
UC San Diego
Technical Reports

Title
Guessing Two Secrets with Small Queries

Permalink
https://escholarship.org/uc/item/1tw02160

Authors
Micciancio, Daniele
Segerlind, Nathan

Publication Date
2001-11-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1tw02160
https://escholarship.org
http://www.cdlib.org/

Guessing Two Secrets with Small Queries

Daniele Micciancio and Nathan Segerlind

Department of Computer Science

University of California, San Diego

La Jolla, CA 92093

daniele@cs.ucsd.edu, nsegerli@cs.ucsd.edu

Abstract

We present an adaptive strategy to recover two

secrets from an adversary which uses linear size

queries and is computationally efficient, solving a

problem left open in [2]. To obtain an intersect-

ing family containing the two n-bit secrets, 4n + 3

queries are are made, and time
O

(n

2

) and space

O

(n) are consumed.

1 Introduction

The problem of recovering one of two n-bit se-

crets from an adversary was introduced in [2]. A

malevolent but truthful adversary has two secret n-

bit strings. A seeker repeatedly asks questions of

the form “Does a string belong to a set X?”. The

adversary must give the correct answer for one of

the strings, but can choose which string to use when

answering. It is possible for the adversary to an-

swer in such a way that the seeker cannot learn both

secrets. However, there are strategies by which the

seeker can learn either one of the secrets, or a triple

of strings which contains both of the secrets. Such

problems have arisen recently in connection with

certain Internet traffic routing applications.

�NSF Career Award CCR-0093029
yPartially supported by NSF grant DMS-9803515

In theorem one of [2], an adaptive algorithm re-

quiring at most 4n + 3 queries was demonstrated.

However, the queries made require 2n bits of repre-

sentation, so this recovery algorithm requires space

(2

n

)! A strategy making
O

(n

3

) many queries

each of size
O

(n), requiring
O

(n

4

) time was dis-

cussed. It was let open to provide a strategy which

recovers the secrets efficiently with the optimal,

�(n), number of queries. We answer this ques-

tion in the affirmative by demonstrating an adaptive

strategy which makes 4n + 3 queries, each of size

O

(n), and runs in time
O

(n

2

). Not only is this strat-

egy efficient, but it makes use of the least number of

queries currently known for any strategy.

Independently, Noga Alon, Venkatesan Gu-

ruswami, Tali Kaufman and Madhu Sudan have

shown a
O

(n

3

) time,
O

(n) size oblivious strategy

which makes �(n) many queries in [1]. While our

strategy makes fewer queries, by a linear factor,

and recovers the secrets more efficiently, it makes

great use of asking different queries at different

stages, and is inherently adaptive.

2 The Two Secrets Problem

We adopt the formulation of the 2-secrets problem

as a search for a hidden edge in a graph. Consider

the complete graph on length n binary strings. The

adversary has a hidden pair of strings, an edge. The

goal of the seeker is to learn the hidden edge. The

seeker makes a query by proposing a set of vertices,

X . The adversary must choose one of the secrets,

s, and answer the question x 2 S correctly. If the

adversary answers “YES”, edges disjoint from X

are deleted, if the adversary answers “NO”, edges

contained in X are deleted.

It can be shown, [2], [1], that the best the seeker can

hope to do is to determine an intersecting family of

edges so that the secret edge belongs to the family.

Because the only intersecting families of edges are

stars (sets of edges adjacent to a common vertex)

and triangles, the seeker learns either one secret or

a triple that contains both secrets. It is in this sense

that the seeker is said to have a strategy for the 2-

secrets problem.

We use the following notation from [2] to iden-

tify the intermediate graphs which arise during the

seeker’s secret search.

Definition 2.1 Let A, B and C be disjoint set of n

bit strings.

� K(A;B) is the complete bipartite graph be-

tween vertex sets A and B.

� K(A;B) is the graph formed by joining every

vertex in a clique on A to every vertex in an

independent set on B.

� K(A;B;C) is the complete tripartite graph

with vertex sets A,B,C.

Notice that the intersecting families are of the form

K(fsg; B) and K(fs

1

g; fs

2

g; fs

3

g).

3 Using Prefixes to Guess Secrets

3.1 Representation of Sets

We will not work with arbitrary sets of strings,

rather we will work with boolean combination of

sets specified by prefixes. Indeed, all sets of strings

used in the course of the strategy will be represtable

by a certain simple combination of at most three

prefixes. This is what keeps the seeker’s memory

requirements low.

Definition 3.1 Let � 2 f0; 1g

�n

be given. Set

T

�

:= fx 2 f0; 1g

n

j � � xg.

As the reader will see, all sets of vertices used in

the course of the strategy are of the form T

�

, T c

�

, or

T

�

[T

�

.

3.2 The Seeker’s Strategy

Our strategy is the same as the one presented in [2],

with a modification in the bookkeeping. Rather than

abitrarily partition the strings so as to bisect the sets,

we partition the trees so as to increase the length of

the common prefix of each.

The first step of the strategy is to make the query

“Does the secret begin with 0?”. If the answer is

“YES”, let � =

0

0

0. If the answer is “NO”, let � =

0

1

0. The seeker then reduces K(T

�

; T

c

�

).

3.2.1 Reducing K(T

�

; T

c

�

)

At most two queries are made, T

�0

and T

�1

.

We proceed as diagrams 1 and 2 indicate, re-

ducing to either K(T

�0

; T

c

�0

), K(T

�1

; T

c

�1

), or

K(T

�0

; T

�1

; T

c

�

).

We leave this phase either when the length of � be-

comes n, and we have a star centered at �, or we

reduce to a graph of the form K(T

�0

; T

�1

; T

c

�

).

If the graph has reduced to K(T

�0

; T

�1

; T

c

�

), we

proceed by reducing K(T

�0

; T

�1

;
). This is be-

cause in the usual case, when � is not very short,

T

c

�

is almost as large as
. It is of no help to use

this et rather than the set of all strings. By reducing

toK(T

�0

; T

�1

;
), we slightly reduce the complex-

ity of our queries, and simplify the presentation of

the strategy.

2

T

c

�

T

c

�

YES
NO

T

�0

T

�

T

c

�

T

c

�

T

�0

?

T

�0

T

�1

T

�0

T

�1

T

c

�0

T

�0

T

�1

Figure 1. The “YES” branch repeats fi
gre 1, the “NO” branch follows figure
2

YES
NO

T

c

�

T

c

�

T

c

�

T

�0

T

�1

T

�1

?

T

�0

T

�1

T

�1

T

c

�1

T

�0

T

�1

Figure 2. The “YES” branch follows fig
ure 1, the “NO” branch follows figure
3

YES NO

T

�
T

�

T

T

�1

T

�0

T

�0

T

�1

T

0

T

�1

T

0

T

�0

T

�1
T

�0

T

1

T

1

T

�0

T

1

T

�1

T

�0
T

�1

T

0

T

�0

[T

�0

[T

0

?

Figure 3. The “YES” branch follows di
agram 4, the “NO” branch is handled
symmetrically

3.2.2 Reducing K(T

�

; T

�

; T

)

First we consider the case when j�j; j�j; jj < n.

We split each of T
�

,T
�

and T

into two pieces, and

make four queries.

First, the query T
�0

[T

�0

[T

0

is made, and we

proceed as inicated by figure 3.

Notice that the resulting graphs in figure 3 are the

same up to swapping T

�0

and T

�1

, T
�0

and T

�1

,

T

0

and T

1

. For this reason, diagrams 4, 5, 6, 7,

8. show only the behavior to be taken under the

“YES” branch of figure 3. The strategy proceeds

in much the same way under the “NO” branch of

figure 3, with the exception that the “YES” and

“NO” branches are transposed. This works be-

cause every query made in this phase is of the form

3

YES NO

T

�1

T

0

T

�0

T

�1
T

�0

T

1

T

�0

[T

�1

[T

1

?

T

�1

T

0

T

�0

T

�1
T

�0

T

1

T

�1

T

0

T

�0

T

�1
T

�0

T

1

Figure 4. The “YES” branch follows di
agram 5, the “NO” branch follows 7

T

��

1

[T

��

2

[T

�

3

.

The second step is to make the query T
�0

[T

�1

[

T

1

. Figure 4 shows how we precede, on the

graph resulting when the answer to the first query

is “YES”.

Finally, we make the queries T
�1

[T

�0

[T

1

and

T

�1

[T

�1

[T

0

. Figures 5 and 6 show how we

proceed in the case arising from the first possibility

in the answer to the second query and figures 7 and

8 show how to proceed in the other case.

Next we consider the case when one of the trees

consists of a single string. Because of how the

procedure for reducingK(T

�

; T

c

�

) works, when we

first obtain a graph of the form K(T

�

; T

�

; T

), we

have that T
�

= T

�0

, T
�

= T

�1

and T

=
, for

some string �. Each pass through this stage of the

search increases the length of the prefix of each set

by exactly one. Therefore, if there is one set which

is a singleton, then there are two sets which are sin-

gletons. If all three sets are singletons, then we are

finished. So we need only consider the case when

there exactly two singleton sets.

To reduce such graphs, we split the non-singleton

set and make two queries: T
�

[T

0

and T
�

[T

0

.

YES NO

T

�1

[T

�1

[T

0

?
T

�1

T

0

T

�0

T

�1
T

�0

T

1

T

�1

T

0

T

�0

T

�1
T

�0

T

1

T

�1

T

0

T

�0

T

�1
T

�0

T

1

T

�0

T

�

[T

Figure 5. The “YES” branch follows 3,
the “NO” branch follows 6

NOYES

T

�1

T

�1

[T

�0

[T

1

?

T

0

T

�0

T

�1
T

�0

T

1

T

�1

T

�1

T

0

T

�0

T

�1
T

�0

T

1

T

0

T

�0

T

�1
T

�0

T

1

Figure 6. The “YES” branch follows 3,
the “NO” branch follows 14

4

YES
NO

T

�1

[T

�0

[T

1

? T�1

T

0

T

�0

T

�1
T

�0

T

1

T

�1

T

0

T

�0

T

�1
T

�0

T

1

T

�1

T

0

T

�0

T

�1
T

�0

T

1

Figure 7. The “YES” branch follows di
agram 8, the “NO” branch follows dia
gram 9

YES NO

T

�1

T

0

T

�0

T

�0

T

1

T

�1

T

0

T

�0

T

�1

T

0

T

�0

T

�0

T

1

T

�0

T

�1

[T

�1

[T

0

?

T

�

[T

Figure 8. Both branches follow dia
gram 14

YES NO

T

�1

[T

�1

[T

0

? T

�1

T

0

T

�0

T

�1
T

�0

T

�1

T

�1

T

0

T

�0

T

�1
T

�0

T

0

T

�0

T

�1
T

�0

T

0

T

�

[T

�

Figure 9. Both branches follow dia
gram 14

We proceed as in figures 10 and 11. Notice that in

figure 10, the resulting graphs are identical up to the

swapping of T
0

and T
1

. For this reason, the graph

resulting under the “NO” branch can be reduced as

in figure 11, but with the query T
�

[T

1

.

Finally, we consider the form of the graphs resulting

from this stage of the strategy. Intially, the graph is

of the form K(T

�0

; T

�1

;
).

It is easily checked that as we repeat this stage, the

graph will always have the form K (T

�

; T

; T

�

) or

K (T

�

; T

�

[T

�

).

3.2.3 Reducing K(T

�

; T

�

[T

)

If j�j = n, then K(T

�

; T

�

[T

) is a star and we

are done, so we consider the case when j�j < n.

We split T
�

into two pieces, and make two queries

T

�0

[T

�

and T
�0

[T

, following diagram 12.

It is easily verified that if the graph has the form

K(T

�

; T

�

[T

) in the beginning of one of these

passes, afterwards it will have the formK(T

�

; T

�

[

5

YES NO

T

�

[T

0

?
T

0

T

�
T

�

T

1

T

0

T

�
T

�

T

1

T

�
T

�

T

0

T

1

Figure 10. The “YES” branch follows
diagram 11, the “NO” branch follows
by symmetry.

YES
NO

T

�

[T

0

?

T

0

T

�
T

�

T

1

T

0

T

1

T

�
T

�

T

�
T

�

T

0

T

1

T

�

[T

T

�

Figure 11. The “YES” branch follows
diagram 10, the “NO” branch follows
diagram 14

YES NO

T

�

T

�

[T

T

�

T

T

�

T

T

�

T

T

�0

[T

�

?

T

�0

T

�1

T

�0

T

�1

T

�0

T

�1

Figure 12. The “YES” branch follows
figure 13, the “NO” branch follows
symmetrically

YES NO

T

�

T

T

�

T

T

�

[T

T

�

T

T

�

T

T

�0

T

�1

T

�1

[T

�

?

T

�0

T

�1

T

�1

T

�0

T

�1

Figure 13. Both branches follow figure
14

6

YES NO

T

�

T

�

T

�0

[T

�0

?

T

�0

T

�0

T

�1

T

�1

T

�0

T

�0

T

�1

T

�1

T

�0

T

�1

T

�0

T

�1

Figure 14. The “YES” branch follows
figure 15, the “NO” branch follows
symmetrically

YES NO

T

�0

T

�0

T

�1

T

�1

T

�1

[T

�0

?

T

�0

T

�0

T

�1

T

�1

T

�1

T

�

T

�0

T

�0

T

�1

T

�1

T

�

T

�1

Figure 15. Both branches follow figure
14

T

) or K(T

�

; T

�

).

3.2.4 Reducing K(T

�

; T

�

)

If either j�j = n or j�j = n, then K(T

�

; T

�

) is a

star and we are done, so we consider the case when

j�j; j�j < n. We split T
�

and T

�

, and make two

queries T
�0

[T

�0

and T
�0

[T

�1

, following diagram

14.

4 Complexity Analysis

Clearly, every query can be specified with
O

(n)

many bits.

To bound the number of iterations, and hence

the time complexity, we first bound the number

of iterations for each of the sub-tasks: reducing

graphs of the form K(T

�

; T

�

), K(T

�

; T

�

[T

),

K(T

�

; T

�

; T

) and finally K(T

�

; T

c

�

).

Let the unnamed length of a string � be n� j�j.

Let f(n
1

; n

2

) denote the number of queries needed

to reduce K(T

�

; T

�

) where � and � have unnamed

lengths n
1

; n

2

respectively. Clearly, f(n
1

; n

2

) �

2n

1

+ 2n

2

.

Let g(n

1

; n

2

; n

3

) denote the number of queries

needed to reduce K(T

�

; T

�

[T

), where �, �

and have unnamed lenghts n

1

; n

2

; n

3

, respec-

tively. WLOG, assume n

2

� n

3

. The strategy

of subsubsection 3.2.3 will either extend � to

a length n string, or make i passes (lengthen-

ing � by i bits) before removing one of T

�

or T

and moving to reducing a graph of the

form K(T

�

; T

�

). Therefore, g(n

1

; n

2

; n

3

) �

max (2n

1

; 2 + 2i+ f(n

1

� i; n

2

)) =

max (2n

1

; 2 + 2i+ 2n

1

� 2i+ 2n

2

) =

2 + 2n

1

+ 2n

2

.

Let h(n
1

; n

2

) denote the number of queries needed

to reduce K(T

�

; T

�

; T

), where has unnamed

length n

1

, and �; � have unnamed length n

2

.

In the strategy of subsubsection 3.2.2, we either

reduce to a triangle, or, we reduce to a graph

of the form K(T

�

; T

�

[T

). If we reduce to a

triangle, a total of 4n
2

+ 2(n

1

� n

2

) = 2n

1

+ 2n

2

queries are made. If we reduce to a bipar-

tite graph, the number of queries is bounded

by max

i

(4i+ 4 + g(n

1

� i� 1; n

2

� i)) =

max

i

(4i+ 4 + 2n

1

� 2i� 2 + 2n

2

� 2i+ 2) =

2n

1

+ 2n

2

+ 4 .

Reducing K(T

�

; T

c

�

), when � has un-

named length n

1

therefore takes at most

max (2n

1

;max

i

(2i+ h(n; n

1

� i))) =

7

max (2n

1

; 2i+ 2n+ 2n

1

� 2i+ 2) =

2n+ 2n

1

+ 4.

Therefore, because the strategy starts by reducing

K(
; ;) by one query, it makes at most 1 + 2n +

2(n�1)+4 = 4n+3many queries before arriving

at an intersecting family.

Because there are
O

(n) many queries made, each

query requires
O

(n) many bits, and the computa-

tion between received answers is an analysis of a

constant number of cases, the time complexity of

this strategy is at most
O

(n

2

).

References

[1] Noga Alon, Tali Kaufman, Venkat Guruswami,

and Madhu Sudan. Guessing secrets efficiently

via list decoding, 2001. To appear in SODA

2002.

[2] Fan Chung, Ronald Graham, and Tom

Leighton. Guessing secrets. The Electronic

Journal of Combinatorics, 8, 2001.

8

