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SPECIAL REPORT

This special report is the third in a series of articles based 
on joint panels and seminars by members of the Radio-

logical Society of North America (RSNA) and the Medical 
Image Computing and Computer Assisted Intervention 
(MICCAI) Society that focus on the present impact and 
future directions of artificial intelligence (AI) in radiology 
(1,2). The current report addresses the clinical deployment 
of AI into the practice of diagnostic radiology and explores 
the clinical, cultural, computational, and regulatory con-
siderations that imaging experts, clinical and technical, 
should consider for successful adoption of AI technology. 
Recommended reading relevant to each section is provided 
in the Table in the article. This report also introduces strat-
egies to ensure smooth and incentivized integration of AI 
into the radiology workflow.

Clinical Considerations

• Tools to exchange data either for centralized 
analytics or distributed learning will be able to 
support sharing of data and/or models but will 
require additional institutional infrastructure 
and support.

• Image annotation may become a less substan-
tial hurdle in the next 5 to 10 years.

• AI models built with small datasets or in-
house data can navigate challenges related to 
data bias and diversity if they are applied to tar-
geted populations and carefully monitored.

Data Sharing and Analytics
Data sharing is crucial to foster the development of ma-
chine learning (ML) models. Many institutions are not 
allowed or are unwilling to share their data, and there is 
a critical shortage of data on rare diseases (3). Clinicians 
may feel uncomfortable sharing images because of lack 
of time and expertise to extract, anonymize, and upload 
large volumes of data efficiently. Thus, data sharing can 
limit the deployment of AI into clinical practice and can 
pose a substantial barrier between institutions and even 
within the same institution. Data sharing also must abide 
by ethical and legal standards (4,5).

When institutions are open to data sharing, methods 
for data collection and transfer must be secure. Email is 
insecure and inefficient, compact discs are time-intensive 
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The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MIC-
CAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) 
in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine 
learning on the current clinical penetration of AI technology in radiology and how it is impacted by trust, reproducibility, explainability, 
and accountability. The collective points—both practical and philosophical—define the cultural changes for radiologists and AI scientists 
working together and describe the challenges ahead for AI technologies to meet broad approval. This article presents the perspectives of 
experts from MICCAI and RSNA on the clinical, cultural, computational, and regulatory considerations—coupled with recommended 
reading materials—essential to adopt AI technology successfully in radiology and, more generally, in clinical practice. The report emphasizes 
the importance of collaboration to improve clinical deployment, highlights the need to integrate clinical and medical imaging data, and 
introduces strategies to ensure smooth and incentivized integration.

© RSNA, 2024

Clinical, Cultural, Computational, and Regulatory 
Considerations to Deploy AI in Radiology: Perspectives of 
RSNA and MICCAI Experts

Marius George Linguraru, DPhil, MA, MSc • Spyridon Bakas, PhD • Mariam Aboian, MD, PhD •  
Peter D. Chang, MD • Adam E. Flanders, MD • Jayashree Kalpathy-Cramer, PhD • Felipe C. Kitamura, MD, PhD •  
Matthew P. Lungren, MD • John Mongan, MD, PhD • Luciano M. Prevedello, MD, MPH •  
Ronald M. Summers, MD, PhD • Carol C. Wu, MD • Maruf Adewole, MSc • Charles E. Kahn, Jr, MD, MS

From the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC (M.G.L.); Divisions of Radiology and Pediatrics, George 
Washington University School of Medicine and Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology, Department of Pathology & Labora-
tory Medicine, School of Medicine, Indiana University, Indianapolis, Ind (S.B.); Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); 
Department of Radiological Sciences, University of California Irvine, Irvine, Calif (P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (A.E.F.); 
Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI, Diagnósticos da 
América SA (DasaInova), São Paulo, Brazil (F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, 
Burlington, Mass (M.P.L.); Department of Radiology and Biomedical Imaging and Center for Intelligent Imaging, University of California San Francisco, San Francisco, Calif 
(J.M.); Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences, National 
Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.C.W.); 
Medical Artificial Intelligence Laboratory, University of Lagos College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology, University of Pennsylvania, 3400 
Spruce St, 1 Silverstein, Philadelphia, PA 19104-6243 (C.E.K.). Received April 13, 2024; revision requested April 13; revision received April 13; accepted April 25. Address 
correspondence to C.E.K. (email: ckahn@upenn.edu).

Authors declared no funding for this work.

Conflicts of interest are listed at the end of this article.

Radiology: Artificial Intelligence 2024; 6(4):e240225 • https://doi.org/10.1148/ryai.240225 • Content code: 

mailto:reprints%40rsna.org?subject=
mailto:ckahn%40upenn.edu?subject=


2 radiology-ai.rsna.org ■ Radiology: Artificial Intelligence Volume 6: Number 4—2024

AI Deployment: Clinical, Cultural, Computational, and Regulatory Considerations

easy-to-use annotation tools allows radiologists from around the 
world to contribute their expertise and is key to reducing hurdles 
in annotations once the de-identified data can be secured from 
the contributing institutions.

On the other hand, there has been substantial evolution 
in our understanding of annotation and the level of qual-
ity required for AI development (16). Although very high-
quality testing data are important, noise can be tolerated in 
the training data, providing it does not contain bias. New 
technologies for active learning, iterative annotation, and 
self-supervised learning enable AI models to learn more rap-
idly from fewer annotations.

Bias and Model Performance
ML models often learn biases in the training data. Under-
represented characteristics, such as image acquisition features 
or patient features, can be especially prone to bias. Potential 
sources of bias differ for various AI applications and depend on 
the clinical setting in which the AI tool will be used. Diversity 
of background and experience in both the development and 
deployment teams is helpful to identify and address biases. Be-
cause it is not feasible for an AI model to work everywhere reli-
ably, it is important to recognize the intended use and potential 
limitations of the model (17–19). For instance, an institution 
may want to develop a model for in-house use only. In that 
case, it will be practical to develop a model that performs well 
only on internal data. However, the bias and limitation of the 
model, likely not applicable to underrepresented populations 
in research, must be clearly disclosed. It is critical to continu-
ously monitor performance, identify changes in performance, 
and provide detailed and updated documentation.

Cultural Considerations

• Training radiologists to work with AI tools will be-
come routine.

• Motivation for radiologists to use AI is key to in-
creasing clinical efficiency and to allowing them to 
perform complex tasks, such as measuring volumes, 
predicting outcomes, and integrating imaging data 
with the broader electronic health record (EHR).

• AI tools must be designed with the trust of radiolo-
gists and clear definitions of clinical accountability.

Volumetrics
Automation and AI in radiology potentially can provide rou-
tine three-dimensional (3D) volume measurements, which 
represents a cultural shift from two-dimensional (2D) mea-
surements such as the Response Evaluation Criteria in Solid 
Tumors (ie, RECIST) (20–22). For most radiologists, qualita-
tive image interpretation and 2D measurements are still the 
standard of care in clinical practice and in radiology reports. 
Studies have shown the benefits of volumetric measurements, 
such as in cancer imaging, where 3D volumetrics offer better 
outcome prediction and treatment response evaluation than 
qualitative assessment or 2D measurements (23–27). With-

and require physical mailing, and hard drives require exchange 
of physical media. File-sharing platforms are more secure than 
email but can be slow and require multi-institutional informa-
tion technology (IT) approval for external collaborations. A cen-
tralized research picture archiving and communication system 
(PACS) can be expensive and can have a limited array of data-an-
alytic tools. Open-source and commercial platforms are available 
that incorporate AI, but tools are still developing. Cloud-based 
servers with AI capabilities require expertise to make sure data 
are secure and Health Insurance Portability and Accountability 
Act compliant. For institutions that are not open to data shar-
ing, federated learning can facilitate AI model development and 
deployment without data exchange (6–8), but federated learning 
facilities are not commonly available in radiology departments 
and require specialized expertise (9).

Data Annotation
AI relies on well-curated and annotated data. Annotation is 
time-consuming and labor-intensive and poses challenges for 
large datasets (10). Multiple annotators are required to tackle 
large datasets and allow measurement of interrater variability. 
The RSNA AI challenges have shown that expert annotators 
can exhibit substantial variability even when the annotation 
tasks are well-defined, highly documented, and carefully com-
municated (11–14). Thus, it is important to record and make 
available all details of the annotation process, including meth-
ods for adjudication and quality assurance, to those who are 
evaluating AI tools for clinical deployment.

Annotation of radiologic images often requires transferring 
images to a research computer that has annotation software, 
potentially requiring uploads, and only then starting the seg-
mentation or other type of annotation. Some institutions have 
been able to work with their IT departments to directly transfer 
data from the clinical PACS to the annotation software (15), 
but most do not have such capabilities. Thus, a major hurdle for 
annotation is the lack of institutional infrastructure for data ac-
cess and sharing with annotators. The availability of web-based, 

Abbreviations
AI = artificial intelligence, EHR = electronic health record, FDA =  
U.S. Food and Drug Administration, IT = information technology, 
ML = machine learning, MICCAI = Medical Image Computing 
and Computer Assisted Intervention, PACS = picture archiving and 
communication system, RSNA = Radiological Society of North 
America, 3D = three-dimensional, 2D = two-dimensional

Key Points
 ■ Artificial intelligence (AI) tools can play a key role in radiology if 

radiologists trust in their design, deploy them with adequate train-
ing, and establish clear guidelines regarding clinical accountability.

 ■ For successful AI deployment, radiologists and AI scientists should 
define a unified agenda, language, and set of expectations.

 ■ Clinical institutions should align their staffing, data flow, and 
computational resources to deploy and monitor AI systems.

Keywords
Adults and Pediatrics, Computer Applications–General (Informat-
ics), Diagnosis, Prognosis
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Human-Machine Interaction
In daily practice, radiologists’ measurements can exhibit sub-
stantial intraobserver and interobserver variability (32–34). AI-
based algorithms may reduce measurement variability and may 
allow greater consistency. However, automation bias can in-
crease error rates in the setting of AI utilization, and human-AI 
interactions are understudied. Even if an AI model works well, 
there is no guarantee radiologists will use it correctly to im-
prove clinical performance. Human-AI interactions and their 
cultural and clinical implications require further research to 
ensure optimal performance (35). The design of stronger and 
more comprehensive programs to train radiologists to work 
with AI approaches is important, and these programs should 
be integrated into early career curriculum (36–38).

Clinical Integration
Radiology AI systems can be integrated with currently used soft-
ware to reduce the effort of interpretation and reporting (39). 
Ideally, AI should reduce the effort of interpretation and report-
ing. A major characteristic of radiologists’ daily workflow is the 
long list of studies that need to be read every day, which makes 
the radiologist prioritize efficiency in reading studies. Any activi-
ties outside of reading can be a substantial distraction.

AI tools within PACS provide an efficient method for radiol-
ogists to adapt them into clinical practice. Integration of AI into 
PACS allows manual corrections of segmentations that would 
not be possible otherwise, thus providing another level of safety 
checks. AI tools can prioritize worklists: They can identify stud-
ies with acute findings or automatically route studies with spe-
cific pathology to the best-matched specialist radiologists (40).

out AI, such measurements require a substantial amount of 
additional time. To prepare radiologists for volumetric data 
interpretation, radiology training should emphasize a shift to 
3D from 2D measurement, and dedicated education on lesion 
contouring should be incorporated into radiology training.

Many radiologists and other specialists would like to have 
better 3D measurement tools. However, few 3D tools are 
available at every radiologist’s desktop, although there is an 
increased availability of contouring tools in clinical PACS. In 
addition to contouring tools, there is a critical need for tools 
that allow individual lesion tracking, for example, in the set-
ting of metastatic disease. Thus, there is increasing potential 
for volumetric tools—powered by AI and easily adjustable by 
radiologists—to play a key role in clinical care.

Image Evaluation to Outcome Prediction
Outcome prediction is a valuable end goal. AI-based prediction 
of cancer mortality, cardiovascular morbidity, or organ function, 
among others, can be competitive with routinely available clini-
cal methods (28–30). Outcome prediction also may motivate 
radiologists to focus on data interpretation with the help of AI. 
To be clinically relevant, outcome prediction needs to be per-
formed in a clinical scenario where it has the potential to change 
care. There are risks in outcome prediction, too. Models may 
be biased in ways that human experts cannot appreciate easily 
(31). If the task is image evaluation, it is more likely that a hu-
man reader would catch the error. But if the model is expected 
to have superhuman performance (say 5-year risk prediction for 
a task that a human cannot do), the model deployment must be 
carefully monitored to alleviate risks.

Recommended Reading

Clinical Considerations
  Federated learning for medical imaging radiology (6)
  Image annotation and curation in radiology: an overview for machine learning practitioners (16)
  Mitigating bias in radiology machine learning: 2. Model development (19)
Cultural Considerations
  Training opportunities of artificial intelligence (AI) in radiology: a systematic review (36)
  AAPM task group report 273: Recommendations on best practices for AI and machine learning for computer-aided diagnosis in  

  medical imaging (44)
  FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in health care (45)
Computational Considerations
  To buy or not to buy—evaluating commercial AI solutions in radiology (the ECLAIR guidelines) (46)
  Continuous learning AI in radiology: Implementation principles and early applications (54)
  Developing, purchasing, implementing and monitoring AI tools in radiology: practical considerations. A multisociety statement from  

  the ACR, CAR, ESR, RANZCR and RSNA (55)
Regulatory Considerations
  Evaluation and real-world performance monitoring of artificial intelligence models in clinical practice: Try it, buy it, check it (52)
  FDA: Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices (57)
  The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database (59)
Outlook
  Foundation models for generalist medical artificial intelligence (77)
  Critical gaps in understanding the clinician-scientist workforce: Results of an international expert meeting (84)
  Positive effect of a financial incentive on radiologist compliance with quality metric placement in knee radiography reports (86)
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availability (46). In most clinical centers, and especially in 
limited-resource settings, the cost and maintenance of graph-
ics processing unit servers and high-performance computing 
resources limits their availability (47). Approaches such as 
cloud-based systems may be necessary. The use of commercial 
algorithms in the cloud or homegrown algorithms on-premises 
can also present challenges. However, if graphics processing 
unit memory requirements can be reduced for AI models dur-
ing inference, hardware availability should not be a substantial 
challenge. Overall, although hardware availability may depend 
on the location and use case, less expensive central processing 
units may be sufficient for many AI applications.

AI Scientists in Radiology Departments
Communication between radiologists and AI scientists is key 
to incorporate AI into clinical practice. Radiologists are highly 
skilled at characterizing phenotypes and labeling images but of-
ten lack the tools to annotate datasets and build databases (48). 
AI scientists, on the other hand, have skills in image processing 
and algorithm development, but they often focus on questions 
that may not have the highest yield in clinical practice. It is 
crucial to encourage communication between radiologists and 
AI scientists through grant mechanisms, conferences, and pro-
fessional and social gatherings to build trust and collaboration.

The shortage of skilled AI scientists in radiology departments 
poses another limitation. Academic medical centers frequently 
compete with technology companies for data scientists. To create 
robust and reliable AI models, it is important to have AI/data sci-
entists, software engineers, PACS/radiology information system 
specialists, and radiologists working together (2,49).

AI Performance
In general, clinical accuracy is more important than speed 
(50). If inference time is a substantial problem, one can limit 
the model’s size to not exceed a given time per inference and 
train and tune that model to the best performance possible. 
In many applications, speed is not particularly relevant: A 
computation time of a few minutes generally will not be no-
ticeable. One exception is for tasks such as interactive seg-
mentation, where the user must wait for the AI system to 
respond. As algorithms increase in accuracy with the avail-
ability of larger training datasets, it will be possible in many 
scenarios to use less complex AI models. Less complex models 
will lead to more rapid computation and distribution of AI 
results to the clinic and the need for a framework to evaluate 
their performance (51). In many clinical settings, the primary 
bottleneck is not computational time, but rather the time to 
transfer data from acquisition device (eg, CT scanner) to 
PACS to AI inference server.

Radiology practice is fast-paced, dynamic, and often 
stressful; it requires algorithms that can keep up with the de-
mands of clinical practice. AI algorithms can be incorporated 
into practice automatically or activated manually by a radi-
ologist (52). Although an algorithm’s accuracy is important, 
consistency of measurement is its inherent advantage (53). 
The qualities of an algorithm need to be evaluated in the con-
text of the clinical problem and use case. Domain shift and 

An important challenge in radiology is the limited clinical in-
formation provided when a study is being interpreted. Although 
an EHR is available, its organization may not allow one to ex-
tract information easily. Therefore, integration of EHRs with AI 
tools in radiology has great potential for clinical practice (41). AI 
tools that extract and summarize clinically relevant information 
from the EHR can support more precise interpretation of studies 
and improve radiology reports.

Trust and Accountability
Trust is important in clinical practice. To assure patient safety, 
the field of medicine is more conservative than others in adopt-
ing new technology (42). Moreover, AI applications are not al-
ways intuitive, and “black box” models that lack explainability 
are difficult to trust. As such, few clinicians trust AI for autono-
mous evaluation, and AI deployment strategies must incorporate 
radiologist supervision for the near future. Radiologists are, for 
the most part, comfortable to be held accountable for studies 
they interpret with or without AI support (43). For example, 
if the AI tool highlights a positive finding, the radiologist can 
visualize and confirm the finding with confidence. Exceptions to 
explainability should be considered, such as for identification of 
radiomics features that cannot be perceived by the human eye.

An integrated approach to build trust should include retro-
spective validation with local data (ie, test on your own data to 
trust it) and prospective evaluation using AI in practice. The 
latter is tied to having high positive and negative predictive 
values. Because algorithms are not error-proof, it is important 
for radiologists to understand how errors may happen and that 
they are something to be expected. To earn the trust of clini-
cians, AI algorithms also must support the clinical workflow 
(eg, automatic measurements incorporated into radiology 
reports) and expedite the turnaround of studies. AI methods 
where model predictions are not repeatable, do not generalize 
within the scope of their development, or are not well cali-
brated should not be implemented. These and other concerns 
on accountability, quality control, and trust have been ad-
dressed in publications by leading experts from international 
societies including RSNA, MICCAI, and the American Asso-
ciation of Physicists in Medicine (44,45).

Computational Considerations

• Cloud computing may be most effective for radiol-
ogy departments that lack hardware and maintenance 
resources.

• The design, development, deployment, and moni-
toring of radiology AI tools should be done by data 
scientists and radiologists working together.

• Clinical institutions must prioritize the data flow 
from acquisition devices to PACS and/or data lakes 
and to AI servers.

Hardware Availability
To deploy AI in clinical settings requires consideration of com-
putational factors for training and inference, such as hardware 
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lowed by cardiology and neurology (57). There is support for the 
authorization of software as a medical device, which allows for 
innovation and does not stifle progress. FDA clearance is not re-
quired to use locally developed AI tools; it focuses on regulating 
marketing claims and commercialization. Moreover, marketing 
claims and FDA submission materials are not always concor-
dant. However, strong oversight and understanding by practitio-
ners of potential harms, particularly in vulnerable populations, is 
important. Regulatory approval is needed for potential financial 
reimbursement for the use of AI and facilitating the transition 
from research to clinical practice.

Outlook

• Large and general foundation and generative AI 
models, including vision and language models, can 
impact the clinical adoption of AI tools and may help 
reduce burnout in radiology.

• Financial incentives to use AI will encourage hos-
pitals to invest in AI-based software and increase the 
motivation for clinicians to use new technologies.

• To advance radiology AI tools in clinical care and 
research, multidisciplinary societies can adopt a uni-
fied agenda, language, and set of expectations.

Impact of the COVID-19 Pandemic
The COVID-19 pandemic has had a mixed impact on the clini-
cal adoption of AI (60). On the positive side, the intellectual 
and clinical challenges of this new, dangerous, and highly con-
tagious disease spurred radiologists and AI scientists around the 
world to create algorithms for diagnosis and triage (61,62) and 
to establish new data repositories like the Medical Imaging and 
Data Resource Center (ie, MIDRC) (63). The increase in im-
aging volume, coupled with the pre-existing shortage of radi-
ologists, made radiologist burnout a more widespread issue and 
encouraged radiologists to explore AI tools to increase efficiency 
and accuracy in clinical practice. The desire to quickly integrate 
COVID risk models yielded an expedited pathway to move tools 
from research into the clinical realm. The pandemic also pre-
sented barriers to the clinical adoption of AI, as new software 
could not be implemented easily due to restrictions on travel 
and physical presence in the hospital. COVID applications have 
shown how AI models can be brittle and not generalize (64).

Although some regulatory obstacles were removed, at least 
temporarily, COVID has not impacted the availability of algo-
rithms that solve real clinical problems. Researchers have moved 
away from simple segmentation toward clinically useful predic-
tions—such as whether a patient will require hospital admission, 
will require artificial ventilation, or will have a higher risk of 
death—but clinicians have not adopted the AI assessments into 
clinical care with the same enthusiasm.

What Are AI’s “Low-hanging Fruit” for Radiology?
AI has a huge potential to transform medical imaging in vari-
ous ways by integrating imaging and clinical data in relational 
databases that can be used for both clinical practice and re-

algorithm generalizability remain challenging questions for 
research and clinical implementation.

Continuous Evaluation
Continuous evaluation and quality control of AI tools is a 
critical aspect of clinical implementation (54). Monitoring of 
performance is not trivial and is currently a weakness for most 
AI systems. Centralized datasets that can be used as “phan-
toms” to test algorithms and image processing software may 
provide one solution. Technologies for continuous evaluation 
must not require explicit supervision or labels. Therefore, reg-
ulatory guidelines should assure continuous evaluation (55). 
Most organizations lack the staff to perform these evaluations 
effectively. For models with access to reference standard data, 
continuous evaluation and retraining could be automated. For 
models without such data, expensive and time-consuming an-
notation could be limited by focusing validation on new im-
ages in the event of a scanner replacement or protocol change.

Regulatory Considerations

• Radiology is the leading application field of U.S. 
Food and Drug Administration (FDA)–approved 
medical AI devices.

• Vision and language models can positively impact 
the field of radiology and should undergo regulatory 
oversight.

• The role of regulatory approval in the implementa-
tion of AI tools in clinical practice will require ongo-
ing consideration.

Regulatory Guidelines
The field of medical AI is rapidly evolving, and regulatory agen-
cies such as the FDA are striving to keep up with the pace of in-
novation (56). Notably, the development of large foundation and 
generative AI models is progressing fast, including vision and lan-
guage models, which are AI tools that integrate understanding of 
images and text. Nevertheless, technology development outpaces 
the creation of regulatory guidelines; as of October 2023, there 
was no FDA-authorized device that used generative AI (57). As a 
result, commercial development favors some types of algorithms 
over others. For example, the computer-aided triage pathway has 
seen relatively high rates of FDA clearance, which has resulted in a 
flood of worklist prioritization tools in the market. Similarly, time-
limited financial incentives such as new technology add-on pay-
ment (ie, NTAP) reimbursement have driven demand for tools 
in the hope of an early financial windfall that has largely been 
exaggerated. There is also concern that many FDA-approved algo-
rithms have not undergone sufficient external or prospective vali-
dation. Published reports of performance may not accurately re-
flect how well these algorithms perform in real-world settings (58).

Regulatory Approval
Regulatory authorization is critical for the rollout of AI tools 
in clinical practice (59). By July 2023, 79% of the medical AI 
devices authorized in 2023 by the FDA were in radiology, fol-
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search, not just for billing (65,66). It is important to seamlessly 
link Digital Imaging and Communications in Medicine (ie, 
DICOM) data with Fast Healthcare Interoperability Resources 
(ie, FHIR) data from the EHRs within PACS (67,68). Addi-
tionally, data scientists and clinicians need to apply the existing 
well-validated AI tools, such as organ and lesion volumetrics, 
to the clinical setting. Examples include liver, spleen, and kid-
ney volumetry, visceral fat assessment, and muscle analysis for 
sarcopenia and myosteatosis (69). Finally, there is need to per-
sonalize the treatment options for each patient with cancer by 
using AI analytics for cancer radiomics and longitudinal track-
ing of individual lesions (70,71).

What Is Next in AI for Radiology?
The next frontier for medical imaging AI is implementation in 
clinical practice (72). Collaboration is essential among radiolo-
gists, referring clinicians, data scientists, and health IT profes-
sionals to identify and evaluate AI solutions for various clinical 
scenarios. New metrics would be useful to measure AI’s impact 
on workflow efficiency, assess clinical outcomes in radiology and 
related fields, and conduct randomized clinical trials to assess 
the utility of AI algorithms (55). Promising research directions 
include unsupervised and self-supervised learning techniques to 
develop generalizable models that can be adapted to small or 
niche datasets or to any hospital dataset (73–75). Researchers are 
also creating broader AI models like foundation models for tasks 
such as normal versus abnormal detection, rather than narrow 
supervised ML tasks (76–78). Particularly, large vision language 
models promise new and general-purpose AI applicability in di-
agnostic imaging through multimodal data analysis to provide a 
natural language interface for radiologists (79). Through these 
developments, AI can play a crucial role in reducing burnout in 
radiology if the integration and adoption of AI-driven technolo-
gies is done through adaptive and user-friendly tools (80).

How Do We Teach and Incentivize Radiologists to Work 
with AI?
The integration of AI into radiology practice requires educat-
ing and motivating radiologists to work with AI (81). AI must 
be easy to use within familiar software and compatible with the 
clinical workflow. Radiologists should learn how to evaluate, 
interpret, and apply AI algorithms for tasks such as segmen-
tation, detection, and classification, as well as how to handle 
and report imperfect algorithms (82). Radiologists also should 
learn how to design and conduct clinical trials to assess the im-
pact of AI on clinical outcomes; such training is often lacking 
in radiology compared with other fields such as oncology. The 
RSNA’s Clinical Trials Methodology Workshop teaches radi-
ologists about clinical trial design, funding, and implementa-
tion. Radiologists also should learn how to communicate and 
collaborate with AI scientists without feeling intimidated (83). 
Most radiologists in training are already interested in AI, but 
they lack a good training mechanism and curriculum. Dedi-
cated training in informatics and involvement in societies such 
as MICCAI and the Society for Imaging Informatics in Medi-
cine will increase radiologists’ knowledge of AI.

There is also a technical gap between physicians and AI sci-
entists that needs to be bridged (84). One way to facilitate the 
adoption of AI is to use model cards, which describe an AI mod-
el’s purpose, usage, and limitations (85). Another way is to solve 
real clinical problems, expand the possibilities of data analyses 
and interpretation, demonstrate value in prospective trials, and 
improve workflow efficiency, which would make radiologists 
eager to use AI without needing additional incentives. A third 
way is for payers to provide financial incentives to use AI, which 
would encourage hospitals to invest in AI-based software and 
increase the motivation for radiologists (86).

Unified AI Agenda across Societies and Disciplines
The advancement of AI in medical imaging depends on collabora-
tion across societies and disciplines, which poses both challenges 
and opportunities. To foster collaboration, it is important to be 
inclusive, to think beyond personal needs, and to adopt a human-
istic and scientific approach to life. Medical imaging societies have 
collaborated to establish ethical frameworks for AI deployment in 
radiology and educate clinicians about the potential benefits and 
pitfalls of AI implementations (55). However, differing agendas, 
languages, and expectations among societies and medical spe-
cialties may hinder communication and limit cooperation (11). 
Therefore, it is essential to create platforms and mechanisms that 
facilitate the exchange of ideas and information, such as educa-
tional programs, challenges and competitions, and hackathons 
offered by several societies, including joint initiatives of MICCAI 
and RSNA. Moreover, it is necessary to educate and motivate both 
technical and radiology societies to understand the capabilities and 
limitations of AI, the true clinical needs and problems, and the 
technical skills and methods required to develop and deploy AI 
solutions. Finally, it is desirable to pursue innovation and discov-
ery by creating and evaluating novel algorithms, integrating and 
analyzing imaging and clinical data, and developing and applying 
AI tools for various tasks and domains. By collaborating across 
societies and disciplines, AI in medical imaging can achieve its full 
potential and provide value for clinical practice and research.
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