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Abstract

The clothoid is a planar curve with the intuitive geometrical property
of a linear variation of the curvature with arc length, a feature that is
important in many geometric design applications. However, the exact
parameterization of the clothoid is defined in terms of the irreducible
Fresnel integrals, which are computationally expensive to evaluate and
incompatible with the polynomial/rational representations employed
in computer aided geometric design. Consequently, applications that
seek to exploit the simple curvature variation of the clothoid must rely
on approximations that satisfy a prescribed tolerance. In the present
study, we investigate the use of planar Pythagorean–hodograph (PH)
curves as polynomial approximants to monotone clothoid segments,
based on geometric Hermite interpolation of end points, tangents, and
curvatures, and precise matching of the clothoid segment arc length.
The construction, employing PH curves of degree 7, involves iterative
solution of a system of five algebraic equations in five real unknowns.



This is achieved by exploiting a closed–form solution to the problem of
interpolating the specified data (except the curvatures) using quintic
PH curves, to determine starting values that ensure rapid and accurate
convergence to the desired solution.

Keywords: clothoid; Cornu spiral; Fresnel integrals; curvature;
arc length; Pythagorean–hodograph curves; geometric Hermite interpolation.
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1 Introduction

A plane curve with a prescribed initial point pi and tangent orientation θi is
uniquely determined by specifying its curvature κ as a function of the curve
arc length s, measured from pi. The function κ(s) is known as the intrinsic

equation of the curve [27], and the simplest instances correspond to κ(s) ≡ 0
(straight lines) and κ(s) ≡ a non–zero constant (circles).

The next–simplest instance, identified by a linear dependence of κ on s,
defines a transcendental curve variously known as the clothoid, Euler spiral,
or Cornu spiral. We may elucidate the nature of this curve as follows. Setting
κ = dθ/ds (where θ is the tangent orientation) and κ(s) = c s+ κi for some
constant c and initial curvature κi at s = 0, we have

dθ

ds
= c s+ κi ,

and on integration with an initial tangent orientation θi, we obtain

θ(s) = 1
2
c s2 + κis+ θi .

Moreover, since
dx

ds
= cos θ(s) ,

dy

ds
= sin θ(s) ,

a further integration with initial point pi = (xi, yi) yields the curve c(s) =
(x(s), y(s)) defined by

x(s) = xi +

∫ s

0

cos(1
2
c t2 + κit+ θi) dt ,

y(s) = yi +

∫ s

0

sin(1
2
c t2 + κit+ θi) dt . (1)

In canonical form with (xi, yi) = (0, 0), θi = κi = 0, and c = π, we obtain
the Fresnel integrals

C(s) :=

∫ s

0

cos(1
2
πt2) dt , S(s) :=

∫ s

0

sin(1
2
πt2) dt , (2)

in (1) — as illustrated in Figure 1. Since we have c′(s) = (cos 1
2
πs2, sin 1

2
πs2)

and c′′(s) = πs(− sin 1
2
πs2, cos 1

2
πs2) the parametric speed and curvature are
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σ(s) = 1 and κ(s) = π s. Thus, any clothoid segment s ∈ [ si, sf ] admits the
simple expression

E =

∫ sf

si

κ2(s) ds =
π2

3
(s3

f − s3
i )

for the bending energy integral (i.e., the energy stored in an initially–straight
thin elastic beam that is bent to assume the shape of the clothoid segement).
Moreover, the energy per unit length is E/(sf − si) = s2

i + sisf + s2
f .

As evident in Figure 1, the point c(0) is an inflection at the origin, with
κ = 0, and the curve spirals infinitely many times about the points (±1

2
,±1

2
)

while the curvature increases with arc length s at the constant rate π.
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Figure 1: Left: the Fresnel integrals (2) for 0 ≤ s ≤ 4. Right: the clothoid
defined by (2) with xi = yi = θi = κi = 0 and c = π has the linear intrinsic
equation κ(s) = π s. The curve has the limit points (±1

2
,±1

2
) as s→ ±∞.

The winding nature of the curve defined by (1)–(2) led the mathematician
Ernesto Cesàro to coin the name “clothoid” after Clotho, one of the daughters
of Zeus and Themis, known as the Moirai (or “ Fates”) in Greek mythology.
Clotho (the spinner) spun the thread of life onto a spindle, while her sisters
Lachesis (the apportioner) and Atropos (the inevitable) measured and cut it,
determining the life span and the moment of death of each mortal.

This study focuses on geometrical approximation of finite clothoid curve
segments, rather than approximation of the Fresnel integrals (2) individually.
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A distinctive feature of the proposed approach is to exactly match arc lengths

of clothoid segments between points at which discrete geometrical properties
(points, tangents, curvatures) of the clothoid are interpolated.1 We focus, in
particular, on monotone clothoid segments along which the x, y coordinates
are increasing or decreasing. Such segments (or subsegments thereof) are of
primary interest in applications, and the restriction to monotone segments
also ensures a higher approximation accuracy. Greater extents of the clothoid
can be represented by G2 concatenations of such segments.

Because of their monotone curvature variation, clothoid segments are of
interest in diverse applications, including the design of highways and railways;
path planning for mobile robots; specification of bipedal locomotion; control
of unmanned aerial vehicles and autonomous ground vehicles; and smoothing
of CNC machining toolpaths [4, 21, 24, 28, 30, 31, 37, 38, 39, 41, 42, 44]. We
are interested here in approximating canonical–form clothoid segments using
Pythagorean–hodograph (PH) curves [13]. A distinct advantage of PH curves
is their polynomial parametric speed and arc length, and rational curvature,
which allow the approximation problem to be formulated as the solution of
a system of polynomial equations, yielding approximants in standard Bézier
form. We do not discuss here the application of translation/rotation/scaling
transformations to canonical–form clothoid segments to suit the requirements
of specific applications, since this is addressed elsewhere [3, 6, 29, 30, 31].

There have been several prior approaches to the approximation of clothoid
segments by more tractable curve forms. In [40] polynomial approximations
to clothoid segments are constructed as Hermite interpolants of odd degree n
to end points and derivatives up to order 1

2
(n−1). The use of arc (piecewise–

circular) splines was proposed in [32, 36]: these approximants have piecewise–
constant curvature, and they are only G1 continuous. The study [7] describes
a scheme to approximate clothoid segments by quintic Bézier curves, based
on adaptive sampling and look–up tables, and the approach proposed in [6]
employs storage of discrete points of the canonical–form clothoid in a look-up
table, with intermediate points computed by circular interpolation. A unique
feature of PH curves is the ability to reproduce a global property of clothoid
segments — the exact segment arc length. Moreover, PH curve approximants
are found to closely mimic the clothoid arc–length parameterization.

1A single clothoid segment of given arc length cannot, in general, match prescribed end
points, tangents, and curvatures [5]. The focus herein is to approximate a given clothoid
segment, not to construct a clothoid segment from specified G

2 end–point data.
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A number of related studies [12, 16, 19, 22, 23, 47, 48] have been concerned
with designing “transition” curves between elementary (linear/circular) path
segments. However, the focus in these studies has been on the smoothness or
curvature monotonicity of the transition curve, without explicitly attempting
to achieve a linear dependence of curvature on arc length.

The remainder of this paper is structured as follows. Section 2 describes a
methodology to accurately compute the (x, y) coordinates of clothoid points
corresponding to a specified arc length s, a basic requirement in assessing the
quality of approximants to clothoid segments. Sections 3 and 4 then review
the basic features of planar Pythagorean–hodograph (PH) curves, and discuss
their use in approximating finite clothoid segments. Section 5 elaborates on
these principles in the specific context of degree 7 PH curves, and formulates
a system of equations that characterizes PH curves matching the end points,
tangents, and curvatures, and the total arc length, of a prescribed clothoid
segment. The methodology for determining the solutions of this system of
equations is illustrated by a selection of computed examples in Section 6.
Finally, in Section 7 we summarize the key contributions of the present study,
and identify possible aspects for further investigation.

2 Computation of clothoid points

To assess the accuracy of parametric polynomial approximations to clothoid
segments, it is necessary to have the ability to compute the integrals (2) for
any s to a prescribed accuracy. Several authors [1, 2, 25, 33, 34, 45, 46] have
proposed numerical methods for evaluation of the Fresnel integrals. Although
some of these methods are capable of high accuracy, they are not compatible
with the polynomial or rational Bézier/B–spline representations employed in
computer–aided geometric design, which key functions (computation of curve
intersections, construction of offset curves, etc.) depend upon.

A turning point of the clothoid is identified as a location where the tangent
is horizontal or vertical. Such points occur where 1

2
πs2 is an integer multiple

k of 1
2
π — i.e., when s = sk, where

sk :=
√
k , k = 0, 1, 2, . . .

The turning points delineate monotone clothoid segments along which x and
y are increasing or decreasing. We denote by Ck the k–th monotone segment,
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defined on s ∈ [ sk−1, sk ]. It has arc length ∆sk = sk − sk−1, tangent turning
angle ∆θk = 1

2
π, and initial/final curvatures κi = π

√
k − 1, κf = π

√
k.

To approximate any monotone clothoid segment, the coordinates of the
two turning points that delineate it must be computed to high accuracy. To
accomplish this, we employ the algorithm proposed2 by Alazah et al. [1]. For
n = 1, 2, 3, . . . a sequence of complex–valued functions are defined by

Fn(x) =
1

exp(2 anx) + 1
+
x exp(i x2)

an

n
∑

k=1

exp(−uk)

x2 + i uk
,

where

an =
√

(n+ 1
2
)π exp(− i1

4
π) , uk =

(k − 1
2
)2 π

n+ 1
2

.

For increasing n, these functions determine a sequence of rapidly converging
approximations to the Fresnel integrals (2) through the expressions

Cn(s) = 1
2
− Re[Fn(x) ] + Im[Fn(x) ] ,

Sn(s) = 1
2
− Re[Fn(x) ] − Im[Fn(x) ] ,

where we set x =
√

1
2
π s.

The coordinates of the first twelve turning points, computed using the
above scheme with n = 16, are listed to 12 decimal places below:

c1 = (0.779893400377, 0.438259147390) ,

c2 = (0.528891595111, 0.713972214022) ,

c3 = (0.321056186411, 0.517305121864) ,

c4 = (0.488253406075, 0.343415678364) ,

c5 = (0.640806840445, 0.491392538968) ,

c6 = (0.506641564063, 0.628939658540) ,

c7 = (0.380390693768, 0.505318740045) ,

c8 = (0.495619698096, 0.387968992637) ,

c9 = (0.605720789298, 0.496312998967) ,

c10 = (0.503158104723, 0.600362387251) ,

c11 = (0.404260497245, 0.502743998716) ,

c12 = (0.497587274289, 0.408301331932) .

2The notation employed here is a simplified form of that in [1].
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As a further check on their accuracy, these points were also computed using
a composite Simpson quadrature rule [9], and were found to be in agreement
with the above values to the 12 decimal places indicated.

3 Planar Pythagorean-hodograph curves

Since the clothoid is a transcendental curve, it is impossible to parameterize
any segment of it exactly by polynomial or rational functions. Consequently,
we investigate here the problem of accurately approximating finite segments
of the clothoid by Pythagorean–hodograph (PH) curves [13]. A Weierstrass–
type theorem for Pythagorean–hodograph curves [8] establishes their ability
to uniformly approximate any given C1 curve.

In the complex representation [11], a planar PH curve is constructed from
a complex polynomial w(ξ) = u(ξ) + i v(ξ) by integrating the expression

r′(ξ) = w2(ξ) . (3)

If w(ξ) is of degree m, it may be defined by its complex Bernstein coefficients
w0, . . . ,wm as

w(ξ) =

m
∑

k=0

wk b
m
k (ξ) , bmk (ξ) =

(

m

k

)

(1 − ξ)m−kξk . (4)

Integrating (3) yields a planar PH curve of degree n = 2m+1. The expression
(3) can be written as

r′(ξ) =

2m
∑

k=0

qk b
2m
k (ξ) ,

with coefficients given by

qk =

min(m,k)
∑

j=max(0,k−m)

(

m

j

)(

m

k − j

)

(

2m

k

) wjwk−j , k = 0, . . . , 2m. (5)

Integration of (3) with r(0) = p0 then gives the remaining control points pk

in the Bézier representation

r(ξ) =
n
∑

k=0

pkb
n
k(ξ) (6)
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of the PH curve, through the formulae

pk = pk−1 +
1

n
qk−1 , k = 1, . . . , n . (7)

The parametric speed of r(ξ), which specifies the derivative ds/dξ of the arc
length s with respect to the curve parameter ξ, is specified by

σ(ξ) = |r′(ξ)| = |w(ξ)|2 . (8)

Expressing the parametric speed in Bernstein form as

σ(ξ) =
2m
∑

k=0

σk b
2m
k (ξ) ,

it has the (real) coefficients

σk =

min(m,k)
∑

j=max(0,k−m)

(

m

j

)(

m

k − j

)

(

2m

k

) wjwk−j , k = 0, . . . , 2m. (9)

The cumulative arc length function, obtained by integration of σ(ξ), is the
degree n polynomial

s(ξ) =

n
∑

k=0

sk b
n
k(ξ) , (10)

with coefficients

s0 = 0 and sk = sk−1 +
1

n
σk−1 , k = 1, . . . , n , (11)

and the total arc length is

S =

∫ 1

0

σ(ξ) dξ =
1

n

2m
∑

k=0

σk = sn .

Using (3), the tangent and curvature of r(ξ) may be expressed as

t(ξ) =
r′(ξ)

|r′(ξ)| =
w2(ξ)

|w(ξ)|2 = w(ξ)/w(ξ) , (12)
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κ(ξ) =
(r′(ξ) × r′′(ξ)) · k

|r′(ξ)|3 = 2
Im(w(ξ)w′(ξ))

|w(ξ)|4 , (13)

where k is a unit vector orthogonal to the plane of r(ξ). Setting

z(ξ) = lnw(ξ) = ln |w(ξ)|+ i arg(w(ξ)) , (14)

we have z′(ξ) = w′(ξ)/w(ξ) and this gives the more compact expression

κ(ξ) =
2

σ(ξ)
Im(z′(ξ)) .

Noting that σ′ = 2 Re(ww′) and Im(z′) = 2 Im(ww′)/σ, we can express the
arc–length derivative of curvature as

dκ

ds
=

1

σ

dκ

dξ
=

2

σ2(ξ)
Im(z′′(ξ) − z′2(ξ)) , (15)

where

z′(ξ) =
w′(ξ)

w(ξ)
, z′′(ξ) =

w(ξ)w′′(ξ) −w′2(ξ)

w2(ξ)
. (16)

4 Formulation of approximants

Consider the approximation of a segment s ∈ [ si, sf ] of the canonical–form
clothoid c(s) = (C(s), S(s)) specified by the Fresnel integrals (2), by a planar
PH curve r(ξ), ξ ∈ [ 0, 1 ] generated through (3) by the complex polynomial
(4), with parametric speed (8), arc length function (10), and curvature (13).
We focus here onG2 approximations to clothoid segments with turning angles
not exceeding 1

2
π (typically, monotone segments). Approximants of greater

extent can be constructed by concatenating these segments (or subsegments
thereof) to obtain extended G2 piecewise PH approximants.

Although r(ξ) employs a general parameter ξ, there is a simple procedural
relationship between this parameter and arc length on a PH curve. Namely,
the parameter value ξ∗ corresponding to arc length s∗ (measured from ξ = 0)
along r(ξ) is the unique real root of the polynomial equation

s(ξ∗) = s∗ , (17)

where s(ξ) is the arc length function defined by (10) and (11). The uniqueness
of this root is ensured by the fact that, since s(ξ) is the integral of the non–
negative parametric speed σ(ξ), it is a monotone–increasing polynomial. This
property is of great importance in real–time motion control [17, 20, 43].
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In general, it is desirable that the approximant satisfy certain boundary
conditions. First, writing3 ∆p = ∆x+i ∆y = c(sf )−c(si) and ∆s = sf − si,
and requiring the approximant to match the end points and total arc length
of the clothoid segment yields the conditions

q0 + · · · + q2m

n
= ∆p and

σ0 + · · ·+ σ2m

n
= ∆s , (18)

with q0, . . . ,q2m and σ0, . . . , σ2m given in terms of w0, . . . ,wm by (5) and (9).
Furthermore, matching the initial and final tangents of the clothoid segment
yields the equations

arg(w0/w0) = 2 arg(w0) = 1
2
πs2

i ,

arg(wm/wm) = 2 arg(wm) = 1
2
πs2

f ,
(19)

and matching the initial and final curvatures yields

2m Im(w0w1) = πsi|w0|4 , 2m Im(wm−1wm) = πsf |wm|4 . (20)

The system of equations (18)–(20) specify 7 scalar constraints on the 2(m+1)
degrees of freedom in w0, . . . ,wm that identify PH curve interpolants to
planar G2 data with prescribed arc lengths. Clearly, PH curves of degree
n ≥ 7 (i.e., m ≥ 3) will be required to satisfy all of these conditions.

Now if w(ξ) = u(ξ) + i v(ξ) has the complex coefficients wk = uk + i vk,
k = 0, . . . , m we have x′(ξ) = u2(ξ) − v2(ξ), y′(ξ) = 2 u(ξ)v(ξ), and σ(ξ) =
s′(ξ) = u2(ξ) + v2(ξ), where u(ξ) and v(ξ) have coefficients u0, . . . , um and
v0, . . . , vm. Hence, to match the displacement ∆p = ∆x+i ∆y and arc length
∆s, we must have

∫ 1

0

u2(ξ) − v2(ξ) dξ = ∆x ,

∫ 1

0

2 u(ξ)v(ξ) dξ = ∆y ,

∫ ξ

0

u2(ξ) + v2(ξ) dξ = ∆s .

These conditions are equivalent to the simpler system of equations

∫ 1

0

u2(ξ) dξ = 1
2
(∆s+ ∆x) ,

∫ 1

0

v2(ξ) dξ = 1
2
(∆s− ∆x) , (21)

3Note that c(si), c(sf ) must be determined numerically from the Fresnel integrals (2).
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∫ 1

0

u(ξ)v(ξ) dξ = 1
2
∆y , (22)

which are quadratic in the Bernstein coefficients of u(ξ) and v(ξ). For brevity,
we now set

(αi, βi) = (cos 1
4
πs2

i , sin
1
4
πs2

i ) , (αf , βf ) = (cos 1
4
πs2

f , sin
1
4
πs2

f ) . (23)

The end–tangent conditions (19) then give

(u0, v0) =
√

λ0 (αi, βi) , (um, vm) =
√

λm (αf , βf) , (24)

where λ0 = |w0|2, λm = |wm|2 are positive free parameters, while the end–
curvature conditions (20) become

αiv1 − βiu1 =
πsiλ

3/2
0

2m
, βfum−1 − αfvm−1 =

πsfλ
3/2
m

2m
. (25)

Equations (24) replace the pairs (u0, v0) and (um, vm) by the single unknowns
λ0 and λm. Also, equations (25) may be regarded as determining v1 and vm−1

in terms of u1 and um−1 (or vice–versa). We then have the remaining 2m−2
free variables u1, . . . , um−1, v2, . . . , vm−2, λ0, λm which must satisfy the three
quadratic constraints defined by equations (21)–(22). This is possible only if
m ≥ 3, in which case we have 2m− 5 residual free variables.

5 Degree 7 PH curve approximants

A method for constructing degree 7 planar PH curves that match prescribed
initial/final points, parametric derivatives, and curvatures was described in
[26] and it was observed that there are, in general, eight possible solutions.

In the present context, we substitute unit end tangents for the parametric
derivatives, and exploit the resulting degrees of freedom to impose conditions
appropriate to the approximation of clothoid segments, namely (1) specifying
the arc length of the interpolant, and (2) imposition of equal–magnitude end
derivatives. Although this problem also has multiple solutions, a scheme for
identifying accurate approximations to the “good” solution allows it to be
computed to machine precision by rapidly–convergent iterative methods.
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In the case of degree 7 PH curves (m = 3), equations (21)–(22) become

10 u2
0 + 6 u2

1 + 6 u2
2 + 10 u2

3 + 10 (u0u1 + u2u3)

+ 9 u1u2 + 4 (u0u2 + u1u3) + u0u3 = 35 (∆s+ ∆x) , (26)

10 v2
0 + 6 v2

1 + 6 v2
2 + 10 v2

3 + 10 (v0v1 + v2v3)

+ 9 v1v2 + 4 (v0v2 + v1v3) + v0v3 = 35 (∆s− ∆x) , (27)

20 u0v0 + 12 u1v1 + 12 u2v2 + 20 u3v3

+ 10 (u0v1 + u1v0) + 10 (u2v3 + u3v2) + 9 (u1v2 + u2v1)

+ 4 (u0v2 + u2v0) + 4 (u1v3 + u3v1) + u0v3 + u3v0 = 70 ∆y . (28)

Together with (25), and (u0, v0) and (u3, v3) given by (24) with m = 3, we
have a system of five equations in the six unknowns λ0, λ3, u1, v1, u2, v2.

To simplify the analysis, we eliminate the additional degree of freedom by
choosing λ0 = λ3 = λ. Since |r′(0)| = λ0 and |r′(1)| = λ3, this assumption is
consistent with the constant parametric speed of the clothoid defined by (2).

Proposition 1. The degree 7 PH curve approximant to the monotone clothoid

segment Ci, with end–point displacement ∆x = xi − xi−1, ∆y = yi − yi−1,

and total arc length ∆s = si−si−1, is identified by a solution to the following

system of five equations

αiq1 − βip1 =
πsi

6
λ , βfp2 − αfq2 =

πsf
6
λ , (29)

[ 10α2
i + 6 p2

1 + 6 p2
2 + 10α2

f + 10 (αip1 + αfp2)

+ 9 p1p2 + 4 (αip2 + αfp1) + αiαf ]λ = 35(∆s+ ∆x) , (30)

[ 10 β2
i + 6 q2

1 + 6 q2
2 + 10 β2

f + 10 (βiq1 + βfq2)

+ 9 q1q2 + 4 (βiq2 + βfq1) + βiβf ]λ = 35(∆s− ∆x) , (31)

[ 20αiβi + 12 p1q1 + 12 p2q2 + 20αfβf

+ 10 (αiq1 + βip1) + 10 (βfp2 + αfq2) + 9 (p1q2 + p2q1)

+ 4 (αiq2 + βip2) + 4 (βfp1 + αfq1) + αiβf + αfβi ]λ = 70 ∆y . (32)

in the real variables λ, p1, q1, p2, q2 where λ > 0 and αi, βi are defined by (23).
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Proof : The values (23) ensure the correct clothoid segment end tangents,
and on setting

(u1, v1) =
√
λ (p1, q1) , (u2, v2) =

√
λ (p2, q2) (33)

in (24), the equations (25) with m = 3, that ensure satisfaction of the end
curvatures, reduce to (29). Finally, substituting from (24), we can re–write
equations (26)–(28), ensuring satisfaction of the clothoid segment end points
and total arc length, in the form (30)–(32).

Equations (29)–(32) are linear in λ and at most quadratic in p1, q1, p2, q2.
As usual with the construction of PH curves that interpolate discrete data,
this system may admit multiple solutions, among which the “good” solution
(closely approximating the clothoid segment) must be identified [18, 26, 35].

Now the parameter λmust evidently be positive to guarantee polynomials
u(ξ), v(ξ) ∈ R[ξ] as the real and imaginary parts of the complex polynomial
w(ξ) = u(ξ) + i v(ξ). However, as we now show, there is an upper bound on
the λ values that admit real solutions of the system (29)–(32).

Proposition 2. For the system of equations (29)–(32) to have real solutions,

the positive parameter λ must satisfy

λ < λmax := min

(

15 (∆s+ ∆x)

2α2
i + αiαf + 2α2

f

,
15 (∆s− ∆x)

2 β2
i + βiβf + 2 β2

f

)

. (34)

Proof : For a specified λ, equations (30) and (31) define conic curves in the
(p1, p2) and (q1, q2) planes, while equation (32) defines a quadric surface in R

4

spanned by the coordinates (p1, p2, q1, q2). Introducing the new coordinates
(u1, u2) and (v1, v2) defined by

p1 =
√

2 (u1 + u2) −
(4αi − 2αf)

3
, p2 =

√
2 (u2 − u1) −

(4αf − 2αi)

3
,

q1 =
√

2 (v1 + v2) −
(4 βi − 2 βf)

3
, q2 =

√
2 (v2 − v1) −

(4 βf − 2 βi)

3
,

equations (30) and (31) can be reduced to

u2
1

7
+ u2

2 = γ ,
v2
1

7
+ v2

2 = δ , (35)
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where

γ =
5 (∆s+ ∆x)

6 λ
−

(2α2
i + αiαf + 2α2

f )

18
, (36)

δ =
5 (∆s− ∆x)

6 λ
−

(2 β2
i + βiβf + 2 β2

f )

18
. (37)

In order for both these conics to have non–null real loci, we must have γ > 0
and δ > 0, which is equivalent to the condition that λ satisfies (34).

When (34) is satisfied, p1, p2 and q1, q2 may be parameterized in terms of
angular variables φ and ψ as

p1(φ) =
√

2γ (
√

7 cosφ+ sin φ) − 4αi − 2αf

3
,

p2(φ) =
√

2γ (sinφ−
√

7 cosφ) − 4αf − 2αi

3
,

q1(ψ) =
√

2 δ (
√

7 cosψ + sinψ) − 4 βi − 2 βf
3

,

q2(ψ) =
√

2 δ (sinψ −
√

7 cosψ) − 4 βf − 2 βi

3
,

where γ and δ depend on λ as in (36)–(37). On substituting into (29)–(32),
the construction is reduced to computing the solutions of three equations in
the variables λ, φ, ψ. However, these equations are of greater complexity, and
a simpler dimensional reduction can be obtained as follows.

Remark 1. By means of equations (29), the variables p1, q1 and p2, q2 may
be expressed in terms of λ and real parameters τ1 and τ2 as

p1(τ1) = αiτ1 − βi
πsi

6
λ , q1(τ1) = βiτ1 + αi

πsi

6
λ , (38)

p2(τ2) = −αfτ2 + βf
πsf
6
λ , q2(τ2) = −βfτ2 − αf

πsf
6
λ , (39)

and substituting these expressions in (30)–(32) yields three equations in three
real variables, that are cubic in λ and quadratic in τ1, τ2. Upon solving these
equations, the values of p1, q1 and p2, q2 may be obtained by substituting the
solutions λ, τ1, τ2 in (38) and (39).

13



To obtain a starting approximation for the good solution λ, p1, q1, p2, q2 of
equations (29)–(32), we invoke the procedure described in [14] to compute the
quintic PH curve with equal–magnitude end derivatives, having the same end
points, end tangents, and arc length ∆s as the clothoid segment.4 We then
degree–elevate the quadratic pre–image w0(1−ξ)2+w12 (1−ξ)ξ+w2 ξ

2 of this
PH quintic, to obtain the cubic polynomial w̃(ξ) with Bernstein coefficients

w̃0 = w0 , w̃1 =
w0 + 2w1

3
, w̃2 =

2w1 + w2

3
, w̃3 = w2 . (40)

Hence, we choose λ = |w0|2 = |w2|2 and

(p1, q1) =
(Re(w̃1), Im(w̃1))√

λ
, (p2, q2) =

(Re(w̃2), Im(w̃2))√
λ

(41)

as starting values to solve the system of equations (29)–(32).

Remark 2. For any values (w0,w1,w2) that identify a PH quintic solution
obtained from the algorithm in Appendix 1, the values (−w0,−w1,−w2)
also specify a solution (obtained by replacing w by −w in step 3) that defines
exactly the same curve. For these two solutions, the values of the quantities
(40) — and hence of (41) — are opposites of each other. However, equations
(30)–(32) incorporate both linear and quadratic terms in p1, q1, p2, q2 so they
cannot be satisfied by both solutions. The starting values for p1, q1, p2, q2 are
therefore identified by the solution that satisfies (30)–(32).

When the system of three equations in the variables λ, τ1, τ2 obtained by
substituting (38) and (39) into (30)–(32) is employed, starting values for τ1, τ2
must be obtained, to supplement the known starting value for λ. Equations
(38) and (39) specify straight lines in the (p1, q1) and (p2, q2) planes, and the
starting values for τ1 and τ2 are identified by the points on those lines closest
to the values (p1, q1) and (p2, q2) determined from the quintic PH curve, as
identified by minimizing the expressions

F1(τ1) =
[

αiτ1 − βi
πsi

6
λ− p1

]2

+
[

βiτ1 + αi
πsi

6
λ− q1

]2

,

F2(τ2) =
[

αfτ2 − βf
πsf
6
λ+ p2

]2

+
[

βfτ2 + αf
πsf
6
λ+ q2

]2

.

4This problem has a closed–form solution incurring only univariate quadratic equations.
For convenience, the solution procedure is briefly summarized in Appendix 1.
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Equating the derivatives of these functions to zero yields the starting values

τ̂1 = αip1 + βiq1 , τ̂2 = −(αfp2 + βfq2) . (42)

In this case the starting values satisfy equations (29), but not (30)–(32).
Once the good solution has been computed, u1, v1 and u2, v2 are obtained

from (33) and we have (u0, v0) =
√
λ (αi, βi) and (u3, v3) =

√
λ (αf , βf ). The

coefficients wk = uk + i vk for k = 0, . . . , 3 of the cubic polynomial w(ξ) are
then known, and the PH curve approximant r(ξ) to the clothoid segment
s ∈ [ si, sf ] can be constructed from expressions (5)–(7) with m = 3.

The starting values identified above are employed to solve equations (29)–
(32) through Newton–Raphson iterations — note that these values exactly
satisfy the three equations (30)–(32) but not the two equations (29). For the
clothoid segments Ck, k ≥ 2 (and subsegments thereof) these starting values
yield rapid and accurate convergence to the “good” PH curve approximant.
However, the segment C1 exhibits anomalous behavior, and it is necessary
to relax the condition |w0| = |w3| to ensure accurate approximation of this
segment and its subsegments, as described in Section 6.1.

6 Computed examples

The following examples were obtained by Newton–Raphson iterations applied
to the system (29)–(32) of five equations in the variables λ, p1, q1, p2, q2 and
the reduced system of three equations in the variables λ, τ1, τ2 determined by
substituting (38)–(39) into (30)–(31), using starting values from the quintic
PH curve with the same end points, tangents, and arc length as the clothoid
(see Appendix 1). The two systems were observed to be similar in accuracy
and efficiency. The Matlab “fsolve” function was also employed to solve the
equations, and was found to yield substantially identical results.

Example 1. As a typical example, consider the monotone clothoid segment
between the consecutive turning points c2 and c3 that correspond to the arc
lengths s2 =

√
2 and s3 =

√
3. Then we have (αi, βi) = (0, 1) and (αf , βf ) =

(−1/
√

2, 1/
√

2), with known values for ∆s,∆x,∆y. The PH quintic having
equal–magnitude end derivatives, and the same end points, tangents, and arc

15



length as this clothoid segment is identified by the complex coefficients

w0 = −0.98951702 + 0.39396136 i ,

w1 = −1.11362917 + 0.02460666 i ,

w2 = −0.97826694− 0.42112145 i .

The PH quintic end–point curvatures, κi = 4.501854 and κf = 5.356500, are
in quite good agreement with those of the clothoid segment, κi = 4.442883
and κf = 5.441398. From w0,w1,w2 we identify the starting values

λ = 0.32457761 ,

p1 = −0.24353350 , q1 = 0.98665879 ,

p2 = −0.47923576 , q2 = 0.88902772 ,

for solving the system of equations (29)–(32). This is an excellent starting
approximation, and the Newton–Raphson method converges to the “good”
solution with double–precision accuracy in just 4 iterations, yielding

λ = 0.31997902 ,

p1 = −0.23693822 , q1 = 0.99619189 ,

p2 = −0.49495712 , q2 = 0.90534616 .

The computed coefficients of the cubic polynomial w(ξ) are then

w0 = −0.00000000 + 0.56566688 i , w1 = −0.13402810 + 0.56351276 i ,

w2 = −0.27998085 + 0.51212433 i , w3 = −0.39998689 + 0.39998689 i ,

and they generate the Bézier control points

p0 = (0.52889160, 0.71397221) , p1 = (0.48318031, 0.71397221) ,

p2 = (0.43764309, 0.70314146) , p3 = (0.39541073, 0.68114400) ,

p4 = (0.35989888, 0.64880163) , p5 = (0.33432109, 0.60827808) ,

p6 = (0.32105619, 0.56301641) , p7 = (0.32105619, 0.51730512) .

The degree 7 PH curve determined by these control points has end points,
tangents, and curvatures, and total arc length, in agreement with the exact
clothoid to an accuracy of 14 decimal places or better.
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Figure 2: The degree 7 PH curve that matches the end points, tangents, and
curvatures, and total arc length, of the clothoid segment between the turning
points c2 and c3, corresponding to the arc length interval s ∈ [ s2, s3 ].
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Figure 3: Variation of the error (43) of the degree 7 PH curve approximant
r(ξ) to the clothoid segment s ∈ [ s2, s3 ] in Figure 2, shown on a logarithmic
scale (red graph). The blue and green graphs show the diminution of error
achieved by dividing r(ξ) into two and four subsegments of equal arc length.
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Figure 2 shows the degree 7 PH curve approximant r(ξ) with its Bézier
control polygon. The deviation from the exact clothoid c(s) = (C(s), S(s))
specified by the Fresnel integrals (2) for s ∈ [

√
2,
√

3 ] is defined as

e(s) = | r(ξ∗) − c(s) | , (43)

where ξ∗ is the parameter value corresponding to arc length s∗ = s−si along
r(ξ) — i.e., it is the unique real root of equation (17), which can be computed
to machine precision by a few Newton–Raphson iterations

ξ(k)
∗

= ξ(k−1)
∗

− s(ξ
(k−1)
∗ ) − s∗

σ(ξ
(k−1)
∗ )

, k = 1, 2, . . .

from a starting approximation ξ
(0)
∗ . As seen in Figure 3, we have e(s) < 10−6

along the entire curve, and the error can be further suppressed by considering
smaller segments. Figure 3 shows that e(s) is less than 10−8 and 10−10

when r(ξ) is divided into two and four subsegments, respectively. This is
consistent with the known O(h6) approximation order [10] of “ordinary”
cubics matching the end points, tangents, and curvatures of a given curve.

For this example, Figure 4 shows the near–linear variation of the curvature
κ defined by (13) with arc length over the interval s ∈ [ s2, s3 ]. The exact
clothoid is characterized by the relation dκ/ds = π. In Figure 4 we plot the
arc–length derivative

dκ

ds
=

x′y′′′ − x′′′y′ − 3 σ (x′x′′ + y′y′′) κ

σ4
,

of the curvature κ = (x′y” − x”y′)/σ3 for the PH curve approximant. The
variation of dκ/ds lies within the narrow range [ 0.9841 π, 1.0065 π ].

Finally, Figure 4 also shows the the normalized parametric speed σ(ξ)/∆s
(which is exactly equal to 1 for a true arc–length parameterization) along the
PH curve. Although the PH curve approximation scheme does not explicitly
attempt to minimize variations in the parametric speed, it is seen to lie within
the narrow range σ(ξ)/∆s ∈ [ 0.9963, 1.0067 ] — indicating that r(ξ) quite
closely approximates a true arc–length parameterization.

The accuracy with which the degree 7 PH curve approximates the clothoid
properties κ = π s and ξ = s/∆s can be further improved by subdivision, as
with the behavior of the error (43) shown in Figure 3.
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Figure 4: Variation of curvature κ (upper left), arc–length derivative dκ/ds of
curvature (upper right), and “normalized” parametric speed σ(ξ)/∆s (lower)
with arc length s along the PH curve approximant to clothoid segment C3.
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Table 1 indicates the number of Newton–Raphson iterations required for
convergence to the “good” PH curve approximant of the monotone clothoid
segments s ∈ [ sk−1, sk ], 1 ≤ k ≤ 12. Also indicated is the root–mean–square
deviation of points corresponding to equal arc length along the clothoid and
the degree 7 PH curve approximant, and root–mean–square deviation of the
normalized parametric speed σ(ξ)/∆sk from unity: these values are based on
a sampling of 101 points at uniform arc length increments along both curves.

It is evident that, for each k ≥ 2, the monotone clothoid segments Ck are
approximated with a high degree of consistency in both point–wise accuracy
and in emulating arc–length parameterization. For the segments 2 ≤ k ≤ 12,
convergence behavior similar to that described in Example 1 was observed
under subdivision into two and four subsegments. However, as can be seen
in Table 1, segment C1 is more difficult to accurately approximate by a single
degree 7 PH curve, and it behaves less predictably under subdivision.

segment iterations erms σrms

C1 4 3.0337 × 10−4 3.2916 × 10−2

C2 4 8.9057 × 10−7 2.4429 × 10−3

C3 4 5.8428 × 10−7 3.2644 × 10−3

C4 4 3.7392 × 10−7 3.6137 × 10−3

C5 4 2.6200 × 10−7 3.7602 × 10−3

C6 4 1.9592 × 10−7 3.8345 × 10−3

C7 4 1.5340 × 10−7 3.8772 × 10−3

C8 4 1.2423 × 10−7 3.9041 × 10−3

C9 4 1.0324 × 10−7 3.9220 × 10−3

C10 4 8.7542 × 10−8 3.9345 × 10−3

C11 4 7.5456 × 10−8 3.9437 × 10−3

C12 4 6.5915 × 10−8 3.9506 × 10−3

Table 1: Iterations required for convergence to machine precision of PH curve
approximants to the clothoid segments C1, . . . , C12. Also listed are the root–
mean–square deviation of corresponding points on the clothoid segment and
PH curve (erms), and of the normalized parametric speed from unity (σrms).

Remark 3. As already noted, the system of equations (29)–(32) may admit
multiple real solutions. The existence of multiple interpolants to discrete data
— among which the “good” solution must be identified — is a characteristic
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feature of PH curves [14, 18, 26, 35]. Since the non–linear nature of equations
(29)–(32) precludes a simple analysis of the number of distinct real solutions
λ, p1, q1, p2, q2 for each monotone segment Ck, we investigate this empirically.
To reduce the dimension of the solution space, we employ the reduced system
of three equations in the variables λ, τ1, τ2 obtained by substituting (38)–(39)
into (30)–(32). We then record the number of distinct real solutions obtained
by Newton–Rapshon iterations from starting values defined by a 21×21×21
grid over the domain (λ, τ1, τ2) ∈ [ 0, λmax ] × [ τ1,min, τ1,max ] × [ τ2,min, τ2,max ],
where λmax is given by (34), and the intervals in τ1 and τ2 are centered on the
values τ̂1, τ̂2 given by (42), and of width 4 |τ̂1| and 4 |τ̂2|. For each monotone
segment C2, . . . , C12 exactly four distinct real solutions were found. However,
only two distinct real solutions were found5 for the segment C1.

Figure 5 shows the four distinct PH curve interpolants to the end points,
tangents, curvatures, and total arc length of the monotone clothoid segment
C3. Although all four solutions precisely match the clothoid segment data,
only one (the “good” solution) approximates the clothoid segment with high
accuracy. One other solution is of reasonable shape but poorer accuracy. The
remaining two solutions are inconsistent with the clothoid segment shape —
one has two extremely tight loops (barely visible in the plot), and the other
has inflections. Table 2 quantifies this behavior in terms of the pointwise error
erms, parametric speed error σrms, and deviation of the curvature derivative
dκ/ds from the clothoid value π. This illustrates the key role of the quintic
PH curve in ensuring rapid convergence to the good solution.

solution erms σrms dκ/ds

1 5.8428 × 10−7 3.2644 × 10−3 [ 0.9814, 1.0065 ] π
2 1.3921 × 10−5 1.0853 × 10−1 [ 0.6942, 2.2594 ] π
3 2.2574 × 10−3 7.2976 × 10−1 [−7.1290, 5.1632 ]× 108 π
4 1.5629 × 10−2 8.0829 × 10−1 [−1.8067, 1.3748 ]× 103 π

Table 2: Approximation quality of the four distinct PH curves interpolating
the end points, tangents, curvatures, and arc length of clothoid segment C3.

5This remained unchanged upon doubling the resolution of the grid of starting values,
and increasing its extent.
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Figure 5: The distinct PH curve solutions for clothoid segment C3: the good
solution (upper left); a curve of reasonable shape but poorer accuracy (upper
right); a curve with tight loops (lower left); a non–convex curve (lower right).
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6.1 The monotone segment C1

We now consider in greater detail the anomalous behavior of the approximant
to clothoid segment C1, corresponding to s ∈ [ 0, 1 ]. This example converges
to machine precision in 4 iterations, but with a deviation erms significantly
larger than the subsequent segments Ck, k ≥ 2 (see Table 1). Figure 6 shows
the PH curve approximant, and Figure 7 illustrates the arc–length derivative
of curvature and parametric speed variation, which have more pronounced
deviations than for the subsequent segments.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

Figure 6: The degree 7 PH curve that matches the end points, tangents, and
curvatures, and total arc length, of the monotone clothoid segment between
turning points c0 and c1, corresponding to the arc length interval s ∈ [ 0, 1 ].

Example 2. Table 3 lists results obtained when C1 is split into two, four, and
eight subsegments of equal arc length, where “×” indicates cases that failed
to converge or converged to a solution other than the “good” solution. It is
seen that convergence problems are associated with the arc–length interval
s ∈ [ 0.50, 0.75 ], for which the starting values appear to be near a singularity
of the system (29)–(32). For all other subsegments of C1, rapid convergence
and excellent accuracy of the PH curve approximant are obtained.

The problematic C1 subsegments were also investigated using the Matlab
“Fsolve” function. For these subsegments, Fsolve was observed to terminate
upon reaching the maximum allowed number of iterations, since the Jacobian
matrix becomes nearly singular. The solutions thus obtained appear to define
monotone curvature segments, although they are of relatively poor accuracy
as approximations of the corresponding clothoid segments.
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Figure 7: Left: arc–length derivative of curvature dκ/ds for the degree 7 PH
curve approximation to the clothoid segment s ∈ [ 0, 1 ] in Figure 6. Right:
the “normalized” parametric speed σ(ξ)/∆s for the PH curve approximant.

arc length iterations erms σrms

[ 0.000, 0.500 ] 3 1.0703 × 10−6 1.4260 × 10−3

[ 0.500, 1.000 ] ×
[ 0.000, 0.250 ] 2 7.9335 × 10−9 8.7648 × 10−5

[ 0.250, 0.500 ] 3 9.4164 × 10−9 9.7905 × 10−4

[ 0.500, 0.750 ] ×
[ 0.750, 1.000 ] 6 4.0017 × 10−8 4.6025 × 10−3

[ 0.000, 0.125 ] 2 6.1790 × 10−11 5.4728 × 10−6

[ 0.125, 0.250 ] 3 5.8250 × 10−11 5.6681 × 10−5

[ 0.250, 0.375 ] 3 6.4322 × 10−11 1.6453 × 10−4

[ 0.375, 0.500 ] 3 8.8487 × 10−11 3.6535 × 10−4

[ 0.500, 0.625 ] 5 1.9390 × 10−10 9.8652 × 10−4

[ 0.625, 0.750 ] ×
[ 0.750, 0.875 ] ×
[ 0.875, 1.000 ] 5 1.1020 × 10−10 5.1284 × 10−4

Table 3: Convergence behavior for the monotone segment C1 subdivided into
two, four, and eight subsegments of equal arc length. An “×” indicates failure
to converge, or convergence to a solution other than the “good” solution.
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It is evident that segment C1 (and its subsegments) pose greater difficulty
in identifying “good” PH curve approximants, subject to all of the imposed
conditions. To address this, we relax the requirement |r′(0)| = |r′(1)| = λ of
equal end–point parametric speeds, and instead set6 |r′(0)| = λ, |r′(1)| = η λ
where η is a free parameter that can be exploited to identify and optimize
good PH curve approximants. Upon writing (u0, v0) =

√
λ (αi, βi), (u1, v1) =√

λ (p1, q1), (u2, v2) =
√
η λ (p2, q2), (u3, v3) =

√
η λ (αf , βf ), each instance of

p2, q2, αf , βf in equations (30)–(32) is replaced with
√
η p2,

√
η q2,

√
η αf ,

√
η βf

and λ in (39) is replaced with η λ, but (38) remains unchanged.
Since large disparities in the end–derivative magnitudes are unlikely to

yield curves of good shape quality, it is advisable to restrict η to values close
to 1, e.g., η ∈ [ 0.5, 1.5 ]. A simple bisection method can be employed to find
optimum η values that yield rapid convergence, with excellent accuracy of the
clothoid approximant. This approach is best suited for off–line computation,
allowing the PH curve to be imported into a CAD system through its control
points and the coefficients of the pre–image polynomial (4) once it has been
identified. Alternatively, the “reverse engineering” methodology described in
[15] can be used to determine the coefficients of (4) from the control points.

Example 3. Consider the C1 subsegment s ∈ [ 0.5, 1.0 ] (for which no good
solution exists when |r′(0)| = |r′(1)|). As η varies, either two or four distinct
solutions are observed, and among values that admit a “good” solution, η =
0.8986 is observed to yield the smallest deviation from the exact clothoid,
with erms = 6.9235 × 10−8. Figure 8 shows the resulting PH curve, together
with the variation of the error (43), the normalized parametric speed, and
the arc–length derivative of curvature dκ/ds.

The entire segment C1 was also revisited using the above approach, with
η = 0.7932 being found to yield the optimum error value emax = 1.4068×10−6,
significantly smaller than the value indicated in Table 1 that corresponds to
η = 1, but the variation of the parametric speed (σrms = 7.2508 × 10−2) is
somewhat higher. The arc–length derivative of curvature dκ/ds was found to
vary within the relatively narrow range [0.9914, 1.0033 ] π. This optimized PH
curve approximant to the clothoid segment C1 is preferable when positional
accuracy is more important than uniformity of the parametric speed.

6This affects the uniformity of parameterization, but does not alter interpolation of the
end–points, tangents, and curvatures, and the total arc length.
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Figure 8: Approximation of the clothoid subsegment s ∈ [ 1
2
, 1 ] using unequal

end–point parametric speeds |r′(1)|/|r′(0)| = η with η = 0.8986 (upper left).
Also shown are graphs of the pointwise error (upper right), parametric speed
variation (lower left), and arc–length derivative of curvature (lower right).
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7 Closure

Precise control over curvature variation is a basic requirement in the design of
planar free–form curves. Beyond the trivial instances of a constant curvature
(lines and circles), the most fundamental case is a linear variation of curvature
with arc length. This property identifies the clothoid, a transcendental curve
defined in terms of the Fresnel integrals whose evaluation is computationally
expensive and susceptible to error amplification in floating–point arithmetic.

The present study demonstrates that clothoid segments can be accurately
approximated by degree 7 PH curves that interpolate the segment end points,
tangents, and curvatures, and also match their total arc lengths. In addition
to closely emulating the linear relation between curvature and arc length, the
approximants are observed to have a near–constant parametric speed — i.e.,
the curve parameter is very nearly proportional to the arc length.

The focus herein was on approximation of monotone clothoid segments.
By concatenating these approximations (or subsegments thereof), extended
piecewise clothoid approximations with G2 continuity can be obtained. The
construction is based on solving a system of five algebraic equations in five
real variables through Newton–Raphson iteration, with initial values derived
from a closed–form solution for a quintic PH curve that matches the segment
end points and tangents (but not curvatures), and the total arc length. With
these values, convergence to machine precision is typically observed in just 4
iterations, and the approximation accuracy can be greatly enhanced through
subdivision of the monotone clothoid segments into smaller pieces.

Appendix 2 enumerates (to 8 decimal places) the Bernstein coefficients
of the cubic pre–image polynomials for the degree 7 PH curve approximants
to the first 12 monotone clothoid segments. These data allow the PH curve
clothoid approximants to be directly employed in applications without having
to implement the numerical procedures described herein.
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Appendix 1: construction of PH quintic

We briefly summarize the algorithm [14] to compute a planar PH quintic with
given end points, end tangents, and total arc length, that is used to generate
starting values for iterative solution of the system of equations (29)–(32).

input: initial/final points pi,pf , tangents ti, tf , and arc length S.

1. convert the input data to canonical form by setting ℓ = |pf − pi | and
α = arg(pf − pi), and (a) subtracting pi from pi, pf ; (b) dividing pf

by ℓ exp(iα); (c) dividing ti, tf by exp(iα); and (d) dividing S by ℓ;

2. set θm = 1
2
(θi+θf ), δθ = 1

2
(θf −θi) and assign (ci, si) = (cos 1

2
θi, sin

1
2
θi),

and (cf , sf) = (cos 1
2
θf , sin

1
2
θf );

3. set z = − ( a1 +
√

a2
1 − 4 a2a0)/2a2 and w =

√
z, where a2 = 2 sin2 δθ,

a1 = 6 [ (cos δθ − 3)S + (3 cos δθ − 1) cos θm ], a0 = 36 (S2 − 1);

4. with p(z) = 60(S+ 1)− (15c2i +15c2f − 10cicf)z and q(z) = 60(S− 1)−
(15s2

i + 15s2
f − 10sisf)z, determine whether like or unlike signs µ = ±1

and ν = ±1 satisfy

µν
√

p(z)
√

q(z) = 5(cisf + cfsi − 3cisi − 3cfsf )z ;

5. for the two sign combinations of µ, ν thus identified, compute

u =
− 3(ci + cf )w + µ

√

p(z)

4
and v =

−3 (si + sf)w + ν
√

q(z)

4
;

6. for the two sets of u, v, w values thus obtained, form the complex values

w0 = w exp(i1
2
θi) , w1 = u+ i v , w2 = w exp(i1

2
θf ) ;

7. identify the good solution, with the least value of | 2w1 − (w0 +w2) |2;

8. map the canonical–form good solution to the original coordinates by
multiplying w0,w1,w2 with

√
ℓ exp(i 1

2
α) and obtain the control points

from (5) and (7) with m = 2 and p0 = pi.

output: planar PH quintic PH r(ξ) with r(0) = pi, r(1) = pf , r′(0) = w2t0,
r′(1) = w2t1 and the prescribed arc length S.
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Appendix 2: degree 7 PH curve coefficients

The coefficients of the cubic complex polynomial (4) are listed consecutively
for the degree 7 PH curve approximants to the clothoid segments C1, . . . , C12.
The values for segment C1 correspond to the optimum parameter value η =
0.7932 identified in Example 3, and for all the other segments they correspond
to the case of identical end–point parametric speeds. These coefficients suffice
to construct the PH curve approximants, and determine all their properties.

w0 = 1.06637917 + 0.00000000 i , w1 = 1.01606069 + 0.00000000 i ,

w2 = 0.99420510 + 0.35986432 i , w3 = 0.67156493 + 0.67156493 i .

w0 = 0.45558728 + 0.45558728 i , w1 = 0.35823093 + 0.55628026 i ,

w2 = 0.19804933 + 0.63932971 i , w3 = 0.00000000 + 0.64429771 i .

w0 = 0.00000000 + 0.56566688 i , w1 = −0.13402810 + 0.56351276 i ,

w2 = −0.27998085 + 0.51212433 i , w3 = −0.39998689 + 0.39998689 i .

w0 = −0.36744956 + 0.36744956 i , w1 = −0.45529351 + 0.27531841 i ,

w2 = −0.51445155 + 0.14694906 i , w3 = −0.51965215 + 0.00000000 i .

w0 = −0.48785924 + 0.00000000 i , w1 = −0.48456766 − 0.12159402 i ,

w2 = −0.43766348− 0.24540645 i , w3 = −0.34496858 − 0.34496858 i .

w0 = −0.32803844− 0.32803844 i , w1 = −0.24299857 − 0.40831569 i ,

w2 = −0.12805409− 0.45933923 i , w3 = 0.00000000 − 0.46391641 i .

w0 = 0.00000000− 0.44490088 i , w1 = 0.11294423 − 0.44152650 i ,

w2 = 0.22525226− 0.39777741 i , w3 = 0.31459243 − 0.31459243 i .

w0 = 0.30351971− 0.30351971 i , w1 = 0.37862052 − 0.22367881 i ,

w2 = 0.42507399− 0.11712492 i , w3 = 0.42924169 + 0.00000000 i .
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w0 = 0.41600272 + 0.00000000 i , w1 = 0.41268645 + 0.10661839 i ,

w2 = 0.37128453 + 0.21135695 i , w3 = 0.29415834 + 0.29415834 i .

w0 = 0.28608399 + 0.28608399 i , w1 = 0.21020983 + 0.35732604 i ,

w2 = 0.10965395 + 0.40070283 i , w3 = 0.00000000 + 0.40458386 i .

w0 = 0.00000000 + 0.39457884 i , w1 = −0.10171851 + 0.39134607 i ,

w2 = −0.20090940 + 0.35178233 i , w3 = −0.27900937 + 0.27900937 i .

w0 = −0.27273156 + 0.27273156 i , w1 = −0.34093387 + 0.20001760 i ,

w2 = −0.38203412 + 0.10407356 i , w3 = −0.38570066 + 0.00000000 i .
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planning, IEEE Trans. Robot. 33, 1242–1247.

[8] H. I. Choi and H. P. Moon (2008), Weierstrass–type approximation
theorems with Pythagorean hodograph curves, Comput. Aided Geom.

Design 25, 305–319.

[9] S. D. Conte and C. de Boor (1980), Elementary Numerical Analysis:

An Algorithmic Approach, McGraw–Hill, New York.
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