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Abstract

Foundation species, such as trees, corals, grasses, oysters, and rockweeds, must

be common and abundant to effectively modify the physical environment and

increase biodiversity by buffering environmental stress. Yet many of these

important species have been declining due to disease, climate change, and

other factors. A prime example is the precipitous population decline of marine

rockweeds, which is attributed to increased urbanization and its accompany-

ing impacts. Rockweeds provide three-dimensional habitat in harsh rocky

intertidal environments and regulate ecosystem functioning, essential roles

that no substitute species are capable of filling. Recovery of impacted

rockweed populations is typically slow and unpredictable due to their

limited dispersal capacity. These issues have motivated efforts to conserve

remaining populations of rockweeds and reestablish or enhance depleted ones.

Successfully doing so requires a robust understanding of factors that affect sur-

vival of the species and the processes that influence ecosystem structure, along

with rigorous scientific testing of restoration methods and the factors that

affect restoration success. In this comprehensive review, we summarize the

current knowledge of rockweed ecology, highlight studies that could inform

restoration practices, and recommend ways to improve our ability to imple-

ment scalable restoration of rockweeds and accompanying ecosystem-wide

benefits.

KEYWORD S
climate change, foundation species, fucoids, population decline, reestablish, rocky intertidal
ecosystems

INTRODUCTION

Ecosystems are often characterized by conspicuous organ-
isms referred to as foundation species (sensu Dayton, 1972)
that support biodiversity, enhance ecosystem function and

stability, and are often culturally valuable. In terrestrial
ecosystems, foundation species range in scale from large
canopy-forming trees to diminutive grasses. Similarly,
marine habitats support a wide spectrum of species
that structure communities, including kelps, mangroves,
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corals, seagrasses, mussels, and oysters. Fundamentally,
the influence foundation species have on ecosystems is
commensurate with their overall abundance; declines in
abundance of foundation species can have cascading detri-
mental effects at population and community levels (Ellison
et al., 2005, 2019). For example, the precipitous decline of
shade-tolerant eastern hemlock trees in North America
resulted in significant reductions in aquatic invertebrates as
well as declines in sediment retention and productivity in
streams (Degrassi et al., 2015; Ellison et al., 2005).

Rocky intertidal foundation species, such as mussels,
barnacles, and seaweeds, are common in temperate
regions and provide three-dimensional habitat required
by other species to survive. Rockweeds, a group of con-
spicuous brown seaweeds (Phaeophyceae) in the order
Fucales (Fucoids), are often the dominant macroalgae in
temperate intertidal and shallow subtidal rocky habitats
(Figure 1). Ecologically, the importance of these sea-
weeds in regulating ecosystem functioning and facilitat-
ing high biodiversity is well recognized, and rockweeds
are increasingly being used as indicator species to assess
the status of rocky intertidal ecosystems for management
purposes (e.g., Maki, 1991; Murray et al., 2016;
Orlando-Bonaca et al., 2008). Economically, rockweeds
are valuable as commercially harvested species (Lotze
et al., 2019), and they provide important ecological ser-
vices supporting commercially harvested taxa, including
refuge for lobsters (Schmidt et al., 2011) and nursery hab-
itat for fish (Gullo, 2002; Vercaemer et al., 2018).

Rockweed populations, like many other species con-
sidered foundational to ecosystems, have sustained exten-
sive degeneration and range contractions worldwide
(e.g., Nicastro et al., 2013; Wernberg et al., 2011).

For example, the southern range edge for the rockweed
Fucus vesiculosus has shifted northward 1250 km from
Morocco to Portugal (Nicastro et al., 2013), and the spe-
cies has declined in distribution by more than 95% in the
Baltic Sea (Torn et al., 2006). Globally, the causes of
population declines are not well known, can result from
complex interactions of multiple sources of stressors,
and vary greatly among geographic locations and
species. Rockweeds are known to be sensitive to both
natural and anthropogenic perturbations, including
severe storms (Underwood, 1998), ice scour (McCook &
Chapman, 1991, 1997), pollution (Bellgrove et al., 1997),
trampling (Bertocci et al., 2011), and climate change
(Álvarez-Losada et al., 2020).

The decline of rockweed populations, as well as the
positive effects that rockweeds have on the biological
communities they inhabit, have motivated efforts to
conserve remaining populations and to reestablish or
enhance depleted ones (e.g., Coleman & Wernberg, 2017;
Stekoll & Deysher, 1996; Whitaker, 2009; Whitaker et al.,
2010). However, successful reestablishment of depleted
populations requires understanding the factors that
affect survival of the species along with rigorous
scientific testing of outplanting methods. An under-
standing of community structure, including biotic inter-
actions, is also helpful to ensure restoration is effective
(Underwood, 1996). Here, we will (1) explain why rock-
weeds are prime subjects for restoration, (2) summarize
published evidence of changes in rockweed populations,
(3) identify and discuss the factors limiting population
recovery, and (4) review past restoration activities and
provide recommendations for future ecological restora-
tion efforts.

F I GURE 1 Rockweeds are often the dominant seaweed in temperate rocky intertidal ecosystems. (Left) The rockweed Silvetia

compressa in the upper intertidal zone on the Channel Islands, California (photo credit: S. Whitaker 2021). (Right) Fucus distichus covers

most of the mid and upper intertidal gradient on Calvert Island in British Columbia, Canada (photo credit: L. Anderson 2012).
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ROCKWEEDS AS FOUNDATION
SPECIES

Rockweeds play a strong role in the structuring of commu-
nities via provision of habitat and modifications to the envi-
ronment (Bellgrove et al., 2017). The three-dimensional
rockweed canopy provides a complex matrix of microhabi-
tats, increasing niche availability for a high diversity of
taxa (e.g., Bertness et al., 1999; Fredriksen et al., 2005;
Hily & Jean, 1997; Johnson & Scheibling, 1987; Schiel &
Lilley, 2011). Different sets of species can be found living
in the understory of the rockweed canopy, as epiphytes
attached to the rockweeds, along the edge of canopy limits,
and asmobile organisms freelymoving through a rockweed
bed (Figure 2). Rockweed canopies modify both abiotic and
biotic conditions, either directly by providing shelter or
reducing environmental stress or indirectly by altering
biotic interactions (e.g., Bertness et al., 1999; Beermann
et al., 2013; Scrosati, 2016; Scrosati & Ellrich, 2018; Watt &
Scrosati, 2013a, 2013b). Alterations to the environment can
have both positive and negative effects on associated spe-
cies, but, generally, rockweed facilitates the presence of
long-lived taxa over opportunistic species, thereby
increasing community stability, resiliency, and diversity
(e.g., Eriksson, 2007; Jenkins et al., 1999; Lilley &
Schiel, 2006).

Modifications to the physical environment by rock-
weed canopies include a reduction in the rate of evapora-
tion and temperature change during emersion periods

(Scrosati, 2016; Scrosati et al., 2021; Scrosati & Ellrich,
2018; Watt & Scrosati, 2013a, 2013b), light attenuation,
and slowing of water flow. For instance, during warm
periods at low tide, air temperature can be 5–16�C lower
under the rockweed canopy compared to exposed rock
surfaces (Beermann et al., 2013; Bertness et al., 1999;
Brawley & Johnson, 1991). Similarly, evaporation rates
underneath the canopy during low tides can be signifi-
cantly lower than rates on the open rock (Brawley &
Johnson, 1991, 1993; Bertness et al., 1999; Beermann
et al., 2013). For example, in the high intertidal zone,
Bertness et al. (1999) found that water loss during emer-
sion was nearly 60% outside the canopy, while only ~5%
underneath the canopy. The refuge from thermal stress
and desiccation provided by rockweeds is particularly
important since these are important factors affecting the
ability of organisms to survive in harsh intertidal
ecosystems.

Because of the canopy structure and modifications
to the environment that rockweed beds provide, they
harbor a biologically diverse community of epifaunal and
understory species (Bertness et al., 1999; Colman, 1940;
Eriksson et al., 2006; Fredriksen et al., 2005; Gunnill, 1985;
Hawkins & Hartnoll, 1983; Hily & Jean, 1997; Jenkins
et al., 2004; Johnson & Scheibling, 1987; Lilley & Schiel,
2006; Lubchenco, 1983; Sapper & Murray, 2003; Schiel &
Lilley, 2011; Thompson et al., 1996). In England, for exam-
ple, Colman (1940) identified 177 invertebrate species
under the canopies provided by three species of Fucus.

F I GURE 2 The canopy provided by rockweed supports a diverse assemblage of rocky intertidal taxa in the California Channel Islands

(photo credit: M. Ready 2022).
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Silvetia beds in southern California, USA, had 47 species of
algae, 20 sessile invertebrate species, and 44 mobile
invertebrate species for a total of 107 taxa living under the
frond canopy (Sapper & Murray, 2003). In comparison,
communities associated with another well-documented
ecosystem engineer, the mussel Mytilus californianus on
the eastern north Pacific coast, harbor a similar level of
diversity with a range of 80–120 species found within a
mussel bed within a site (Kanter, 1977, 1978, 1979;
Straughan & Kanter, 1977). Rockweeds can also be impor-
tant for many other taxa, including macroinvertebrates
and fish that use the habitat for shorter periods of time,
and birds that feed on the invertebrates found within
the canopy (Hamilton, 2001; Hamilton & Nudds, 2003).
For example, crabs, lobsters (Phillippi et al., 2014; Schmidt
et al., 2011; Vercaemer et al., 2018), andmany fishes, includ-
ing some of commercial value (Gagnon et al., 2019;
Gullo, 2002; Mattsson, 2019; Rangeley & Kramer, 1995;
Vercaemer et al., 2018), utilize rockweed beds as feeding
areas or nursery habitat.

In addition to providing habitat for the organisms
that live in the understory, rockweed canopies often facil-
itate the recruitment of a diversity of taxa (Bertness
et al., 1999; Jenkins et al., 2004), including conspecifics
(Bertness & Leonard, 1997; Brawley & Johnson, 1991;
Moeller, 2002; Philbrick, 2004; Vadas et al., 1990; van
Tamelen et al., 1997). Recruitment, a process vital to pop-
ulation maintenance and long-term persistence, is typi-
cally enhanced in the presence of rockweed canopy cover
because desiccation and thermal stress are reduced dur-
ing periods of emersion compared to bare rock surfaces
(Beermann et al., 2013; Vadas et al., 2004). During
periods of immersion, the frond canopy formed by rock-
weeds slows water flow, which allows for gametes or lar-
vae to settle (Dayton, 1985).

Rockweeds are also large contributors to intertidal
and coastal food webs. Productivity of fucoids is consider-
ably higher than that of many other primary producers,
especially in the intertidal zone (Bordeyne et al., 2015;
Golléty et al., 2008; Tait et al., 2014; Tait & Schiel, 2010).
For example, in France, Bordeyne et al. (2015) found that
Fucus beds accounted for 77%–97% of carbon dioxide
flux, with gross primary productivity being 7–9 times
higher than that measured in eelgrass (Zostera noltii)
communities (Ouisse et al., 2010) and up to 44 times
higher than soft bottom habitats (Migné et al., 2004) or
sandy beach communities (Hubas et al., 2006). This fucoid
production forms the base of many food webs (Bertness &
Leonard, 1997; Jenkins et al., 2004; Lubchenco, 1983;
Moore, 1977), providing food for numerous grazers, includ-
ing amphipods (Moore, 1977), isopods, decapods, littorine
snails (Bertness & Leonard, 1997; Lubchenco, 1983), turban
snails (Steinberg, 1985), and limpets (Hawkins et al., 2008;

Jenkins et al., 2004). Feeding studies confirm that grazers
consume rockweeds, including Fucus and Silvetia
(Kubanek et al., 2004; Steinberg, 1985). Steinberg (1985)
observed that gastropods, including turban snails and per-
iwinkle snails that commonly seek refuge in rockweed
canopies, consistently preferred feeding on brown algae,
including Silvetia, over red algal species.

Given their high productivity rates and relatively high
biomass turnover, 40%–70% annually (Schmidt et al., 2011;
Vadas et al., 2004), rockweeds are also major contributors
to detrital pools (Bishop et al., 2010; Golléty et al., 2010;
Renaud et al., 2015), providing carbon for detrital con-
sumers. Rockweed detrital contributions are not only
important within the rockweed habitat, but cross-boundary
transport can export production into nearby habitats as
well. For example, up to 82% of macrophyte (primarily
rockweed) production was exported outside of the intertidal
zone in a Canadian Bay (Vadas et al., 2004).

ROCKWEED DECLINES

Fucoids are declining locally and regionally on temperate
rocky shores in the northern hemisphere (Davies et al.,
2007; Strain et al., 2014; Wahl et al., 2015). There is also
evidence of range contractions (Duarte et al., 2013;
Nicastro et al., 2013) and localized extinctions (Duarte
et al., 2013; Fales & Smith, 2022; Fern�andez, 2016;
Lamela-Silvarrey et al., 2012; Martínez et al., 2012; Viejo
et al., 2011) of rockweeds in multiple regions. Large
declines in subtidal fucoids, such as Sargassaceae, have
also been documented (reviewed by Falace et al., 2010).

In a thorough literature search on changes in
populations of true rockweeds in the family Fucaceae, we
found many examples of local extinctions, range shifts, and
population declines (Table 1). We did multiple searches
across several databases, including Web of Science,
ProQuest, and Google Scholar, to find literature pertaining
to long-term population declines in the family Fucaceae.
Search terms included “rockweed, fucoid, Ascophyllum,
Fucus, Pelvetia, Pelvetiopsis, Silvetia” and “change, declines,
and population decline,” among other key terms. Though
we also performed targeted searches for studies reporting
stability or increases in fucoid populations, fewer examples
were found, which in part may be due to publication bias
(Appendix S1: Table S1). Studies that fit the inclusion
criteria are included in Table 1, categorized by species,
region, and the hypothesized driver of change, if described.
Most of the studies did not experimentally or quantitatively
evaluate the cause of declines or local extinctions but rather
qualitatively discussed the likely drivers or causes of
change. Nevertheless, these insights may help focus future
analyses and experiments.

4 of 18 WHITAKER ET AL.
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The causes of declines in rockweed populations varied
across regions and time (Table 1). Eutrophication or
decreased water quality in the Baltic Sea played a role in
many subtidal rockweed declines documented in the
1980s, while climate change or extreme climate events and
stressors from multiple sources were more frequently asso-
ciated with declines in the 1990s and onward, particularly
in the northeast Pacific and Atlantic. Most of the discussed
causes of rockweed declines were anthropogenic in origin,
including climate change, water quality, habitat loss, and
introduced species, with the exception of increased herbiv-
ory documented in the Mediterranean, northeast Atlantic,

and the Baltic Sea (Table 1). Unfortunately, very few
studies have evaluated the mechanisms driving these
declines, so further work is needed to disentangle the com-
plex causes of global declines.

FACTORSAFFECTINGPOPULATIONS
ANDLIMITINGRECOVERY

Fucoid functioning and fitness are influenced by numer-
ous natural and anthropogenic stressors (e.g., Schiel &
Foster, 2006; Wahl et al., 2015 and references therein).

TAB L E 1 Studies observing population changes of multiple species of rockweed from the family Fucaceae from four regions and the

discussed causes of change.

Species Type of change

Discussed causes of change

StudiesI II III IV V VI

Northeast Pacific

Silvetia compressa Decline X X Barry et al. (1995), Gerrard (2005),
Goodson (2003), Graham et al.
(2018), Sagarin et al. (1999),
Whitaker et al. (unpublished
manuscript), and Widdowson
(1971)

Pelvetiopsis californica Decline; Local
extinctions

X X Fales and Smith (2022) and Thom
and Widdowson (1978)

Fucus distichus Decline X X Barry et al. (1995), Driskell et al.
(2001), and Weitzman et al. (2021)

Northeast Atlantic

Ascophyllum nodosum Decline X X Davies et al. (2007)

Fucus guiryi Decline; Local
extinctions;
Range change

X Riera et al. (2015)

Fucus serratus Decline; Range
change

X X Álvarez-Losada et al. (2020), Duarte
et al. (2013), Fern�andez (2016),
Reichert and Buchholz (2006), and
Fern�andez and Anad�on (2008)

Fucus spiralis Decline; Local
extinctions

X X Lamela-Silvarrey et al. (2012)

Fucus vesiculosus Decline X X Fern�andez (2016), Lamela-Silvarrey
et al. (2012), and Piñeiro-Corbeira
et al. (2016)

Pelvetia canaliculata Decline; Local
extinctions

X X Lamela-Silvarrey et al. (2012)

Baltic Sea

Fucus vesiculosus Decline X Kukk and Martin (1992) and
Mäkinen et al. (1984)

Mediterranean

Fucus virsoides Decline X X X X Battelli (2016), Munda (1982), Munda
(1993), and Rindi et al. (2020)

Note: The discussed causes of change are indicated by roman numerals: I, herbivory; II, climate change; III, water quality, pollution, oil spill, sedimentation;
IV, habitat loss; V, introduced species; VI, other impacts.
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Natural abiotic stressors include low (Pearson & Davison,
1993, 1994) and high (Bell, 1993; Kübler & Davison, 1993)
air temperature, decreased humidity (Brawley & Johnson,
1991), variations in nutrient supply (Korpinen et al., 2010),
irradiance (Martínez et al., 2012; Schonbeck & Norton,
1980) and osmotic shock, and extremes in sea temperature,
wave energy, and nutrients (Pielou, 1981; Vadas et al.,
1990). Human-caused stressors include urbanization
(Coleman & Wernberg, 2017), eutrophication (Bellgrove
et al., 1997), trampling (Araújo et al., 2009; Bertocci
et al., 2011; Denis, 2003; Irvine, 2005; Keough & Quinn,
1998; Schiel & Taylor, 1999), coastal sedimentation
(Schiel et al., 2006), petroleum spills (Crowe et al., 2000),
harvesting (Boaden & Dring, 1980), invasive species
(Sutherland et al., 2014), and climate change (Keser
et al., 2005; Sagarin et al., 1999). Individually, each of
these abiotic drivers imposes serious impacts on fucoids.
Collectively, the effects are likely to be synergistically
detrimental (Hurd et al., 2014).

Rockweeds lack the ability to reliably disperse over long
distances, which affects the ability of their populations
to recover following declines. Dispersal of rockweeds is
mostly limited to the movement of early life stages, includ-
ing propagules and zygotes (Schiel & Foster, 2006), and is
generally low, since the propagules are relatively large,
released near the substratum (Dudgeon et al., 2001;
Hays, 2006; Johnson & Brawley, 1998), and adhere to the
substratum with a polyphenolic adhesive shortly after fer-
tilization (Vreeland et al., 1993). For some species, the dis-
tance spores are capable of traveling is further reduced by
the thick mucilage that surrounds them and slows their
movement (Pearson & Brawley, 1996). Their propensity to
time gamete release to periods of calm environmental con-
ditions, such as low tide or low water motion, putatively
sensed via carbon acquisition (Pearson et al., 1998), also
limits dispersal in fucoids (Pearson & Brawley, 1996).
Dispersal distance can vary among different rockweed taxa
but is generally less than 30 m (Chapman, 1995) and more
often less than 10 m (Serrão et al., 1996; Williams & Di
Fiori, 1996). For example, propagules of the rockweed
Ascophyllum nodosum can disperse up to 6 m from the par-
ent source (Dudgeon et al., 2001), while Silvetia compressa
recruits typically within <3 m, but mostly less than 1 m
from the parent (Williams & Di Fiori, 1996). Longer
distance dispersal is possible through drifting of detached
reproductive fronds and is common for species in the family
Sargassaceae (Fucales) that are neutrally or positively
buoyant due to floating pneumatocysts (Chapman, 1995;
Deysher & Norton, 1981; Hawes et al., 2017; Norton &
Mathieson, 1983; Schiel, 1985). The importance of drifting
as a dispersal method for other taxa, including rockweeds,
has been hypothesized, but strong evidence is lacking
(McKenzie & Bellgrove, 2009).

Rockweed recovery can also be inhibited or slowed
due to temporal and spatial limitations in settlement and
recruitment. Rockweeds typically are reproductive during
relatively short periods during specific seasons, and,
although they tend to be highly reproductive with very
high fertilization rates (>95%; Brawley, 1992; Pearson &
Brawley, 1996), early postsettlement (EPS) life stages
have extremely high mortality rates (e.g., Brawley &
Johnson, 1991; Chapman & Johnson, 1990; Gunnill, 1980;
Johnson & Brawley, 1998; McLachlan, 1974; Moeller, 2002;
Vadas et al., 1992). For example, Moeller (2002) found that
EPS mortality during peak egg production was more than
99.99%. Lamote and Johnson (2008) found the density of
recruits from three rockweed species to be exponentially
higher under the canopy during all three years of their
study, while Moeller (2002) found peak egg production for
Silvetia to be markedly higher underneath the canopy than
areas outside the rockweed bed. EPS mortality due to desic-
cation is particularly high when the rockweed canopy is
limited in extent or absent (Johnson & Brawley, 1998;
Lamote & Johson, 2008; Moeller, 2002). At the same time,
EPS survival is reduced under the rockweed canopy due to
mechanical dislodgement caused by the sweeping motion
of fronds (Johnson & Brawley, 1998). For example, Johnson
and Brawley (1998) observed settlement of EPS Silvetia
recruits to be 1–2 orders of magnitude greater under the
adult canopy, yet juveniles were most abundant outside of
the canopy.

As a result of short-distance dispersal and temporal and
spatial constraints on successful recruitment, recovery of
fucoids is highly variable following disturbances (Bellgrove
et al., 2017; Jenkins et al., 1999, 2004; Underwood, 1998,
1999). Recovery time can also be affected by numerous
other factors, including the intensity and frequency of per-
turbations, the size of the area disturbed or proportion of
the population removed, and the timing and frequency of
disturbance (Bertocci et al., 2005; Farrell, 1989; Foster
et al., 2003; Kim & DeWreede, 1996; Paine & Levin, 1981;
Sousa, 1979, 1984). Frequent disturbances can inhibit
fucoid recovery because a large population with a contigu-
ous canopy can never form as individuals are being repeti-
tively removed over time. The timing of the disturbance can
also be important, depending on, for example, whether
recovery of a disturbed area occurs during optimal envi-
ronmental conditions or when fucoids are in peak repro-
ductive periods (Kim et al., 2017; Kim & DeWreede, 1996).
In the Gulf of Maine, disturbance timing has been
proposed to determine whether a fucoid-dominated
system can recover or shift to an alternative stable state
dominated by mussels and barnacles (Petraitis &
Dudgeon, 1999, but see Bertness et al., 2002). An alterna-
tive stable state can also be induced by the severity of the
disturbance, such as a stable Ascophyllum-dominated
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community shifting to a stable Fucus-dominated
community when a large area of Ascophyllum has been
manually removed (Menge et al., 2017).

Recovery times for fucoids are further complicated by
alterations in biotic interactions as a consequence of the dis-
turbance itself or due to indirect, cascading effects from the
removal of the canopy-forming rockweed (e.g., Kim, 1997).
For example, canopy removal and resulting decreased
whiplash can result in an increase in barnacle recruitment
and space occupancy, inhibiting subsequent recruitment
of fucoids (Kordas & Dudgeon, 2009). In another study,
removal of an A. nodosum canopy resulted in a cascade of
events that inhibited the rockweed from fully recovering
more than 12 years after removal (Jenkins et al., 1999,
2004). Without the protection of the Ascophyllum frond
canopy from desiccation stress, understory turf-forming
seaweeds disappeared, which resulted in an increase in
limpets that grazed down subsequent rockweed recruits
and other seaweeds within which rockweeds settle
(Jenkins et al., 1999).

RESTORATION

Restoration ecology is a relatively new discipline, which
may be why it is inherently expensive and associated
with somewhat high uncertainty of success and feasibil-
ity. This is particularly true for marine restoration,
which, in comparison to terrestrial systems, is still in its
infancy (Bayraktarov et al., 2016; De Groot et al., 2013).
Comparably few studies involve marine restoration
(Benayas et al., 2009; Blignaut et al., 2013), even though
these systems have often been heavily urbanized and
degraded (Halpern et al., 2008). For example, in a sample
of 224 ecological restoration studies published from 2004
to 2013, marine habitats were the least represented
(~15%) relative to terrestrial and freshwater environ-
ments (Kollmann et al., 2016). Although restoration can
be expensive, the cost of restoration is not necessarily cor-
related with success. Bayraktarov et al. (2016) found the
most successful restoration efforts to be highly contingent
upon ecosystem type, site selection, and techniques
applied rather than cost. Despite costs and variable levels
of success, restoration ecology has strong potential to be a
promising tool for repairing degraded ecosystems, particu-
larly as ecological theory evolves and is used more consis-
tently to inform restoration practices (Peterson et al., 2003).
Opportunities for practicing restoration will undoubtedly
continue through legally mandated responses to impacts
on natural resources (e.g., US Congress, 1980, 1990).

To date, a substantial amount of marine restoration
studies has focused on a few select taxa, such as
seagrasses, corals, oysters, and kelp, all of which are

considered to be ecosystem engineers. Notably rare,
however, are studies on restoration of other ecologically
important canopy-forming macroalgal engineers, such as
rockweeds. Certainly, the marked global decline of fucoid
algae (Piñeiro-Corbeira et al., 2016; Vogt & Schramm,
1991; Wahl et al., 2015) and their influence on commu-
nity structure have spurred an increased urgency in
developing strategies to halt and reverse their loss. Thus
far, fucoid restoration has predominantly focused on
nonrockweed, subtidal taxa, such as Sargassum and
Cystoseira (Campbell et al., 2014; La Fuente et al., 2019;
Lardi et al., 2022; Perkol-Finkel et al., 2012; Yoon et al.,
2014); only a handful of studies have focused on the restora-
tion of intertidal rockweeds in the family Fucaceae
(e.g., Gao et al., 2017; Jonsson et al., 2006; Kautsky et al.,
2019; Stekoll & Deysher, 1996; Tronske, 2020; Whitaker
et al., 2010).

To reverse losses of fucoids, a wide range of
human-mediated actions have been applied with variable
levels of success, including passive restoration approaches
that involve removing the source of the impact. However,
the causes of declines are often unclear or multifactorial
(Piñeiro-Corbeira et al., 2016). In cases where the causes of
fucoid losses are known, there is some support for the effi-
cacy of passive restoration. For example, in the Baltic Sea,
where large declines in subtidal rockweeds were caused by
eutrophication (Kautsky et al., 1986; Torn et al., 2006;
Vogt & Schramm, 1991), substantial recovery has occurred
following reductions in nutrient loads (Eriksson et al.,
1998; Nilsson et al., 2004). However, in other regions
where water quality has improved, recovery of fucoid
populations has failed to occur (Coleman et al., 2008; Díez
et al., 2009; Soltan et al., 2001), potentially due to low
standing stock or other discussed processes limiting rock-
weed resilience. In harvested rockweed populations, the
implementation of sustainable management strategies,
including equipment regulations, harvest limits, maximum
cutting heights, and longer periods between harvests,
has resulted in reduced impacts (Gendron et al., 2018;
Ugarte & Sharp, 2001).

In cases where rockweeds have failed to recover natu-
rally, active restoration techniques have been applied,
consisting primarily of transplantation of individuals
from the wild, cultivating outplants, constructing artifi-
cial habitat or substrate, and seeding with fertile
branches or propagules (Campbell et al., 2014; Kautsky
et al., 2019; La Fuente et al., 2019). Transplantation of
whole individuals, or thalli, in particular, has been rela-
tively successful (Figure 3). For example, Gao et al.
(2017) attributed the recruitment of ~1000 rockweed indi-
viduals to a transplant method they applied involving the
attachment of fertile rockweed thalli to polyethylene
rope, which, in turn, was affixed to the substratum.
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Experimental transplantation of S. compressa by chipping
off rock pieces with rockweeds attached from donor sites
and affixing the rock to the substrate at restoration sites
using marine epoxy resulted in survival rates as high as
~60% (Tronske, 2020; Whitaker et al., 2010). Success was
particularly high when transplants were placed on sloped
surfaces protected from direct sunlight and trampling
by visitors. More than a decade later, at a site where
rockweed had become locally extinct for well over two
decades, despite only <70 rockweed thalli being
transplanted (Whitaker et al., 2010), the small population
has expanded in 2022 to include well over a thousand
individuals (Figure 4). More recent efforts by the authors
to outplant Silvetia at several locations have shown early
success with high survivorship (>75% after ~4 months)
and subsequent recruitment of new individuals.

Some rockweed restoration studies have utilized
seeding, construction of artificial substrates, or a combi-
nation of these techniques to stimulate or enhance
recruitment of rockweeds. Whitaker (2009) collected fer-
tile receptacles of Silvetia and affixed them to the sub-
strate in mesh containers, while Stekoll and Deysher
(1996) attached entire fertile Fucus gardneri individuals
to erosion control netting and inoculated the plots with a
solution of zygotes. More recently, the authors have
preliminarily tested attaching fertile branches to the sub-
strate, stimulating gamete release in the field, and
outplanting of discs with germlings from laboratory gam-
ete release. Though these studies found that seeding tech-
niques were unsuccessful, similar approaches have been

found to be successful for other Fucales that are predomi-
nantly subtidal, such as Cystoseira (Verdura et al., 2018)
and Sargassum (Yu et al., 2012). Although Stekoll and
Deysher (1996) were unable to enhance recruitment via
seeding erosion control netting, they observed that
moisture retention facilitated by the netting may have
enhanced recruitment of zygotes from the surrounding
Fucus population. In a factorial field experiment, Whitaker
et al. (2010) found that the presence of artificial canopy
significantly enhanced survival of Silvetia transplants.

The deployment of artificial substrates or structures
that mimic the positive effect of a rockweed canopy by
reducing desiccation and facilitating natural recruitment
warrants further exploration. Studies employing the use
of artificial substrate for restoration of fucoids have
primarily been conducted on subtidal species, but the
techniques utilized may also be applicable to rockweed
restoration. These studies have largely focused on culti-
vating germlings on artificial substrates in vitro, then
outplanting the substrate into the wild. For instance,
Chai et al. (2014) cultured Sargassum germlings in vitro on
“breeding boards” that were then mounted on concrete
blocks and placed at the restoration site. The germlings
survived and, after one year, had grown to an average
length of ~15 cm. Growth of Gongolaria germlings in labo-
ratory conditions also showed promise for use in restora-
tion efforts (Lardi et al., 2022), though outplanting of
germlings has not been tested. A similar technique could
potentially be utilized in rockweed restoration by cultivat-
ing rockweed germlings in vitro onto artificial substrates

F I GURE 3 Rockweed transplant being attached via marine epoxy (photo credit: M. Ready 2022).
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such as ceramic tiles or epoxy discs, which may then be
affixed to the reef with bolts or marine epoxy. Early efforts
by the authors show that Silvetia can be stimulated to
release gametes with germlings settling on discs in the lab-
oratory, but germlings on outplanted discs have not sur-
vived. Several additional studies have utilized in vitro
propagation of fucoids onto artificial substrates with vary-
ing levels of success (Choi et al., 2003; Falace et al., 2006;
Kautsky et al., 2019; La Fuente et al., 2019; Leung et al.,
2014; Terawaki et al., 2003; Verdura et al., 2018; Yoon
et al., 2014; Yatsuya, 2010, and references therein).

Continued exploration of restoration techniques for
rockweeds is needed, particularly with the use of
seeding and lab cultivations. Though, as previously
discussed, transplanting entire thalli has been one of the
more successful techniques implemented in rockweed
restoration, it also has a potential impact on the donor
population. This is a particularly important consider-
ation for those species that have experienced steep pop-
ulation declines and have limited distribution. Seeding
and outplanting techniques limit the amount of material
harvested from the donor population, as fertile recepta-
cles (Whitaker, 2009), branches (Verdura et al., 2018), or
even drift material (Yatsuya, 2010) can be collected and
used to propagate individuals in vitro or be placed at a
restoration site to establish a source of propagules that
may facilitate natural recruitment.

CONCLUSIONS AND
RECOMMENDATIONS

Fucoid declines are predicted to increase in frequency and
intensity in the future, with rising temperatures accompa-
nying climate change (Kay et al., 2016; Keser et al., 2005;
Rugiu et al., 2018; Takolander et al., 2017; Wilson et al.,
2015). Recovery of damaged rockweed populations is slow
and unpredictable (Hill, 1980; Vesco & Gillard, 1980)
since dispersal is limited and early life stages experience
extreme mortality (Moeller, 2002). Recovery is particularly
limited when perturbations result in low abundances or
local extirpations because of insufficient adult sources for
recruitment and reestablishment. Assisted recovery can
facilitate a return to stable populations, particularly
for those populations with low abundances, whose
inhibited recovery may otherwise result in continued
declines and eventual extirpation. Because they are
foundational species, rockweed recovery can increase
the biodiversity of the entire rocky intertidal ecosystem
that depends on them. For these reasons, rockweeds are
optimal candidates for restoration. Although restoration
in rocky intertidal habitats is in its infancy, with very
few examples of tested approaches, some methods for
successfully restoring rockweeds have been identified
through rigorous empirical testing (Gao et al., 2017;
Whitaker et al., 2010).

F I GURE 4 Silvetia compressa at Little Corona del Mar in Newport Beach, California, 14 years after restoration (photo credit:

J. Smith 2021).
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Scaling up rockweed restoration remains a central
challenge. Although some work has been done in support
of this goal (e.g., seeding and cultivation), these studies
were largely unsuccessful (e.g., Stekoll & Deysher, 1996;
Whitaker et al., 2010). Cultivation techniques for rock-
weeds have been developed (e.g., Pearson et al., 1998),
but extremely high levels of mortality for early life stages
of rockweed species require vast numbers of propagules
or cultivation to larger sizes to enable successful restora-
tion. More research and development are needed to effec-
tively cultivate rockweed to stages that are resistant to
mortality in large enough numbers to be used in restora-
tion projects.

In the face of climate change, relying on historical
reference states as a target for restoration may be ineffec-
tive if the changing climate is a major factor contributing
to habitat degradation and species decline. Current regu-
latory frameworks understandably emphasize conserving
essential species within their indigenous range, and the
concept of assisted migration, also known as managed
relocation (Richardson et al., 2009) or assisted coloniza-
tion (Hällfors et al., 2014), is controversial. For restora-
tion to be successful in a rapidly changing climate,
nevertheless, the specific environmental requirements of
individual species and the possible impacts of such man-
agement actions should be seriously considered (Harris
et al., 2006).

Rocky intertidal ecosystems have tremendous value
through the provision of significant economic benefits for
tourism, fisheries, and real estate, vital ecosystem services,
such as shoreline stabilization and protection, and a rich
environment for education, research, and recreation. As a
result, rocky shores have long had great cultural and histori-
cal significance, including for tribal nations. However, rocky
intertidal ecosystems are vulnerable to impacts of human
activities, such as urbanization (Vogt & Schramm, 1991),
overexploitation (Harley & Rogers-Bennett, 2004), pollution
(Eriksson et al., 1998, 2002; Kangas et al., 1982; Kautsky
et al., 1986; Kukk & Martin, 1992; Mäkinen et al., 1984;
Middelboe & Sand-Jensen, 2000; Nilsson et al., 2004; Torn
et al., 2006), and climate change (e.g., Barry et al., 1995;
Sagarin et al., 1999). Many rocky shore ecosystems, particu-
larly near urban centers, are already degraded, and that
trend will continue as coastal development progresses.
Thus, effective and quantifiable restoration is needed to
maintain habitat health and resilience as well as the valu-
able services that rocky intertidal ecosystems provide.
Restoring key foundation species, such as rockweeds, is an
efficient way to achieve broader benefits to ecosystem integ-
rity. It is critically necessary to identify effective methods for
restoring rocky intertidal communities at meaningful spa-
tial scales to counter future large- and small-scale impacts
on this ecologically important and valuable marine

ecosystem. Restoring foundational rockweeds and their
associated communities is one of them and will help buffer
against the impacts of climate change and other cata-
strophic events in the future, as well as prevent larger scale
losses of intertidal communities.
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