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ABSTRACT OF THE DISSERTATION

Degeneracy Loci in Grassmannians

By

Leesa Bantad Anzaldo

Doctor of Philosophy in Mathematics

University of California, Irvine, 2015

Professor Vladimir Baranovsky, Chair

The Thom-Porteous formula allows one to compute the cohomology class of a degener-

acy locus of maps between vector bundles, given that certain codimension conditions

are satisfied. It is known that the Hilbert scheme on projective space may be ex-

pressed as a degeneracy locus in a Grassmannian, and in a similar fashion, so can

the Quot scheme. Here we determine cases in which the expected codimension agrees

with the actual codimension and evaluate the cohomology class. We also give exact

conditions for the existence of isotropic subspaces of Schur modules.
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Introduction

Given a map between vector bundles over some variety, a degeneracy locus is the

collection of points such that the rank of the map is bounded by a given integer. We

examine two different topics in this thesis:

The first part of this dissertation examines the Hilbert scheme and Quot scheme of

projective space. We can realize them as degeneracy loci in a Grassmannian, and

under certain codimension conditions outlined by the Thom-Porteous formula, we

have a formula for their cohomology class in terms of Chern classes. Moreover, we

can use tools from the combinatorics of symmetric functions to more easily compute

these classes. Here, we give some results for the computation of the class of these

schemes, as well as ask the question of whether the expected codimension, as stated

in the Thom-Porteous formula, agrees with the actual codimension. (However, it

is still useful in applications to assume that the codimension requirement is always

satisfied.) See Theorem 3.1.5 and Theorem 3.2.2.

The second part examines a particular case of the degeneracy locus, namely the

zero set of a section of bundle. In E.A. Tevelev’s paper [21] on isotropic subspaces

of polylinear forms, he asks when isotropic subspaces of a finite dimensional vector

space V over an algebraically closed field of a certain dimension exist. We define a

subspace W with respect to some s ∈ SdV ∗ or ΛdV ∗ to be isotropic if s|W = 0. He
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gives a necessary and sufficient condition for the existence of such subspaces.

Here, we generalize his result to the case of Schur modules. Since symmetric polylin-

ear forms correspond to single row partitions and skew-symmetric polylinear forms

correspond to single column partitions, it is natural to ask what happens in the case

of general partitions, i.e. for Schur modules. This also provides a geometric applica-

tion to flag varieties: for a generic s ∈ SλV ∗, when does there exist a subspace W of

V such that Flagλ(W ) ⊂ Flagλ(V ) is in the zero locus of s? Another interpretation

of our result is a nice way of computing whether the top Chern class of certain vector

bundles is nonzero. See Theorem 4.0.5, Corollary 4.0.7, and Corollary 4.0.9.
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Chapter 1

Grassmannians and Degeneracy

Loci

Let V be an n-dimensional complex vector space. The Grassmannian, denoted

Gr(k, V ) or Gr(k, n), is the set of all k-dimensional linear subspaces of V . We can

represent an element in Gr(k, n) by a k×n matrix A of rank k, and this representation

is unique up to the action of GLn acting by column operations.

Let I be a size k subset of {1, . . . , n} and VIo be the subspace of Cn spanned by

{ei : i 6∈ I}, and define UI = {Λ ∈ Gr(k, n) : Λ ∩ VIo = {0}}. Then UI is the set of

Λ ∈ Gr(k, n) that can be represented by ΛI ∈ Gr(k, n) where the Ith k × k minor is

Ik.

Example 1.0.1. Take I = {1, 3} for Gr(2, 4). Any Λ ∈ Gr(2, 4) can be represented

by either

1 ∗ 0 ∗

0 ∗ 1 ∗

,

1 ∗ 0 ∗

0 ∗ 0 ∗

, or

0 ∗ 0 ∗

0 ∗ 0 ∗

, so Λ∩ VIo = {0} iff the Ith

2× 2 minor is I2.

Since every k×n matrix whose Ith k×k minor is Ik represents a unique element of UI ,
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the map ϕI : UI → Ck(n−k) is a bijection. These maps give an atlas of charts making

Gr(k, n) a complex manifold [7, p.193]. Moreover, every Gr(k,Cn) is isomorphic

to Gr(n − k, (Cn)∗) by the map that sends a k-dimensional subspace W ⊂ Cn to

(Cn/W )∗ ⊂ (Cn)∗.

1.1 Plücker Embedding, Plücker Relations

The Plücker embedding is the map p : Gr(k, n) → P(∧kCn) = P(nk)−1 defined by

p(Λ) = [v1 ∧ · · · ∧ vk] where v1, . . . , vk form a basis for Λ (or p(Λ) = [d1 : · · · : d(nk)
]

where the di’s, called the Plücker coordinates, are the determinants of the k × k

submatrices of A representing Λ). Since p(Λ) is independent of the choice of basis,

the map is well-defined, and since the span of vi’s in an element of P(∧kCn) will

generate a unique subspace in Gr(k, n), the map is injective [8, p.63–64].

The image of Gr(k, n) under p is a projective variety defined as the zero set of poly-

nomials, called the Plücker relations of Gr(k, n). Consider the case for Gr(2, n). The

following map gives a one-to-one correspondence between Gr(2, n) and the set of

n×n skew symmetric matrices of rank 2 modulo the equivalence relation A = λA for

λ 6= 0: take [ek ∧ el] to the n × n matrix (aij) where akl = 1, alk = −1, and aij = 0

otherwise; extend linearly to obtain the image for Λ ∈ Gr(2, n) with p(Λ) = [v1 ∧ v2].

For skew symmetric matrices, the determinant is a square and we call the square root

its Pfaffian [13, p.586–589].

Example 1.1.1. Gr(2, 4)

A general Λ ∈ Gr(2, 4) can be represented by A =



0 x12 x13 x14

−x12 0 x23 x24

−x13 −x23 0 x34

−x14 −x24 −x34 0


. One
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can compute that detA = (x12x34 − x13x24 + x14x23)2, so Pf A = x12x34 − x13x24 +

x14x23. Since rankA = 2, Pf A = 0 and the Plücker relation of Gr(2, 4) is x12x34 −

x13x24 + x14x23 = 0.

Example 1.1.2. Gr(2, 5)

A general Λ ∈ Gr(2, 5) can be represented by A =



0 x12 x13 x14 x15

−x12 0 x23 x24 x25

−x13 −x23 0 x34 x35

−x14 −x24 −x34 0 x45

−x15 −x25 −x35 −x45 0


.

The Plücker relations are precisely the Pfaffians of the minors Mii of A, namely

Pf M1,1 = x23x45 − x24x35 + x25x34

Pf M2,2 = x13x45 − x14x35 + x15x34

Pf M3,3 = x12x45 − x14x25 + x15x24

Pf M4,4 = x12x35 − x13x25 + x15x23

Pf M5,5 = x12x34 − x13x24 + x14x23

In general, the rank 2 skew-symmetric matrices are defined by the 4 × 4 Pfaffians.

The general form of the Plücker relations are

xi1,...,idxj1,...,jd −
∑

xi′1,...,i′dxj′1,...,j′d = 0

where the sum is taken over all j′1, . . . , j
′
d obtained by replacing j1, . . . , jd by a size k

subset of i1, . . . , id, and likewise for i′1, . . . , i
′
d.
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1.2 Cell Decomposition

If V = (V1 ⊂ V2 ⊂ · · · ⊂ Vn) is a flag in Cn, then the Schubert cycles of Gr(k, n) are

the subvarieties of the form

σa(V ) = {Λ: dim(Λ ∩ Vn−k+i−ai) ≥ i}

for a = (a1, . . . , ak) where a is a nonincreasing sequence of integers between 0 and n−

k. If σa = σa,0,0,..., then σa is a special Schubert cycle. These generate H∗(Gr(k, n),Z)

and give Gr(k, n) the structure of a CW-complex with only cells of even dimension.

Example 1.2.1. Gr(2, 4)

The Schubert cycles of Gr(2, 4) are as follows.

σ0,0(V ) = {Λ: dim(Λ ∩ V3) ≥ 1, dim(Λ ∩ V4) ≥ 2} = Gr(2, 4), codim 0

σ1,0(V ) = {Λ: dim(Λ ∩ V2) ≥ 1, dim(Λ ∩ V4) ≥ 2} = {Λ: dim(Λ ∩ V2) ≥ 1},

codim 1

σ1,1(V ) = {Λ: dim(Λ ∩ V2) ≥ 1, dim(Λ ∩ V3) ≥ 2} = {Λ: Λ ⊂ V3}, codim 2

σ2,0(V ) = {Λ: dim(Λ ∩ V1) ≥ 1, dim(Λ ∩ V4) ≥ 2} = {Λ: V1 ⊂ Λ}, codim 2

σ2,1(V ) = {Λ: dim(Λ ∩ V1) ≥ 1, dim(Λ ∩ V3) ≥ 2} = {Λ: V1 ⊂ Λ ⊂ V3},

codim 3

σ2,2(V ) = {Λ: dim(Λ ∩ V1) ≥ 1, dim(Λ ∩ V2) ≥ 2} = {Λ: V1 ⊂ Λ = V2},

codim 4
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1.2.1 Cellular Homology

Let X be a topological space and ∆n be the standard n-simplex, i.e. an n-dimensional

polytope which is the convex hull of n+1 vertices e0, . . . , en. Then a singular n-simplex

is a continuous map from ∆n to X; the set of all such maps generates a free abelian

group denoted by Cn(X). Let ∂n : Cn → Cn−1 be defined by

∂nσn(∆n) =
n∑
k=1

(−1)k[σn(e0), . . . , σn(ek−1), σn(ek+1), . . . , σn(en)]

where σn ∈ Cn. Then (C•(X), ∂•) is the singular chain complex. If A ⊂ X, then we

have a short exact sequence 0 → C•(A) → C•(X) → C•(X)/C•(A) → 0 and we call

Hn(C•(X)/C•(A)) the relative homology, denoted by Hn(X,A) [11, p.115].

Since cells in complex Grassmannians have only even dimension, H∗(Gr(k, n),Z) has

a basis which is in one-to-one correspondence with the Schubert cells. By Poincaré

duality, which is defined below, the Schubert cycles form a basis for H∗(Gr(k, n),Z)

[11, p.137–140].

1.2.2 Cup Product

If α ∈ Cn(X), β ∈ Cm(X) are cochains, then the cup product of α ^ β ∈ Cn+m(X)

is the cochain defined by (α ^ β)(σ) = α(σ|[e0,...,en])β(σ|[en,...,en+m]) for σ ∈ Cn+m(X).

If α and β are cocycles and γ is a coboundary map, then one can show

γ(α ^ β) = γα ^ β + (−1)nα ^ γβ.

This implies that the cup product of two cocycles is a cocycle and the cup product

of a cocycle and a coboundary (or vice-versa) is a coboundary. Then we get the
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induced map of the cup product from Hn(X)×Hm(X) to Hn+m(X). Therefore, the

cohomology H∗(Gr(k, n),Z) of the Grassmannian has a ring structure [11, p.206–207].

1.3 Poincaré Duality

An oriented manifold is one with a fixed orientation, i.e. an atlas such that at ev-

ery point of the manifold, the Jacobian of the transition map is positive. Complex

manifolds are always oriented because for any linear map f : Cn → Cn, using the

one-to-one correspondence (x1, . . . , xn, y1, . . . , yn)↔ (x1 + iy1, . . . , xn + iyn) we have

the linear map g : R2n → R2n which is orientation-preserving since det g = | det f |2.

Let X be a space and R be a ring. For α : ∆m → X and β ∈ Cn(X;R) such

that m ≥ n, define the cap product _ : Cm(X;R) × Cn(X;R) → Cm−n(X;R) by

α _ β = β(α|[e0,...,en])α|[en,...,em]. Since

δ(α _ β) = (−1)n(δα _ β − α _ δβ),

the cap product takes a cycle and a cocycle to a cycle, a cycle and a coboundary to a

boundary, and a boundary and a cocycle to a boundary. So we get the induced cap

product from Hm(X;R)×Hn(X;R) to Hm−n(X;R) [11, p.239–240].

If M is an n-dimensional oriented, compact, and connected manifold, then

Hn(M ; Z) ∼= Z.

Since Hm(M ; Z) = 0 for m 6∈ {0, 1, . . . , n}, we call a generator (which corresponds to

a choice of orientation) for the top homology Hn(M ; Z) a fundamental class for M ,

denoted [M ]. So Poincaré duality can be phrased as the following:
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Theorem 1.3.1 (Poincaré duality, [11, p.236,241]). Let M be an n-dimensional ori-

ented compact connected manifold with fundamental class [M ] ∈ Hn(M ; Z). For all

k, the map

D : Hk(M ; Z)→ Hn−k(M ; Z)

α 7→ [M ] _ α

is an isomorphism.

1.4 Vector Bundles

1.4.1 Sheaves

If X is a topological space, then a presheaf F of abelian groups on X is given by the

following:

• an abelian group F(U) for every open U ⊂ X, and

• a morphism of abelian groups ρUV : F(U) → F(V ) for every inclusion of open

sets V ⊂ U ⊂ X.

The following conditions must be satisfied:

• F(∅) = 0;

• ρUU : F(U)→ F(U) is the identity map;

• and ρVW ◦ ρUV = ρUW if W ⊂ V ⊂ U ⊂ X are all open.

A presheaf F is a sheaf if for any open set U ⊂ X and open cover {Vi} of U , then the

following condition is satisfied:

9



• if for each i there exists si ∈ F(Vi) such that si|Vi∩Vj = sj|Vi∩Vj for all i, j, then

there exists a unique s ∈ F(U) satisfying s|Vi = si for all i; by s|Vi we mean

ρUVi(s) [10, p.61].

1.4.2 Vector Bundles

If E and M are topological spaces, then a complex vector bundle of rank n over

M is E with π : E → M , a continuous surjective map, such that π−1(p) is an n-

dimensional complex vector space for every p ∈ M ; and local triviality is satisfied,

i.e. for every p ∈ M , there exists a neighborhood U ⊂ M of p and homeomorphism

ϕ : π−1(U)→ U ×Cn such that π = π1 ◦ ϕ, where π1 : U ×Cn → U is the projection

onto U , and ϕ|π−1(q) : π−1(q)→ {q} ×Cn is a linear isomorphism for all q ∈ U . The

total space is E and the base space is M . A rank 1 vector bundle is called a line bundle

[14, p.103–104].

If we start with a smooth manifold M and an open cover {Uα}α∈A, then we have

a smooth rank n vector bundle π : E → M , where π is surjective, if there exist

smooth homeomorphisms ϕα : π−1(Uα) → Uα × Cn such that π = π1 ◦ ϕα for each

α ∈ A, whose transition functions are ϕα ◦ ϕ−1
β = τα,β : Uα ∩ Uβ → GLn satisfying

τα,β(p)τβ,γ(p) = τα,γ(p) for all p ∈ Uα ∩ Uβ ∩ Uγ [14, p.121].

Equivalently, a rank n vector bundle E of M consists of an open cover {Uα}α∈A and

isomorphisms ρα,β : Cn × (Uα × Uβ) → Cn × (Uβ × Uα) for each α, β ∈ A such that

ρα,β fixes fibers; ρα,β = ρ−1
β,α; and ρα,βρβ,γ|Uα∩Uβ∩Uγ = ρα,γ|Uα∩Uβ∩Uγ for all α, β, and γ

in A.

We’ll deal with vector bundles where E and M are algebraic varieties and π is a

morphism. If U ⊂ M is open, then a section of E over U is a morphism s : U → E

10



such that π ◦ s = idU . We denote the set of all sections of E over U by E(U). The

zero section is s : M → E where s(p) = ϕ−1(p, 0) for any neighborhood U of p and

homeomorphism ϕ defined above, or in other words, s takes x ∈ U to the zero element

in π−1(x). A global section of E is a section of E(M) of E over M . The space of all

global sections is denoted H0(M, E).

Here are some examples of vector bundles:

1. The trivial vector bundle is given by π : M×Cn →M where π(p, α1, . . . , αn) = p.

2. For any vector bundle π : E → M , we can define the dual vector bundle to be

π∗ : E ′ →M where E ′ = ∪x∈M [π−1(x)]∗ such that [π−1(x)]∗ 7→ x.

3. If X ⊂ Pn is a projective variety, then the tautological bundle OX(−1) over X

is B with π : B → X where B = {(x, l) : l ∈ X, x ∈ l} ⊂ Cn+1 × Pn and π is

projection onto X.

4. By taking the dual of the tautological line bundle, we get the hyperplane bundle

H on variety X ⊂ Pn. When X = Pn, the sheaf of the hyperplane bundle on

Pn is denoted by OPn(1) and its space of global sections is exactly the set of

all linear polynomials in C[x0, . . . , xn]. More generally, for the kth power of a

hyperplane bundle H⊗k, the space of all global sections OPn(k) is the set of all

degree k homogeneous polynomials [19, p.122–127].

5. If π : E →M is a vector bundle and f : N →M is continuous, then the pullback

bundle or the induced bundle on N is f ∗(E) = {(x, v) : x ∈ N, v ∈ π−1(f(x))}.

6. If π : E → M , π′ : F → M are vector bundles and E ↪→ F , then the quotient

bundle ρ : F/E → M is {(x, v) : x ∈ M, v ∈ π′−1(x)/π−1(x)} where ρ is again

projection onto M .
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7. Let π : E → M , π′ : F → M be vector bundles of rank n,m, respectively, and

G = {(e, f) ∈ E × F : π(e) = π′(f)}. Then π′′ : G → M where (e, f) 7→ π(e) =

π′(f) is the rank (n+m) Whitney sum vector bundle denoted by π ⊕ π′.

8. The tensor product bundle is defined similarly: for vector bundles π : E → M ,

π′ : F → M , we have E ⊗ F = {(x, v) : x ∈ M, v ∈ π−1(x) ⊗ π′−1(x)} where

π′′ : E ⊗ F → M is projection onto M . Likewise, the symmetric power bundle

is Sk(E) = {(x, v) : x ∈ M, v ∈ Sk(π−1(x))} and the exterior power bundle is

∧k(E) = {(x, v) : x ∈M, v ∈ ∧k(π−1(x))}.

1.4.3 Universal Bundles

Take the trivial vector bundle π : Gr(k, n) × Cn → Gr(k, n) over Gr(k, n) and let

π′ : S → Gr(k, n) be the subbundle such that π′−1(Λ) = Λ × Λ. We call S the

universal subbundle or the tautological subbundle of Gr(k, n), which explicitly is S =

{(Λ, v) : v ∈ Λ,Λ ∈ Gr(k, n)}. We call the quotient bundle Q = (Gr(k, n) × Cn)/S

the universal quotient bundle or the tautological quotient bundle on Gr(k, n). When

k = 1, the universal subbundle is the same as the tautological line bundle [7, p.207].

1.4.4 Fiber Bundles

A fiber bundle on M consists of spaces E and F with a continuous surjective map

π : E → M such that there exist an open cover {Uα}α∈A of M and homeomorphisms

of the form ϕα : π−1(Uα) → Uα × F such that π = π1 ◦ ϕα; we call F the fiber.

Therefore, a vector bundle is a fiber bundle where F is a vector space. We can also

define fiber bundles using the alternative definitions for vector bundles from above

by replacing Cn with any space F . Here are a few examples of fiber bundles:
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1. A projective bundle is a fiber bundle whose fiber is projective space. For any

rank n vector bundle E on M , the projective bundle P (E) on M is a fiber

bundle with fiber Pn−1 where P (E) is the space of all elements in Pn−1 in all

fibers of E , i.e. the space obtained by gluing the patches Uα × Pn−1 using

the transition functions. In fact, any projective bundle on M is equivalent to

P (E) = {(x, l) : x ∈ M, l ∈ P(π−1(x))} for some vector bundle π : E → M [11,

p.375].

The set of complete flags of vector spaces in Cn form a projective variety called

a flag variety, denoted by Fn [17, p.132–133]. We can generalize this to any

n-dimensional vector space E, and for integers 0 < d1 < · · · < dk < n, we define

a partial flag variety to be the set Flag(d1, . . . , dk, E) = {Wd1 ⊂ · · · ⊂ Wdk ⊂

E : dimWdi = di}. Some partial flag varieties are isomorphic to projective

bundles of quotient bundles: let Xk = Flag(1, . . . , k, E), define Rk = {(e,W1 ⊂

· · · ⊂ Wk) ∈ E×Xk : e ∈ Wk}, and take the quotient bundle Qk = (E×Xk)/Rk.

Since the fiber of W1 ⊂ · · · ⊂ Wk in Qk is the fiber of W1 ⊂ · · · ⊂ Wk in E×Xk

mod the fiber of W1 ⊂ · · · ⊂ Wk in Rk, then

P (Qk) = {(W1 ⊂ · · · ⊂ Wk, l) : W1 ⊂ · · · ⊂ Wk ∈ Xk,

l ∈ P(π−1(W1 ⊂ · · · ⊂ Wk))}

= {(W1 ⊂ · · · ⊂ Wk, l) : W1 ⊂ · · · ⊂ Wk ∈ Xk,

l ∈ P((E × {W1 ⊂ · · · ⊂ Wk})/(Wk × {W1 ⊂ · · · ⊂ Wk}))}

∼= {(W1 ⊂ · · · ⊂ Wk, l) : W1 ⊂ · · · ⊂ Wk ∈ Xk, l ∈ P(E/Wk)}

If p : E → E/Wk and l ⊂ E/Wk, then dim p−1(l) = k + 1, so W1 ⊂ · · · ⊂ Wk ⊂

p−1(l) ∈ Xk+1. The map W1 ⊂ · · · ⊂ Wk ⊂ p−1(l) 7→ (W1 ⊂ · · · ⊂ Wk, l) gives

the desired isomorphism, i.e. Xk+1
∼= P (Qk).
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2. A Grassmann bundle is a fiber bundle where the fiber is a Grassmannian. For

any vector bundle π : E → M , we can construct a Grassmann bundle as fol-

lows: there exists an open cover {Uα}α∈A and isomorphisms ρα,β : Cn × (Uα ∩

Uβ) → Cn × (Uβ ∩ Uα), so for any α, β ∈ A, we can define the isomor-

phism fα,β : Gr(k, n) × (Uα ∩ Uβ) → Gr(k, n) × (Uβ ∩ Uα) such that (W,x) 7→

(ρα,β(W ), x) where ρα,β(W ) = {(π1 ◦ ρα,β)(v, x) : (v, x) ∈ W × (Uα ∩ Uβ)}.

The Grassmann bundle is equivalent to the set Gr(k, E) = {(x, l) : x ∈ M, l ∈

Gr(k, π−1(x))} and the Grassmann bundle ρ : Gr(k, E)→M is projection map.

Given a vector bundle π : E →M , the pullback bundle

ρ∗(E) = {((x, l), v) : (x, l) ∈ Gr(k, E), v ∈ π−1(ρ(x, l))}

= {((x, l), v) : (x, l) ∈ Gr(k, E), v ∈ π−1(x)}

is a vector bundle on the Grassmann bundle ρ : Gr(k, E) → M . This gives an

example the analog of trivial vector bundles to Grassmann bundles. The analog

of tautological subbundles for Grassmann bundles is RE = {((x, l), v) : v ∈ l ⊂

π−1(x)}. Since RE ⊂ ρ∗(E), QE = ρ∗(E)/RE is the analog of the tautological

quotient bundle to Grassmann bundles.

All partial flag varieties are isomorphic to Grassmann bundles of quotient bun-

dles, i.e. Flag(d1, . . . , dk, dk + a,E) ∼= Gr(a,Qdk), by an argument similar to

the one above.

3. A flag bundle is a fiber bundle where the fiber is a flag variety, and a partial flag

bundle is defined similarly. Given a rank n vector bundle π : E →M and k ≤ n,

the partial flag bundle is equivalent to FL(d1, . . . , dk, E) = {(x, l) : x ∈ M, l ∈

Flag(d1, . . . , dk, π
−1(x))}. Given a vector bundle π : E → M , the analog of the

trivial vector bundle to a partial flag bundle ρ : FL(d1, . . . , dk, E)→M is again

the pullback bundle ρ∗(E), and the analogs of the tautological subbundles are
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defined like above where RE,di = {((x, ld1 ⊂ · · · ⊂ ldk), v) : v ∈ ldi , ld1 ⊂ · · · ⊂

ldk ∈ Flag(d1, . . . , dk, π
−1(x))}. Notice RE,d1 ⊂ · · · ⊂ RE,dk ⊂ ρ∗(E), so the

analog of tautological quotient bundles are ρ∗(E)/RE,di for d1, . . . , dk.

1.4.5 Maps to Pn

If X ⊂ Pn and L is a complex line bundle on X, then a linear system on X is a vector

space spanned by a set of linearly independent sections of the vector space of the

global sections of L. A complete linear system |L| on X is a linear system containing

all global sections of L. If |L| is a complete linear system generated by s0, . . . , sn, then

let s̃i(x) be the projection of ϕ(si(x)) on C where x ∈ U and ϕ : π−1(U) → U × C

is the local trivialization. The numbers s̃i(x) ∈ C depend on the choice of ϕ, but

for any another local trivialization ϕ′ with corresponding projection s̃i
′, the ratios

s̃i(x)/s̃i
′(x) are constant for all i. Therefore, we can define a partial map X 99K Pn

by x 7→ [s̃0(x) : . . . : s̃n(x)].

Conversely, for any partial map from X to Pn, we can find a complete linear system

and a line bundle on X to define the maps as above. One can take the line bundle

to be the pullback of H and the linear system generated by the pullbacks of the

coordinate functionals x0, . . . , xn [19, p.130–133].

This map is not always defined on all of X since it might occur that s̃0(x) = · · · =

s̃n(x) = 0 for some x. If no such x exists, we call the linear system base-point free

and the line bundle is globally generated. Notice that there is a natural map from the

space of all sections H0(X,L)×X 7→ L via s× x 7→ s(x) and this map is surjective

if and only if the linear system is base-point free. Therefore, maps from X to Pn are

in one-to-one correspondence with surjective maps Cn+1 ×X → L where L is a line

bundle [19, p.131].
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1.4.6 Maps to Grassmannians

More generally, maps X → Gr(k, n) are in one-to-one correspondence with rank k

vector bundles E on X with an n-dimensional subspace W ⊂ H0(X, E) such that the

sections of W generate E at every x ∈ X. This is because on Gr(k, n), we have the

inclusion S ↪→ Cn ×Gr(k, n) and taking the dual, we have Cn ×Gr(k, n)→ S∗. By

taking the pullback along the map f : X → Gr(k, n), we get Cn∗ ×Gr(k, n)→ f ∗S∗

and hence maps from X → Gr(k, n) are in one-to-one correspondence with surjective

maps Cn ×X → E where E is a rank k vector bundle.

1.5 Chern Classes

If X is a projective variety and L is a complex line bundle on X, then the first Chern

class is the unique element c1(L) ∈ H2(X,Z) satisfying the following properties:

• c1(f ∗L) = f ∗c1(L) for continuous f : Y → X

• c1(L⊗M) = c1(L) + c1(M) for complex line bundles L,M on X

• if h is the hyperplane class, i.e. the generator of H2(Pn), then c1(OPn(−1)) =

−h.

The first Chern class of the trivial line bundle is 0. Since the L ⊗ L∗ is the trivial

bundle, additivity implies that c1(L∗) = −c1(L).

If E is a complex vector bundle of rank k on X, then the total Chern class is c(E) ∈

H∗(X) such that

• c(f ∗E) = f ∗c(E) for f : Y → X continuous

• c(E ⊕ F) = c(E) ∪ c(F) for complex vector bundles E ,F

• c(L) = 1 + c1(L) for any complex line bundle L.
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The 2nth component of c(E) in H2n(X,Z) is defined to be the nth Chern class cn(E).

If E has a complete flag 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = E , set Li = Fi/Fi−1. Then the

Chern roots of cn(E) are xi := c1(Li), and by additivity, cn(E) is the nth elementary

function en(x1, . . . , xm)

Lemma 1.5.1. If 0→ E → E ′ → E ′′ → 0, then c(E ′) = c(E)c(E ′′).

Lemma 1.5.2 (Gysin morphisms, projection formula, [17, p.156]). If f : Y → X is

a continuous map between compact, connected, complex varieties, dimY = m, and

dimX − n, then the Gysin morphism f∗ is defined by the composition

f∗ : H
q(Y ) ∼= Hm−q(Y )

f∗−→ Hm−q(X) ∼= Hq−(m−n)(X)

where the isomorphisms are given by Poincaré duality and f∗ is the induced map on

cohomology, and the projection formula states that

f∗(f
∗α ∪ β) = α ∪ f∗(β).

Theorem 1.5.3. If Q is the tautological quotient bundle on a Grassmannian and σk

is the special Schubert variety of codimension k, then ck(Q) = σk.

Proof. Notice we can write ck(Q) =
∑
|λ|=k aλσλ since the σλ form a basis forH2k(X,Z).

Since σλ ^ σµ = δµ,λ̂ for any partitions λ and µ which are both contained in an m×n

rectangle such |λ|+ |µ| = mn, it suffices to show ck(Q) ^ σλ is 1 if λ = λ(1, k), where

λ(1, k) is the m× n rectangle with the 1× k rectangle removed, and 0 otherwise.

Let λ 6= λ(1, k) be a partition fitting in a m × n rectangle such that |λ| = mn − k.

Then λm ≥ n − k + 1, so n + m − λm ≤ m + k − 1. This implies that for any

flag in Cm+n, if Λ ∈ σλ(V ) = {Λ ∈ Gr(m,m + n) : dim (Λ ∩ Vn+i−λi) ≥ i}, then

dim(Λ ∩ Vn+m−λm) ≥ m, so Λ ∈ Vm+k−1. Therefore, σλ(V ) ⊂ Gr(m,m+ k − 1).
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If we now work in Gr(m,m + k − 1), notice that for any Λ ∈ σλ, we have the exact

sequence 0 → Vm+k−1/Λ → Cm+n/Λ → Cm+n/Vm+k−1 → 0. These give us fiber

bundles, where the Vm+k−1/Λ’s give a rank k − 1 fiber bundle and Cm+n/Vm+k−1 is

constant and hence gives the trivial bundle on Gr(m,m+k−1). Let Q be the universal

quotient bundle on Gr(m,m + n) and let Q′ be Q restricted to Gr(m,m + k − 1).

Then Q′ = {Cm+n/Λ: Λ ∈ Gr(m,m + k − 1)}. Since Cm+n/Vm+k−1 is trivial, its

Chern roots are all 0, which implies that ck(Q
′) = 0 because at most k − 1 factors in

each degree k monomial is non-zero. Let f be the inclusion map of Gr(m,m+ k− 1)

into Gr(m,m + n). By the projection formula, α ^ f∗(β) = f∗(f
∗α ^ β), so

ck(Q) ^ σα = f∗(f
∗ck(Q) ^ [σλ]) = f∗(ck(Q

′) ^ [σλ]) = f∗(0 ^ [σλ]) = 0.

Now let λ = λ(1, k). Then there is an isomorphism g : σλ → P(Vm+k/Vm−1). Let

Q′′ be the universal quotient bundle on P(Vm+k/Vm−1). For any Λ ∈ σλ, there is an

exact sequence 0→ Λ/Vm−1 → Vm+k/Vm−1 → Q′′ → 0. Then again by the projection

formula, ck(Q) ^ σλ = g∗(g
∗ck(Q) ^ [σλ]) = g∗(ck(Q

′′)) = 1 [17, p.108,121–124].

1.5.1 Splitting Principle

If E → X is a complex vector bundle of rank n, then there exists space Y and a

continuous map f : Y → X such that

• the pullback bundle f ∗E on Y has a filtration, that is, there is a full flag 0 =

F0 ⊂ F1 ⊂ · · · ⊂ Fn = f ∗E

• f ∗ : H∗(X)→ H∗(Y ) is injective [17, p.122].

Let Li = Fi/Fi−1 be a line bundle on X using the notation above. Then c1(Li) ∈

H2(Y,Z). Since 0 → Fi−1 → Fi → Li → 0, then by Lemma 1.5.1, c(Fi) =

c(Fi−1)c(Li−1) for i = 1, . . . , n and hence c(f ∗E) =
∏n

i=1 c(Li). If we denote c1(Li)
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by xi, then ci(f
∗E) = ei(x1, . . . , xn) where ei is the elementary symmetric function

defined below. Furthermore, ci(f
∗E) = f ∗(ci(E)), so the elementary functions are in

the image of f ∗.

By the Splitting Principle, since f ∗ is injective, we don’t lose information when making

calculations in H∗(Y ). This is convenient because we can now work with Chern roots

in our calculations.

1.6 Symmetric Functions

A symmetric polynomial is of the form f(x1, . . . , xn) in n variables such that

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

for any σ ∈ Sn.

A monomial symmetric function is of the form

m(a1,...,an)(x1, . . . , xn) =
∑
λ

xλ

where the sum ranges over all distinct permutations λ of (a1, . . . , an).

Any monomial symmetric function where the nonzero parts are one, i.e. is of the

form

m(1,...,1,0,...,0)(x1, . . . , xn) = ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik ,
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is called a basic elementary symmetric function. The general elementary symmetric

function is defined by eλ = eλ1 · · · eλi for each partition λ.

A monomial symmetric function where the only nonzero part is k is

m(k,0,...,0)(x1, . . . , xn) = pk(x1, . . . , xn) =
n∑
i=1

xki

called a basic power-sum symmetric polynomial. The general power-sum symmetric

function is defined by pλ = pλ1 · · · pλi for each partition λ.

Taking the sum of all monomials in n variables of degree k ≥ 1 gives another type of

symmetric polynomial,

hk(x1, . . . , xn) =
∑

1≤i1≤···≤in≤n

xi1 · · ·xin ,

called a basic complete homogeneous symmetric function. The general complete ho-

mogeneous symmetric function is defined by hλ = hλ1 · · ·hλi for each partition λ.

A Schur function is of the form

s(a1,...,an)(x1, . . . , xn) =
det (x

aj+n−j
i )

det (xn−ji )

where (a1, . . . , an) is a partition. The denominator is equivalent to the Vandermonde

determinant,
∏

1≤i<j≤n(xi − xj) [20, p.334].

The symmetric polynomials Λn = ⊕nk=0Λk
n in n variables, where Λk

n is the set of
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homogeneous symmetric polynomials in n variables of degree k, form a ring over Z.

The monomial symmetric functions, the basic elementary symmetric functions, the

basic complete homogeneous symmetric functions, and the Schur functions each forms

a basis for Λn (but the power-sum symmetric functions only form a basis for Λn after

tensoring with Q) [17, p.7–10].

For m ≥ n, define the map ρkm,n : Λk
m → Λk

n such that xi 7→ 0 if i > n and xi 7→

xi otherwise. Take Λk to be the inverse limit lim←−n Λk
n, that is, the set {(fi) : fi ∈

Λk
i , ρ

k
i,i−1(fi) = fi−1}. The ring of symmetric functions is Λ = ⊕k≥0Λk [15, p.10–12].

Theorem 1.6.1. The integral cohomology of Gr(k, n) is isomorphic to a quotient

of symmetric functions via the surjective map Λ → Gr(k, n) where sλ 7→ σλ ∈

H∗(Gr(k, n),Z) if λ fits in the k × n− k rectangle, and sλ 7→ 0 otherwise [4, p.152].

1.6.1 Pieri’s Formula

If a = a, 0, 0, . . . , then for any λ,

(σa · σλ) =
∑

λi≤ci≤λi−1,
∑
i ci=a+

∑
λi

σc

[7, p.203]

Example 1.6.2. In Gr(3, 8), we can compute σ3 · σ4,3,1 using Pieri’s forumula. Since

4 ≤ c1 ≤ 5, 3 ≤ c2 ≤ 4, 1 ≤ c3 ≤ 3 and
∑

i ci = 11, then σ3 · σ4,3,1 = σ4,4,3 + σ5,3,3 +

σ5,4,2.
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1.6.2 Giambelli’s Formula

σa1,...,ad =

∣∣∣∣∣∣∣∣∣∣∣∣∣

σa1 σa1+1 σa1+2 · · · σa1+d−1

σa2−1 σa2 σa2+1 · · · σa2+d−2

...
...

σad−d+1 σad−d+2 σad−d+3 · · · σad

∣∣∣∣∣∣∣∣∣∣∣∣∣
[7, p.205]

Example 1.6.3. To multiply σ2,1 · σ2,1 in Gr(3, 8), we use Giambelli’s formula to

express σ2,1 in terms of special Schubert cycles, then apply Pieri’s rule. By Giambelli’s

formula

σ2,1 =

∣∣∣∣∣∣∣∣∣∣
σ2 σ3 σ4

σ0 σ1 σ2

0 0 σ0

∣∣∣∣∣∣∣∣∣∣
= σ0

∣∣∣∣∣∣∣
σ2 σ3

σ0 σ1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
σ2 σ3

σ0 σ1

∣∣∣∣∣∣∣ = σ2σ1 − σ3σ0

Then by Pieri’s formula,

σ2,1 · σ2,1 = (σ2σ1 − σ3σ0)σ2,1

= σ2σ1σ2,1 − σ3σ0σ2,1

= σ2(σ3,1 + σ2,2 + σ2,1,1)− σ3σ2,1

= σ3,3 + σ4,2 + 2σ3,2,1 + σ2,2,2 + σ4,1,1

Example 1.6.4. Lines intersecting 4 generic lines in P3

Let L1, L2, L3, and L4 be 4 generic lines in P3. Then the set of lines intersecting Li is

σ1(Li). Since the lines are generic, the cohomology class of the set of lines intersecting

every Li is

σ4
1 = σ2

1(σ1 · σ1) = σ2
1(σ2 + σ1,1) = σ1(σ1σ2 + σ1σ1,1) = σ1(2σ2,1) = 2σ2,2
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Since
∫

2σ2,2 = 2, then there are 2 lines intersecting L1, L2, L3, and L4 [7, p.206].

1.7 Degeneracy Formulas for Maps of Vector Bun-

dles

1.7.1 Degeneracy Locus

Let ϕ : E → F be a morphism of vector bundles E ,F on X with ranks e, f , respec-

tively. The degeneracy locus of ϕ is

Dr(ϕ) = {x ∈ X : ϕ(x) : E(x)→ F(x) has rank ≤ r}

for r ≤ f . This is a closed subvariety of X.

Example 1.7.1. Let Cm ↪→ Cn → Q and ϕ = f ◦ g be a morphism of these vector

bundles on X = Gr(k, n). Since the kernel of ϕ is Cm ∩ S, we have

D0(ϕ) = {x ∈ X : Cm(x) ⊂ S(x)}

= {Λ ∈ Gr(k, n) : dim (Λ ∩ V m) ≥ n}

D1(ϕ) = {x ∈ X : ϕ(x) : Cm(x)→ Q(x) has rank ≤ 1}

= {Λ ∈ Gr(k, n) : dim (Λ ∩ V m) ≥ n− 1}

and in general,

Dr(ϕ) = {Λ ∈ Gr(k, n) : dim (Λ ∩ V m) ≥ n− r}

So the degeneracy loci of ϕ give us Schubert varieties of Gr(k, n).
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Let f : X → Y be C∞ and Z be a subvariety of Y . We say f is transverse to Z if

codim (df(TxX) ∩ Tf(x)Z) = codim df(TxX) + codimTf(x)Z. If E is a complex vector

bundle on X of rank n and s is a family s1, . . . , sn of global sections of E, then the

degeneracy locus is the set Di,j(s) = {x ∈ X : dim 〈s1(x), . . . , si(x)〉 ≤ i − j} for

0 ≤ i− j < n [17, p.125–127].

1.7.2 Gauss-Bonnet Formula

If s is a global section of F , transverse to the zero section, and if Xs = s−1(0), then

cf (F) = [Xs] where f = rankF [17, p.126].

Example 1.7.2. Lines on a generic cubic surface in P3

Let F (x1, x2, x3, x4) = 0 be a cubic surface in P3 and let V = C4. Since F is a

homogeneous degree 3 polynomial, F ∈ S3(V ∗). Similarly, for any subspace W ⊂ V ,

F |W ∈ S3(W ∗). Since S3(R∗) = {(w, f) : w ∈ Gr(2, V ), f ∈ S3(W ∗)} is a vector

bundle on Gr(2, V ) where R is the tautological subbundle on Gr(2, V ) and (w, f) 7→

w, the map from Gr(2, V ) to S3(R∗) where W 7→ (W,F |W ) is a global section of

S3(R∗). Since the dimension of the space of degree 3 homogeneous polynomials in 2

variables is 4, dimS3(W ∗) = 4 and hence the rank of S3(R∗) is 4.

Let g : Gr(2, V )→ S3(R∗) where W 7→ F |W . Then Xg = {W ∈ Gr(2, V ) : F |W ≡ 0},

the set of lines on the surface defined by F = 0. For a generic choice of F , dimXg =

dimGr(2, V )− rankS3(R∗) = 0. (All smooth surfaces are generic in this sense.) By

the Gauss-Bonnet formula, [Xg] = c4(S3(R∗)). By 1.5.1, we can define (L∗i )
j = L−ji
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where the Li’s are line bundles. Then

c(S3(R∗)) = c(L−3
1 + L−2

1 L−1
2 + L−1

1 L−2
2 + L−3

2 )

= (1− 3c1(L1))(1 + (−2c1(L1)− c1(L2)))

· (1 + (−c1(L1)− 2c1(L2)))(1− 3c1(L2))

Denote the Chern roots of R∗ by c1(Li) = [Li]. Then the top Chern class is

c4(S3(R∗)) = −3[L1](−2[L1]− [L2])(−[L1]− 2[L2])(−3[L2])

= 18[L1]3[L2] + 45[L1]2[L2]2 + 18[L1][L2]3

= 18([L1]3[L2] + [L1][L2]3) + 45[L1]2[L2]2

= 18[L1][L2](([L1] + [L2])2 − 2[L1][L2]) + 45([L1][L2])2

= 18e2([L1], [L2])(e2
1([L1], [L2])− 2e2([L1], [L2])) + 45e2

2([L1], [L2])

= 18c2(R∗)(c2
1(R∗)− 2c2(R∗)) + 45c2

2(R∗)

Since Gr(2, V ) ∼= Gr(2, V ∗), R∗ on Gr(2, V ) is isomorphic to Q on Gr(2, V ∗). The

kth Chern class of Q is σk, so the kth Chern class of R∗ is σ1,...,1 since the induced map

on cohomology from the isomorphism R∗ ∼= Q transposes the partition, i.e. σλ 7→ σλT .

Therefore,

c4(S3(R∗)) = 18σ1,1(σ2
1 − 2σ1,1) + 45σ2

1,1 = 18σ2,2 − 36σ2,2 + 45σ2,2 = 27σ2,2

Since
∫

27σ2,2 = 27, there are 27 lines on the surface.

Example 1.7.3. Lines on a generic quintic surface in P4

Let F (x1, x2, x3, x4, x5) = 0 be a quintic surface in P4 and let V = C5. Let g : Gr(2, V )→

S5(R∗) where W 7→ F |W . As in the previous example, if R is the tautological sub-

bundle on Gr(2, V ), then the rank of S5(R∗) is 6, so for generic choice of F , dimXg =
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dimGr(2, V ) − rankS5(R∗) = 0. By the Gauss-Bonnet formula [Xg] = c6(S5(R∗)),

so using similar notation as above, we have

c(S5(R∗)) = c(L−5
1 + L−4

1 L−1
2 + L−3

1 L−2
2 + L−2

1 L−3
2 + L−1

1 L−4
2 + L−5

2 )

= (1− 5c1(L1))(1 + (−4c1(L1)− c1(L2)))(1 + (−3c1(L1)− 2c1(L2)))

· (1 + (−2c1(L1)− 3c1(L2)))(1 + (−c1(L1)− 4c1(L2)))(1− 5c1(L2))

c6(S5(R∗)) = 5[L1](4[L1] + [L2])(3[L1] + 2[L2])(2[L1] + 3[L2])([L1] + 4[L2])5[L2]

= 25e2([L1], [L2])(e1([L1], [L2]) + 3[L1])(2e1([L1], [L2]) + [L1])

· (2e1([L1], [L2]), [L2])(e1([L1], [L2]), 3[L2])

= 25e2([L1], [L2])(24e4
1([L1], [L2]) + 58e2

1([L1], [L2])e2([L1], [L2])

+ 9e2
2([L1], [L2]))

= 25c2(R∗)(24c4
1(R∗) + 58c2

1(R∗)c2(R∗) + 9c2
2(R∗))

= 25σ1,1(24σ4
1 + 58σ2

1σ1,1 + 9σ2
1,1)

= 25(48σ3,3 + 58σ3,3 + 9σ3,3)

= 2875σ3,3

Since
∫

2875σ3,3 = 2875, there are 2875 lines on the surface.

1.7.3 Thom-Porteous Formula

If ϕ : E → F is a morphism from a rank e vector bundle E to a rank f bundle F ,

then

i) IfDk(ϕ) 6= ∅, then any irreducible component has codimension≤ (f−k)×(e−k).

26



ii) If equality holds for all components, then we have

[Dk(ϕ)] = s(f−k)×(e−k)(F − E) = det (cf−k−i+j(F − E))1≤i,j≤e−k.

Here, we define c(F − E) = c(F)/c(E) [17, p.127].
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Chapter 2

Hilbert Schemes and Quot Schemes

2.1 Hilbert Polynomials

Let M be a finitely generated graded S = K[x0, . . . , xn]-module where K is a field.

Then the Hilbert function HM of M is

HM(i) = dimkMi

for i ∈ Z. For example, HS(i) =
(
i+n
n

)
for i ≥ 0. There is a unique polynomial

PM(t) ∈ Q[t], called the Hilbert polynomial of M , such that PM(t) = HM(t) for

t � 0. Let m = 〈x0, . . . , xn〉 and let I be a homogeneous ideal of S. The saturation

of I is

(I : m∞) = 〈f ∈ S : fmi ⊂ I for some i > 0〉.

I is saturated if I = (I : m∞). [16, p.1–2]
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2.2 Gotzmann’s regularity theorem

Let I be a homogeneous ideal of S and

0→ Fl → · · · → F1 → S → S/I → 0

be the minimal free resolution of S/I where Fi = ⊕jS(−j)⊕βi,j and S(−i) denotes

the grading shift S(−i)j = Sj−i. If k ≥ maxi,j{j−i : βi,j 6= 0}, then S/I is k-regular.

If S/I is k-regular, then I is generated in degree ≤ k + 1 and HS/I(k) = PS/I(k).

Theorem 2.2.1 (Gotzmann’s regularity theorem). Let P be a Hilbert polynomial, so

there exist a1 ≥ · · · ≥ aD ≥ 0 such that

P (t) =
D∑
j=1

(
t+ ai − i+ 1

ai

)
.

If I is a saturated ideal such that PS/I(t) = P (t), then S/I is (D − 1)-regular. We

call D the Gotzmann number of P .

For n, d ∈ N, there exist unique kj > kj+1 ≥ 0 such that

n =
t∑

j=0

(
kj

d− j

)
.

The Macaulay upper boundary of n with respect to d is

n〈d〉 =
t∑

j=0

(
kj + 1

d− j + 1

)
.

Theorem 2.2.2 (Macaulay). Let I be a homogeneous ideal of S and k ∈ N such that

all minimal generators of I have degree < k. Then HS/I(k + 1) ≤ HS/I(k)〈k〉.

Theorem 2.2.3 (Gotzmann’s persistence theorem). Let I be a homogeneous ideal of
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S and k ∈ N such that all minimal generators of I have degree < k. If HS/I(k+ 1) =

HS/I(k)〈k〉, then HS/I(t+ 1) = HS/I(t)
〈t〉 for t ≥ k.

In particular, if D is the Gotzmann number of P , then

P (t+ 1) = P (t)〈t〉 for all t ≥ D.

Corollary 2.2.4. If I is a homogeneous ideal of S generated in degrees ≤ D such

that HS/I(D) = P (D) and HS/I(D + 1) = P (D + 1), then PS/I = P .

2.3 Hilbert schemes

The Hilbert scheme HilbP (Pn) is a space that parameterizes subschemes of Pn with

Hilbert polynomial P . There is a 1-1 correspondence between HilbP (Pn) and X/ ∼

where

X = {I : I is a homogeneous ideal of S and PS/I = P}

I ∼ J if (I : m∞) = (J : m∞).

Let P be a Hilbert polynomial with Gotzmann number D and let GD = Gr(HS(D)−

P (D), SD). There is a 1-1 correspondence between X/ ∼ and the following set

{L ∈ GD : dim (S1L) ≤ HS(D + 1)− P (D + 1)}

given by the maps

L 7→ 〈L〉, I 7→ ID.
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Therefore, HilbP (Pn) is a subscheme of a Grassmannian with a certain dimension

condition.

Let E be the tensor product bundle of the trivial bundle S1×GD with the tautological

subbundle of GD, F be the trivial bundle SD+1×GD, and ϕ : E → F be the morphism

defined by multiplication. Then

HilbP (Pn) = DHS(D+1)−P (D+1)(ϕ).

Let j be the embedding of HilbP (Pn) into Gr(k, n). If HilbP (Pn) has the appropriate

codimension and αi = j∗(βi) for cohomology classes αi, βi of HilbP (Pn), Gr(k, n),

respectively, then

∫
Hilb(Pn)

α1 . . . αk =

∫
Gr(k,n)

β1 . . . βk · [Dk(ϕ)]

where [Dk(ϕ)] is evaluated using the Thom-Porteous formula. Even if HilbP (Pn)

does not have the required codimension, the result from applying the Thom-Porteous

formula is still useful in applications.

2.4 Quot Schemes

Let S = k[x0, . . . , xn] where k is a field and O = OP1 . Let QuotP (Or) be the space

of quotients of Or with Hilbert polynomial P . Let 0 → N → S⊕N → M → 0.

The construction of the quotient scheme is similar to that of the Hilbert scheme.

By [1, p.4–9], quotients with Hilbert polynomial P have a similar type of Gotzmann

number D by regularity. A coherent sheaf F on Pn is d-regular if for all i > 0,

H i(Pn,F(d− i)) = 0.
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Theorem 2.4.1 (Dellaca). If F is a rank r free S-module with module generators hav-

ing degree at most 0, N is a graded submodule of F , and M = F/N , with Gotzmann

representation

PM(t) =
D∑
i=1

(
t+ ai − i+ 1

ai

)

then the associated sheaf Ñ is D-regular.

By a similar persistence theorem for this sheaf, the dimensions stabilize for large

enough values.

Corollary 2.4.2 (Dellaca). If F is a coherent sheaf on Pn and a ∈ Z≥0 such that

F(a) is generated by global sections and F(a) has Gotzmann regularity D, then F is

D + a-regular.

So we can also realize QuotP (Or) as a subscheme of a Grassmannian with certain

dimension conditions.

Theorem 2.4.3 (Dellaca).

QuotP (Or) ∼= {F ∈ Gr(SrD, P (D)) : codimF · S1 = P (D + 1)}
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Chapter 3

Cohomology Classes of QuotP (P
1)

and Hilb2(P2)

3.1 Quot Scheme of P1

3.1.1 Thom-Porteous Formula for QuotP (P1)

By the work of Dellaca, if QuotP (Or) has Hilbert polynomial P (t) = k(t + 1) + m,

then the Thom-Porteous formula gives QuotP (Or) an expected dimension of (r −

k)k+ rm, where the degeneracy locus is of Gr((r− k)( r(r+1)
2

+m+ 1)−m, r( r(r+1)
2

+

m + 1)). To compute the actual dimension of QuotP (Or), a subsheaf of Or is split

into the sum of standard line bundles, ⊕O(−ti) where
∑
ti = m. The dimension

of Hom(⊕O(−ti),Or) is r(r − k) − rm. However, the identification of QuotP (Or)

with a subset of Hom(⊕O(−ti),Or) is not unique, so one needs to mod out by

Aut(⊕O(−ti)). The dimension of Aut(⊕O(−ti)) is bounded below by (r − k)2 and

hence the dimension of QuotP (Or) is bounded above by r(r − k)− rm− (r − k)2 =
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(r−k)k+rm. In this case, the expected dimension agrees with the actual dimension.

[1, p.9–11]

3.1.2 Computing the class QuotP (P1)

We first recall two facts:

Theorem 3.1.1. [15, p.72] If sλ(x, y) is a Schur function corresponding to a partition

λ in the variables x1, x2, . . . , y1, y2 . . . , then

sλ(x, y) =
∑
µ,ν

cλµνsµ(y)sν(x).

Theorem 3.1.2 (Schubert’s Duality Theorem). [4, p.149] For Schubert cycles σλ, σµ

satisfying |λ|+ |µ| = rn,

σλσµ =

 1 if λi + µr+1−i = n for all 1 ≤ i ≤ r

0 if λi + µr+1−i > n for any i

Consider the Quot scheme QuotP (OrP1) with Hilbert polynomial P (t) = s(t+ 1) +k.

Let 0 → K → Or → F → 0 and twist by large enough n, so dimH0(OrP1(n)) =

r(n + 1), dimH0(F(n)) = s(n + 1) + k, and dimH0(K(n)) = (r − s)(n + 1)− k. In

Gr((r− s)(n+ 1)−k, r(n+ 1)), let ϕ be the map between universal and trivial vector

bundles R⊗ S1 → O ⊗ Srn+1 with ranks e = 2(r − s)(n + 1)− 2k and f = r(n + 2),

respectively. Given the condition rankϕ ≤ (r − s)(n + 2) − k (and call this rank

l), the Quot scheme is a degeneracy locus in Gr((r − s)(n + 1) − k, r(n + 1)) by

Dellaca’s theorem [1, p.9–11]. If Q is the quotient bundle of the Grassmannian, then
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c(R) = c(Q)−1 (by 1.5.1), so by the Thom-Porteous formula,

[Dl(ϕ)] = s(f−l)×(e−l)(F − E)

= s(f−l)×(e−l)(Q⊕Q)

=
∑
µ,ν

c(f−l)×(e−l)
µν σµσν (3.1.3)

=
∑
µ,ν

∑
λ

c(f−l)×(e−l)
µν cλµνσλ

=
∑
µ

∑
λ

cλµµcσλ. (3.1.4)

where λ is of size (f − l)(e− l) and fits in a ((r− s)(n+ 1)− k)× (s(n+ 1) + k) box,

and µc denotes the complement of µ in the rectangle (f − l) × (e − l). Line (3.1.3)

and line (3.1.4) are applications of Theorem 3.1.1 and Theorem 3.1.2, respectively.

Therefore, we have the following theorem:

Theorem 3.1.5. Using the notation above, the cohomology class of QuotP (OrP1) as

a degeneracy locus in Gr((r − s)(n+ 1)− k, r(n+ 1)), where P (t) = s(t+ 1) + k, is

given by

∑
µ

∑
λ

cλµµcσλ.

Example 3.1.6. To compute [QuotP (OP1)] in Gr(2, 4) where P (t) = 2, then r = 1,

s = 0, and k = 2. Since the Gotzmann number is r(r+1)
2

+ k by [1, p.10], taking

n = 3 is large enough. The only partitions that fit in a 2 × 2 box and are of size

(f − l)(e − l) = 2 are λ1 = (2) and λ2 = (1, 1), so we need only compute cλi∅(1,1) and

cλi(1)(1). Therefore,

[QuotP (OP1)] = σ2 + 3σ1,1.
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3.2 Hilb2(P2)

Consider the Veronese embedding vn : P(V )→ P(SymnV ) where dimV = 3, and let

N =
(
n+2

2

)
. We can define a map f on Hilb2(P2) in the following way: for an ideal I

corresponding to a length 2 subscheme of P2, either I vanishes at two distinct points

in P2 or I vanishes at a single point with multiplicity 2. (For example, we could take

I = 〈x0x1, x2〉 in the former case and I = 〈x0, x
2
1〉 in the latter.) Then there is an

embedding of Hilb2(P2) into Gr(2, SymnV ) defined as follows:

• If I vanishes at two distinct points x and y, then consider the unique line passing

through both points vn(x) and vn(y); this is a line in P(SymnV ) and hence an

element of Gr(2, SymnV )

• Otherwise, notice m2
x ⊂ I ⊂ mx. Since dim (Ox/Ix) = 2 and dim (Ox/mx) =

1, dim (mx/Ix) = 1. The dimension of the cotangent space mx/m
2
x is 2, and

therefore dim (Ix/m
2
x) = 1. Thus, the kernel of the quotient map (mx/m

2
x)
∗ →

(Ix/m
2
x)
∗ is a line in TxP

2. The image of this line under the embedding from

TxP
2 into Tvn(x)P(SymnV ) gives a line in P(SymnV ).

Lemma 3.2.1. Let P2 = P(V ). Then the map f : Hilb2(P2) → Gr(2, SymnV )

defined above is an embedding.

Proof. The map f is injective: first we claim that vn(P2) contains no lines. If not, let

L ∈ vn(P2) and H be a hyperplane in PN−1. Let C = H ∩ vn(P2); then v−1
n (C) is a

degree n curve in P2 for some n > 1. If the degree of v−1
n (L) is r, then v−1

n (L)∩v−1
n (C)

contains rn points. Then vn maps rn points to one point since C and L intersect at

exactly one point in vn(P2). This is a contradiction since vn is an embedding.

Thus, if L is a chord of vn(P2), then L∩ vn(P2) and has multiplicity at least 2. Since

the ideal I(vn(P2)) is generated by quadrics, L ∩ vn(P2) is the common zero set of
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these quadrics restricted to L. Then L∩vn(P2) has multiplicity at most 2, and hence

exactly 2. This implies chords of vn(P2) intersect at a 0-dimensional subscheme of

multiplicity 2, so f is injective.

Moreover, by [18, Theorem 18.29], if I is the ideal sheaf associated with a subscheme

in Hilb2(P2), then the tangent space of Hilb2(P2) at I is HomOP2 (I,OP2/I). By

construction, the tangent space of the image of I in Gr(2, SymnV ) is

HomC(H0((OP2/I)(n))∗, H0(I(n))∗) ∼= HomC(H0(I(n)), H0((OP2/I)(n))).

Since I is generated by polynomials of degree at most 2, we see that the restriction

of a nonzero map I → OP2/I to any degree n ≥ 2 is also nonzero (some generator

of I has nonzero image; multiply it by a suitable power of a linear function to get

a nonzero element in the image in degree n). So the map on tangent spaces is also

injective.

Theorem 3.2.2. Let P2 = P(V ) and N =
(
n+2

2

)
. Using the map f in the Lemma 3.2.1

[Hilb2(P2)] = (a− 3b+ c)σλ1 + (b− c)σλ2 + cσλ3

where σλi are Schubert classes in Gr(Symn(V ∗), 2) = Gr(2, SymnV ) defined by

λ1 = (2× (N − 2)) \ (4), λ2 = (2× (N − 2)) \ (3, 1), λ3 = (2× (N − 2)) \ (2, 2)

and

a = 3(n4 − 4n2 + 4n− 1), b = (n2 − 1)2 − (n− 1)(n− 2)

2
, c =

n2(n2 − 1)

2
.
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Proof. [Hilb2(P2)] can be written as a linear combination of Schubert classes:

[Hilb2(P2)] = ασλ1 + βσλ2 + γσλ3 .

By Poincaré duality, we can find these coefficients by computing:

[Hilb2(P2)] · σ4
1 = a, [Hilb2(P2)] · σ2

1σ1,1 = b, [Hilb2(P2)] · σ2
1,1 = c.

Recall σ1 = [{Λ: dim (Λ ∩ VN−2) ≥ 1}] and σ1,1 = [{Λ: Λ ⊂ VN−1}], where VN−1, VN−2

are any subspaces of SymnV of dimension N − 1, N − 2, respectively. Alternatively

σ1 = [{L : L is a line in PN−1, L ∩P(VN−2) 6= ∅}]

σ1,1 = [{L : L is a line in PN−1, L ∈ P(VN−1)}].

To compute a, consider the maps

P̃2 ×P2
j //

π

��

Hilb2(P2) // Gr(2, SymnV ) // PN−1

P2 ×P2

where P̃2 ×P2 is the blowup along the diagonal ∆. If O(1) is the Plücker line

bundle, then σ1 = c1(O(1)). Consider the surjective map i∗ : H∗(P2×P2)→ H∗(∆).

If x = [` × P2], y = [P2 × `] are hyperplanes and we let w = σ1, then i∗ is the map

Z[x, y]/〈x3, y3〉 → Z[w]/〈w3〉 that takes x, y 7→ w. By [12, Theorem 1, p.571],

H∗(P̃2 ×P2) ∼=
H∗(P2 ×P2)[t]

(P (t), t · ker i∗)

where P (t) is a polynomial whose constant term is [∆] and whose restriction to H∗(∆)
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is the Chern polynomial of the normal bundle N∆(P2 ×P2), i.e.

i∗P (t) = t2 + tc1(N ) + c2(N ).

The isomorphism is induced by π∗ : H∗(P2 × P2) → H∗(P̃2 ×P2) by sending −t to

[E] where E is the exceptional divisor.

[∆] = dx2+exy+fy2 for some d, e, f , so we can solve for the coefficients by computing

[∆]y2, [∆]xy, [∆]x2. Notice x3 = y3 = x4 = y4 = 0, so [∆]y2 = dx2y2, [∆]xy =

ex2y2, [∆]x2 = fx2y2. Since [∆]y2, [∆]xy, [∆]x2, and x2y2 are all a class of a point,

then d = e = f = 1 and hence [∆] = x2 + xy + y2.

To evaluate c1(N ), notice N = TP2 = Q(1), where Q is the quotient bundle. If

x1, x2 are the Chern roots of Q, then the Chern roots of Q(1) are x1 + (x1 + x2) and

x2 + (x1 + x2). Then c1(N ) = c1(Q(1)) = 3(x1 + x2) = 3w. Therefore

i∗P (t) = t2 + 3wt+ i∗[∆] so P (t) = t2 + 3xt+ x2 + xy + y2.

Since ker (i∗) = 〈x− y〉,

H∗(P̃2 ×P2) = Z[x, y, t]/〈t2 + 3xt+ x2 + xy + y2, tx− ty, x3, y3〉.

Notice j is a 2 : 1 map and σ1 = c1(O(−E)⊗OP2(n, n)) = t+nx+ny. Since a point

in P̃2 ×P2 corresponds to x2y2, [Hilb2(P2)]σ4
1 is 1

2
times the coefficient of x2y2 in

(t+ nx+ ny)4. Using Macaulay2,

R=frac(QQ[n])[x,y,t]

I=ideal(x^3,y^3,t^2+(3*x)*t+(x^2+x*y+y^2),t*x-t*y)

S=R/I
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(t+n*x+n*y)^4

x^2*y^2

we find that the coefficient of x2y2 is 6(n4 − 4n2 + 4n − 1). Therefore, a = 3(n4 −

4n2 + 4n− 1).

To compute b, first multiply [Hilb2(P2)] by σ1,1 by choosing some hyperplane H in

PN−1. The intersection of Hilb2(P2) with {L : L is a line in PN−1, L ∈ H} is the set

of chords of H∩vn(P2) = C. Then, to multiply by σ2
1, choose two codimension 2 sub-

spaces W1,W2 of PN−1 that do not intersect C, and take the intersection of the set of

chords in C with {L : L is a line in PN−1, L∩W1 6= ∅}∩{L : L is a line in PN−1, L∩

W2 6= ∅}. This is just the set of chords in C intersecting both W1 and W2. The

intersection of H with vn(P2) is a degree n curve C of genus (n−1)(n−2)
2

[7, 220].

Let P1 be the set of all hyperplanes containing W1 and P̂1 be the set of all hyperplanes

containing W2. If Hi(x) is the hyperplane containing the point x and Wi, then there

is a bihomogeneous map F : C → P1 × P̂1 defined by x 7→ (H1(x), H2(x)). Then a

chord between points x, y in C intersects both W1 and W2 if and only if Hi(x) = Hi(y)

for i = 1, 2. Then counting these chords is the same as counting pairs (x, y) such that

F (x) = F (y); in order words, we want to count the singularities of F (C). We can

count this number by computing the arithmetic genus of F (C):

Notice that the number of points in F (C)∩(P1×{H2(x)}) is equivalent to the number

of points in C ∩ H2(x); this number is n2 because the degree of the Veronese map

is n2 in this case. Then, F has bidegree (n2, n2), and hence the arithmetic genus of

F (C) is (n2 − 1)(n2 − 1). Therefore, b = (n2 − 1)(n2 − 1)− (n−1)(n−2)
2

.

To compute c, we multiply [Hilb2(P2)] by σ2
1,1 by choosing two hyperplanes H1, H2 in

PN−1. Then the intersection of Hilb2(P2) with {L : L is a line in PN−1, L ∈ H1} ∩
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{L : L is a line in PN−1, L ∈ H2} is the set of chords of H1 ∩ H2 ∩ vn(P2). Since

H1 ∩ vn(P2) = C1 and H2 ∩ vn(P2) = C2 are both degree n curves, they intersect at

n2 points. Thus, the number of chords of C1 ∩ C2 is n2(n2−1)
2

.

Finally, we can solve for α, β, γ by solving the system of equations obtained by

multiplying [Hilb2(P2)] = ασλ1 + βσλ2 + γσλ3 by each of σ4
1, σ

2
1σ1,1, σ

2
1,1. Since

[Hilb2(P2)]σ4
1 = a, [Hilb2(P2)]σ2

1σ1,1 = b, [Hilb2(P2)]σ2
1,1 = c, and

σλ1σ
4
1 = 1, σλ2σ

4
1 = 3, σλ3σ

4
1 = 2

σλ1σ
2
1σ1,1 = 0, σλ2σ

2
1σ1,1 = 1, σλ3σ

2
1σ1,1 = 1

σλ1σ
2
1,1 = 0, σλ2σ

2
1,1 = 0, σλ3σ

2
1,1 = 1

then α = a− 3b+ c, β = b− c, and γ = c.

Example 3.2.3. When n = 3, one can compute a = 168, b = 63, and c = 36, so

[Hilb2(P2)] = 15σλ1 + 27σλ2 + 36σλ3

where Hilb2(P2) is embedded in Gr(2, Sym3V ).
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Chapter 4

Isotropic Subspaces of Schur

Modules

Let V = Cn and R be the tautological subbundle of Gr(k, V ). Recall that for a

partition λ, the Schur module SλM is a functor with respect to a module M , namely

the image of the Schur map [5, 76]. For s ∈ H0(Gr(k, V ), SλR∗), then a k-dimensional

subspace W of V is isotropic with respect to s if s(W ) = 0. Moreover, we say s

is k-isotropic if there exists a subspace W of V that is isotropic with respect to s.

Recall the following theorem (see [22, Corollary 4.1.9])

Theorem 4.0.1 (Borel-Weil). If λ is a partition, then as representations of GL(V ),

H0(Gr(k, V ), SλR∗) = (SλV )∗.

Tevelev used the Borel-Weil theorem to generalize the notion of isotropic subspace for

Sym2V ∗ and Λ2V ∗: given s ∈ SymdV ∗ or s ∈ ΛdV ∗, a subspace W of V is isotropic

with respect to s if s|W = 0. We generalize the definition even further for Schur
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modules (which is compatible with the definition for polylinear forms):

Definition 4.0.2. Let λ be a partition. For s ∈ (SλV )∗, a subspace W of V is

isotropic with respect to s if s|SλW = 0.

In this chapter, we answer the following question: for generic s ∈ (SλV )∗, when

does there exist an isotropic subspace W of V with respect to s? Tevelev gives

necessary and sufficient conditions for the existence of isotropic subspaces with respect

to symmetric or skew-symmetric polylinear forms in his theorem below (4.0.4). One

could answer this question using the fact that s ∈ H0(Gr(k, V ), SλR∗) is k-isotropic

if and only if ctop(SλR∗) 6= 0, but computing the top Chern class in general is hard:

Example 4.0.3. Let V = C7 and k = 5, and take s ∈ Λ3V ∗. By the splitting

principle, there exist line bundles L1, . . . , L5 from the flag bundle associated with the

tautological subbundle of Gr(5, 7) such that

c(Λ3R∗) = c

( ∑
1≤i<j<k≤5

L−1
i L−1

j L−1
k

)
.

If the Chern roots of R∗ are denoted by xi’s, then

ctop(Λ
3R∗) =

∏
1≤i<j<k≤5

(xi + xj + xk) .

The Borel presentation of the cohomology ring of Gr(5, 7) gives us

H∗(Gr(5, 7))⊗Q = Q[x1, . . . , x7]S5×S2/I

which is the ring of invariant polynomials where S5 acts on x1, . . . , x5 and S2 acts on

x6, x7, which we then mod out by the ideal I of all positive degree symmetric functions

[17, 138] Therefore, it is enough to determine whether ctop(Λ
3R∗) is in 〈p1, . . . , p7〉,
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the ideal generated by the power sum symmetric polynomials in x1, . . . , x7. This is

easily answered using Macaulay2, but difficult by hand:

QQ[x_1..x_7]

p = k -> sum(apply(7,i->x_(i+1)^k))

f = product(apply(subsets(toList(1..5), 3), s->x_(s_0) + x_(s_1)

+ x_(s_2)));

I = ideal(f)

J = ideal(apply(7, i-> p(i+1)));

isSubset(I,J)

The output is true, and hence the top Chern class is 0, so there does not exist a

5-dimensional isotropic subspace of V with respect to a generic s. We arrive at the

same conclusion using Tevelev’s theorem below:

Theorem 4.0.4 (Tevelev). Let s ∈ SdV ∗ or s ∈ ΛdV ∗ be a form in general position.

The space V contains a k-dimensional isotropic subspace with respect to s if and only

if

n ≥
(
d+k−1
d

)
k

+ k or n ≥
(
k
d

)
k

+ k, respectively,

with the following exceptions:

1. if s ∈ S2V ∗ or s ∈ Λ2V ∗ is a form in general position, then V contains a

k-dimensional isotropic subspace if and only if n ≥ 2k;

2. if s ∈ Λn−2V ∗ is in general position and n is even, then V contains a k-

dimensional isotropic subspace if and only if k ≤ n− 2;

3. if s ∈ Λ3V ∗ is in general position and n = 7, then V contains a k-dimensional

isotropic subspace if and only if k ≤ 4.
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We give a similar criterion for all partitions λ not included in Tevelev’s theorem

(except for λ = ∅, which is not interesting).

Theorem 4.0.5. Let V be an n-dimensional vector space, λ be a partition, and take

k ≥ 3 such that 2 ≤ `(λ) < k and λ1 ≥ 2. Then a generic s ∈ (SλV )∗ is k-isotropic

if and only if

n ≥ dim (SλC
k)

k
+ k.

Notice that when rearranged, the inequality can be written as

dim (Gr(k, n)) ≥ dim (SλC
k).

Example 4.0.6. Let V = C6 and k = 3, and take s ∈ S(2,1)V
∗. By the splitting

principle, we can write

c(SλR∗) = c

(∑
T

L
−T (1)
1 L

−T (2)
2 L

−T (3)
3

)

where the Li’s are line bundles, T is a semistandard Young tableau of shape λ with

entries in {1, 2, 3} (see 4.0.11 for the definition), and T (i) is the number of boxes in

T labeled with i. If the Chern roots of R∗ are denoted by xi’s, then we can find out

if the top Chern class is 0 by determining whether the product

(2x1 + x2)(2x1 + x3)(x1 + 2x2)(x1 + x2 + x3)2(x1 + 2x3)(2x2 + x3)(x2 + 2x3)

is in the ideal generated by the power sum symmetric polynomials in x1, . . . , x6:

〈p1, . . . , p6〉.

This can be answered using Macaulay2:
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QQ[x_1..x_6];

p = k -> sum(apply(6,i->x_(i+1)^k));

f = (2*x_1+x_2)*(2*x_1+x_3)*(x_1+2*x_2)*(x_1+x_2+x_3)^2

*(x_1+2*x_3)*(2*x_2+x_3)*(x_2+2*x_3);

I = ideal(f);

J = ideal(apply(6, i-> p(i+1)));

isSubset(I,J)

Our final output is false and hence there exists a 3-dimensional isotropic subspace

with respect to a generic s. This verifies the conclusion of Theorem 4.0.5 since

dim (Gr(3, 6)) = 9 ≥ 8 = dim (S(2,1)C
3).

For a geometric interpretation of Theorem 4.0.5, recall that the more general version

of the Borel-Weil theorem [22, Theorem 4.1.8] says H0(Flagλ(V ),L(λ)) = (SλV )∗,

where L(λ) is a line bundle. Then the zero locus of s, denoted by Z(s), is a subvariety

of Flagλ(V ). Therefore, we have the following consequence:

Corollary 4.0.7. Let V be an n-dimensional vector space and λ be a partition.

For a generic s ∈ (SλV )∗, there exists a k-dimensional subspace W of V such that

Flagλ(W ) ⊂ Flagλ(V ) is in the zero locus of s if and only if

n ≥ dim (SλC
k)

k
+ k.

The forward direction of Theorem 4.0.5 is implied by the following general fact, de-

noted here by Lemma 4.0.8, which Tevelev also uses in his proof. In the case of

our theorem, X is our Grassmannian and E = SλR∗ in the lemma below. No-

tice SλR∗ is generated by global sections, i.e. for any W ∈ Gr(k, n), the map
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H0(Gr(k, n), SλR∗)→ (SλW )∗, where s 7→ s|SλW , is surjective. This is true because

H0(Gr(k, n), SλR∗) = (SλC
n)∗ and SλW ↪→ SλC

n is injective.

Lemma 4.0.8. Let X be a connected variety of dimension n and E be a rank r vector

bundle on X. Assume E is generated by global sections. If r > n, then Z(s) = ∅ for

almost all s ∈ H0(X, E).

Proof. Define Z = {(s, x) ∈ H0(X, E) × X : s(x) = 0}, and let π1 : Z → H0(X, E),

π2 : Z → X be projection maps. Let evx : H0(X, E) → Ex take s 7→ s(x) for x ∈ X.

By definition, for any s ∈ H0(X, E) and x ∈ X,

π−1
1 (s) ∼= Z(s)

π−1
2 (x) = {x ∈ H0(X, E) : s(x) = 0} = ker evx.

Since E is generated by global sections, evx is surjective and hence

dimπ−1
2 (x) = (dimH0(X, E))− r.

Since (0, x) ∈ Z for all x ∈ X, π2 is a surjective map between irreducible varieties,

dimZ = dimX + max
x∈X
{dimπ−1

2 (x)} = n+ (dimH0(X, E))− r

so dimZ < dimH0(X, E). This implies π1 is not surjective, and hence π1(Z) is a

closed proper subvariety of H0(X, E). Hence, if s is in the open subset H0(X, E) \

π1(Z), then Z(s) = π−1
1 (s) = ∅.

Notice that in the proof of Lemma 4.0.8, π2 is a projective map because it can be

factored as Z → Pn × X → X where the first map is an isomorphism of Z onto a
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closed subvariety of Pn × X, and the second map is the projection of Pn × X onto

X. Therefore, π2(Z) is closed, so we have the following corollary:

Corollary 4.0.9. Under the same assumptions as Theorem 4.0.5, if n ≥ dim (SλC
k)

k
+k,

then every s ∈ (SλV )∗ is k-isotropic.

To prove the reverse direction of Theorem 4.0.5, we use a general version of a lemma

by Tevelev [21, p.849].

Lemma 4.0.10 (Tevelev). Let V be an n-dimensional vector space and λ be a parti-

tion. If

dim (SλC
k−i) ≤ (k − i)(n− k − i)

for all i = 0, . . . ,min {k, n− k}, then for generic s ∈ (SλV )∗, V contains a k-

dimensional isotropic subspace with respect to s.

In order to show that the inequalities above are satisfied, we compute dim (SλC
k−i)

by evaluating a Schur polynomial sλ in (1, 1, . . . , 1) and applying tools from combi-

natorics.

Definition 4.0.11. For a partition λ, a semistandard Young tableau is a Young

diagram of shape λ filled with some positive integers so that rows are weakly increasing

from left to right and columns are strictly increasing from top to bottom. If λ is a

partition, then sλ(1
n) is the number of semistandard Young tableaux with the shape

λ and filled with entries from {1, . . . , n}.

If b is any box in λ, then the content of b is j − i if b is in the ith row from top

to bottom and the jth column from left to right; this is denoted by c(b). The hook

length at b is the number of squares below and to the right of b, including b once,

denoted by h(b).
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Example 4.0.12. These are all possible semistandard Young tableaux of shape λ =

(2, 1) filled with entries from {1, 2, 3}:

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

.

Therefore, s(2,1)(1, 1, 1) = 8. The values for hook length and content for boxes of λ

are filled in below:

h :
3 1
1

c :
0 1
−1

.

Theorem 4.0.13 (Hook-Content Formula). Let λ be a partition and b be any box in

λ. Then

sλ(1
n) =

∏
b∈λ

n+ c(b)

h(b)
.

We use the following well-known result [5, p.77]:

Theorem 4.0.14. Let λ be a partition. Then

dim (Sλ(C
n)) = sλ(1

n).

We can prove that n ≥ dim (SλC
k)

k
+ k implies dim (SλC

k−i) ≤ (k − i)(n − k − i) for

most values of i ∈ {0, . . . ,min {k, n− k}} by showing that

dim (SλC
k−i)

k − i
≥ dim (SλC

k−i−1)

k − i− 1
+ 1. (4.0.15)

Tevelev uses induction to prove (4.0.15); for example, he gives the following lemma

used for SymdV ∗ where d ≥ 3:
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Lemma 4.0.16. If d ≥ 3 and α ≥ 2, then

(
d+α−1

d

)
α

≥
(
d+α−2

d

)
α− 1

+ 1.

However, this quickly becomes difficult for general partitions. This can be seen in

the following examples of hooks and rectangular partitions because dim (SλC
n) is no

longer a single binomial coefficient. One can perform a painful induction in particular

cases, but it is hard to generalize.

Example 4.0.17. If λ = (d, 1) where d ≥ 2, then by the Hook-Content Formula,

sλ(1
n) =

n

d+ 1
· n+ 1

d− 1
· n+ 2

d− 2
· · · n+ d− 1

1
· n− 1

1

=
(n+ d− 1)(n+ d− 2) · · · (n− 1)

(d+ 1)(d− 1)!

=
d(n− 1)

d+ 1

(
n+ d− 1

d

)
.

Example 4.0.18. If λ = (d, d) where d ≥ 2, then

sλ(1
n) =

n+ d− 1

(n− 1)(d+ 1)

(
n+ d− 2

d

)2

.

More generally, if λ = (d, . . . , d) have l parts where d, l ≥ 2, then

sλ(1
n) =

(
(l − 1)!

(
n+ d− l

d

))l l−1∏
j=1

(n− j)j−l
(

n+ d− j
j(d+ l − j)

)j
.

Now, we give inequalities that will assist in proving (4.0.15).

Lemma 4.0.19. Let λ be a nonempty partition.
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1. For k ≥ 2,

sλ(1
k)

k
≥ sλ(1

k−1)

k − 1
. (4.0.20)

2. If, in addition, 2 ≤ `(λ) ≤ k − 1, then

sλ(1
k)

k
≥ sλ(1

k−1)

k − 1
+

1

k
. (4.0.21)

Proof. To prove the second part of the lemma, notice (4.0.21) is equivalent to

k(sλ(1
k)− sλ(1k−1)) ≥ sλ(1

k) + k − 1.

Let gλ(k) be the number of semistandard Young tableaux with shape λ with entries

in {1, . . . , k} and labeled with at least one k. Since

sλ(1
k) = gλ(k) + sλ(1

k−1),

we can prove the equivalent statement

(k − 1)gλ(k) ≥ sλ(1
k−1) + k − 1.

Let µ be the subpartition of λ obtained by removing the box in the last column of

the last row of λ. Let ν be the partition obtained by adding a box to the end of the
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first row of µ. Then

(k − 1)gλ(k) ≥ (k − 1)sµ(1k−1)

= s1(1k−1)sµ(1k−1)

≥ sλ(1
k−1) + sν(1

k−1)

≥ sλ(1
k−1) + k − 1.

If we label a partition of shape µ with entries in {1, . . . , k − 1}, reattach a box to µ

in order to obtain λ, and label this new box with k, then we obtain a semistandard

Young tableau of shape λ with entries in {1, . . . , k}; this proves the first line above.

The second line is obvious. Since `(λ) ≥ 2, λ 6= ν, so the third line follows by

Pieri’s rule. Since `(λ) ≤ k − 1, this implies that `(ν) ≤ k − 1, so sν(1
k−1) 6= 0.

Moreover, we obtain a semistandard Young tableau if the last box in the first row of

ν is filled with any integer in {1, . . . , k − 1}; the remaining boxes in the first row are

labeled with 1; and for the remaining rows, the boxes in the ith row are labeled with

i. Therefore, we have at least k − 1 semistandard Young tableaux of shape ν with

entries in {1, . . . , k − 1}, proving the fourth line.

Now we prove the first part of the lemma. It is clearly true when λ = (1). Otherwise,

we again choose µ to be the subpartition of λ obtained by removing the box in the

last column of the last row of λ. Notice that (4.0.21) is equivalent to

(k − 1)gλ(k) ≥ sλ(1
k−1).
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Using a similar reasoning as above, we obtain

(k − 1)gλ(k) ≥ (k − 1)sµ(1k−1)

= s1(1k−1)sµ(1k−1)

≥ sλ(1
k−1).

Definition 4.0.22. Let λ be a partition. If µ is a subpartition of λ such that λ/µ is

a skew shape whose columns contain at most one box each, then λ/µ is a horizontal

strip. We denote the collection of all horizontal strips by HS.

The following is a well-known fact:

Proposition 4.0.23. For any partition λ,

sλ(1
k) =

∑
λ/µ∈HS

sµ(1k−1).

Proof. We can partition the collection of all semistandard Young tableau of shape

λ with entries in {1, . . . , k} into subsets based on the placement of k’s. Since k can

appear at most once in each column of λ, the size of such a subset is the same as the

number of semistandard Young tableau of some unique µ ⊂ λ such that λ/µ ∈ HS

and labeled with entries in {1, . . . , k − 1}.

Lemma 4.0.24. Let λ be a partition and take k ≥ 3. If 1 ≤ `(λ) ≤ k − 2 and

λ 6= (1), (2), (1, 1), then

sλ(1
k)

k
≥ sλ(1

k−1)

k − 1
+ 1.

Proof. We perform induction on k. The case when k = 3 corresponds to symmetric

forms, which was proved by Tevelev’s lemma 4.0.16.
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Now let k > 3 and λ be a partition satisfying 1 ≤ `(λ) ≤ k − 2 and not equal to (1),

(2), or (1, 1). By induction, we suppose that for any partition µ not equal to (1), (2),

or (1, 1), and satisfying 1 ≤ `(µ) ≤ k − 3, then

sµ(1k−1)

k − 1
≥ sµ(1k−2)

k − 2
+ 1.

If `(λ) = 1, then we can use Lemma 4.0.16. Otherwise, we use Proposition 4.0.23

several times in the computation below.
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sλ(1
k)

k
=

1

k

∑
λ/µ∈HS

sµ(1k−1)

=
1

k

∑
λ/µ∈HS

1≤`(µ)≤k−3
µ6=(1),(2),(1,1)

sµ(1k−1) +
1

k

∑
λ/µ∈HS
`(µ)=k−2
µ 6=(1,1)

sµ(1k−1) +
1

k

∑
λ/µ∈HS

µ=(1),(2),(1,1)

sµ(1k−1)

=
k − 1

k

∑
λ/µ∈HS

1≤`(µ)≤k−3
µ6=(1),(2),(1,1)

sµ(1k−1)

k − 1
+
k − 1

k

∑
λ/µ∈HS
`(µ)=k−2
µ6=(1,1)

sµ(1k−1)

k − 1
(4.0.25)

+
k − 1

k

∑
λ/µ∈HS

µ=(1),(2),(1,1)

sµ(1k−1)

k − 1

≥ k − 1

k

∑
λ/µ∈HS

1≤`(µ)≤k−3
µ 6=(1),(2),(1,1)

(
sµ(1k−2)

k − 2
+ 1

)
+
k − 1

k

∑
λ/µ∈HS
`(µ)=k−2
µ6=(1,1)

(
sµ(1k−2)

k − 2
+

1

k − 1

)

(4.0.26)

+
k − 1

k

∑
λ/µ∈HS

µ=(1),(2),(1,1)

sµ(1k−2)

k − 2

=
k − 1

k(k − 2)

∑
λ/µ∈HS

sµ(1k−2) +
∑

λ/µ∈HS
1≤`(µ)≤k−3
µ6=(1),(2),(1,1)

k − 1

k
+

∑
λ/µ∈HS
`(µ)=k−2
µ 6=(1,1)

1

k

=
(k − 1)2

k(k − 2)

sλ(1
k−1)

k − 1
+

∑
λ/µ∈HS

1≤`(µ)≤k−3
µ 6=(1),(2),(1,1)

k − 1

k
+

∑
λ/µ∈HS
`(µ)=k−2
µ6=(1,1)

1

k

≥ sλ(1
k−1)

k − 1
+

∑
λ/µ∈HS

1≤`(µ)≤k−3
µ6=(1),(2),(1,1)

k − 1

k
+

∑
λ/µ∈HS
`(µ)=k−2
µ6=(1,1)

1

k
(4.0.27)

≥ sλ(1
k−1)

k − 1
+
k − 1

k
+

1

k
(4.0.28)

=
sλ(1

k−1)

k − 1
+ 1.
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Line (4.0.26) follows by the induction hypothesis on the first sum and Lemma 4.0.19

applied to the remaining sums. After rearranging terms and noticing (k − 1)2 >

k(k − 2), we have line (4.0.27). In Line (4.0.27), the first sum has at least one

summand because we can let µ be the subpartition of λ obtained by removing the

last row of λ; and the second sum has at least one summand because we can take µ

to be λ. This proves line (4.0.28).

We can now prove finish the proof of the main theorem:

Proof of Theorem 4.0.5. Since sλ(1
j) = 0 for j < `(λ), by Tevelev’s Lemma 4.0.10 it

suffices to show

dim (SλC
k−i) ≤ (k − i)(n− k − i)

for all i = 0, . . . , k − `(λ). Since i 6= k, if we assume

n ≥ dim (SλC
k)

k
+ k,
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then using the Lemma 4.0.24,

n ≥ sλ(1
k)

k
+ k

≥ sλ(1
k−1)

k − 1
+ k + 1

≥ sλ(1
k−2)

k − 2
+ k + 2

...

≥ sλ(1
`(λ)+2)

`(λ) + 2
+ k + k − `(λ)− 2

≥ sλ(1
`(λ)+1)

`(λ) + 1
+ k + k − `(λ)− 1.

This proves the inequality for i = 0, . . . , k − `(λ)− 1.

If λ is a rectangle, then

dim (SλC
`(λ)) = sλ(1

`(λ)) = 1 ≤ `(λ)(n− `(λ))

because `(λ) > 1, so the inequality for i = k − `(λ) is true.

If λ is not a rectangle, then let µ be the partition obtained by removing all columns

of height `(λ) from λ; therefore, sλ(1
`(λ)) = sµ(1`(λ)). If µ = (1), then

dim (SλC
`(λ)) = sµ(1`(λ)) = `(λ) ≤ `(λ)(n− `(λ))

because `(λ) < k ≤ n . If µ = (2) or (1, 1), then our assumption, n ≥ dim (SλC
k)

k
+ k,

says

n ≥ 3k + 1

2
, n ≥ 3k − 1

2
,
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which imply the desired inequalities

n ≥ 3`(λ) + 1

2
=
sλ(1

`(λ))

`(λ)
+ `(λ),

n ≥ 3`(λ)− 1

2
=
sλ(1

`(λ))

`(λ)
+ `(λ),

respectively. Otherwise, we can prove (4.0.15) for our remaining case

sλ(1
`(λ)+1)

`(λ) + 1
≥ sµ(1`(λ)+1)

`(λ) + 1

≥ sµ(1`(λ))

`(λ)
+ 1

=
sλ(1

`(λ))

`(λ)
+ 1.

The first inequality is true because given a semistandard Young tableau of shape

µ filled with entries from {1, . . . , `(λ) + 1}, one can obtain a semistandard Young

tableau of shape λ filled with entries from {1, . . . , `(λ) + 1} in the following way:

adjoin a rectangle to the left of µ in order to obtain the shape λ, and label the entire

ith row of the rectangle with i. Since `(µ) ≤ `(λ) − 1, we can apply Lemma 4.0.24

to obtain the second inequality. The last line follows because the rectangle removed

from λ in order to obtain µ must be constant along rows when filled with integers

1, . . . , `(λ), and this is done in exactly one way. Therefore, we’ve proved the case

when i = k − `(λ).
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