produced by ABLE throuah appropriate delztion of strategic
knowledge. First. one v-ould have to use the initial ABLE system,
bzfore it had built any prccedural knowledge about applying
principles. This absence corresponds to the lack of processing of
the text observed in these human solvers. Second. one would have
to remove from ABLE its strategic knowledge that a principle can be
applied cnly if all aspects of the setting of th:it principle are matched
against the setting of the problem (production P4 in Figure 3). This
production would be replaced with one that would allow use of a
relation if all symbols in it could be matched by quantities of the
same type in the problem by quantities of the same type (i.e., a
length for a length). This uncritical matching perhaps is associated
with the less able subjects’ poor abilites for selecting useful
principles. They have to match a lot of principles, and so may do it in
a less costly way. even though this economy has devastating effects
on their problem solutions. With these changes the ABLE system
could produce any of the incorrect solutions we have observed in
the less able subjects.

The result is a weak means-ends procedure of searching for
relevant principles observed elsewhere in novice solvers (Simon and
Simon. 1978, Larkin, McDermott, Simon, and Simon, 1980b). A first
principle is proposed because it contains a quantity of the type to be
solved for. Subsequent principles are proposed because they . can
be used to replace in the original equation quantities without known
values. Substitution is based on the weak criterion that the two
quantities must be of the same type (e.g., two lengths, two
pressures).

Because of their uncritical matching of principles to the problem
situation. the errors made by the less able subjects are varied and
exotic compared to the simple "sensible™ error characteristic of the
more able subjects. The most common error is illustrated by subject
S3 in Table 3. The equation from the U-tube example is used, the
distance 13.6 cm 1s substituted for one of the distances in the
2quation. / and o, and the equation is solved for the remaining
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symbol for distance. However, as illustrated by subject S4, the
errors can be far more exotic. However, all errors are produced by
copying some equation from the problem, substituting for the
symbols in. that equation values that correspond in type, and then
solving for a symbol for distance.

3. Conclusion

As we have noted elsewhere (Larkin, 1981a, Simon and Simon,
1978) individuals trained in physics seem to work with mental models
that are different than those used by less trained individuals. In
particular, skilled individuals re-represent the problems in terms of
technical entities (e.g., pressure drops) that have no special
meaning outside the discipline of physics. Here we suggest that the
general learning mechanisms of proceduralization and compaosition
provide some explanation of how this ability to re-represent
problems might be acquired.

Our prototype ABLE system acquires a principle in declarative
form, as a student might by reading a chapter. This initial encoding
does not itself include any information about how or where to apply
the principle. Thus initial applications of the principle are
interpretive, achieved through general procedural knowledge about
how to apply any principle or definition. Through such application
ABLE builds new specific procedural knowledge associated with the
principle. Initially fragments of procedural knowledge aid in the
search process. They contain patterns of information that have been
used with that principle in the past, thus short-circuiting ABLE’s
original general and weak method of selecting principles. Ultimately
a principle can be completely proceduralized (for a set of analogous
contexts) so that application is completely automatic. This final
automatic knowledge may well be an ingredient of what one would
want to call an expert's mental model in which technical entities
(e.g.. pressure drops) are seen as readily as visible entities like
heights.
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