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A B S T R A C T
Background: The growth of “big data” and the emphasis on patient-
centered health care have led to the increasing use of two key technol-
ogies: personalized medicine and digital medicine. For these technologies
to move into mainstream health care and be reimbursed by insurers, it
will be essential to have evidence that their benefits provide reasonable
value relative to their costs. These technologies, however, have complex
characteristics that present challenges to the assessment of their eco-
nomic value. Previous studies have identified the challenges for person-
alized medicine and thus this work informs the more nascent topic of
digital medicine. Objectives: To examine the methodological challenges
and future opportunities for assessing the economic value of digital
medicine, using personalized medicine as a comparison. Methods: We
focused specifically on digital biomarker technologies and multigene tests. We
identified similarities in these technologies that can present challenges to
economic evaluation: multiple results, results with different types of
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utilities, secondary findings, downstream impact (including on family
members), and interactive effects. Results: Using a structured review, we
found that there are few economic evaluations of digital biomarker
technologies, with limited results. Conclusions: We conclude that more
evidence on the effectiveness of digital medicine will be needed but that
the experiences with personalized medicine can inform what data will be
needed and how such analyses can be conducted. Our study points out
the critical need for typologies and terminology for digital medicine
technologies that would enable them to be classified in ways that will
facilitate research on their effectiveness and value.
Keywords: cost-benefit analysis methods, digital medicine, individualized
medicine, personalized medicine.

Copyright & 2017, International Society for Pharmacoeconomics and
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Introduction

The growth of “big data” and the increasing emphasis on patient-
centered health care and consumer engagement have contrib-
uted to the emergence of two key technologies: 1) personalized
medicine (also known as precision or genomic medicine—the use
of genetic information to target health care interventions) and 2)
digital medicine (also known as mhealth—the digital transmis-
sion of information and various combinations of telecommuni-
cations, hardware, and software to deliver health care services). It
has been said that we are entering the “information age” for
health care, in which everything is connected and the integration
of big data—characterized by high velocity, volume, and variety—
is becoming increasingly important [1–3]. Both personalized
medicine and digital medicine are emerging in mainstream
health care and away from being narrowly focused on only
limited conditions (such as genetic testing for rare childhood
disorders) or solely “entertainment” devices that are not intended
to impact health outcomes (such as free phone applications
[apps]).

The emergence of personalized medicine and digital medicine
in mainstream health care has accelerated in recent years
because of the growing availability of these technologies, often
at decreasing costs. There are now more than 60,000 genetic tests
available for more than 4,000 disorders [4], and the cost of
multigene panel tests such as whole-genome sequencing has
dropped dramatically [5]. The use of smartphones is now almost
ubiquitous in the United States—80% of US adults have a
smartphone, and 30% of these phones have at least one health-
related app [6].
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The intersections between personalized medicine and digital
medicine are increasing [7]. Eric Topol, in his seminal book on
how the digital revolution will create better health care, noted
that personalized and digital medicine technologies are converg-
ing [8], and digital health has been defined as the “convergence of
the digital and personalized revolutions with health, health care,
living, and society” [9]. A recent report noted that funding for
digital health personalized medicine companies comprised half
of overall genomics funding in three of the five years, and that
delivering on the promise of genomics is dependent on the
following factors that are within the purview of digital health:
1) ensuring broad access to diverse data sets used to deliver
insights, 2) removing barriers to clinical workflow incorporation,
and 3) advancing technology, both in the laboratory and in the
cloud [10]. Importantly, digital technologies will play a key role in
the recently funded National Institutes of Health Precision
Medicine Initiative, with data from mobile health devices and
apps integrated with data from genetic tests, surveys, and
electronic health records in what has been termed the “most
ambitious medical research program in the history of American
medicine” [11].

Nevertheless, for personalized medicine and digital medicine
to be adopted more widely as a routine part of health care
services and to be reimbursed by insurers, it will be essential to
have evidence that these technologies have been evaluated for
their accuracy, clinical effectiveness, economic value, and ethical
implications [12]. Many have noted the hope that personalized
medicine and digital medicine will transform health care by
improving outcomes and decreasing costs [13,14]. Many, how-
ever, have also noted that more evidence on the value of these
technologies will be needed, particularly for digital medicine
given that it has more recently entered mainstream health care
relative to personalized medicine [15–20].

Our objective was to examine the methodological challenges
and future opportunities for assessing the economic value of
digital medicine, using personalized medicine as a comparison
and focusing specifically on digital biomarker technologies and
multigene tests. We begin by identifying how these technologies
share several characteristics that present similar challenges for
economic evaluation. We then draw on previous work identifying
methodological challenges for economic evaluation of complex
technologies and assess how they are applicable to multigene
tests and digital biomarker technologies. We follow with a
structured review of cost and outcome studies of digital bio-
markers. We conclude with an assessment of future steps needed
to facilitate assessing the economic value of these new
technologies.
Characterizing and Comparing Personalized Medicine
and Digital Medicine

Before we can examine the economic issues, we need to first
characterize personalized medicine and digital medicine and
then describe how they are similar. Both personalized medicine
and digital medicine include a wide range of technologies and
thus comparing “personalized medicine” and “digital medicine”
in their entirety would be too diffuse. We begin by defining the
scope of personalized medicine and digital medicine and the
focus of this article—digital biomarkers and multigene tests. We
then compare the technologies in terms of challenges to eco-
nomic evaluation

Personalized medicine includes genetic tests and targeted inter-
ventions. These technologies can be used for a range of purposes
(e.g., risk prediction, treatment decisions, and prenatal screening)
and can be focused on either the individual’s genetic makeup or
the genetic variation that is acquired (e.g., cancer tumors).
Genetic tests also range from tests for a single gene to tests for
the entire genome. The scope of personalized medicine is now
often considered to include more than genetic information—to
include any disease prevention or treatment approach that takes
into account differences in people’s genes, environments, and
lifestyles [21]. (For the purposes of this study, we do not
distinguish between genomic medicine, personalized medicine,
and precision medicine.)

Digital medicine includes a wide range of technologies ranging
from consumer-oriented monitoring apps to telemedicine and
electronic health records. Monitoring apps and devices range
from simple activity trackers to more complex technologies such
as respiratory monitors to monitor asthma, electrocardiograms to
monitor heart conditions, and glucose monitors for diabetes
control. An example of a complex, emerging digital technology
is the “smart” contact lens with embedded sensors for conditions
such as glucose monitoring being developed by Google’s Verily.

One scheme classified digital medicine into the following
categories [22]:
1.
 Wearables and biosensors—wearable or accessory devices that
detect specific biometrics and are designed for consumers,
with data transmission to providers as relevant;
2.
 Analytics and big data—data aggregation and/or analysis to
support a wide range of health care use cases;
3.
 Health care consumer engagement—consumer tools for the pur-
chasing of health care products and services or health
insurance;
4.
 Telemedicine—delivery of health care services (synchronous or
asynchronous) through nonphysical means (e.g., telephone,
digital imaging, and video);
5.
 Enterprise wellness—services designed to improve general well-
being of employees; and
6.
 Electronic health record and clinical workflow—electronic health
records and surround apps, including clinical workflow sup-
port/augmentation.

Within these broad categories, two technologies that are most
relevant for the purpose of this study are 1) multigene tests and 2)
digital biomarker technologies. Multigene tests include “panels”
(tests that analyze multiple genes including newly recognized
genes and/or for multiple syndromes) and “whole-exome/whole-
genome sequencing” (tests that analyze the exome or the whole
genome). Digital biomarker technologies, which fall into the
category of “wearables and biosensing devices,” use consumer-
generated physiological and behavioral measures collected
through connected digital tools that can be used to explain,
influence, and/or predict health-related outcomes [6]. These
technologies may focus on measurements for consumer use
only, or clinical measurements that are transmitted to clinicians
for health care decision making. They may passively monitor
ongoing activities (such as steps taken) or be used to actively
collect specific measurements (such as blood glucose). These
technologies are relevant because they both measure biomarkers,
which is a general term for any physiological characteristic that is
objectively measured and evaluated to indicate a disease state;
both technologies can produce enormous amounts of data that
have to be integrated to provide meaningful results, and both
technologies are complex because they include multiple meas-
ures and results, which may include clinically actionable results
as well as results that provide only information of personal utility
to the consumer or that have no known significance.

An example of the intersection between multigene tests and
digital biomarker technologies was noted in a recent report [6].
This report noted that the “most promising” consequence of
digital biomarkers is the ability to create digital biomarker panels
—and that a parallel is seen in the example of gene expression
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signatures that serve diagnostic, prognostic, and predictive roles.
Health care panels with multiple measures have proven to be
clinically useful in other areas of medicine; for example, 10-year
cardiovascular risk is best predicted by a set of measurements
including age, sex, cholesterol levels, smoking and medication
status, and blood pressure [6]. There are at present a limited
number of technologies that directly integrate genomic data with
digital technologies for consumer use. Examples are apps that
combine behavioral/phenotypic data captured via an iPhone or
Apple Watch and genetic data from 23andMe to identify novel
genetic correlations [10], and the Pathway Genomics OME™ app
(San Diego, CA) that “merges cognitive computing and deep learning
with precision medicine and genetics to enable Pathway Genomics
to provide consumers with genomic wellness information” [23].
Table 1 – Characteristics of technologies, challenges for
tests and digital biomarker technologies.

Characteristics of
technologies

Challenges for economic
evaluations

M

Measures multiple
biomarkers, thus
providing multiple results

Complicated analyses are
required that may be
infeasible because of the large
number of possible pathways
and outcomes

W

Results have different
utilities: clinically
actionable, personal
utility only, harmful,
and/or unknown
significance

Personal utility is difficult to
value; costs of harmful results
and/or results with unknown
significance may not be
incorporated into analyses

Mu

Results may include
secondary findings
(potentially actionable
findings unrelated to the
reason for using the
technology)

Complicated analyses required
to capture potentially low
probability events and
associated utilities; often lack
of data on costs and outcomes
of secondary findings

Mu

Downstream impact on costs
and outcomes, including
impact on family
members

Complicated analyses required
to examine impact over time;
impact on family members
may not be incorporated into
analyses

Co

Results may have interactive
effects such that the “sum
is greater than the parts”

Complicated analyses required
to estimate interactive effects

Tu

AF, atrial fibrillation.
Methodological Challenges of Measuring the Value of
Complex Technologies

Our work and that of others have analyzed the challenges of
examining the economic value of complex technologies such as
personalized medicine [24–32]. Because of the similarities
between personalized medicine and digital medicine—particu-
larly between multigene tests and digital biomarker technologies
—reviewing the challenges identified for personalized medicine
can provide insights into how similar challenges may be relevant
to digital medicine.

Table 1 presents a summary of the test characteristics that
have been identified as presenting challenges to economic
economic evaluations, and application to multigene

ultigene testing examples Digital medicine examples

hole-genome sequencing can
provide multiple results, with
multiple clinical pathways,
costs, and outcomes

Activity monitors can provide
multiple types of data (steps,
heart rate, sleep patterns, etc.)
with multiple clinical
pathways, costs, and
outcomes

ltigene tests may provide
information with personal
utility or disutility only (e.g.,
knowing that one is at risk for
a nonpreventable condition)
or that has unknown
significance leading to
unwarranted interventions
(e.g., a genetic variation that
has not been validated but
leads to further testing)

Activity monitors may provide
information that is unlikely to
be clinically actionable (e.g.,
whether you move during the
night) and technologies that
encourage physical activity
such as pedometers may
produce unexpected harms
(e.g., joint injury)

ltigene testing for one
inherited condition (e.g.,
cardiovascular risk) may
reveal previously undiagnosed
risk for another condition (e.g.,
BRCA1/2, which confers a high
risk of breast and ovarian
cancer)

Technologies for measuring
continuous blood pressure
may provide results on heart
disease but could also indicate
unrelated findings (e.g., mood
and emotion)

sts and outcomes for
multigene panels for inherited
conditions, such as Lynch
syndrome, depend to a large
extent on downstream follow-
up by family members (e.g.,
increased colorectal cancer
screening)

Technologies used to diagnose
AF may impact family
members (30% of individuals
with AF have a family member
with the condition)

mor profiling measures
multiple genes that together
may provide a more
comprehensive assessment of
a tumor and treatment
options than if testing were
done individually

Technologies such as smart
watches provide multiple
types of seemingly unrelated
data (e.g., standing time,
walking/steps, heart rate,
weight) and the sum valuation
of these on outcomes such as
preventing obesity is likely
greater than each individual
measurement



V A L U E I N H E A L T H 2 0 ( 2 0 1 7 ) 4 7 – 5 350
evaluations: multiple results, results with different types of
utilities, secondary findings, downstream impact (including on
family members), and interactive effects. For each of these
characteristics, we noted the implications for conducting eco-
nomic analyses, including a need for more complicated analyses
and more in-depth analyses of utilities and impacts. The table
then presents how multigene tests and digital biomarker tech-
nologies illustrate each of these challenges. For example, as
noted earlier, a key advantage of multigene tests and digital
biomarker technologies is their ability to integrate results from
multiple biomarkers into panels in which the sum is greater than
the parts. This, however, can present a challenge to economic
evaluation because data on costs and effectiveness may be
available only for each individual biomarker and thus the
interactive effect would not be incorporated in value calculations.
Similarly, both technologies produce large amounts of informa-
tion that may not be clinically actionable and may produce
unexpected harms such as unexpected results or results that
produce anxiety or lead to unwarranted interventions.
Comparison of Economic Evaluations

We first conducted a structured review of economic evaluations
of digital biomarker technologies to assess what is known about
their economic value and discuss how these results illustrate
some of the methodological challenges for measuring the value
of complex technologies. We then compared these results with
previously published reviews of economic evaluations of person-
alized medicine.

Structured Review of Economic Evaluations of Digital
Biomarker Technologies

Because there are no specific Major Exact Subject Heading (MeSH)
terms for “digital medicine,” we used a combination of keyword
and MeSH terms to identify economic evaluation studies (con-
ducted for the past 5 years till April 2016) of digital biomarker
technologies:

(((((((((fitbit) OR activity monitor) OR consumer-wearable) OR
trackers) OR digital) OR ((((“Computers, Handheld”[Mesh] OR
“Cell Phones”[Mesh] OR “Smartphone”[Mesh]) OR “Mobile
Applications”[Mesh]) OR “Telemedicine”[Mesh])))) AND
((“Cost-Benefit Analysis”[Mesh]) OR “Costs and Cost Analy-
sis”[Mesh]) NOT “telemedicine”)

We included studies of technologies that met our definition of
digital biomarkers and those that included a comparison of costs
and outcomes (cost-consequence analysis, cost-effectiveness
analysis, or cost-benefit analysis). We excluded studies of tech-
nologies that did not collect data from individuals but provided
individuals with a one-way communication (e.g., text message)
and studies of digital services such as telemedicine. We excluded
studies that examined only costs or that used the term “cost-
effectiveness” but did not calculate a cost-effectiveness ratio. We
identified 281 studies in our initial search. We then excluded 258
studies on the basis of a review of their titles or abstracts and 18
studies on the basis of a review of the full text, leaving 5 included
studies. Studies were coded by two authors.

Two key findings emerge from our review (Table 2). First, we
found only five relevant articles [33–37]. None of these studies
was conducted in the United States, which is surprising given
that digital medicine is a major focus in the country. These
results suggest that digital biomarker technologies are only
beginning to be formally evaluated for their costs/outcomes.
Second, we found that only two of the five studies concluded
that the digital intervention was cost-effective or that the costs
were reasonable relative to the outcomes, with two more studies
concluding that the results were equivocal.

This review suggests several ways in which the measurement
of the economic value of digital biomarker technologies is likely
to be challenging. The included analysis of a digital technology
for atrial fibrillation (AF) [35] illustrates several of the challenges
noted in Table 1. One of the similar challenges found in person-
alized medicine and digital medicine is the method of addressing
the downstream impact on costs and outcomes, including impact
on family members that the technologies may present. For
example, recent studies suggest that up to 30% of people with
AF may have familial AF and thus have a higher chance of having
a relative with the condition [38]. Because AF can be inherited, an
AF diagnosis can result in a cascade of costs and outcomes not
only for the individual (e.g., warfarin therapy) but also for their
family members (e.g., risk/diagnostic testing and possible war-
farin therapy). The analysis included in our review focused on
detecting AF using an electrocardiogram; it, however, did not
consider the fact that AF can be inherited and did not address
downstream costs such as risk/diagnostic testing of family
members or treatment for afflicted family members.

Comparison of Economic Evaluations of Digital Biomarker
Technologies with Those of Personalized Medicine

There are few published cost-effectiveness analyses specifically
focusing on multigene tests [25,32,39–41]. We thus used previous
reviews of personalized medicine more generally for compari-
sons. In our previous review of cost-utility analyses of personal-
ized medicine published between 1998 and 2011 [24], we found
that 80% of studies (N ¼ 59) concluded that genetic testing had
favorable cost-effectiveness ratios (cost per quality-adjusted life-
year gained o$100,000 or cost saving). In a review covering
studies of personalized medicine published between 2010 and
2014, 84% of studies (N ¼ 38) reported that their findings indicated
favorable cost-effectiveness [42]. These results are similar to
those for other medical interventions [24]. In comparison, our
review of digital biomarker technologies suggests that these
technologies may less likely be cost-effective than personalized
medicine or other technologies although the small number of
studies found precludes any definitive conclusions.
Conclusions

We found only a few economic evaluations of digital biomarker
technologies, consistent with reports suggesting that few digital
medicine technologies have been evaluated for their costs/out-
comes. This is not surprising given that economic value is
difficult to examine without first establishing the effectiveness
of the technology in improving outcomes, and effectiveness data
are generally lacking for digital medicine technologies. For
example, authors of a recent prospective, randomized trial of
individuals using smartphone-enabled biosensors for chronic
disease management noted that this was the first randomized
trial to examine costs as well as outcomes [20]. This study found
no evidence of differences in health care utilization or costs
although it found some limited evidence that the use of the
technology improved the perception of control over health status.
On the one hand, such results assuage concerns that digital
monitoring will lead to unwarranted health care utilization and
costs; on the other hand, they provide little evidence that such
technologies will improve health outcomes.

The present lack of effectiveness evidence will be a hindrance
to conducting economic evaluations of digital medicine. The
experience with personalized medicine, however, suggests how
economic analyses can be useful even when such evidence is



Table 2 – Economic evaluations of digital biomarker technologies.

Condition Intervention
(what is tool and
what it is
used for)

Comparator Population included
(sociodemographic
characteristics, N)

Type of cost analysis
and results

Key economic
conclusions from
articles (direct quote
from article)

Did authors conclude
that it was cost-
effective or had
reasonable costs?

Source

AF Screening for AF
using iPhone
iECG by
pharmacists for
stroke
prevention

Diagnosis of AF
in an
unscreened
population

General population
(65–84 y)(Australia,
N ¼ 1000)

Cost-utility analysis “Screening with iECG for
AF in pharmacies with
an automated
algorithm is both
feasible and cost-
effective.”

Yes [35]
$4,066 per QALY gained;
$20,695 for preventing
one stroke

Heart failure CardioManager
App to allow
heart disease
patients to self-
manage their
conditions

No use Patients with heart
failure (Spanish
communities [Castile
and Leon], N ¼ 2000)

Cost-utility analysis “CardioManager may
generate 33% reduction
in cost of management
and treatment… may
be able to save more
than $10,940 per
patient to the local
Health Care System.”

Yes [33]
$11,300 per QALY gained

Asthma control tþ Asthma App for
monitoring and
transmission of
symptoms, drug
use, and peak
flow with
immediate
feedback to
improve asthma
control

Standard paper-
based
monitoring
strategies

Patients with asthma
(United Kingdom,
N ¼ 288)

Cost-consequence analysis “The tþ Asthma App was
more expensive
because of the
expenses of
telemonitoring and
was not cost-effective.”

No [36]
Telemonitoring cost
difference was significant
($108 per patient); mean
cost of care $382
intervention group vs.
$380 comparison group

Physical activity
and health-
related quality
of life

Pedometer-based
activity
instructions to
increase daily
number of steps

Time-based
instructions
(initial clinical
consultation,
written advice
with time-
based
personal
activity goals,
3 telephone
sessions)

Low physical activity,
adults aged 65 y and
older (Auckland, NZ,
N ¼ 330)

Cost-utility analysis “There were no
significant between-
group differences in
costs. Outcomes
suggest intervention
may be cost-effective
in increasing physical
activity and health-
related quality of life
over 12 months.”

Maybe [34]
Intervention vs.
comparator, per 30 min of
weekly walking/per
QALY:

1) community care costs
$115/$3,105; 2) exercise
and community care
costs $130/$3,500; 3) all
costs $185/$4,999

continued on next page
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lacking, for example, by identifying variables that are particularly
important for data collection, estimating the range of possible
conclusions, and developing innovative modeling approaches
[2,24–26,32].

Our list of challenges suggests what type of data may be needed
to conduct economic analyses, such as the interactive effect across
multiple measures. Given the small number of economic evalua-
tions of digital biomarker technologies identified, we did not
attempt to assess their quality. Nevertheless, in searching for these
studies, we found many instances in which standard method-
ologies and terminology were not used, for example, a study was
described as being a “cost-effectiveness analysis” even when there
was no incremental cost-effectiveness analysis ratio presented.

Our study points out the critical need for typologies of digital
medicine technologies that would enable them to be classified in
ways that will facilitate research on their effectiveness and value.
We were unable to locate any detailed categorizations or taxon-
omies of digital medicine, even in the gray literature. Taxonomies
would enable better identification of technologies and their
relevant comparators, costs, and outcomes.

A similar need is for standardized subject heading terms in
PubMed for digital medicine. There is at present no MeSH term for
digital or digital medicine and thus there is variability in how studies
are coded and it is difficult to locate relevant studies. It is not
surprising that a rapidly developing field such as digital medicine
requires an evolution in terminology, but given that smartphones
have been available for a decade, there is an urgent need to develop
consistent and timely terminology and categorizations of studies.

Our study has limitations that should be addressed in future
research. Given that this is the first study to our knowledge that
has begun to lay out the challenges for economic evaluation of
digital medicine, this should be considered an initial overview of
the topic. Our review of economic evaluations focused only on one
specific type of digital medicine and we may have missed some
studies because PubMed coding is not yet well-standardized, but
we think that our illustrative analyses portend what we would
have found with a broader, more comprehensive search. Last, we
did not attempt to derive inferences from cost/outcome studies of
multigene tests, given that few have been published.

We have described an initial approach to considering how the
economic value of digital medicine can be examined. We sug-
gested several steps that could facilitate these needed analyses.
Digital medicine offers great potential to improve outcomes and
increase patient engagement, but evidence on its value is needed.
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