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Abstract

The numerical integration of the exchange-correlation (XC) potential is one of the primary computational
bottlenecks in Gaussian basis set Kohn-Sham density functional theory (KS-DFT). To achieve optimal
performance and accuracy, care must be taken in this numerical integration to preserve local sparsity as
to allow for near linear weak scaling with system size. This leads to an integration scheme with several
performance critical kernels which must be hand optimized for each architecture of interest. As the set
of available accelerator hardware goes more diverse, a key challenge for developers of KS-DFT software
is to maintain performance portability across a wide range of computational architectures. In this work,
we examine a modular software design pattern which decouples the implementation details of performance
critical kernels from the expression of high-level algorithmic workflows in a device-agnostic language such
as C++; thus allowing for developers to target existing and emerging accelerator hardware within a single
code base. We consider the efficacy of such a design pattern in the numerical integration of the XC potential
by demonstrating its ability to achieve performance portability across a set of accelerator architectures
which are representative of those on current and future U.S. Department of Energy Leadership Computing
Facilities.

Keywords: Density Functional Theory, Accelerator, Graphics Processing Unit, Performance Portability

1. Introduction

As we approach the inevitable demise of Moore’s
and Denard’s laws, recent years have seen an in-
creasing reliance on the use of accelerators such as
graphics processing units (GPUs) to perform the
majority of the floating point operations (FLOPs)
on contemporary and emerging high-performance
computing (HPC) resources [1–3]. As such, there
has been a drastic shift in focus for the develop-
ment of application software to target these new
and emerging architectures, especially in the do-
main of quantum chemisty[4, 5]. However, due to
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the often complicated workflows and algorithmic
designs encompassed by these applications, the ef-
fort needed to port high-performance scientific soft-
ware from CPU- to accelerator-based architectures
is often immense. This effort is only compounded as
new hardware and programming models are intro-
duced into the HPC ecosystem. As the set of avail-
able hardware and associated programming mod-
els grows more diverse, an increasing challenge for
scientific applications has been to achieve perfor-
mance portability [6, 7] on existing architectures
while minimizing the software development effort
needed to target new architectures as they emerge.

Historically, application developers have primar-
ily depended on C, C++ and Fortran for HPC
codes. For the multi-core CPU era of comput-
ing, this worked well as all HPC class CPUs had
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compilers for those languages. With the introduc-
tion of GPUs into the HPC landscape, the pro-
gramming model ecosystem has become more di-
verse. One of the first widely adopted programming
languages which targeted GPU architectures was
CUDA [8], a language developed by NVIDIA based
on C/C++ with extensions to support GPUs. How-
ever, CUDA is only supported on NVIDIA’s GPUs.
While NVIDIA GPUs have been dominant in HPC
computing centers, recently AMD and Intel GPUs
have both been chosen for three of the first exascale
class computing platforms produced for the U.S.
Department of Energy (DOE) [9–11]. AMD has
chosen HIP as the primary programming model to
target its GPUs [12], while Intel has been develop-
ing Data Parallel C++ (DPC++) [13]. HIP is very
similar (syntactically) to CUDA, while DPC++ is
an extension of SYCL [14], which is itself an exten-
sion of the ISO standard C++ for targeting hetero-
geneous architectures. The details of the differences
in these programming models is beyond the scope
of this paper, but what is important is no one model
currently covers the feature set of all three of these
architectures completely.

Another option for code developers is to use one
the many available declaration based language ex-
tensions such as OpenACC [15] and OpenMP [16]
or performance portability layers such as Kokkos
[17] and RAJA [18]. These programming models
are often attractive in that they allow the devel-
oper to compose the entireity of their algorithmic
workflow in a high-level language and expect to
achieve reasonably performant code in the majority
of commonly encountered use cases. However, these
models offer little recourse in cases when manual
optimizations may be exploited to achieve higher
performance in critical kernels. Further, the in-
teroperability of these models amongst themselves
and with the aformentioned accelerator-specific lan-
guages is often a non-trivial endeavour, thus pos-
ing considerabile challenges for library developers
which aim to target a large number of downstream
applications. As such, we do not explictly explore
such programming models in this work.

This diverse programming model landscape
leaves an application developer with no clear path if
their goal is to develop a single code base which can
be easily ported from one architecture to another in
a performant manner. In this work, we examine a
extensible, modular software design pattern which
decouples the expression of algorithmic workflows
in a high-level language (C++) from the implemen-

tation details of its performance critical kernels. As
such, each of these performance critical kernels may
be expressed in the programming model which is
most appropriate for an accelerator architecture of
interest. In addition to being a common design pat-
tern typically encountered in object-oriented pro-
gramming languages such as C++, the concept of
algorithm-kernel decoupling has also found great
success in the field of numerical linear algebra in
performance portable, extensible libraries such as
BLIS [19]. Here, we examine how this concept may
also be applied to a critical scientific application:
Kohn-Sham density functional theory (KS-DFT).

KS-DFT [20] is among the most powerful the-
oretical techniques for the treatment of quantum
phenomena in large, experimentally relevant sys-
tems [21, 22]. A primary factor contributing to
the success of KS-DFT in computational chemistry
and materials science is the existence of highly opti-
mized software implementations which are designed
to fully exploit the resources of the compute plat-
forms which they target. Over the years, these ef-
forts have produced highly efficient and massively
parallel KS-DFT software for CPU-based (See Ref.
[23] and references therein) architectures. More re-
cently, there has been considerable effort afforded
to the development of GPU-based KS-DFT soft-
ware to leverage the latest advances in modern HPC
(See Refs. [4, 5, 23] for a review of modern trends
as well as Refs. [24–28] for a number of recent de-
velopments).

A considerable amount of the computational
work incurred by KS-DFT methods is represented
by heavy use linear algebra subroutines which are
typically provided by optimized BLAS libraries .
As such, it is typically justifiable that performance
portability may be achieved in large part by en-
suring that the application has made use of mi-
croarchitecture optimized implementations of crit-
ical BLAS operations for the architecture in ques-
tion, thus delegating the problem of performance
portability to the developer of the optimized BLAS
library (hardware vendor or otherwise) rather than
the developer of the end application. However, as
has been recently demonstrated for GPU architec-
tures in the case of Gaussian basis set KS-DFT [24],
the efficiency with which batched level-3 BLAS op-
erations may be executed on contemporary GPU
architectures shifts the relative computational im-
portance of the BLAS operations on overall time-
to-solution to be less than other algorithmic ker-
nels which were previously not dominant. Thus,
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on accelerator based architectures, the problem of
performance portability in KS-DFT software relies
both on the use of optimized BLAS libraries and
the hand optimization of specific performance crit-
ical kernels for microarchitectures of interest.

In this work, we consider the portable imple-
mentation of the Gaussian basis set discretization
of KS-DFT in the NWChemEx software package
[29, 30]. For atom-centered bases, the forma-
tion of the KS-DFT Fock matrix is dominated by
the formation of the Coulomb matrix, exchange–
correlation (XC) matrix, and the exact-exchange
matrix in the case of hybrid KS-DFT methods. Re-
cently, a significant amount of research has been
directed to the effecient evalution of the Coulomb
and exact exchange matrices in Gaussian basis sets
on GPU architectures [27, 31–38], while relatively
little effort has been afforded to the evaluation of
the XC matrix [24, 25, 27, 28]. As such, we focus
on the portable implementation of the XC matrix
in this work. The remainder of this work is orga-
nized as follows. Sections 2.1 and 2.2 briefly re-
view the necessary algorithmic details required for
the numerical assembly of the XC potential on ac-
celerator based architectures. In Sec. 2.3, we ex-
amine the specifics of a set of targeted accelera-
tor architectures which are representative of those
available on current and proposed for future com-
putational resources provided by DOE leadership
computing facilities, and in Sec. 2.4, we outline the
proposed modular software framework to achieve
performance portability across them. Section 3 out-
lines some preliminary results regarding the cur-
rent state of portability achieved using the proposed
software framework and Sec. 4 concludes this work
with a brief summary and a perspective on future
research directions.

2. Methods

2.1. Theory and Background

Within Kohn-Sham density functional theory
(KS-DFT) [20, 39], the energetics of quantum
many-body interactions are described by the
exchange–correlation (XC) energy functional, Exc,
which depends on the total electron density, ρ :
R3 → R ,

Exc[ρ] =

∫
R3

ε(r)ρ(r)d3r, (1)

where ε(r) is the XC energy density which depends
on the value of ρ at a particular point r ∈ R3. In

this work, we consider the generalized gradient ap-
proximation (GGA) [40, 41] where ε is described en-
tirely by ρ and its gradient∇ρ : R3 → R3, such that
ε(r) ≡ ε(ρ(r), γ(r)) where γ = |∇ρ|2. However,
we note that similar schemes to those presented
in this work could be synthesized for other local
KS-DFT approximations such as the local density
approximation (LDA) and the meta-GGA, as well
as non-local approximations such as van der Waals
XC functionals [42]. By discretizing ρ / ∇ρ in a
basis set expansion S = {φµ : R3 → R}Nbµ=1 given a

matrix of expansion coefficients, P ∈ RNb×Nb (the
density matrix ), the quantum many-body interac-
tions may be effectively described by a non-linear
one-body XC potential, Vxc ∈ RNb×Nb , given by
[43–45]

V xcµν =

∫
R3

φµ(r)Zν(r) + Zµ(r)φν(r)d3r, (2)

where

Zµ(r) =
1

2
ερ(r)φµ(r)+2εγ(r)(∇ρ(r)·∇φµ(r)), (3)

and ερ ≡ ∂ε
∂ρ and εγ ≡ ∂ε

∂γ . In this work, we consider
the case when S consists of atom-centered Gaussian
functions (φµ(r) ∝ exp(−α|r|2)) [46], thus P and
Vxc are real-symmetric matrices. The integration
of Eqs. (1) and (2) will be referred to as the XC
integration in the following.

Due to the highly nonlinear character of ε,
the XC integrations must be carried out numeri-
cally. For atom centered bases, the most commonly
adopted approach for the numerical integration is
to decompose the full integrand into a sum over
atomic integrands such that

I[f ] ≡
∫
R3

f(r) d3r =

NA∑
A=1

IA[f ],

IA[f ] =

∫
R3

pA(r)f(r) d3r,

where NA is the number of atomic nuclei, and
pA is an atomic partition function which satisfies∑
A pA(r) = 1 ∀r ∈ R3. Typically, pA is chosen to

form soft boundary Voronoii polyhedra around each
of the nuclei [47]. Each atomic integrand is then dis-

cretized by a quadrature rule QA = {(rAi , wAi )}N
A
g

i=1

with

wAi = pA(rAi )w̃Ai , (4)
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Figure 1: Batch local matrix compression scheme for non-
negligible function indices Sj . Colored tiles represent matrix
elements which are to be included in the compressed matrix,
and white tiles represent matrix elements which are to be
neglected.

where w̃Ai is the quadrature weight derived di-
rectly from the quadrature rule for the approxi-
mation of IA. We denote the total quadrature

Q =
⋃
AQA = {(wi, ri)}

Ng
i=1 with Ng =

∑NA
A=1N

A
g

in the following. The algorithmic details regarding
the implementation of Eq. (4) are outside the scope
of this work, however, we note that this operation
scales between O(Ng) and O(NANg) depending on
the spacial distribution of the atomic centers and is
among the most computationally demanding tasks
in the XC integration.

We may exploit the semi-compact nature of the
functions in S by constructing spatially localized
quadrature batches

Q =
⋃
j

Bj , s.t. Bj ∩ Bk = ∅, for j 6= k,

such that for every Bj , we may construct a subset
of basis functions Sj ⊂ S which are non-negligible
within its spacial domain [48]. We denote N j

g =

|Bj | and N j
b = |Sj |. For a detailed description of

the decomposition of Q into localized cuboids and
subsequent screening of S employed in this work,
we refer the reader to reference [24].

Given a set of quadrature batches B = {Bj},
Eqs. (1) and (2) may be approximated as

Exc ≈
∑
j∈B

E(j), Vxc ≈
∑
j∈B

V(j) (5)

where the batch local quantities E(j) and V(j) may
be efficiently assembled via BLAS operations as fol-
lows [24],

E(j) =
∑
i∈Bj

ρ
(j)
i ε

(j)
i , (DOT) (6)

V (j)
µν =

∑
i∈Bj

Φ
(j)
µi Z

(j)
νi + Z

(j)
µi Φ

(j)
νi , (SYR2K) (7)

with µ, ν ∈ Sj . Here ρ
(j)
i ≡ ρ(ri), ε

(j)
i ≡ wiε(ri),

and Φ
(j)
µi ≡ φµ(ri) are the batch local electron den-

sity, (quadrature scaled) energy density, and collo-
cation matrix evaluated on the quadrature batch
Bj , respectively. The elements of Z(j) are given by

Z
(j)
µi =

1

2
ε
(j)
ρ,iΦ

(j)
µi + 2ε

(j)
γ,i

(
∇ρ(j)i · ∇Φ

(j)
µi

)
(8)

where ε
(j)
ρ/γ,i ≡ wiερ/γ(ri). For brevity in the follow-

ing, we denote the collection of grid local quantities
pertaining to a particular Bj with super-scripted

bold-faced symbols, e.g. ρ(j) = {ρ(j)i }i∈Bj .
ρ and ∇ρ may also be efficiently evaluated using

BLAS operations

ρ
(j)
i =

∑
µ∈Sj

X
(j)
µi Φ

(j)
µi , (DOT) (9)

∇ρ(j)i =
∑
µ∈Sj

X
(j)
µi ∇Φ

(j)
µi , (DOT) (10)

X
(j)
µi =

∑
ν∈Sj

P (j)
µν Φ

(j)
νi , (GEMM) (11)

where P(j) is a packed batch local density matrix
which places into contiguous memory the indices
contained in Sj (See Figure 1 ). We note for clar-

ity that V(j),P(j) ∈ RN
j
b×N

j
b and Z(j),X(j),Φ(j) ∈

RN
j
b×N

j
g .

2.2. Algorithm

In this subsection, we briefly outline the algo-
rithmic details of the distributed memory Gaussian
basis set XC integration on accelerator based ar-
chitectures. For a more detailed description of this
approach and its implementation on NVIDIA GPU
hardware, we refer the reader to reference [24].

The numerical integration scheme described in
the previous section decomposes the XC integra-
tion into an accumulation of batch local quantities
which may be evaluated in parallel. On distributed
memory architectures, the quadrature batches may
be distributed using a communication-free static
load balancing procedure which factors the com-
munication requirements into a single collective re-
duction (e.g., MPI (All)reduce in the case of MPI
message passing) following the digestion of the lo-
cal work by each independent compute rank [24].
As such, the problem of performance portability in
the context of this work amounts to the portable
implementation of Eqs. (4) to (11) to digest the
quadrature batches assigned to a particular com-
pute rank. To simplify the following discussion, we
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Algorithm 1: Evaluation of Quadrature Batches

Input : Quadrature batches B, density matrix P, XC
potential Vxc, and XC energy Exc all in
device memory.

Output: Vxc and Exc updated by quadrature
contributions from B

1.1 Update quadrature weights by Eq. (4).

1.2 batchj P(j) ← Compress batch local density matrix
from P.

1.3 batchj Evaluate Φ(j)/∇Φ(j).

1.4 batchj X(j) ← Eq. (11) (VB-GEMM).

1.5 batchj (ρ(j),∇ρ(j))← Eqs. (9) and (10) (F-VB-DOT).
1.6 (ε, ερ, εγ)← Evaluate XC energy density and its

derivatives for all points in B.
1.7 Update Exc according to Eqs. (5) and (6) (DOT).

1.8 batchj Z(j) ← Eq. (8).

1.9 batchj V(j) ← Eq. (7) (VB-SYR2K).

1.10 batchj Vxc ← Vxc + V(j).

will assume a 1-to-1 mapping of accelerators to MPI
ranks, though 1-to-many and many-to-1 mappings
could also be utilized with only minor modifications
to the algorithm presented here.

If constructed properly, the amount of work re-
quired to evaluate E(j) and V(j) for a particular Bj
is small. As such, optimiality may be achieved by
batching the evaluation of intermediate quantities
into individual “batched” kernels as to saturate de-
vice resources and mitigate the kernel launch over-
head. This procedure is outlined in Alg. 1, where
the qualifier batchj indicates a single batched ker-
nel to perform the specified task. We note that
Lines 1.1, 1.6 and 1.7 do not have this qualifier as
they may be implemented without reference to the
batched data structures given that the quadrature
batches are internally stored as structures of arrays.
Within this batched kernel design, a predetermined
number of quadrature batches must be selected to
execute concurrently on the device. In this work,
we choose to concurrently execute as many batches
as will fit in device memory [24]. In addition, this
scheme also minimizes the overall impact of inher-
ently serial operations such as data transfers be-
tween host and device memory spaces and memory
allocations.

In the case of the level-3 BLAS, batching may
be achieved by using optimized implementations of
batched BLAS operations such as batched SYR2K
and batched GEMM [49, 50] for Eqs. (7) and (11)
respectively. However, due to the fact that N j

b

and N j
g can vary significantly between quadrature

batches, variable sized batched (“vbatched”) level-3

BLAS implementations must be used in this con-
text. We denote these as VB-SY2RK and VB-
GEMM in the following. Singular inner products
such as Eq. (6) may be implemented using stan-
dard accelerated DOT routines. The dot products
required for the evaluation of ρ(j)/∇ρ(j) could also
be implemented using standard DOT routines, but
due to the fact that Eqs. (9) and (10) consist of
a large number of inner products over a relatively
small vector length N j

b , using such standard im-
plementations in this use case would be inefficient.
As with the use of VB level 3 BLAS operations,
batching together the DOT operations (VB-DOT)
may also improve the throughput for the evaluation
of these quantities. However, by recognizing that
Eqs. (9) and (10) both involve inner-products of a
column of X(j) with either a columns of Φ(j)/∇Φ(j),
throughput may be further improved by fusing their
execution (F-VB-DOT), i.e. loading in a single col-
umn of X(j) and having it persist in memory for
its contractions with columns of Φ(j)/∇Φ(j), thus
improving its arithmetic intensity (FLOP/byte) by
25%. In this work, we rely on the use of existing
optimized BLAS libraries to carry out the work re-
quired for VB-GEMM, VB-SYR2K and DOT. The
remaining operations required for the numerical XC
integration, including the proposed F-VB-DOT for
the batched evaluation of ρ(j)/∇ρ(j), must be im-
plemented by user defined kernels for each program-
ming model of interest.

2.3. Considered Accelerators and Programming
Models

To expose the most optimization potential in
performance critical kernels, we choose to target
accelerator hardware with the programming mod-
els which specifically target them. In this work,
we consider three contemporary accelerators: the
NVIDIA Tesla V100 GPU, the AMD Radeon In-
stinct MI100 GPU, and the Intel Iris Gen9 inte-
grated graphics GPU. We will refer to the Intel
GPU simply as the Intel Gen9 in the following.
All of these GPUs operate under the SIMT execu-
tion model: issuing a single instruction to multiple
threads which execute in lock step. The hardware
specifics of these GPUs which are relevant to this
work may be found in Tab. 1 [51–53].

From a software perspective, there are two pri-
mary differences which are of significant conse-
quence: (1) the programming models which most
aptly target these GPUs and (2) the linear alge-
bra software stacks which have been optimized for
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Table 1: Relevant hardware specifications for the GPU accelerators considered in this work. The device DRAM capacity and
peak bandwidth (BW) are given for the slowest memory which is directly accessible to the GPU. DRAM values are not given
for Gen9 as they are dependent on the off-chip main memory of the associated compute node

Architecture DRAM Capacity (GB) DRAM BW (GB/s) Peak FP64 (GFLOP/s) SIMT Length

NVIDIA V100 32 900 7600 32
AMD MI100 64 1200 11500 64
Intel Gen9 – – 165 32

each architecture. In this work, we target NVIDIA
GPUs with the CUDA programming model [8],
AMD GPUs with the HIP programming model [12],
and Intel GPUs with the DPC++ programming
model [13]. For level-1 BLAS operations (DOT),
the cuBLAS, hipBLAS, and oneMKL [54] libraries
will be used to target NVIDIA, AMD, and Intel
GPUs, respectively. Additionally, variable sizes
batched level-3 BLAS operations (VB-GEMM and
VB-SYR2K) will be provided by the MAGMA [55–
57] and hipMAGMA [58] libraries for NVIDIA and
AMD GPUs due to their absence in cuBLAS and
hipBLAS, respectively. As of this work, oneMKL
only provides an API for VB-GEMM, not VB-
SYR2K. As Eq. (7) may be alternatively expressed
as the sum of two GEMM operations, its evalua-
tion will be performed by two invocations of VB-
GEMM for the Intel GPUs in this work, the latter
of which applies the transposed GEMM operation
of the first.

It is important to note that while both the AMD
and NVIDIA GPUs considered in this work are dis-
crete accelerators which exist separate and apart
from the CPU which drives it, the Intel GPU is
an integrated GPU. As such, both the execution
units and the DRAM accessible to the the AMD
and NVIDIA GPUs are decoupled from the CPU,
whereas only the execution units are decoupled
from the CPU on the Intel GPU: the CPU and
the GPU share the same DRAM on this accelerator
architecture. To hide bandwidth and latency bot-
tlenecks, the Intel GPU internally exhibits a more
complicated memory hierarchy than the relatively
flat memory models exhibited by discrete GPUs.
Management of the memory resources which are
shared between the CPU and GPU (DRAM and
lowest level cache [LLC]) and transmission of data
from the DRAM to the internal GPU memory hi-
erarchy is handled by the Graphics Technology In-
terface (GTI) on Intel GPUs. The GTI has its own
bandwidth for memory transactions into the GPU
memory hierarchy separate from the DRAM band-
width (73.6 GB/s for Gen9).

Load Balancer Reduction Driver

Integration Driver

Integrator Instance

XC Results

CUDA HIP SYCL

Figure 2: Modular hierarchy of the XC integrator soft-
ware design proposed in this work. Each node of the
hierarchy may be decoupled from the leaves upon which
it does not depend and the implementation of dependent
nodes is designed to be agnostic from the implementation
details of its dependencies.

2.4. Performance Portability by Modular Software
Design

In this subsection, we examine a modular soft-
ware design pattern which allows for high level ex-
pression of algorithmic workflows, such as those in
Alg. 1, while admitting the potential for opt-in low
level optimization of performance critical kernels
for specific accelerator hardware with minimal pro-
grammer effort. A graphical depiction of the mod-
ular hierarchy used in this work is given in Fig. 2.
The essence of this design pattern is to decouple
the assembly of a particular high-level procedure
from the implementation details of its component
operations. In so doing, we also obtain an extensible
framework for which we may provide additional im-
plementations targeting future hardware given the
ability to express the individual algorithmic kernels
in the programming model which most aptly tar-
gets them.

At the highest level, the distributed memory XC
integration requires knowledge of three operations:
(1) how to effectively balance the computational
work on each node to allow for scalability, (2) how
to perform the required computation given the work
that has been assigned locally, and (3) how to com-
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bine these results in some expected way given an
underlying message passing implementation (e.g.,
MPI) and knowledge of where the data must reside
on exit (e.g., host or device). From a software de-
velopment perspective, the implementation details
of these three operations are decoupled from one
and other. Thus, given an implementation of each
of these operations, it is possible to to express the
XC integration at a high-level without reference to
the implementation details of these operations indi-
vidually. As such, it is possible to provide specific
implementations of each of these tasks for each ar-
chitecture of interest. However, that does not ne-
cessitate that each operation must be specialized
for each architecture of interest. For example, the
distributed reduction phase of the XC integration
may be implemented portability using MPI message
passing implementations which are aware of device
memory spaces. Such an MPI implementation is
provided by the Summit supercomputer, and simi-
lar implementations have been proposed for future
DOE supercomputers equipped with either AMD
or Intel GPUs. In such implementations, a single
high-level API may be used to perform the reduc-
tion whether the results are to reside on the host or
device. On the other hand, it is occasionally desir-
able to implement specific optimizations for these
type of collective operations for specific node in-
terconnects, memory consistency models, data lo-
calities, etc [59–61]. The modular nature of this
software design pattern simply exposes the ability
to perform such optimizations when appropriate.

The same logic may also be applied to the compu-
tation related to the local work itself: given an im-
plementation of a scheme with which we may manu-
ally manage device memory and each of the kernels
in Alg. 1, it is possible to construct a procedure to
perform the local computation on the device which
is decoupled from its implementation on any partic-
ular accelerator hardware. However, in the many-
programming-model paradigm proposed in the pre-
vious subsection, syntactical differences in kernel
definition, kernel launch, etc. complicate the imple-
mentation of such a decoupled software framework.
In practice, such a decoupling may be performed
through the exposure of high-level API wrappers
which delegate to programming model specific im-
plementation of each of these operations by condi-
tional compilation.

The device memory saturation scheme outlined
in reference [24] fundamentally requires knowledge
of three operations: (1) obtaining the amount

of available memory on a particular device, (2)
how to allocate some fraction of that memory,
and (3) how to manually perform pool alloca-
tions out of preallocated buffers such that read-
s/writes from this buffer are valid when accessed
from the device. For both CUDA and HIP,
the first two operations may be fulfilled by the
{cuda,hip}MemGetInfo and {cuda,hip}Malloc
routines, the latter of which produces C-style
pointers to device memory segments. As of the
SYCL 2020 standard (as adopted by DPC++)
[14], similar allocation semantics may be achieved
using unified shared memory (USM) [62, 63] via
the routines cl::sycl::device::get info and
cl::sycl::malloc device, respectively. Given
the C-pointers to device memory segments from
any of the above programming models, pool allo-
cations for the preallocated memory may be im-
plemented in a high-level device-agnostic language
(e.g., C/C++) in a straight forward manner. How-
ever, care must be taken to ensure that the pool al-
locations adhere to proper alignment requirements
for the accelerator in question.

Modularity in the BLAS components of Alg. 1
may be achieved by conditional delegation to the
optimized BLAS libraries which were outlined for
each of the considered architectures in the previous
subsection. As was previously discussed, each ker-
nel for the non-BLAS components of Alg. 1 must
be implemented for each programming model of in-
terest. However, the majority of kernels considered
in this work admit generic implementation strate-
gies, i.e. at a high level, the differences in their
various implementations for specific programming
models are primarily syntactical rather than explic-
itly architecturally dependent. That is not to say
that vendor specific compilers do not produce dras-
tically different low level optimizations for these
kernels internally, only that from a kernel specifi-
cation perspective, the implementations for varying
programming models are very similar. For generi-
cally implementable kernels, it is often possible to
perform source-to-source translations between op-
timized kernels in a particular programming model
to other programming models using external con-
version utilities. In this work, we have used the
HIPIFY and Intel(R) DPC++ Compatibility Tool
(DPCT) [64, 65] to perform the source-to-source
translation from CUDA to HIP and DPC++, re-
spectively. For kernels which require further spe-
cialization to achieve higher performance on a par-
ticular architecture, the aforementioned tools may
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also be used as a first pass to generate usable ker-
nels in a programming model of interest and then
optimizations may be applied on a per-kernel basis.

3. Results and Discussion

In this section, we examine the extent to which
the proposed modular software design pattern is
able to achieve performance portability across the
considered accelerator architectures. Calculations
involving the NVIDIA V100 GPU were performed
on the Summit supercomputer at the Oak Ridge
Leadership Computing Facility (OLCF). CUDA
programs were produced using the nvcc com-
piler and cuBLAS from the CUDA 11 SDK and
VB-GEMM/SYR2K were provided by MAGMA
2.5.3. Calculations involving the AMD Radeon In-
stinct MI100 GPU were performed on the Tulip
test bed provided by Hewlett Packard Enterprise
(HPE). HIP programs were produced using the
hipcc compiler and hipBLAS from the Radeon
Open Compute Platform (ROCm) 3.8.0 SDK and
VB-GEMM/SYR2K were provided by hipMAGMA
2.0.0 [58]. Calculations involving the Intel Iris Gen9
integrated GPU were performed on the Joint Labo-
ratory of System Evaluation (JLSE) testbed at the
Argonne Leadership Facility (ALCF). Each JLSE
Iris node consists of a Intel Xeon E3-1585 v5 CPU
with an integrated Gen 9 GPU and 64 GB DDR4
@ 2133MHz with two memory channels [53], lead-
ing to a peak bandwidth of 34 GB/s accessible to
the GPU. DPC++ programs were produced using
the dpcpp compiler from the oneAPI SDK (Intel(R)
oneAPI Pro 2021.1 (pre-release) beta10). DPC++
programs may be executed by multiple backends
using the Intel(R) Graphics Compute Runtime. In
this work, we utilize the Intel(R) Level Zero runtime
(driver version 0.3) to execute DPC++ programs.

3.1. Performance Critical Kernels

In this work, we examine the portable implemen-
tation of three representative kernels:

1. the evaluation of the partition weights (Eq. (4)
and Line 1.1),

2. the evaluation of the batch-local collocation
matrix and its gradient (Φ(j)/∇Φ(j), Line 1.3),
and

3. the evaluation of the batch-local ρ(j)/∇ρ(j) via
F-VB-DOT (Eqs. (9) and (10) and Line 1.5).

Each of these kernels are FLOP intensive kernels
which have been previously demonstrated to be
performance critical for the XC integration on ac-
celerator architectures [24]. The details of the
programming-model specific optimizations applied
to these kernels is beyond the scope of this work,
however the general schema of these kernels which
are common to all of the considered models may
be described as follows: (1) is a 1-dimensional (1D)
kernel where each quadrature point is assigned to
a particular thread, and all quadrature points may
be scheduled independently on the device. SIMT
divergences may be kept to a minimum by ensuring
that quadrature points which are spatially close are
stored contiguously in device memory. (2) is a 2D
kernel: each pair of basis functions and quadrature
points is assigned to a particular thread on a 2D
process grid. To minimize SIMT divergences, the
evaluation of quadrature points for the same basis
function are restricted to the same SIMT unit. (3)
is also a 2D kernel, where each quadrature point is
assigned to a particular SIMT unit and the DOT
component of the F-VB-DOT reduction in Eqs. (9)
and (10) is applied along the SIMT unit.

Due to the difference in computational power ex-
hibited by the considered GPUs accelerators, ab-
solute measures of performance on any particu-
lar architecture does not necessarily yield any in-
formation about how the achieved performance is
portable between architectures. Instead, relative
measures of performance are often more instructive
[6, 7]. Figure 3 illustrates the relative importance
of the aforementioned kernels together with the
performance critical BLAS operations (VB-GEMM
and VB-SYR2K) for a representative test problem:
the numerical integration of the XC potential for
the Taxol molecule at the RPBE0/6-31G(d) level of
theory. We have used the same molecular geometry
as the one used for the same problem in reference
[24]. A hard cap of N j

g ≤ 512 was imposed in
the construction of the quadrature batches which
yielded batch sizes ranging from 30 ≤ N j

g ≤ 512

and 5 ≤ N j
b ≤ 819. To improve memory access pat-

terns and in the evaluation of the collocation and
density kernels, row-major data structures were em-
ployed for the batch-local matrices on each of archi-
tectures considered. Qualitatively, we can see that
each of these kernels consumes roughly the same
percentage of the overall calculation time across
each of the considered architectures, indicating that
the computational bottlenecks are more or less the
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Figure 3: Percentage of overall XC integration wall time
spent on performance critical kernels for the considered ac-
celerators for Taxol RPBE0/6-31G(d). The BLAS percent-
age includes all invocations of GEMM and SYR2K, DOT is
negligible for all accelerators considered.

same on each of these GPUs.

3.2. Roofline Performance Characterization

In order to understand the performance of an ap-
plication on a particular architecture, it is often
desirable to examine the performance relative to
the peak performance of the architecture in ques-
tion (i.e. its architectural efficiency) rather than
examining absolute performance metrics such as
time-to-solution [6, 7]. In addition, this allows for
the meaningful comparison of the performance of
an application across several architectures, espe-
cially when those architectures admit drastically
different computational power. However, the peak
computational performance of a particular archi-
tecture cannot be characterized by a single metric
due to the existence of many competing bottlenecks
on modern architectures: primarily computational
bottlenecks which depend on the maximum rate a
processor can issue instructions and perform arith-
metic operations, and memory bandwidth bottle-
necks which depend on the speed with which data
can be accessed from the memory hierarchy and
made available to the processor. In this work, we
examine the architectural efficiency of the perfor-
mance critical kernels outlined in the previous sub-
section through the use of the Roofline Performance
Model (RPM) [66, 67].

The RPM characterizes the peak performance of
a system to be a function of an operational inten-
sity: the ratio of the number of operations per-
formed to the memory traffic required to perform
said operations. If the operations of interest are
related to floating point arithmetic (ADD/MUL,
FMA, etc), this intensity is referred to as an arith-
metic intensity (AI) and is measured in FLOP/Byte

Table 2: Empirical roofline peaks collected by the ERT for
each of the considered accelerators.

Architecture
Roofline Peaks

DRAM BW (GB/s) Peak OpR

NVIDIA V100 789.2 7796.6 GFLOP/s
AMD MI100 891.3 4792.6 GInst/s
Intel Gen9 27.6 157.9 GFLOP/s

[67]. Alternatively, the RPM may be characterized
in terms of instructions issued by the processor, in
which case this intensity is referred to as an instruc-
tional intensity (II) and is measured in instruction-
s/Byte [68]. Given an operational intensity (OpI)
of interest, the peak achievable throughput (OpR)
for that operation may be expressed as

OpR(OpI) = min

{
Peak OpR
BW×OpI

(12)

where “peak OpR” and “BW” are the peak op-
erational throughput and bandwidth of the archi-
tecture in question. In the Intel Gen9 architecture
where the GPU and LLC are separated by the GTI
interconnect, peak achievable throughputs may be
modeled through adding an additional memory roof
to the RPM consisting of the peak bandwidth ex-
hibited by the Gen9 memory hierarchy. In partic-
ular, if the data working set for a particular ker-
nel completely resides in LLC, or there is extensive
reuse, its performance is bounded by the BW as-
sociated with the GTI rather than the DRAM. In
this work, the Empirical Roofline Toolkit (ERT)
was used to determine the roofline parameters for
each of the GPUs used in this study [69], the results
of which are shown in Table 2.

NVIDIA. For the NVIDIA V100, we used
the NVIDIA’s nvprof tool to obtain kernel-
level performance metrics. Double-precision
(FP64) floating-point operations were counted with
flop count dp. Read and write transactions
were measured using dram read transactions

and dram write transactions respectively. Each
transaction contains 32 bytes. Kernel performance
characterization for the V100 have been made us-
ing arithmetic intensity as the operational intensity,
yielding the FP64 DRAM roofline characterization
of the aforementioned kernels in Fig. 4.

AMD. For the AMD MI100, the rocprof profiling
tool was used to obtain kernel-level performance
metrics. As rocprof does not provide support
to count floating-point operations, instructional in-
tensity has been used as the operative operational
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Figure 4: FP64 kernel roofline for considered kernels on the
NVIDIA Tesla V100. Each data point represents a single
batched kernel invocation.
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Figure 5: FP64 kernel roofline for considered kernels on the
AMD Radeon Instinct MI100. Each data point represents a
single batched kernel invocation.

intensity for the performance characterizations on
these GPUs. As such, we may not use the stan-
dard results from ERT to construct our empirical
roofline model. The details of how to construct such
a roofline are outside the scope of this work, how-
ever we have made the software required to per-
form such an empirical measurement publicly avail-
able [70]. To measure the operation count for each
kernel, we have used VALUInsts counter, which is
the average number of vector ALU instructions ex-
ecuted per work item. Read and write data counts
to global memory were measured with FetchSize

and WriteSize respectively. These counts are ex-
pressed in kibibytes (KiB). The instruction based
roofline performance characterization for the afore-
mentioned kernels is given in Fig. 5 for the AMD
MI100.
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Figure 6: FP64 kernel roofline for considered kernels on the
Intel Gen9. Each data point represents the average per-
formance of the specified kernel over all invocations as is
returned by Intel(R) Advisor.

Intel. For the Intel Gen9 GPU, we have used
the Intel(R) Advisor 2021.1 beta10 (build 607346)
Command Line Tool to collect kernel-level per-
formance metrics. Unlike nvprof and rocprof

which collect metrics separately on a per-invocation
basis, the Intel Advisor automates the collec-
tion of metrics related to the AI and FLOP
counts into a single invocation with the arguments
--collect=roofline --profile-gpu. However,
rather than reporting results for each kernel invoca-
tion, it reports an average performance metric for
each kernel. The FP64 roofline performance char-
acterization for the aforementioned kernels in terms
of both the DRAM and GTI RPM roofs is given in
Fig. 6 for the Intel Gen9 GPU. Remark that the
collocation kernel exceeds the DRAM roof and is
bounded by the GTI roof. We discuss this phe-
nomena in the following.

A summary of the average architectural efficien-
cies (AE, the ratio of achieved to peak operational
throughput) using these accelerators specific strate-
gies is given in Tab. 3. As the Intel and NVIDIA
characterizations were both made using AI as the

Table 3: Average architectural efficiencies of performance
critical kernels for Taxol RPBE0/6-31G(d). Architectural
efficiencies were computed per-kernel invocation relative to
Eq. (12) for the operational intensity measured for each ar-
chitecture and then averaged over the kernel invocations.

Architecture
Average Architectural Efficiency (%)
Collocation Weights Density

NVIDIA V100 60.98 39.18 64.45
AMD MI100 34.67 55.58 64.90
Intel Gen9 52.48 59.10 46.40
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operative operational intensity, their results are di-
rectly comparable. For the weights kernel, which
is a 1D kernel that admits simple memory access
patterns, both CUDA and DPC++ produce kernels
with similar AI and DPC++ achieves higher AE.
For the 2D kernels (Density and Collocation) which
exhibit more complicated memory access patterns,
DPC++ produces kernels with roughly 0.1x the AI
of those produced by CUDA. Due to the fact that
Gen9 and the V100 admit the same SIMT length,
the number of FLOPs per SIMT unit would be ex-
pected to be roughly the same between the two
architectures. Thus the difference in AI between
the two architectures is likely due to the fact that
the CUDA compiler produces more aggressive opti-
mizations for the memory access patterns in these
kernels than are produced by the DPC++ com-
piler and the Level Zero runtime. A notable feature
of the DPC++ performance characterization is the
fact that the collocation kernel is not bounded by
the DRAM roof, but rather the GTI roof. This in-
dicates that the collocation kernel is able to reuse
data populated in the LLC shared between the CPU
and GPU in the Gen9 architecture. This is a rea-
sonable observation due to the fact that the set
of basis function parameters {Rµ, Lµ,Gµ} may be
reused for each quadrature point for which φµ is
evaluated, thus being cached into the LLC when
read for the first evaluation. The observed AE for
this kernel would likely be improved by tuning the
kernel invocation to ensure these parameters can
reside in LLC for a particular subset of S without
being ejected over the course of the kernel execu-
tion.

On the other hand, performance characteriza-
tions for the AMD MI100 were made using II rather
than AI. As such, it is not meaningful to compare
these AE’s directly, i.e. X% efficiency with respect
to AI does not necessarily indicate X% efficiency
with respect to II. That being said, these two meth-
ods provide compatible information as they both
produce valid performance characterizations of the
kernels of interest, relative to their architectural
bounds. Both the Weights and Density kernels
achieved between 50%-70% architectural efficiency
on average for the MI100 which is comparable to
the efficiencies achieved on the Intel and NVIDIA
GPUs. The collocation kernel on the other hand
under performed on the MI100 using this perfor-
mance characterization. The reasons for this under-
performance in terms of the II characterization is
not immediately clear without access to additional

performance metrics on AMD hardware. However,
due to the fact that the collocation kernel consumes
roughly the same percentage of overall compute
time across all of the considered architectures, it
is likely that this low performance characterization
is an artifact of the II performance model rather
than something inherent in the kernel implementa-
tion itself.

4. Conclusion

As GPU hardware grows more diverse, scientific
application developers must develop portable, ex-
tensible software in order to fully exploit the com-
putational power of modern HPC resources. How-
ever, with this growing diversity in hardware comes
an additional challenge in that no one program-
ming model exposes the entire feature set of ex-
isting or future accelerator architectures. Thus, to
achieve optimal performance on an architecture of
interest, it is typically the case that one must tar-
get specific hardware with the programming model
which, from either a language or compiler perspec-
tive, most aptly exposes the most optimization po-
tential. In this report, we examined the problem of
performance portability for the implementation of
KS-DFT in the NWChemEx software package.

We proposed a modular software framework
which decouples the expression of the algorithmic
workflow for the numerical integration of the XC
potential from the implementation details of its per-
formance critical kernels. As such, the overall al-
gorithmic scaffold of this task may be expressed
in a high-level language (C++ in this work) while
allowing for the expression of each of the kernels
in an accelerator specific programming model of
choice. In practice, this allows the developer to
maintain a single code base which targets multi-
ple accelerators simultaneously with the ability to
perform per-architecture optimizations of perfor-
mance critical operations without affecting the im-
plementations on other architectures and may be
extended to future architectures simply by adding
implementations of the appropriate kernels in the
programming model which is most aptly applicable.
This modularity has been made efficacious in large
part to the existence of architecturally optimized
BLAS libraries such as MAGMA, hipMAGMA and
oneMKL.

We have demonstrated that the proposed soft-
ware framework allows for sufficient flexibility in
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kernel specialization to exhibit reasonable perfor-
mance portability across a diverse set of accelerator
architectures: the NVIDIA V100 GPU, the AMD
MI100 GPU, and the Intel Iris Gen9 integrated
graphics GPU. Due to the large difference in com-
putational power exhibited by these architectures,
we have chosen to characterize the performance of
the XC integration in terms of relative performance
metrics rather than absolute metrics such as time-
to-solution. Qualitatively, we have demonstrated
that the proposed scheme exhibits the same bottle-
necks across architectures, thus indicating that the
implementation strategies used for the performance
critical kernels examined in this work are generally
portable across the considered programming mod-
els. Quantitatively through the use of the Roofline
Performance Model, we have demonstrated that the
performance critical kernels that must be optimized
for each architecture of interest achieve reasonably
portable architectural efficiency using the proposed
scheme.

Although promising, the results presented in this
work are largely preliminary leaving many areas
for improvement and future research. In particu-
lar, the source-to-source translation strategy used
in this work to convert optimized kernels in CUDA
to either HIP or DPC++ will typically not yield the
most optimal implementation strategies across dif-
ferent programming models. However, the decou-
pling of algorithmic specification from kernel imple-
mentation, admitted by design pattern proposed in
this work, allows for fine-grained tuning of each ker-
nel individually for each programming model of in-
terest. As such, a major direction of future research
posed by this work would be to perform architec-
ture specific optimizations for performance critical
kernels. In addition, there were two kernels of im-
portance which were not explicitly examined in this
work. The first is the kernel used to pack/unpack
the batch-local matrices as depicted in Fig. 1. This
kernel can become dominant for large problems on
all of the architectures considered (see Ref. [24] for
examples on NVIDIA hardware). This kernel was
omitted due to the fact that the cross-over point
in system size for which it becomes dominant over
the FLOP intensive kernels examined in this work
is far past the size which is currently practical on
the Gen9 GPU, and thus would not provide any
additional insight into the problem of performance
portability in this context. The second is the eval-
uation of the XC energy density and its derivatives
on the device. This kernel was omitted primarily

due to the fact that it is not performance critical
(<0.1% of overall runtime on all of the considered
accelerators). However, due to the vast number of
approximate XC functionals which exist in the liter-
ature, the development of a device portable library
to perform this task poses a non-trivial software
development effort. The development of such a li-
brary will be addressed in a future publication by
the authors.
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